JP2013119653A - Hot-rolled steel plate as material for cold-rolling, and manufacturing method therefor - Google Patents

Hot-rolled steel plate as material for cold-rolling, and manufacturing method therefor Download PDF

Info

Publication number
JP2013119653A
JP2013119653A JP2011268493A JP2011268493A JP2013119653A JP 2013119653 A JP2013119653 A JP 2013119653A JP 2011268493 A JP2011268493 A JP 2011268493A JP 2011268493 A JP2011268493 A JP 2011268493A JP 2013119653 A JP2013119653 A JP 2013119653A
Authority
JP
Japan
Prior art keywords
hot
rolled steel
cold
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011268493A
Other languages
Japanese (ja)
Other versions
JP5862254B2 (en
Inventor
Koichiro Fujita
耕一郎 藤田
重宏 ▲高▼城
Shigehiro Takagi
Taro Kizu
太郎 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011268493A priority Critical patent/JP5862254B2/en
Publication of JP2013119653A publication Critical patent/JP2013119653A/en
Application granted granted Critical
Publication of JP5862254B2 publication Critical patent/JP5862254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot-rolled steel plate as a material for cold-rolling and a manufacturing method therefor, with which a thin steel sheet after cold-rolling and the steel sheet obtained by applying the surface treatment to the thin steel plate can be manufactured at low cost, even with a cold-rolling mill having small rolling capacity.SOLUTION: The hot-rolled steel plate as the material for cold-rolling has a chemical composition composed, by mass, of 0.016-0.07% C, ≤0.1% Si, 0.05-0.5% Mn, ≤0.03% P, ≤0.03% S, 0.02-0.1% sol.Al, ≤0.005% N, 0.005-0.03% Ti and the balance Fe with inevitable impurities, and has an average crystal grain diameter of ≤13 μm and the aging index AI of ≤10 MPa.

Description

本発明は、屋根材などの建材分野で用いられる薄物の冷延鋼板または表面処理冷延鋼板、特に、冷間圧延ままの鋼板またはそれに表面処理を施した鋼板の製造において冷間圧延の素材として用いられる、冷間圧延の素材用の熱延鋼板およびその製造方法に関する。   The present invention is a thin cold-rolled steel sheet or surface-treated cold-rolled steel sheet used in the field of building materials such as roofing materials, in particular, as a material for cold rolling in the manufacture of cold-rolled steel sheets or steel sheets subjected to surface treatment. The present invention relates to a hot-rolled steel sheet for cold rolling material and a method for producing the same.

近年、世界的な人口の増加や経済の発展にともない、建材の需要が増加している。特に、建物の外壁や屋根などには、板厚0.3mm以下の薄物の冷延鋼板、あるいはそれにめっきや塗装などを施した表面処理冷延鋼板をベニヤ板などの基板に貼り合わせたものが使用される場合がある。こうした用途では、冷延鋼板はほとんど加工を受けないため、加工性が問われることはなく、冷間圧延ままの鋼板やそれに表面処理を施した鋼板が使用される。   In recent years, the demand for building materials has increased with the global population growth and economic development. In particular, the outer walls and roofs of buildings are made of thin cold-rolled steel sheets with a thickness of 0.3 mm or less, or surface-treated cold-rolled steel sheets that have been plated or painted on a substrate such as plywood. There is a case. In such applications, cold-rolled steel sheets are hardly processed, so workability is not questioned, and cold-rolled steel sheets or steel sheets subjected to surface treatment are used.

外壁や屋根用の建材の低コスト化のために、こうした冷間圧延ままの鋼板やそれに表面処理を施した鋼板の薄ゲージ゛化が望まれているが、外壁や屋根用の建材は、需要地隣接の圧延能力の小さい冷間圧延ミルによって冷間圧延が施される場合が多く、冷間圧延時の荷重不足で薄ゲージ゛化できないという問題がある。   In order to reduce the cost of building materials for outer walls and roofs, it is desirable to make these cold-rolled steel sheets and steel sheets with surface treatments thinner, but demand for building materials for outer walls and roofs is in demand. In many cases, cold rolling is performed by a cold rolling mill having a small rolling capacity adjacent to the ground, and there is a problem that thinning cannot be achieved due to insufficient load during cold rolling.

そこで、素材として冷間圧延荷重の低い軟質な熱延鋼板に対する要求が高まり、例えば、特許文献1には、鋼中のC量を0.010質量%以下に極低炭素化した熱延鋼板に関する技術が、また、特許文献2には、鋼中のN量を0.0020質量%以下に低減した熱延鋼板に関する技術が提案されている。さらに、特許文献3には、鋼中のC量を0.01〜0.10質量%、N量を0.010質量%以下にし、仕上温度700℃以上Ar3変態点以下で熱間圧延[いわゆるα(フェライト)圧延]を行い、粗大な結晶粒を有する熱延鋼板を得る技術が提案されている。 Therefore, the demand for a soft hot-rolled steel sheet having a low cold rolling load as a raw material has increased.For example, Patent Document 1 discloses a technique related to a hot-rolled steel sheet in which the amount of C in the steel is extremely low to 0.010 mass% or less. Patent Document 2 proposes a technique related to a hot-rolled steel sheet in which the N content in steel is reduced to 0.0020% by mass or less. Further, in Patent Document 3, the amount of C in steel is 0.01 to 0.10% by mass, the amount of N is 0.010% by mass or less, and hot rolling at a finishing temperature of 700 ° C. or more and an Ar 3 transformation point or less [so-called α (ferrite) rolling To obtain a hot-rolled steel sheet having coarse crystal grains has been proposed.

特開平3-79726号公報JP-A-3-79726 特公昭63-30969号公報Japanese Patent Publication No.63-30969 特開2010-77482号公報JP 2010-77482 A

しかしながら、特許文献1や2に記載されたCやNといったガス成分量の低い熱延鋼板に関する技術では、製鋼時に真空脱ガス処理を施す必要があり、製造コスト増を避けられない。また、圧延能力の小さい冷間圧延ミルを用いて、板厚が0.3mm以下の冷間圧延ままの鋼板やそれに表面処理を施した鋼板を製造するには、素材の熱延鋼板の板厚を3mm以下にする必要があるが、CやN量の低い場合はAr3変態点以上の仕上温度の確保が難しく、板厚方向に不均一なミクロ組織が形成されやすく、冷間圧延性を阻害する。 However, in the technology relating to the hot rolled steel sheet having a low gas component amount such as C and N described in Patent Documents 1 and 2, it is necessary to perform a vacuum degassing process at the time of steel making, and an increase in manufacturing cost is inevitable. In order to produce a cold-rolled steel sheet with a thickness of 0.3 mm or less or a surface-treated steel sheet using a cold rolling mill with a small rolling capacity, the thickness of the hot-rolled steel sheet is used. it is necessary to 3mm or less, when low C and N content is difficult to secure the temperature finishing above Ar 3 transformation point, easily inhomogeneous microstructure is formed in the thickness direction, inhibits cold rollability To do.

特許文献3に記載されたα圧延の技術では、熱延鋼板の強度が仕上温度や巻取温度の影響を受けやすく、安定して薄ゲージ化ができない。   In the α rolling technique described in Patent Document 3, the strength of the hot-rolled steel sheet is easily affected by the finishing temperature and the coiling temperature, and the thickness cannot be reduced stably.

本発明は、このような問題を解決するためになされたもので、圧延能力の小さい冷間圧延ミルでも薄物の冷間圧延ままの鋼板やそれに表面処理を施した鋼板を安価に製造することができる素材の熱延鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in order to solve such a problem, and it is possible to inexpensively manufacture a thin steel plate that is still cold-rolled in a cold rolling mill or a surface-treated steel plate even in a cold rolling mill having a small rolling capacity. An object of the present invention is to provide a hot-rolled steel sheet of a material that can be produced and a method for producing the same.

上述したように、従来の技術では、冷間圧延荷重を低減するために、素材である熱延鋼板を軟質化することに重きを置いて検討されている。しかし、本発明者等は、軟質な熱延鋼板を用いても、冷間圧延荷重が高くなる場合があり、その原因が、熱延鋼板の強度には大きくは影響しない少量の固溶CやNであることを見出した。また、安価な元素であるTiを添加すれば、巻取温度がばらついたり、生産性を高めるために巻取ったコイルを水冷しても、固溶CやNがほとんど存在せず、安定して冷間圧延荷重を低減できる、すなわち、冷間圧延による強度上昇を抑制し、冷間圧延荷重を低減できることを見出した。   As described above, in the prior art, in order to reduce the cold rolling load, studies are made with emphasis on softening a hot-rolled steel sheet as a raw material. However, the present inventors may increase the cold rolling load even when using a soft hot-rolled steel sheet, and the cause thereof is a small amount of solute C or C which does not greatly affect the strength of the hot-rolled steel sheet. Found N. In addition, if Ti, which is an inexpensive element, is added, even if the coiling temperature varies or the coil coiled to increase productivity is water-cooled, there is almost no solid solution C or N, and it is stable. It has been found that the cold rolling load can be reduced, that is, the strength increase due to cold rolling can be suppressed and the cold rolling load can be reduced.

次に、本発明の基礎となった実験結果について説明する。   Next, the experimental results on which the present invention is based will be described.

質量%で、C:0.002〜0.05%、Si:0.015%、Mn:0.15%、P:0.012%、S:0.008%、Sol.Al:0.035%、N:0.003%を含有した鋼を用いて、加熱温度:1250℃で加熱後、仕上温度:920℃で熱間圧延し、巻取温度:650℃で巻取った後、放冷し、酸洗後、伸長率:1%の調質圧延を行い、熱延鋼板を得た。そして、この熱延鋼板を、圧下率:78%で冷間圧延し、冷間圧延ままの鋼板を得た。得られた熱延鋼板および冷間圧延ままの鋼板から、圧延方向を長手方向とするJIS 5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い、引張強度TSを求めた。熱延鋼板については、固溶C、N量を評価するために、圧延方向を長手方向とするJIS 5号引張試験片を用いて、引張り加工により7.5%予歪みを付与した後、100℃×30分の熱処理を行い、熱処理前後の強度差で定義される時効指数AIを求めた。また、熱延鋼板のミクロ組織を観察し、JIS G 0552(1998)に記載の切断法によって平均結晶粒径を求めた。   Using steel containing, by mass%, C: 0.002-0.05%, Si: 0.015%, Mn: 0.15%, P: 0.012%, S: 0.008%, Sol.Al: 0.035%, N: 0.003%, Heating temperature: after heating at 1250 ° C, hot rolling at finish temperature: 920 ° C, winding at winding temperature: 650 ° C, allowing to cool, pickling, temper rolling with elongation rate of 1% And a hot-rolled steel sheet was obtained. And this hot-rolled steel sheet was cold-rolled at a reduction ratio of 78% to obtain a cold-rolled steel sheet. From the obtained hot-rolled steel sheet and cold-rolled steel sheet, a JIS No. 5 tensile test piece with the rolling direction as the longitudinal direction was sampled and subjected to a tensile test according to JIS Z 2241 to obtain the tensile strength TS. . For hot-rolled steel sheet, in order to evaluate the amount of solute C and N, using JIS No. 5 tensile test piece with the rolling direction as the longitudinal direction, after applying 7.5% pre-strain by tensile processing, A 30 minute heat treatment was performed, and an aging index AI defined by the strength difference before and after the heat treatment was obtained. Further, the microstructure of the hot-rolled steel sheet was observed, and the average crystal grain size was determined by the cutting method described in JIS G 0552 (1998).

図1に、熱延鋼板の平均結晶粒径と熱延鋼板のTSおよび冷間圧延ままの鋼板のTSとの関係を示す。   FIG. 1 shows the relationship between the average grain size of the hot-rolled steel sheet and the TS of the hot-rolled steel sheet and the TS of the cold-rolled steel sheet.

図2に、熱延鋼板のAIと冷間圧延ままの鋼板のTSとの関係を示す。   FIG. 2 shows the relationship between AI of hot-rolled steel sheet and TS of cold-rolled steel sheet.

図1から明らかなように、熱延鋼板のTSは平均結晶粒径に依存しており、C含有量が0.016%未満と少なく、平均結晶粒径が大きな場合に低くなる。しかし、これら熱延鋼板を冷間圧延した後の鋼板(冷間圧延ままの鋼板)のTSは、上記熱延鋼板のTSとは逆に、熱延鋼板の平均結晶粒径を13μm以下にすることにより低い値が得られる。   As apparent from FIG. 1, TS of the hot-rolled steel sheet depends on the average crystal grain size, and decreases when the C content is less than 0.016% and the average crystal grain size is large. However, the TS of the steel sheet after cold rolling of these hot-rolled steel sheets (the steel sheet as cold-rolled) is contrary to the TS of the hot-rolled steel sheet, and the average crystal grain size of the hot-rolled steel sheet is 13 μm or less. As a result, a low value is obtained.

また、図2から明らかなように、過飽和度が低いためにセメンタイトの析出しにくいC<0.016%の場合は、C≧0.016%の場合に比べ熱延鋼板のAIが高く、冷間圧延ままの鋼板のTSが高い。   In addition, as is clear from FIG. 2, when C <0.016%, where the degree of supersaturation is low, and C <0.016%, the hot-rolled steel sheet has a higher AI compared to C ≧ 0.016%, which is still cold-rolled. Steel sheet TS is high.

この理由は明確ではないが、熱延鋼板のTSは引張試験で得られる高々0.3程度の歪みでのTSであるのに対し、冷間圧延ままの鋼板のTSは1.8もの高歪みでのTSであるため、固溶C、Nは高歪み域でより大きな加工硬化能を発揮し、冷間圧延ままの鋼板のTSを大きくしてしまうためと推測される。すなわち、冷間圧延ままの鋼板のTSを低下させるには、このような固溶C量、N量を少なくし、熱延鋼板のAIを10MPa以下と小さくことが有利である。   The reason for this is not clear, but the TS of the hot-rolled steel sheet is a TS with a strain of at most about 0.3 obtained in a tensile test, whereas the TS of a cold-rolled steel sheet is a TS with a high strain of 1.8. Therefore, it is presumed that solute C and N exhibit larger work hardening ability in a high strain region and increase TS of the steel sheet as cold-rolled. That is, in order to reduce the TS of a cold-rolled steel sheet, it is advantageous to reduce the amount of dissolved C and N and to reduce the AI of the hot-rolled steel sheet to 10 MPa or less.

本発明は、以上のような知見に基づきなされたもので、質量%で、C:0.016〜0.07%、Si:0.1%以下、Mn:0.05〜0.5%、P:0.03%以下、S:0.03%以下、Sol.Al:0.02〜0.1%、N:0.005%以下、Ti:0.005〜0.03%を含み、残部がFeおよび不可避的不純物からなる化学組成を有し、平均結晶粒径が13μm以下で、かつ時効指数AIが10MPa以下であることを特徴とする冷間圧延の素材用の熱延鋼板を提供する。   The present invention has been made based on the above findings, and in mass%, C: 0.016-0.07%, Si: 0.1% or less, Mn: 0.05-0.5%, P: 0.03% or less, S: 0.03% Hereinafter, Sol.Al: 0.02-0.1%, N: 0.005% or less, Ti: 0.005-0.03%, the balance has a chemical composition consisting of Fe and inevitable impurities, the average crystal grain size is 13μm or less, Also provided is a hot-rolled steel sheet for cold rolling material characterized by an aging index AI of 10 MPa or less.

本発明の熱延鋼板では、さらに、質量%でB:0.0003〜0.0030%を含むことができる。   The hot-rolled steel sheet of the present invention can further contain B: 0.0003 to 0.0030% by mass.

本発明の熱延鋼板は、上記の化学組成を有する鋼のスラブに、仕上温度:Ar3変態点〜(Ar3変態点+49℃)、最終パスでの圧下率:20%以上とする熱間圧延を施した後、0.4秒以内に10℃/秒以上の冷却速度で700℃以下まで冷却し、450〜650℃の巻取温度でコイル状に巻取ることを特徴とする方法により製造できる。このとき、巻取り後のコイル状の鋼板を水冷することが好ましい。 The hot-rolled steel sheet of the present invention is a slab of steel having the above chemical composition, finishing temperature: Ar 3 transformation point to (Ar 3 transformation point + 49 ° C.), reduction rate in the final pass: 20% or more heat It can be manufactured by a method characterized by cooling to 700 ° C. or lower at a cooling rate of 10 ° C./second or higher within 0.4 seconds and winding in a coil shape at a winding temperature of 450 to 650 ° C. . At this time, it is preferable to water-cool the coiled steel plate after winding.

本発明により、圧延能力の小さい冷間圧延ミルでも薄物の冷間圧延ままの鋼板やそれに表面処理を施した鋼板を安価に製造することができるようになった。本発明の熱延鋼板を用いて製造される薄物の冷間圧延ままの鋼板やそれに表面処理を施した鋼板は、壁材や屋根材などの建材の低コスト化に大きく寄与できる。   According to the present invention, even a cold rolling mill with a small rolling capacity can be manufactured at low cost, as a thin steel plate as it is cold-rolled or a surface-treated steel plate. A thin cold-rolled steel sheet produced by using the hot-rolled steel sheet of the present invention and a steel sheet that has been subjected to surface treatment can greatly contribute to cost reduction of building materials such as wall materials and roofing materials.

熱延鋼板の平均結晶粒径と熱延鋼板のTSおよび冷間圧延ままの鋼板のTSとの関係を示す図である。It is a figure which shows the relationship between the average crystal grain diameter of a hot-rolled steel plate, TS of a hot-rolled steel plate, and TS of the steel plate as cold-rolled. 熱延鋼板のAIと冷間圧延ままの鋼板のTSとの関係を示す図である。It is a figure which shows the relationship between AI of a hot-rolled steel plate, and TS of the steel plate as cold-rolled.

以下に、本発明の詳細を説明する。なお、以下の「%」は、特に断らない限り「質量%」を表す。   Details of the present invention will be described below. The “%” below represents “% by mass” unless otherwise specified.

1)化学組成
C:0.016〜0.07%
C量が0.07%を超えるとセメンタイトが多量に生成し、冷間圧延荷重を高める。一方、C量が0.016%未満では、過飽和度が低いためにセメンタイトが析出しにくく、Cが固溶状態で残存して冷間圧延荷重を高める。したがって、C量は0.016〜0.07%とする。
1) Chemical composition
C: 0.016-0.07%
When the C content exceeds 0.07%, a large amount of cementite is generated, and the cold rolling load is increased. On the other hand, if the amount of C is less than 0.016%, the degree of supersaturation is low, so that cementite hardly precipitates, and C remains in a solid solution state to increase the cold rolling load. Therefore, the C content is 0.016 to 0.07%.

Si:0.1%以下
Si量が0.1%を超えると強度が上がり、冷間圧延荷重を高める。したがって、Si量は0.1%以下とする。なお、Si量の下限は特に規定する必要はないが、過剰な低減はコスト上昇を招くため、0.001%とすることが望ましい。
Si: 0.1% or less
When the Si content exceeds 0.1%, the strength increases and the cold rolling load increases. Therefore, the Si content is 0.1% or less. The lower limit of the Si amount does not need to be specified in particular, but excessive reduction causes an increase in cost, so 0.001% is desirable.

Mn:0.05〜0.5%
MnはSをMnSとして固定し、熱間延性を向上させる働きがあることから、その量は0.05%以上にする必要がある。しかし、Mn量が0.5%を超えると鋼の硬質化をもたらし、冷間圧延荷重を高める。したがって、Mn量は0.05〜0.5%とする。
Mn: 0.05-0.5%
Mn fixes S as MnS and has the function of improving hot ductility, so the amount needs to be 0.05% or more. However, if the Mn content exceeds 0.5%, the steel is hardened and the cold rolling load is increased. Therefore, the Mn content is 0.05 to 0.5%.

P:0.03%以下
Pは固溶強化元素であり、その量が0.03%を超えると鋼の硬質化をもたらし、冷間圧延荷重を高める。したがって、P量は0.03%以下とする。その下限は特に規定する必要はないが、過剰な低減はコスト上昇を招くため、0.001%とすることが望ましい。
P: 0.03% or less
P is a solid solution strengthening element. If the amount exceeds 0.03%, the steel is hardened and the cold rolling load is increased. Therefore, the P content is 0.03% or less. The lower limit need not be specified, but excessive reduction causes an increase in cost, so 0.001% is desirable.

S: 0.03%以下
Sは熱間延性を阻害する元素であり、その量が0.03%を超えるとコイルエッジに耳割れが生じる。したがって、S量は0.03%以下とする。その下限は特に規定する必要はないが、過剰な低減はコスト上昇を招くため、0.001%とすることが望ましい。
S: 0.03% or less
S is an element that inhibits hot ductility. If the amount exceeds 0.03%, ear cracks occur at the coil edge. Therefore, the S amount is 0.03% or less. The lower limit is not particularly required, but excessive reduction causes an increase in cost, so 0.001% is desirable.

Sol.Al:0.02〜0.1%
Alは、Tiで固定されないNをAlNとして固定することで固溶Nを低減し、冷間圧延荷重を低減する効果を有する。こうした効果を得るには、Sol.Al量を0.02%以上にする必要がある。しかし、その量が0.1%を超えると製造コストの上昇を招く。したがって、Sol.Al量は0.02〜0.1%とする。
Sol.Al: 0.02-0.1%
Al has the effect of reducing the cold rolling load by reducing solid solution N by fixing N that is not fixed by Ti as AlN. In order to obtain such an effect, the amount of Sol.Al needs to be 0.02% or more. However, if the amount exceeds 0.1%, the manufacturing cost increases. Therefore, the amount of Sol.Al is 0.02 to 0.1%.

N:0.005%以下
Nは熱延鋼板中に固溶状態で残留しやすく、冷間圧延荷重を高めることから、その量は0.005%以下にする必要がある。その下限は特に規定する必要はないが、過剰な低減はコスト上昇を招くため、0.001%とすることが望ましく、0.002%とすることがより望ましい。
N: 0.005% or less
N is likely to remain in the hot-rolled steel sheet in a solid solution state, and increases the cold rolling load, so the amount needs to be 0.005% or less. The lower limit need not be specified, but excessive reduction leads to an increase in cost, so 0.001% is desirable and 0.002% is more desirable.

Ti:0.005〜0.03%
Tiは強力な窒化物形成元素であるため、TiNとしてNを固定し、固溶Nを低減することによって冷間圧延荷重を低減する。こうした効果を得るには、Ti量を0.005%以上にする必要がある。しかし、その量が0.03%を超えると微細なTiCが析出し、冷間圧延荷重を高める。したがって、Ti量は0.005〜0.03%とする。
Ti: 0.005-0.03%
Since Ti is a strong nitriding element, the cold rolling load is reduced by fixing N as TiN and reducing the solid solution N. In order to obtain such an effect, the Ti amount needs to be 0.005% or more. However, if the amount exceeds 0.03%, fine TiC precipitates, increasing the cold rolling load. Therefore, the Ti amount is 0.005 to 0.03%.

残部は、Feおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

なお、本発明の熱延鋼板は、上記成分組成に加え、下記の理由によりB:0.0003〜0.0030%を含むこともできる。   In addition to the above component composition, the hot-rolled steel sheet of the present invention can also contain B: 0.0003 to 0.0030% for the following reasons.

B:0.0003〜0.0030%
Bは、Tiと同様、強力な窒化物形成元素であるため、BNとしてNを固定し、固溶Nを低減することによって冷間圧延荷重を低減する。こうした効果を得るには、B量を0.0003%以上にする必要がある。しかし、その量が0.0030%を超えると鉄の硼化物を生成し、冷間圧延荷重を高める。したがって、B量は0.0003〜0.0030%とする。
B: 0.0003-0.0030%
B, like Ti, is a strong nitride-forming element. Therefore, the cold rolling load is reduced by fixing N as BN and reducing solute N. In order to obtain such an effect, the B content needs to be 0.0003% or more. However, when the amount exceeds 0.0030%, iron boride is formed and the cold rolling load is increased. Therefore, the B content is 0.0003 to 0.0030%.

2)平均結晶粒径:13μm以下
図1に示したように、冷間圧延ままの鋼板のTSを低下させるには、熱延鋼板の平均結晶粒径を13μm以下にすることが効果的である。これは、平均結晶粒径を小さくすることによって、セメンタイトの析出サイトである結晶粒界が増え、固溶Cが低減するためと考えられる。特に、巻取ったコイル状の鋼板の水冷時にもセメンタイトを析出させるには、平均結晶粒径を13μm以下にすることが効果的である。より好ましくは12μm未満である。
2) Average crystal grain size: 13 μm or less As shown in FIG. 1, it is effective to reduce the average crystal grain size of the hot-rolled steel sheet to 13 μm or less in order to reduce the TS of the cold-rolled steel sheet. . This is presumably because by reducing the average crystal grain size, the crystal grain boundaries, which are the precipitation sites of cementite, increase and the solid solution C decreases. In particular, it is effective to make the average crystal grain size 13 μm or less in order to precipitate cementite even during the water cooling of the coiled coiled steel sheet. More preferably, it is less than 12 μm.

3)AI:10MPa以下
AIは固溶C量、固溶N量の指標であり、図2に示したように、冷間圧延ままの鋼板のTSを低下させるには、熱延鋼板のAIを10MPa以下にすることが効果的であるが、これは、AIを10MPa以下にすることによって、固溶C量や固溶N量が少なくなるためと考えられる。
3) AI: 10MPa or less
AI is an indicator of solute C content and solute N content.As shown in Fig. 2, AI of hot-rolled steel sheet should be 10MPa or less to reduce TS of cold-rolled steel sheet. Although effective, this is considered to be because the amount of dissolved C and the amount of dissolved N are reduced by making AI 10 MPa or less.

4)製造方法
本発明の熱延鋼板は、上記の化学組成を有する鋼のスラブを、以下の条件で熱間圧延することによって製造できる。
4) Manufacturing method The hot-rolled steel sheet of the present invention can be manufactured by hot rolling a steel slab having the above chemical composition under the following conditions.

仕上温度:Ar3変態点〜(Ar3変態点+49℃)の温度範囲、最終パスの圧下率:20%以上
熱間圧延の最終パスの出側温度である仕上温度がAr3変態点未満の場合は、板厚方向に不均質なミクロ組織が生じやすく、冷間圧延後に板厚バラツキが生じやすくなる。なお、ここで最終パスとは、熱間圧延における最終圧延スタンドでの圧延を意味する。一方、仕上温度が(Ar3変態点+49℃)を超えたり、最終パスの圧下率(圧延率ともいう)が20%未満の場合は、最終パス後にγ(オーステナイト)域において再結晶により粗大な結晶粒が生成し、変態後も13μmを超える平均結晶粒径の組織を有する熱延鋼板となり、セメンタイトの析出サイトである結晶粒界が減って冷間圧延加重が高くなる。したがって、仕上温度をAr3変態点〜(Ar3変態点+49℃)の温度範囲とし、最終パスでの圧下率を20%以上とする必要がある。
Finishing temperature: Ar 3 transformation point to (Ar 3 transformation point + 49 ° C) temperature range, final pass reduction: 20% or more Finishing temperature, which is the exit temperature of the final pass of hot rolling, is less than Ar 3 transformation point In this case, a heterogeneous microstructure is likely to occur in the sheet thickness direction, and variations in sheet thickness are likely to occur after cold rolling. Here, the final pass means rolling at the final rolling stand in hot rolling. On the other hand, when the finishing temperature exceeds (Ar 3 transformation point + 49 ° C) or the rolling reduction (also called rolling rate) of the final pass is less than 20%, it is coarsened by recrystallization in the γ (austenite) region after the final pass. After the transformation, a hot-rolled steel sheet having a structure with an average crystal grain size exceeding 13 μm is obtained, and the grain boundaries, which are cementite precipitation sites, are reduced and the cold rolling load is increased. Therefore, it is necessary to set the finishing temperature within the temperature range of Ar 3 transformation point to (Ar 3 transformation point + 49 ° C.), and the rolling reduction in the final pass should be 20% or more.

熱間圧延後の冷却:0.4秒以内に10℃/秒以上の冷却速度で700℃以下まで冷却
熱間圧延後、すなわち上記した熱間圧延における最終パス後にただちに冷却を開始せず放冷された場合は、放冷中に結晶粒成長して13μmを超える平均結晶粒径の組織を有する熱延鋼板となり、セメンタイトの析出サイトである結晶粒界が減って冷間圧延加重が高くなる。また、冷却速度が10℃/秒未満と遅い場合も同様に冷間圧延荷重が高くなる。したがって、熱間圧延後はただちに、すなわち0.4秒以内に10℃/秒以上の速度で冷却する必要がある。冷却は結晶粒成長速度が速い700℃以下まで行う必要がある。
Cooling after hot rolling: cooling to 700 ° C or less at a cooling rate of 10 ° C / second or more within 0.4 seconds After hot rolling, that is, immediately after the final pass in the hot rolling described above, the cooling was not started immediately but was allowed to cool. In this case, the crystal grain grows during cooling and becomes a hot-rolled steel sheet having a structure with an average crystal grain size exceeding 13 μm, and the grain boundary, which is a cementite precipitation site, decreases, and the cold rolling load increases. Similarly, when the cooling rate is as low as less than 10 ° C./second, the cold rolling load is similarly increased. Therefore, it is necessary to cool immediately after hot rolling, that is, at a rate of 10 ° C./second or more within 0.4 seconds. Cooling needs to be performed to 700 ° C or less where the crystal grain growth rate is fast.

巻取温度:450〜650℃
巻取温度が650℃を超えるとスケール欠陥が発生しやすくなる。また、巻取温度が450℃未満だとコイル形状が乱れやすくなる。そのため、巻取温度は450〜650℃とする。なお、本発明のように、Tiを添加してNを固定し、平均結晶粒径を13μm以下としてセメンタイトの析出サイトを増やした鋼板では、巻取ったコイルを水冷しても、その冷却中にCが十分に析出し、固溶C量を低減できるため、生産性を高める観点から巻取り後のコイルを水冷することが好ましい。
Winding temperature: 450-650 ° C
When the coiling temperature exceeds 650 ° C., scale defects are likely to occur. In addition, when the coiling temperature is less than 450 ° C., the coil shape tends to be disturbed. Therefore, the coiling temperature is set to 450 to 650 ° C. In addition, as in the present invention, in the steel sheet in which Ti is added and N is fixed, and the average crystal grain size is 13 μm or less and the number of cementite precipitation sites is increased, even if the wound coil is cooled with water, Since C precipitates sufficiently and the amount of dissolved C can be reduced, the coil after winding is preferably water-cooled from the viewpoint of increasing productivity.

熱間圧延に先立つ加熱における温度は、仕上温度が確保できる程度の温度、一般的には1050℃以上であればよい。   The temperature in the heating prior to hot rolling may be a temperature at which a finishing temperature can be secured, generally 1050 ° C. or higher.

本発明の熱延鋼板は、酸洗材であっても黒皮まま(非酸洗材)であっても、その特性が変わることはない。また、酸洗性の向上や形状矯正などを目的とした調質圧延やレベリングなどを行ってもその特性は変わらない。   The hot-rolled steel sheet of the present invention does not change its characteristics even if it is pickled or remains black (non-pickled). Moreover, even if temper rolling or leveling for the purpose of improving pickling properties or correcting the shape, the characteristics are not changed.

また、本発明の熱延鋼板は、冷延鋼板あるいは表面処理鋼板とするため、冷間圧延が施される。本発明の熱延鋼板は、冷間圧延性を良好としているため、冷間圧延の圧下率を95%程度と非常に大きくして、板厚0.5mm以下の薄物の冷延鋼板を製造する場合においても、問題なく圧延することができる。なお、一般に薄物冷延鋼板の冷間圧延の圧下率は60%以上である。上記したように、本発明の熱延鋼板は冷間圧延性が良好であるため、特に薄物の冷間圧延ままの冷延鋼板あるいは冷間圧延ままの冷延鋼板に表面処理を施した表面処理鋼板の冷間圧延の素材用の熱延鋼板として好ましく用いることができる。   Moreover, since the hot-rolled steel sheet of the present invention is a cold-rolled steel sheet or a surface-treated steel sheet, cold rolling is performed. Since the hot-rolled steel sheet of the present invention has good cold rolling properties, the cold rolling reduction ratio of the cold rolling is as large as about 95% to produce a thin cold-rolled steel sheet with a thickness of 0.5 mm or less. Can be rolled without any problems. In general, the reduction ratio of cold rolling of a thin cold-rolled steel sheet is 60% or more. As described above, since the hot-rolled steel sheet of the present invention has good cold-rollability, the surface treatment is performed on the cold-rolled steel sheet as cold-rolled as a thin material or the cold-rolled steel sheet as cold-rolled. It can be preferably used as a hot-rolled steel sheet for a material for cold rolling of a steel sheet.

表1に示す化学組成の鋼番1〜7の鋼を溶製し、スラブとした後、1200℃に加熱し、表2に示す熱延条件で熱間圧延を行って板厚1.8mmの熱延鋼板A〜Gを作製した。ここで、表1のAr3変態点は、下記の式により求めた。
Ar3変態点(℃)=901-325×[C]+33×[Si]-92×[Mn]+287×[P]
ただし、[M]は元素Mの含有量(質量%)を表す。
After melting steel Nos. 1 to 7 having the chemical composition shown in Table 1 and making them into slabs, they were heated to 1200 ° C and hot-rolled under the hot rolling conditions shown in Table 2 to obtain a plate thickness of 1.8 mm. Rolled steel sheets A to G were produced. Here, the Ar 3 transformation point in Table 1 was determined by the following equation.
Ar 3 transformation point (℃) = 901-325 × [C] + 33 × [Si] -92 × [Mn] + 287 × [P]
However, [M] represents the content (mass%) of the element M.

次に、得られた熱延鋼板を、酸洗後、伸長率1%の調質圧延を施し、上記の方法で平均結晶粒径とAIの測定を行った。また、酸洗後の熱延鋼板を80%の圧下率で冷間圧延して冷延圧延ままの鋼板(板厚0.36mm)を作製し、上記の方法で冷間圧延ままの鋼板のTSの測定を行った。   Next, the obtained hot-rolled steel sheet was pickled and then subjected to temper rolling with an elongation of 1%, and the average crystal grain size and AI were measured by the above methods. In addition, the hot-rolled steel sheet after pickling is cold-rolled at a reduction rate of 80% to produce a cold-rolled steel sheet (sheet thickness: 0.36 mm), and the TS of the cold-rolled steel sheet as described above is used. Measurements were made.

結果を表2に示す。   The results are shown in Table 2.

本発明例である熱延鋼板B、Eは、冷間圧延ままのTSが700MPa以下と軟質であり、冷間圧延荷重を低減できることがわかる。   It can be seen that the hot-rolled steel sheets B and E, which are examples of the present invention, are soft with a TS of 700 MPa or less as cold-rolled and can reduce the cold-rolling load.

一方、比較例である熱延鋼板Aは、平均結晶粒径が大きく、セメンタイトが十分に析出しないためAIが高くなり、また、熱延鋼板C、D、Fは、固溶Nが存在するためにAIが高くなり、冷間圧延ままのTSが700MPaを超えて硬質であり、冷間圧延荷重を低減できない。Tiの含有量が0.053%と多い熱延鋼板Gは、微細なTiCが析出するため、冷間圧延ままのTSが700MPaを超えて硬質であり、冷間圧延荷重を低減できない。   On the other hand, the hot rolled steel sheet A, which is a comparative example, has a large average crystal grain size and does not sufficiently precipitate cementite, so the AI is high, and the hot rolled steel sheets C, D, and F have solid solution N. However, the AI becomes high and the cold-rolled TS is harder than 700 MPa, so the cold-rolling load cannot be reduced. In the hot rolled steel sheet G having a high Ti content of 0.053%, fine TiC precipitates, so the TS as cold-rolled is harder than 700 MPa, and the cold rolling load cannot be reduced.

Figure 2013119653
Figure 2013119653

Figure 2013119653
Figure 2013119653

Claims (4)

質量%で、C:0.016〜0.07%、Si:0.1%以下、Mn:0.05〜0.5%、P:0.03%以下、S:0.03%以下、Sol.Al:0.02〜0.1%、N:0.005%以下、Ti:0.005〜0.03%を含み、残部がFeおよび不可避的不純物からなる化学組成を有し、平均結晶粒径が13μm以下で、かつ時効指数AIが10MPa以下であることを特徴とする冷間圧延の素材用の熱延鋼板。   In mass%, C: 0.016-0.07%, Si: 0.1% or less, Mn: 0.05-0.5%, P: 0.03% or less, S: 0.03% or less, Sol.Al: 0.02-0.1%, N: 0.005% or less , Ti: 0.005 to 0.03%, the remainder has a chemical composition consisting of Fe and inevitable impurities, the average grain size is 13 μm or less, and the aging index AI is 10 MPa or less Hot rolled steel sheet for rolling material. さらに、質量%でB:0.0003〜0.0030%を含むことを特徴とする請求項1に記載の冷間圧延の素材用の熱延鋼板   The hot-rolled steel sheet for cold rolling material according to claim 1, further comprising B: 0.0003 to 0.0030% by mass%. 請求項1または2に記載の化学組成を有する鋼のスラブに、仕上温度:Ar3変態点〜(Ar3変態点+49℃)、最終パスでの圧下率:20%以上とする熱間圧延を施した後、0.4秒以内に10℃/秒以上の冷却速度で700℃以下まで冷却し、450〜650℃の巻取温度でコイル状に巻取ることを特徴とする冷間圧延の素材用の熱延鋼板の製造方法。 In the steel slab having the chemical composition according to claim 1 or 2, the finishing temperature: Ar 3 transformation point to (Ar 3 transformation point + 49 ° C), the rolling reduction in the final pass: 20% or more hot rolling For cold rolling material, which is cooled to 700 ° C or less at a cooling rate of 10 ° C / second or more within 0.4 seconds and coiled at a winding temperature of 450 to 650 ° C Manufacturing method for hot-rolled steel sheets. 巻取り後のコイル状の鋼板を水冷することを特徴とする請求項3に記載の冷間圧延の素材用の熱延鋼板の製造方法。   4. The method for producing a hot-rolled steel sheet for cold rolling material according to claim 3, wherein the coiled steel sheet after winding is water-cooled.
JP2011268493A 2011-12-08 2011-12-08 Hot-rolled steel sheet for cold rolling material and manufacturing method thereof Active JP5862254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011268493A JP5862254B2 (en) 2011-12-08 2011-12-08 Hot-rolled steel sheet for cold rolling material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011268493A JP5862254B2 (en) 2011-12-08 2011-12-08 Hot-rolled steel sheet for cold rolling material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013119653A true JP2013119653A (en) 2013-06-17
JP5862254B2 JP5862254B2 (en) 2016-02-16

Family

ID=48772450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011268493A Active JP5862254B2 (en) 2011-12-08 2011-12-08 Hot-rolled steel sheet for cold rolling material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5862254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534112B2 (en) * 2011-12-08 2014-06-25 Jfeスチール株式会社 Hot-rolled steel sheet for cold rolling material and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140542A (en) * 1997-11-11 1999-05-25 Nkk Corp Production of high strength hot rolled steel sheet having high ductility and excellent in uniformity
JPH11199991A (en) * 1998-01-06 1999-07-27 Kawasaki Steel Corp Steel sheet for can excellent in aging resistance and baking hardenability and its production
JP2008514820A (en) * 2004-09-30 2008-05-08 ポスコ High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP2011144414A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Cold rolled steel sheet and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140542A (en) * 1997-11-11 1999-05-25 Nkk Corp Production of high strength hot rolled steel sheet having high ductility and excellent in uniformity
JPH11199991A (en) * 1998-01-06 1999-07-27 Kawasaki Steel Corp Steel sheet for can excellent in aging resistance and baking hardenability and its production
JP2008514820A (en) * 2004-09-30 2008-05-08 ポスコ High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP2011144414A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Cold rolled steel sheet and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534112B2 (en) * 2011-12-08 2014-06-25 Jfeスチール株式会社 Hot-rolled steel sheet for cold rolling material and manufacturing method thereof

Also Published As

Publication number Publication date
JP5862254B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6226955B2 (en) Ferritic stainless steel sheet with small increase in strength after aging heat treatment and manufacturing method thereof
KR101600731B1 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
EP2796584B1 (en) High-strength steel sheet and process for producing same
EP3318649B1 (en) Material for cold-rolled stainless steel sheets and manufacturing method therefor
JP2009068057A (en) Steel sheet for nitrocarburizing treatment and manufacturing method therefor
WO2016080344A1 (en) Drawn-can steel sheet and manufacturing method therefor
JP5930144B1 (en) Steel plate for squeezed can and method for manufacturing the same
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
KR101891427B1 (en) Steel sheet for cans and manufacturing method thereof
JP2008138231A (en) Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP2005325377A (en) Method for manufacturing heat resistant ferritic stainless steel sheet having excellent workability
JP5862254B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP2010150580A (en) Steel sheet and method of manufacturing the same
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP2007009271A (en) Steel sheet having low anisotropy, and manufacturing method therefor
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
JP2007239035A (en) Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method
WO2019203251A1 (en) Hot-rolled steel sheet
JP6349865B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2007239036A (en) COLD ROLLED STEEL SHEET HAVING HIGH AVERAGE r-VALUE AND SMALL IN-PLANE ANISOTROPY, AND ITS MANUFACTURING METHOD
JP5239331B2 (en) Cold-rolled steel sheet with small in-plane anisotropy and excellent strain aging characteristics and method for producing the same
JP2011195874A (en) Stainless cold-rolled steel sheet superior in surface appearance after having been worked, and method for manufacturing the same
KR20190077672A (en) Ferritic stainless steel excellent in ridging property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250