JP2008514820A - High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof - Google Patents

High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof Download PDF

Info

Publication number
JP2008514820A
JP2008514820A JP2007534514A JP2007534514A JP2008514820A JP 2008514820 A JP2008514820 A JP 2008514820A JP 2007534514 A JP2007534514 A JP 2007534514A JP 2007534514 A JP2007534514 A JP 2007534514A JP 2008514820 A JP2008514820 A JP 2008514820A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
shape freezing
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007534514A
Other languages
Japanese (ja)
Inventor
シ ホン チョイ
チン チュル キム
クヮン ギュン チン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2008514820A publication Critical patent/JP2008514820A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

【課題】本発明は、形状凍結性に優れた等方性冷延鋼板及びその製造方法を提供する。
【解決手段】本発明の等方性冷延鋼板は、少量のTiを添加した低炭素鋼を用いるためr90値が1.3以下で、かつr値が1に近くて形状凍結性に優れ、かつΔr値が0.15以下と低くストレッチングモードの変形が主として生じる自動車外板用の鋼材に適する。
【選択図】図2
The present invention provides an isotropic cold-rolled steel sheet having excellent shape freezing property and a method for producing the same.
Isotropic cold-rolled steel sheet The invention relates, in the r 90 value for using the low-carbon steel obtained by adding a small amount of Ti 1.3 or less, and r m values close to the shape fixability to 1 It is excellent and has a low Δr value of 0.15 or less, and is suitable for a steel material for an automobile outer plate in which deformation in a stretching mode mainly occurs.
[Selection] Figure 2

Description

本発明は、自動車用の外板材に使用するのに適した高強度冷延鋼板に関するものであり、より詳しくはr90値が1.3以下であり、平均塑性変形比(r)が1に近くかつ平面異方性係数(Δr)が0.15以下と低くプレス加工の際塑性変形が等方に生じる、形状凍結性に優れた高強度冷延鋼板及びその製造方法に関する。 The present invention relates to a high-strength cold-rolled steel sheet suitable for use as an outer sheet material for automobiles. More specifically, the r 90 value is 1.3 or less, and the average plastic deformation ratio (r m ) is 1. The present invention relates to a high-strength cold-rolled steel sheet excellent in shape freezing property and a method for producing the same, in which the plane anisotropy coefficient (Δr) is as low as 0.15 or less and plastic deformation isotropically occurs during press working.

自動車用鋼板の場合、加工欠陥なくプレス成形を施し、成形後望む形の部品をスムーズに製作するために加工性の優れた冷延鋼板が求められる。特に自動車外部パネル(outer panel)の場合、耐デント性(dent resitance)及び形状凍結性が求められる。上記耐デント性に関しては塗装後強度が増加するBH(Bake Hardening)鋼が一般的に用いられてきた。また、上記形状凍結性を向上させるためには板材の面方向に均一に変形されなければならず、プレス成形の際荷重を小さくかけなければならない。   In the case of a steel sheet for automobiles, a cold-rolled steel sheet having excellent workability is required in order to perform press forming without processing defects and smoothly produce a desired shape after forming. In particular, in the case of an outer panel of an automobile, dent resistance and shape freezing property are required. Regarding the above-mentioned dent resistance, BH (Bake Hardening) steel whose strength is increased after coating has been generally used. Further, in order to improve the shape freezing property, it must be uniformly deformed in the surface direction of the plate material, and a load must be applied during press molding.

自動車の内部パネル(inner panel)の場合、ディープドローイングモード(deep drawing mode)の変形が主として生じるため、板材加工の際延伸率及び塑性変形比が大きい冷延鋼板が有利であるが、自動車の外部パネルの場合、ストレッチングモード(stretching mode)の変形が主として生じるため、板材の面方向に変形が均一で、かつ異軸降伏強度が低い冷延鋼板が有利である。このように面方向への塑性変形が均一であり、かつ異軸降伏強度が低い形状凍結性に優れた冷延鋼板を用いれば複雑な形状を有する自動車外板を製作するのに有利である。   In the case of an inner panel of an automobile, deformation of a deep drawing mode mainly occurs, so that a cold-rolled steel sheet having a large stretch ratio and a large plastic deformation ratio is advantageous when processing a plate material. In the case of a panel, deformation in a stretching mode mainly occurs, so that a cold-rolled steel sheet that is uniform in the surface direction of the plate material and has low off-axis yield strength is advantageous. Thus, using a cold-rolled steel sheet having a uniform plastic deformation in the plane direction and having a low anisotropy yield strength and an excellent shape freezing property is advantageous for manufacturing an automobile outer plate having a complicated shape.

延伸率とは、引張の際割れなく延伸される鋼板の性質を示す値であり、延伸率が大きければ許容される鋼板の変形が大きく、また延伸率とは鋼種が決まれば大きく変化しない鋼の機械的性質である。塑性変形比r値とは、厚さ方向の変形率に対する幅方向の変形率の比で定義される値である。塑性変形比の大きい鋼板は、幅方向の変形量が一定であると仮定し、一定の変形量だけ板材を任意方向に引張した際厚さ方向の変形率が少なく、大きい変形量でも材料のネッキング(necking)が発生せず、加工が可能であることを意味する。上記塑性変形比は板材の異方性に起因して引張方向に沿って異なる値を有する。引張方向による塑性変形比の変化程度を示すものとして、平均塑性変形比rと平面異方性係数Δr値があり、その値は次の式から計算することができる。 The draw ratio is a value that indicates the properties of the steel sheet that is stretched without cracking during tension. The greater the stretch ratio, the greater the allowable deformation of the steel sheet, and the stretch ratio is the steel that does not change significantly once the steel type is determined. It is a mechanical property. The plastic deformation ratio r value is a value defined by the ratio of the deformation rate in the width direction to the deformation rate in the thickness direction. A steel sheet with a large plastic deformation ratio assumes that the amount of deformation in the width direction is constant, and when the plate material is pulled in an arbitrary direction by a certain amount of deformation, the deformation rate in the thickness direction is small, and even when the amount of deformation is large, material necking (Necking) does not occur and it means that processing is possible. The plastic deformation ratio has different values along the tensile direction due to the anisotropy of the plate material. As indicating the variation degree of the plastic deformation ratio by pulling direction, there is an average plastic deformation ratio r m and the planar anisotropy coefficient Δr value, the value can be calculated from the following equation.

=(r+2r45+r90)/4
Δr=(r−2r45+r90)/2
ここで、r、r45、r90は引張方向が板材の圧延方向に対しそれぞれ0°、45゜、90゜方向の場合の塑性変形比の値を意味する。
r m = (r 0 + 2r 45 + r 90 ) / 4
Δr = (r 0 −2r 45 + r 90 ) / 2
Here, r 0 , r 45 , and r 90 mean values of plastic deformation ratios when the tensile directions are 0 °, 45 °, and 90 ° directions with respect to the rolling direction of the plate material, respectively.

上記塑性変形比の値が大きいと異軸降伏強度が大きくなり複雑な形状を有する外部パネルの加工が難しくなる。図1は2つの相違する集合組織(texture)が発達している鋼の降伏曲面(yield locus)に及ぼす塑性変形比の影響をテイラー(Taylor)多結晶モデル(polycrystal model)を利用して理論的に予測した結果である。塑性変形比の大きいIF鋼(Interstitial Free steel)の場合、圧延方向(RD、rolling direction)への降伏強度がr=1の値を有する等方性鋼(isotropic steel)と同じであっても異軸降伏強度値が大きい値を有することが分かる。従って、上記異軸降伏強度を小さくしようとするには、r値が1に近くなるように小さくすることが好ましい。また上記Δr値が小くなるためには各方向に引張した際、各方向による塑性変形比の差が小さくなければならない。即ち、Δr値が小さいことは、プレス成形の際板材の面方向への変形率の分布が均一であることを意味し、ストレッチングモードの変形において均一な変形を誘導しながら成形するのに有利である。このように1に近いr値と低いΔr値を有する鋼は、ストレッチングモード変形が主として生じる自動車外部パネル加工の際鋼の形状凍結性を向上させるようになる。 When the value of the plastic deformation ratio is large, the off-axis yield strength increases and it becomes difficult to process an external panel having a complicated shape. FIG. 1 shows a theoretical analysis of the effect of the plastic deformation ratio on the yield locus of steel with two different textures, using a Taylor polycrystal model. This is the predicted result. In the case of IF steel (Interstitial Free steel) with a large plastic deformation ratio, even if the yield strength in the rolling direction (RD, rolling direction) is the same as that of an isotropic steel (isotropy steel) having a value of r m = 1, It can be seen that the yield strength value has a large value. Thus, attempts to reduce the different shafts yield strength, it is preferable that r m value is smaller to be close to 1. In order to reduce the Δr value, the difference in plastic deformation ratio between the directions must be small when pulled in each direction. That is, a small Δr value means that the distribution of the deformation rate in the surface direction of the plate material is uniform during press forming, which is advantageous for forming while inducing uniform deformation in the deformation in the stretching mode. It is. Thus steel having a r m value and a low Δr value close to 1, so improving the shape fixability of the steel when the automobile outer panel machining stretching mode deformation occurs primarily.

自動車用鋼板の成形性を向上させることに関する公知の技術を見れば次の通りである。   It is as follows if the well-known technique regarding improving the formability of the steel plate for motor vehicles is seen.

特許文献1では自動車用鋼板の成形性を向上させるために極低炭素冷延鋼板にTiまたはNbを単独または複合で添加し、固溶C及びNを炭化物及び窒化物の形態で析出させ延伸率及び塑性変形比を高めることにより成形性を向上させる技術が提示されている。また特許文献2〜6では面内異方性を減少させプレス加工の際面不良などの欠陥を減少させ成形性を改善させる技術が提示されている。上記従来の技術は仕上り圧延直後、急速冷却設備を通じて熱延組織の結晶粒の大きさを微細化させることにより極低炭素冷延鋼板の面内異方性を減少させる技術である。Ti、Nbを添加した極低炭素鋼はr値とΔr値が比較的高くディープドローイングモードの変形では優れた加工性を示すが、ストレッチングモードの変形では異方性が酷くて、異軸降伏強度が高いため形状凍結性の面で不利である問題点があった。また、上記従来の技術は深加工性のために一般的に0.005%以下の炭素のみを添加するので高強度を得ることができなかった。 In Patent Document 1, in order to improve the formability of an automotive steel sheet, Ti or Nb is added singly or in combination to an ultra-low carbon cold-rolled steel sheet, and solid solution C and N are precipitated in the form of carbides and nitrides, and the draw ratio is increased. And the technique which improves a moldability by raising a plastic deformation ratio is proposed. Patent Documents 2 to 6 propose techniques for reducing in-plane anisotropy and reducing defects such as surface defects during press working to improve formability. The above conventional technique is a technique for reducing the in-plane anisotropy of an ultra-low carbon cold-rolled steel sheet by reducing the size of crystal grains of the hot-rolled structure immediately after finish rolling through rapid cooling equipment. Ti, ultra low carbon steel with added Nb exhibits excellent workability in deformation of the relatively high deep drawing mode r m value and Δr value, but severe anisotropy is a variant of the stretching mode, different shafts The yield strength is high, which is disadvantageous in terms of shape freezing. Further, the above conventional technique generally cannot add high strength because only 0.005% or less of carbon is added due to deep workability.

一方、特許文献7〜9では極低炭素鋼において炭化物形成元素であるTi、Nb、Vなどを添加し熱延と焼鈍中に炭化物及び微小集合組織を制御することにより等方性の塑性を有する高強度冷延鋼板の製造方法が提示されている。しかし、上記従来の技術は長期間を要するバッチ焼鈍(BAF、batch annealing furnace)設備を利用するため単位時間当りの生産性が低いという問題点があった。また、特許文献10ではTiまたはNbを添加した低炭素鋼を連続焼鈍設備を利用して高強度の等方性鋼を製造する技術を提示しているが、この技術はTiまたはNbを添加した鋼板の再結晶展伸度とΔr値間に強い相関関係があることを利用してΔr値が低い鋼板を製造するのにその目的があった。即ち、上記従来の技術では円形または角筒状で成形する自動車部品の製造の際、耳発生量を減少させるためにΔr値を0.1以下で製造しているが、r値が1に接近する際に優れた形状凍結性を持つことを認識していなかった。また、自動車外板用鋼材の場合一般的に時効指数(AI)が30MPa以下であることが要求されているところ、上記従来の技術は円筒または角筒で成形される鋼板に適用されるものであるため時効指数に対しては関心を置かなかった。 On the other hand, Patent Documents 7 to 9 have isotropic plasticity by adding carbide forming elements such as Ti, Nb, and V in ultra-low carbon steel to control carbides and fine texture during hot rolling and annealing. A method for producing a high-strength cold-rolled steel sheet is presented. However, the conventional technique has a problem that productivity per unit time is low because a batch annealing (BAF) equipment that requires a long time is used. Further, Patent Document 10 presents a technique for producing a high-strength isotropic steel using low-carbon steel added with Ti or Nb by using a continuous annealing facility. This technique is applied to a steel sheet added with Ti or Nb. The purpose was to produce a steel sheet having a low Δr value by utilizing the strong correlation between the recrystallization extension and the Δr value. That is, the above conventional art in the production of automobile parts to be molded in a circular or rectangular tube, although manufactured Δr value to reduce the ear generation amount less than 0.1, r m value is 1 They did not recognize that they had excellent shape freezing properties when approaching. Further, in the case of steel for automobile outer plates, the aging index (AI) is generally required to be 30 MPa or less. However, the conventional technique is applied to a steel plate formed of a cylinder or a square tube. For this reason, I was not interested in the aging index.

一方、特許文献11ではTi及び/またはNbを添加した低炭素鋼を連続焼鈍設備を利用して高強度の等方性鋼板を製造する技術が提示されているが、上記従来の技術は過時効処理を要しない非時効性の低炭素を作製するためのものであるので、Ti、Nb以外にCu、V、Niの少なくとも一つの成分が最大0.15%添加されなければならない。また、上記従来の技術の鋼板はΔr値が0.15〜0.28の範囲の値を有しているため等方性面で好ましくない。   On the other hand, Patent Document 11 proposes a technique for producing a high-strength isotropic steel sheet using low-carbon steel added with Ti and / or Nb using a continuous annealing facility. Since it is for producing non-aging low carbon which does not require treatment, at least one component of Cu, V and Ni other than Ti and Nb must be added at a maximum of 0.15%. Further, the steel plate of the above prior art has an isotropic value because the Δr value has a value in the range of 0.15 to 0.28.

日本公開特許公報平9−296226Japanese Published Patent Publication No. 9-296226 日本公開特許公報平6−158176Japanese Patent Publication No. Hei 6-158176 日本公開特許公報平8−109416Japanese Published Patent Publication No. 8-109416 日本公開特許公報平11−40531Japanese Patent Publication No. 11-40531 日本公開特許公報平4−95392Japanese Patent Publication No. Hei 4-95392 日本公開特許公報2002−3951Japanese Published Patent Publication 2002-3951 ドイツ公開特許公報DE3843732German published patent publication DE3843732 ドイツ公開特許公報DE3803064German Published Patent Publication DE3803064 米国公開特許公報US5,139,580US Published Patent Publication US 5,139,580 日本公開特許公報平10−130780Japanese Published Patent Publication No. Hei 10-130780 米国公開特許公報US6,162,308US Published Patent Publication US 6,162,308

本発明は、上記した従来の技術の問題点を解決するためのものであり、少量のTiを添加した低炭素鋼を用いるためr90値が1.3以下で、かつr値が1に近く形状凍結性に優れ、かつΔr値が0.15以下と低くストレッチングモードの変形が主として生じる自動車外板用の鋼材に適した形状凍結性に優れた高強度等方性冷延鋼板及びその製造方法を提供するのにその目的がある。 The present invention is intended to solve the problems of the conventional technology described above, with the r 90 value for using the low-carbon steel obtained by adding a small amount of Ti 1.3 or less, and r m value is 1 A high-strength isotropic cold-rolled steel sheet excellent in shape freezing property and excellent in shape freezing property, and excellent in shape freezing property, and having a Δr value as low as 0.15 or less and mainly causing deformation in a stretching mode, and its Its purpose is to provide a manufacturing method.

本発明は、重量%で、Cは0.01〜0.05%、Tiは0.005〜0.06%、Mnは0.1〜1%、Siは0.1%以下、Pは0.03%以下、Sは0.03%以下、可溶Alは0.08%以下、Nは0.01%以下、残部Fe及び不可避的不純物からなり、上記成分のうち、TiとNがTi/N>5の関係を満たし、さらに上記成分のうち、TiとCが(48/12)C−Ti>0.03%[但し、Ti=Ti−(48/14)N]の関係を満たし、時効指数(AI)が30MPa以下である形状凍結性に優れた高強度冷延鋼板を提供する。 In the present invention, C is 0.01 to 0.05%, Ti is 0.005 to 0.06%, Mn is 0.1 to 1%, Si is 0.1% or less, and P is 0% by weight. 0.03% or less, S is 0.08% or less, N is 0.01% or less, N is 0.01% or less, the balance is Fe and inevitable impurities. Of the above components, Ti and N are Ti / N> 5, and among the above components, Ti and C are (48/12) C-Ti * > 0.03% [where Ti * = Ti- (48/14) N] And a high-strength cold-rolled steel sheet excellent in shape freezing property having an aging index (AI) of 30 MPa or less.

上記冷延鋼板のC含量は0.015〜0.035%であることがより好ましい。   The C content of the cold-rolled steel sheet is more preferably 0.015 to 0.035%.

上記冷延鋼板のTi含量は0.01〜0.04%であることがより好ましい。   The Ti content of the cold-rolled steel sheet is more preferably 0.01 to 0.04%.

上記冷延鋼板は、(48/12)C−Tiを0.06〜0.11%に制限することがより好ましい。 The cold-rolled steel sheet more preferably limits (48/12) C—Ti * to 0.06 to 0.11%.

また、本発明は重量%で、Cは0.01〜0.05%、Tiは0.005〜0.06%、Mnは0.1〜1%、Siは0.1%以下、Pは0.03%以下、Sは0.03%以下、可溶Alは0.08%以下、Nは0.01%以下、残部Fe及び不可避的不純物からなり、上記成分中TiとNがTi/N>5の関係を満たし、また上記成分中TiとCが(48/12)C−Ti>0.03%[但し、Ti=Ti−(48/14)N]の関係を満たし、時効指数(AI)が30MPa以下の鋼をAr以上の温度に仕上げ圧延する段階と、上記仕上げ圧延された熱延鋼板を50℃/sec以上の冷却速度で急冷した後、650℃以下の温度で巻取する段階と、上記巻取された熱延板を酸洗した後、50〜80%の圧下率で冷間圧延する段階と、上記冷間圧延された冷延板を再結晶温度〜Acの温度で加熱し、焼鈍する段階と、その後600〜700℃まで3℃/sec以上の冷却速度で1次冷却し、再び100〜500℃まで30℃/sec以上の冷却速度で2次冷却する段階と、上記冷却した鋼板を200〜500℃の温度で10分間以内過時効処理する段階と、上記過時効処理した鋼板を0.5%以上の圧下率で調質する段階と、を含む形状凍結性に優れた高強度冷延鋼板の製造方法に関するものである。 Moreover, this invention is weight%, C is 0.01-0.05%, Ti is 0.005-0.06%, Mn is 0.1-1%, Si is 0.1% or less, P is 0.03% or less, S is 0.03% or less, soluble Al is 0.08% or less, N is 0.01% or less, the balance is Fe and inevitable impurities, and Ti and N in the above components are Ti / N> 5 is satisfied, and Ti and C in the above components satisfy the relationship of (48/12) C—Ti * > 0.03% [where Ti * = Ti− (48/14) N], Finishing and rolling a steel having an aging index (AI) of 30 MPa or less to a temperature of Ar 3 or higher, and after rapidly quenching the hot-rolled steel sheet that has been finish-rolled at a cooling rate of 50 ° C./sec or higher, a temperature of 650 ° C. or lower. A step of winding at 50%, and a step of cold rolling at a rolling reduction of 50 to 80% after pickling the wound hot rolled sheet The cold-rolled cold-rolled sheet was heated at a temperature of recrystallization temperature to Ac 3, the steps of annealing, and primary cooling thereafter to 600~700 ℃ 3 ℃ / sec or more cooling rate, again 100 Secondary cooling at a cooling rate of 30 ° C./sec or more to ˜500 ° C., over-aging treatment of the cooled steel plate at a temperature of 200 to 500 ° C. within 10 minutes, and the over-aging steel plate of 0 And a step of tempering at a rolling reduction of 5% or more, and a method for producing a high-strength cold-rolled steel sheet having excellent shape freezeability.

上記冷延鋼板の製造方法において、C含量は0.015〜0.035%であることがより好ましい。   In the manufacturing method of the said cold-rolled steel plate, it is more preferable that C content is 0.015-0.035%.

上記冷延鋼板の製造方法において、Ti含量は0.01〜0.04%であることがより好ましい。   In the manufacturing method of the said cold-rolled steel plate, it is more preferable that Ti content is 0.01 to 0.04%.

上記冷延鋼板の製造方法において、(48/12)C−Tiを0.06〜0.11%に制限することがより好ましい。 In the manufacturing method of the said cold-rolled steel plate, it is more preferable to limit (48/12) C-Ti * to 0.06-0.11%.

上記冷延鋼板の製造方法において、上記仕上げ圧延後急冷の際、仕上げ圧延終了の後1秒以内に急冷することがより好ましい。   In the manufacturing method of the cold-rolled steel sheet, it is more preferable that the rapid cooling is performed within 1 second after finishing the finish rolling when the rapid cooling is performed after the finish rolling.

上記冷延鋼板の製造方法において、上記焼鈍は760〜820℃で5分間以下行うことが好ましい。   In the manufacturing method of the said cold-rolled steel plate, it is preferable to perform the said annealing at 760-820 degreeC for 5 minutes or less.

上記冷延鋼板の製造方法において、上記焼鈍のための昇温の際、昇温速度を3℃/sec以上に制限することがより好ましい。   In the manufacturing method of the said cold-rolled steel plate, it is more preferable to restrict | limit a temperature increase rate to 3 degrees C / sec or more in the case of the temperature increase for the said annealing.

本発明によれば、r90値が1.3以下で、かつr値が1に近く形状凍結性に優れ、かつΔr値が0.15以下と低くストレッチングモードの変形が主として生じる自動車外板用の鋼材に適した形状凍結性に優れた高強度等方性冷延鋼板及びその製造方法を提供することが可能である。上記のような本発明による鋼は自動車部品を成形する際、ストレチング変形モードで複雑な形状を有する部品を容易に加工することが可能である。 According to the present invention, r 90 value is 1.3 or less, and r m values superior near shape fixability to 1, and deformation automotive exterior primarily occurring in the lower stretching mode Δr value is 0.15 or less It is possible to provide a high-strength isotropic cold-rolled steel sheet excellent in shape freezing property suitable for a steel material for a plate and a method for producing the same. The steel according to the present invention as described above can easily process a part having a complicated shape in a stretching deformation mode when forming an automobile part.

本発明者らは、r値が1に近いように低い場合、異軸降伏強度が低くなり形状凍結性に優れるようになることを理論的に明らかにし、少量のTiのみを添加した低炭素鋼を用いて自動車外板材に用いるのに適合するように形状凍結性に優れ、等方性を有し、時効指数が30MPa以下である冷延鋼板を製造する技術に関して研究を重ねた。その結果、TiとN、Cとの間に一定の関係を有するように成分を調整し、鋼板の製造条件、特に熱延条件と焼鈍条件を適切に制御することによりr90値が1.3以下で、かつr値が1に近いだけでなく、Δr値が0.15以下と低く時効指数が30MPa以下である高強度の鋼板を連続焼鈍設備で製造することができることを見出し、本発明に至った。 The present inventors have found that when r m values as low as close to 1, that is as different shafts yield strength superior becomes shape fixability depressed theoretically apparent, low-carbon was added only a small amount of Ti Research was repeated on a technique for producing a cold-rolled steel sheet having excellent shape freezing property, isotropic property, and an aging index of 30 MPa or less so as to be suitable for use in an automobile outer plate material using steel. As a result, by adjusting the components so as to have a certain relationship between Ti, N, and C, and appropriately controlling the steel sheet production conditions, particularly hot rolling conditions and annealing conditions, the r 90 value is 1.3. hereinafter, and r m value not only close to 1, found that Δr value can be aging index as low as 0.15 or less to produce steel plate of high strength continuous annealing equipment is below 30 MPa, the present invention It came to.

まず、本発明の鋼板の化学成分及びその限定理由について説明する。   First, the chemical components of the steel sheet of the present invention and the reasons for limitation will be described.

鋼中のCは侵入型固溶元素として、セメンタイトの形態で存在しながら、冷延及び焼鈍過程で鋼板の強度及び集合組織の形成に非常に大きい影響を及ぼす。本発明では鋼中のC含量を0.01〜0.05%に制限することが好ましいが、その理由は次のようである。上記C含量が0.01%未満であると強度が低下し、Δr値が大きくなりすぎるので、上記C含量は0.01%以上に制限することが好ましい。また、上記CはFeと結合してセメンタイトを形成するため鋼中に安定的に存在することが可能である。本発明によれば、常温時効を抑えるためには適正量のCが存在しセメンタイトで析出することが必要であることが明かされた。Cの量が多くなりすぎると強度が大きく増加し、延性が減少して冷間圧延性が悪くなるので、最大含量は0.05%以下に制限することが好ましい。より好ましくは、上記C含量を0.015〜0.035%に制限する。連続焼鈍工程で、加熱する際、鋼中に含まれたCがTiと結合しTiCを析出させることによって、析出強化の効果により強度上昇が生じ、Δr値の減少に有利なND(Normal Direction)が<111>方向に平行な方位を有する結晶粒(<111>//ND)の回復及び再結晶の速度を遅らせる役割を果たし、結果的に<111>//ND方位を有する結晶粒の分率が低くなる。この際、極めて一部のCは高温でTiで析出されるが、上記析出物の大きさはTiCに比べ相対的に粗大になり再結晶率方位の発達にはほぼ影響を及ぼさない。 C in steel exists as an interstitial solid solution element in the form of cementite, but has a great influence on the strength of steel sheets and the formation of texture in the cold rolling and annealing processes. In the present invention, it is preferable to limit the C content in steel to 0.01 to 0.05% for the following reason. If the C content is less than 0.01%, the strength decreases and the Δr value becomes too large. Therefore, the C content is preferably limited to 0.01% or more. Moreover, since the above C combines with Fe to form cementite, it can exist stably in the steel. According to the present invention, it was revealed that an appropriate amount of C exists and needs to be precipitated with cementite in order to suppress aging at room temperature. When the amount of C is excessively large, the strength is greatly increased, the ductility is decreased, and the cold rolling property is deteriorated. Therefore, the maximum content is preferably limited to 0.05% or less. More preferably, the C content is limited to 0.015 to 0.035%. When heating in the continuous annealing process, C contained in the steel combines with Ti to precipitate TiC, resulting in an increase in strength due to the effect of precipitation strengthening, and ND (Normal Direction) which is advantageous for reducing the Δr value. Plays a role in slowing the recovery and recrystallization speed of crystal grains having an orientation parallel to the <111> direction (<111> // ND), and as a result, the fraction of crystal grains having the <111> // ND orientation. The rate is lowered. At this time, a very part of C is precipitated by Ti 4 C 2 S 2 at a high temperature, but the size of the precipitate is relatively coarse compared to TiC, and the development of the recrystallization ratio orientation is almost affected. Does not reach.

Tiは、Cとともに本発明において最も重要な元素の一つである。上記TiはCのみならずNとも結合してTiNを形成することによって、AlNの形成を抑える効果がある。熱延中に形成されるAlNは熱延組織を延伸させ板材の形状異方性を増加させる問題点を有している。このようにTiはAlN形成を抑制し、かつTiCを析出させ異方性が強い方位を有する結晶粒の分率を小さくすることによって、Δr値を小さくし、析出硬化によって強度を上昇させる効果がある。しかし、上記Tiは高価なためできるだけ小量を使用することが経済的な面から有利である。従って、本発明ではTiの添加による効果を得ながら経済性を考慮して、0.005〜0.06%にTi含量を制限することが好ましい。上記Tiのより好ましい範囲は0.01〜0.04%である。このとき上記TiがAlNの形成を抑制し、焼鈍の際TiCを析出させることができるようにするためにはTiとNの比ができるだけTi/N>5になるように添加しなければならない。また、常温時効を抑えるために適正量のCが存在しセメンタイトで析出されることが必要であるので、本発明では上記Ti含量をC、Nの関数にして、下式のように制限することが好ましい。   Ti, together with C, is one of the most important elements in the present invention. The Ti has an effect of suppressing the formation of AlN by combining with N as well as C to form TiN. AlN formed during hot rolling has a problem of extending the hot rolled structure and increasing the shape anisotropy of the plate. Thus, Ti suppresses the formation of AlN and reduces the fraction of crystal grains that precipitate TiC and have a strong anisotropy, thereby reducing the Δr value and increasing the strength by precipitation hardening. is there. However, since Ti is expensive, it is advantageous from the economical aspect to use as small an amount as possible. Therefore, in the present invention, it is preferable to limit the Ti content to 0.005 to 0.06% in consideration of economics while obtaining the effect of addition of Ti. A more preferable range of Ti is 0.01 to 0.04%. At this time, in order to suppress the formation of AlN and allow TiC to precipitate during annealing, the Ti / N ratio should be added so that Ti / N> 5 as much as possible. Moreover, in order to suppress normal temperature aging, an appropriate amount of C must be present and precipitated with cementite. Therefore, in the present invention, the Ti content is a function of C and N, and is limited as shown in the following formula. Is preferred.

(48/12)C−Ti>0.03%、Ti=Ti−(48/14)N
ここで、Tiは有効Ti含量であり、熱延過程でAlNの形成を抑えるためにTiNを形成するのに必要なTiの量を除いたTiCの形成に必要なTiの量を言う。上記有効Ti(Ti)とCとの比である(48/12)C−Tiのより好ましい範囲は0.06〜0.11%である。
(48/12) C-Ti * > 0.03%, Ti * = Ti- (48/14) N
Here, Ti * is an effective Ti content, and refers to the amount of Ti necessary for TiC formation excluding the amount of Ti necessary to form TiN in order to suppress the formation of AlN during the hot rolling process. A more preferable range of (48/12) C-Ti * , which is the ratio of the effective Ti (Ti * ) and C, is 0.06 to 0.11%.

鋼中のMnは固溶強化の効果に有効な元素であり、特に鋼中のSを高温でMnSで析出させ、熱間圧延の際、Sによる板破断発生及び高温脆化を抑制させる。本発明に関する実験によれば、Mn含量が0.1%未満の場合には強度上昇の効果を得ることができず、鋼中のSをMnで完全に析出させることができないので、成形性確保に問題があることが示された。また、1%を超えると添加による効果上昇が飽和する。   Mn in steel is an element effective for the effect of solid solution strengthening. In particular, S in steel is precipitated at high temperature with MnS, and during hot rolling, the occurrence of plate breakage due to S and high temperature embrittlement are suppressed. According to the experiment relating to the present invention, when the Mn content is less than 0.1%, the effect of increasing the strength cannot be obtained, and S in the steel cannot be completely precipitated with Mn. Was shown to have a problem. On the other hand, if it exceeds 1%, the effect increase due to the addition is saturated.

鋼中Siは、固溶強化元素として作用し、本発明では適した延伸率を確保するために0.1%以下に制限することが好ましい。   In the steel, Si acts as a solid solution strengthening element. In the present invention, Si is preferably limited to 0.1% or less in order to ensure a suitable stretch ratio.

鋼中Pは、含量が多いほど強度上昇には非常に有利である。しかし、過剰のP添加は脆性崩壊の発生可能性を高め熱間圧延中スラブの板破断の発生可能性を増加させ、焼鈍が完了した後結晶粒界への拡散及び偏析が容易になることで成形の際2次加工脆性の発生に対する問題点が増大される。従って、その含量を制限して使用する必要がある。本発明ではTiCによる析出強化の効果により必要な強度を確保することが可能であるので、上記Pの含量を0.03%以下に制限することが好ましい。   The higher the content of P in steel, the more advantageous it is to increase the strength. However, excessive P addition increases the possibility of brittle collapse and increases the possibility of plate breakage of the slab during hot rolling, facilitating diffusion and segregation to grain boundaries after annealing is completed. Problems associated with the occurrence of secondary processing brittleness during molding are increased. Therefore, it is necessary to use it with its content limited. In the present invention, the necessary strength can be ensured by the effect of precipitation strengthening by TiC. Therefore, the P content is preferably limited to 0.03% or less.

SとNは鋼中の不純物として不可避的に含有される元素であるので、できるだけその含量を低く管理することが重要であるが、その含量を低く管理するためには鋼の精錬コストが上昇する問題点がある。従って、操業条件が可能な範囲内でその含量を低く管理することが好ましく、本発明ではS含量を0.03%以下に制限することが好ましい。また、N含量は高温でTiNを形成してCと結合する有効Ti含量を変化させるのでN含量が増加される場合、有効Ti含量が減少する問題点を引き起こす。従って、本発明では上記N含量を0.01%以下に制限することが好ましい。   Since S and N are elements inevitably contained as impurities in the steel, it is important to manage the content as low as possible. However, in order to manage the content as low as possible, the refining cost of the steel increases. There is a problem. Therefore, it is preferable to manage the content as low as possible within the operating conditions. In the present invention, the S content is preferably limited to 0.03% or less. Also, since the N content changes the effective Ti content that forms TiN at high temperature and combines with C, if the N content is increased, the effective Ti content decreases. Therefore, in the present invention, it is preferable to limit the N content to 0.01% or less.

可溶Alは、溶鋼の脱酸元素として有効に作用するが、Alを多く添加しすぎた場合加工性に悪影響を及ぼす恐れがあるので、その含量を0.08%以下に制限することが好ましい。   Soluble Al effectively acts as a deoxidizing element for molten steel, but if too much Al is added, the workability may be adversely affected, so it is preferable to limit its content to 0.08% or less. .

次に本発明の製造方法について詳細に説明する。   Next, the production method of the present invention will be described in detail.

本発明で熱延鋼板の母材は上記組成範囲の鋼を連続鋳造したものをインゴット(ingot)で作製せずそのまま使用したり、一旦インゴットで作製した後再加熱して使用しても構わない。但し、インゴットで作製した後に再加熱して使用しようとする時は1200℃以上を加熱しインゴットで冷却の際に形成されたTiを再固溶させることが好ましい。 In the present invention, the base material of the hot-rolled steel sheet may be used as it is without being produced by continuously casting a steel having the above composition range with an ingot, or may be used after being reheated after being produced with an ingot. . However, when it is intended to be reheated after being manufactured with an ingot, it is preferable to reheat the Ti 4 C 2 S 2 formed at the time of cooling at 1200 ° C. or higher by cooling with the ingot.

本発明の熱延工程は通常の工程に従って行い、仕上げ圧延(finishing mill)の最終パス温度がAr以上の温度領域で終了することが好ましい。上記熱延終了温度が低くなると熱延板の表層及びエッジ(edge)部位が異常領域で圧延され結晶粒の大きさが粗大になり、不均一になりプレス成形の際材料の表面欠陥の発生を引き起してしまう。仕上げ圧延後のROT(Run Out Table)での冷却は50℃/sec以上の速度で、巻取温度まで急冷して熱延板の結晶粒の大きさを微細化させなければならない。上記冷却速度が50℃/sec未満であれば結晶粒が粗大になる。また、上記冷却の際、仕上げ圧延終了後1秒以内に急冷すれば結晶粒の大きさをより微細にすることができより好ましい。上記急冷はROT前端に設けられた高密度冷却設備(high density cooler)を利用して行うことが可能である。上記仕上げ圧延後の巻取温度は650℃以下に制限することが好ましい。その理由は、巻取温度が650℃を超える場合TiC析出物が粗大になり焼鈍の際異方性が強い方位を有する亜結晶粒の回復及び再結晶の速度を遅らせる役割が弱くなって異方性が強い方位を有する結晶粒の分率が高くなるためである。 The hot rolling process of the present invention is preferably performed according to a normal process, and is finished in a temperature range where the final pass temperature of finishing mill is Ar 3 or higher. When the above hot rolling end temperature is lowered, the surface layer and edge portion of the hot rolled sheet are rolled in an abnormal region, the size of the crystal grains becomes coarse and becomes non-uniform, and surface defects of the material occur during press forming. It will cause. Cooling by ROT (Run Out Table) after finish rolling must be rapidly cooled to the coiling temperature at a rate of 50 ° C./sec or more to reduce the size of crystal grains of the hot rolled sheet. If the cooling rate is less than 50 ° C./sec, the crystal grains become coarse. In the above cooling, it is more preferable that the crystal grains are made finer if they are rapidly cooled within 1 second after finishing rolling. The rapid cooling can be performed using a high density cooler provided at the front end of the ROT. The winding temperature after the finish rolling is preferably limited to 650 ° C. or less. The reason for this is that when the coiling temperature exceeds 650 ° C., the TiC precipitates become coarse, and the role of slowing the recovery and recrystallization speed of subcrystal grains having a strong anisotropy during annealing becomes anisotropic. This is because the fraction of crystal grains having a strong orientation is high.

上記のように巻取された熱延板は、以降通常の工程を利用して酸洗した後、50〜80%の圧下率で冷間圧延を行うことが好ましい。上記冷間圧下率が50%未満である場合、焼鈍の際、十分に再結晶にならず延性が落ち、80%を超える場合面内異方性が増加するようになる。   The hot-rolled sheet wound as described above is preferably subjected to cold rolling at a rolling reduction of 50 to 80% after pickling using a normal process. When the cold rolling reduction is less than 50%, the annealing does not sufficiently recrystallize and the ductility decreases, and when it exceeds 80%, the in-plane anisotropy increases.

本発明における焼鈍は、図2に示すように連続焼鈍を前提にしており、再結晶温度以上、Ac点以下の温度領域で行う。上記焼鈍温度がAc点を超えるとαとγの異常領域での焼鈍になり異方性が強い方位を有する結晶粒の再結晶及び結晶粒の成長が早くなり結晶粒の粗大化が起こるようになる。このように結晶粒が粗大になれば強度及び延性が一緒に劣化される結果をもたらすため、上記焼鈍温度はAc点以下に制限することが好ましい。また、上記焼鈍温度が再結晶温度未満と低すぎると延性が落ちる問題点がある。より好ましくは、上記好ましい焼鈍温度を760〜820℃にすることである。また、上記焼鈍温度での維持時間は5分以内にすることが好ましい。その理由は、焼鈍の際、維持時間が長くなるとr90値が大きくなり、異方性が大きい結晶方位の成長をもたらすためである。 The annealing in the present invention is based on continuous annealing as shown in FIG. 2, and is performed in a temperature range from the recrystallization temperature to Ac 3 points. When the annealing temperature exceeds the Ac 3 point, annealing is performed in the abnormal region of α and γ, so that recrystallization of crystal grains having a strong anisotropy and growth of crystal grains are accelerated, resulting in coarsening of the crystal grains. become. In this way, when the crystal grains become coarse, the strength and ductility are deteriorated together. Therefore, the annealing temperature is preferably limited to Ac 3 points or less. Moreover, when the said annealing temperature is too low with less than recrystallization temperature, there exists a problem which ductility falls. More preferably, the preferable annealing temperature is set to 760 to 820 ° C. Moreover, it is preferable that the maintenance time at the annealing temperature is within 5 minutes. The reason for this is that when annealing is performed, the longer the maintenance time, the larger the r 90 value, leading to the growth of crystal orientation with large anisotropy.

また、冷延した後、焼鈍温度までの昇温は3℃/sec以上の昇温速度で行うことが好ましい。上記昇温速度が3℃/sec未満である場合焼鈍時間が長くなって再結晶粒が粗大になる可能性があるためである。   Moreover, it is preferable to perform the temperature increase to the annealing temperature after cold rolling at a temperature increase rate of 3 ° C./sec or more. This is because if the temperature rising rate is less than 3 ° C./sec, the annealing time becomes long and the recrystallized grains may become coarse.

その後、CがFeマトリクス内の固溶度が高い温度である600〜700℃まで1次冷却し、直ちにCの固溶度が低い100〜500℃まで2次冷却してセメンタイトが結晶粒界及び界面で析出されるように導くことになる。上記1次冷却は3℃/sec以上の冷却速度で行うことが好ましいが、これは3℃/sec未満で冷却する場合過飽和で存在しているCがセメンタイトとして十分に析出することができず延性及び常温時効が劣化する結果をもたらすためである。上記のように2次冷却が終了すれば、200〜500℃範囲の温度で再加熱して析出されたセメンタイトの成長が可能になるように10分以下の過時効処理を行う。上記過時効処理温度が200℃未満であるとセメンタイトが十分に成長できないため、Cが一部固溶され延性及び常温時効が劣化し、500℃を超えるとFeマトリクスのC固溶度が増加し延性及び常温時効が劣化する問題点がある。   Thereafter, C is primary cooled to 600 to 700 ° C. where the solid solubility in the Fe matrix is high, and immediately cooled to 100 to 500 ° C. where C is low in solid solubility, so that cementite is separated from the grain boundaries and It will lead to precipitate at the interface. The primary cooling is preferably performed at a cooling rate of 3 ° C./sec or more. However, when cooling at less than 3 ° C./sec, the supersaturated C cannot be sufficiently precipitated as cementite and is ductile. In addition, the normal temperature aging deteriorates. When the secondary cooling is completed as described above, an overaging treatment is performed for 10 minutes or less so that the cementite grown by reheating at a temperature in the range of 200 to 500 ° C. can be grown. If the overaging temperature is less than 200 ° C., cementite cannot be grown sufficiently. Therefore, part of C is dissolved in solid and ductility and normal temperature aging are deteriorated. There is a problem that ductility and normal temperature aging deteriorate.

その後、上記のように過時効処理された鋼板を調質圧延をし、このとき圧下率は0.5%以上に制限することが好ましい。   Thereafter, the steel sheet that has been overaged as described above is subjected to temper rolling, and at this time, the rolling reduction is preferably limited to 0.5% or more.

次の実施例は本発明のより完全な理解のために提供する。本発明の原理及び実施を例示するために提示された特定の技術、条件、材料、分率及び報告されたデータは例示的なことであり、本発明の範囲を制限することはない。   The following examples are provided for a more complete understanding of the invention. The specific techniques, conditions, materials, fractions and reported data presented to illustrate the principles and practices of the present invention are illustrative and do not limit the scope of the invention.

下記の表1の成分を有するTi添加炭素鋼を溶解し、連続鋳造を行った後、1200℃で再加熱を行い、870〜890℃の仕上げ圧延温度で2.5mmまで仕上げ圧延した。その後、高密度冷却装置を用いて下記の表2の冷却開始時間が過ぎた後、60℃/secの速度で急速冷却した後、下記の表2の巻取温度で巻き取った。その後、上記熱間圧延された鋼板の表面酸化層を酸洗で除去した後、0.75mmまで70%の圧下率で冷間圧延を行った。その後、上記冷間圧延された鋼板を連続焼鈍ラインで熱処理を行った。上記熱処理の際最高加熱温度は780〜800℃であった。上記温度で1分間加熱後冷却速度5℃/secで700℃まで1次冷却させ、その後冷却速度60℃/secで100℃まで2次冷却させた。その後、300〜350℃で再加熱して3分間過時効処理した後、1〜1.3%の圧下率で調質圧延した。上記のように得られた焼鈍板の引張試験はEN10002−1試験片に加工して行った。   The Ti-added carbon steel having the components shown in Table 1 below was melted and continuously cast, then reheated at 1200 ° C. and finish-rolled to 2.5 mm at a finish rolling temperature of 870 to 890 ° C. Then, after the cooling start time of the following Table 2 passed using the high-density cooling device, after rapid cooling at a rate of 60 ° C./sec, the film was wound at the winding temperature of the following Table 2. Then, after removing the surface oxide layer of the hot-rolled steel sheet by pickling, cold rolling was performed at a reduction rate of 70% up to 0.75 mm. Thereafter, the cold-rolled steel sheet was heat-treated in a continuous annealing line. The maximum heating temperature during the heat treatment was 780 to 800 ° C. After heating at the above temperature for 1 minute, primary cooling was performed to 700 ° C. at a cooling rate of 5 ° C./sec, and then secondary cooling was performed to 100 ° C. at a cooling rate of 60 ° C./sec. Then, after reheating at 300 to 350 ° C. and overaging for 3 minutes, temper rolling was performed at a rolling reduction of 1 to 1.3%. The tensile test of the annealed plate obtained as described above was performed by processing EN10002-1 test pieces.

Figure 2008514820
Figure 2008514820

下記の表2は、表1の成分を持つ冷延鋼板を製造するための製造条件及びその一軸実験結果を示す。但し、表2においてFDTは仕上げ圧延終了温度、CTは巻取温度、STは焼鈍温度、YPは降伏強度、TSは引張強度、Elは総延伸率、r90は圧延方向から90°方向の塑性変形比、Δrは平面異方性係数、AIは時効指数を意味する。ここで、AIは加熱前の7.5%プレストレイン(pre−strain)を加えた後、流動応力と、100℃で1時間加熱した後、流動応力の差値を用いて算出した。 Table 2 below shows production conditions for producing cold-rolled steel sheets having the components shown in Table 1 and the results of uniaxial experiments. In Table 2, FDT is the finish rolling finish temperature, CT is the coiling temperature, ST is the annealing temperature, YP is the yield strength, TS is the tensile strength, El is the total stretch ratio, r 90 is the plasticity in the 90 ° direction from the rolling direction. Deformation ratio, Δr is a plane anisotropy coefficient, and AI is an aging index. Here, AI was calculated using the difference between the flow stress and the flow stress after heating at 100 ° C. for 1 hour after adding 7.5% pre-strain before heating.

Figure 2008514820
Figure 2008514820

上記表2のA〜H鋼は、本発明の成分及びその製造条件を満足する鋼として、r90値が1.3以下であり、Δr値が0.15以下である異軸降伏強度が低くかつ面内異方性が低い鋼であることが分かる。一方、I〜L鋼は本発明の範囲を外れる鋼として、添加されたN量に比べTi添加量が低い。即ち、Ti/N比が本発明の範囲である5より低くΔr値が0.15以上の値を有することが示された。特に、比較鋼I、Jは仕上げ圧延後、冷却開始時間が本発明の制限より長い。比較鋼であるM、NはTi/N比が本発明の範囲であるにもかかわらず、r90、Δr、時効指数が本発明の範囲を満足することができなかった。これは鋼Mの場合、巻取温度が本発明の範囲より高くて熱延板中に固溶CがTiCを析出させて粗大されることによって焼鈍中に析出が不足になり、これによって、r90、Δrが大きい結晶方位({554}<225>)の発達が増加することで等方性鋼が得られないためと判断される。鋼M、Nの場合、Ti含量が本発明のより好ましい条件式である(48/12)C−Ti≧0.6を満足せず時効指数が高く出たと判断される。また鋼Oは冷却開始時間が本発明の範囲を外れるところ、これは熱延板の組織が冷却開始時間を早くした場合より粗大になり、焼鈍後、冷却時のセメンタイトの核生成の場所が減少し、これによって常温時効値が高い値を有し、Δrが0.15以上の値を有するためと判断される。 The steels A to H in Table 2 are low steels satisfying the components of the present invention and the production conditions thereof, with an r 90 value of 1.3 or less and a Δr value of 0.15 or less and low off-axis yield strength. It can also be seen that the steel has low in-plane anisotropy. On the other hand, steels I to L are steels outside the scope of the present invention, and the Ti addition amount is lower than the added N amount. That is, it was shown that the Ti / N ratio is lower than 5 which is the range of the present invention, and the Δr value is 0.15 or more. In particular, comparative steels I and J have a cooling start time longer than the limit of the present invention after finish rolling. In comparison steels M and N, although the Ti / N ratio was within the range of the present invention, r 90 , Δr, and aging index could not satisfy the range of the present invention. This is because in the case of steel M, the coiling temperature is higher than the range of the present invention, and solid solution C precipitates TiC in the hot-rolled sheet and becomes coarse, thereby causing insufficient precipitation during annealing. 90 , it is judged that isotropic steel cannot be obtained by increasing the development of crystal orientation ({554} <225>) having a large Δr. In the case of steels M and N, the Ti content does not satisfy (48/12) C—Ti * ≧ 0.6, which is a more preferable conditional expression of the present invention, and it is judged that the aging index is high. Steel O also has a cooling start time that is outside the scope of the present invention, which is coarser than when the hot-rolled sheet structure has a faster cooling start time, and after annealing, the place of nucleation of cementite during cooling is reduced. Thus, it is determined that the room temperature aging value has a high value and Δr has a value of 0.15 or more.

図3は、鋼に発達する主要集合組織成分に対する方位分布関数のΨ=45°断面を示したものである。図4は図3に示した主要集合組織成分の塑性変形比の異方性に及ぼす集合組織の影響をテイラー(Taylor)多結晶理論を利用して理論的に算出した結果を示したものである。図4からα−fibre(RD//<110>)と、γ−fibre(ND//<111>)集合組織は、塑性変形比に互いに異なる影響を及ぼすことが分かる。α−fibre集合組織は塑性変形比が全体的に低い値を有し、r45が最大値を有するが、γ−fibreを含む{554}<225>集合組織はr45が最も低い値を有する。このように、鋼が等方性を有するためには以上の集合組織を適切に組み合わせなければならないことが分かる。 FIG. 3 shows a Ψ 2 = 45 ° cross section of the orientation distribution function for the main texture component developed in steel. FIG. 4 shows the result of theoretical calculation of the influence of the texture on the anisotropy of the plastic deformation ratio of the main texture component shown in FIG. 3 using Taylor polycrystal theory. . It can be seen from FIG. 4 that α-fibre (RD // <110>) and γ-fibre (ND // <111>) textures have different effects on the plastic deformation ratio. The α-fibre texture has an overall low plastic deformation ratio and r 45 has the maximum value, whereas the {554} <225> texture including γ-fibre has the lowest value of r 45 . Thus, it can be seen that in order for steel to be isotropic, the above textures must be appropriately combined.

図5は本発明のA鋼のFE(Field Emission)−SEMに付属したEBSD(Electron BackScattered Diffraction)装備を利用して測定した結晶学的方位図(COM、Crystallographic Orientation Map)を示す。上端の逆極点図(inverse pole figure)上の色を比べれば、本発明の鋼の場合α−fibreとγ−fibre集合組織が一緒に発達していることが分かる。図6は光学顕微鏡を用いて結晶粒のみならずセメンタイトを一緒に分析した結果を示す。セメンタイトが主に結晶粒界に位置することが分かる。図7は発明鋼Aに発達する微小集合組織をX−ray回折を利用して得た極点図データを修正し、そのデータを利用して鋼の方位分布関数(ODF、Orientation Distribution Function)を計算し、その結果をΨ=45°に示す。図7からα−fibreとγ−fibre集合組織が一緒に発達していることが分かる。以上より本発明の鋼はα−fibreとγ−fire集合組織が一緒に発達し優れた等方性を有するということが分かる。 FIG. 5 shows a crystallographic orientation map (COM, Crystallographic Orientation Map) measured using EBSD (Electron Back Scattered Diffraction) equipment attached to FE (Field Emission) -SEM of Steel A of the present invention. Comparing the colors on the inverse pole figure at the top, it can be seen that α-fibre and γ-fibre textures have developed together in the steel of the present invention. FIG. 6 shows the result of analyzing not only crystal grains but also cementite together using an optical microscope. It can be seen that cementite is mainly located at the grain boundaries. Fig. 7 shows the correction of the pole figure data obtained by using X-ray diffraction for the microtexture developed in the invention steel A, and the orientation distribution function (ODF, Orientation Distribution Function) of the steel is calculated using the data. The result is shown as ψ 2 = 45 °. FIG. 7 shows that α-fibre and γ-fibre textures are developed together. From the above, it can be seen that the steel of the present invention has excellent isotropy because the α-fiber and γ-fire textures develop together.

本発明は掲示した実施例を参照して説明したが、当業界における通常の知識を有する者であれば、上述した特定の実施例が本発明の例示に過ぎないことを認めるはずである。そして本発明の思想に外れることなく多様な変更を行うことができることが理解できる。   Although the present invention has been described with reference to the posted embodiments, those having ordinary skill in the art will appreciate that the specific embodiments described above are merely illustrative of the invention. It can be understood that various changes can be made without departing from the spirit of the present invention.

塑性変形比と降伏曲面との関係を示す図である。It is a figure which shows the relationship between a plastic deformation ratio and a yield surface. 本発明による連続焼鈍工程及びそれによる微細組織の変化を示す図である。It is a figure which shows the continuous annealing process by this invention, and the change of the fine structure by it. 鋼に発達する主要集合組織の成分を示す図である。It is a figure which shows the component of the main texture which develops in steel. r値に及ぼす集合組織の影響を示す図である。It is a figure which shows the influence of the texture which acts on r value. 本発明鋼Aを連続焼鈍した後、EBSDを利用して測定した結晶学的方位図である。It is the crystallographic orientation figure measured using EBSD after carrying out continuous annealing of this invention steel A. 本発明鋼Aを連続焼鈍した後得られた光学顕微鏡の写真である。It is a photograph of the optical microscope obtained after carrying out continuous annealing of this invention steel A. 本発明鋼Aを連続焼鈍した後測定した方位分布関数のΨ=45゜における断面図である。It is sectional drawing in (PSI) 2 = 45 degree of the orientation distribution function measured after continuous annealing of this invention steel A. FIG.

Claims (11)

重量%で、C:0.01〜0.05%、Ti:0.005〜0.06%、Mn:0.1〜1%、Si:0.1%以下、P:0.03%以下、S:0.03%以下、可溶Al:0.08%以下、N:0.01%以下、残部Fe及び不可避的不純物からなり、
前記成分のうちTiとNがTi/N>5の関係を満足し、
さらに前記成分のうちTiとCが(48/12)C−Ti>0.03%[但し、Ti=Ti−(48/14)N]の関係を満足し、
時効指数(AI)が30MPa以下である形状凍結性に優れた高強度冷延鋼板。
By weight, C: 0.01 to 0.05%, Ti: 0.005 to 0.06%, Mn: 0.1 to 1%, Si: 0.1% or less, P: 0.03% or less S: 0.03% or less, soluble Al: 0.08% or less, N: 0.01% or less, balance Fe and unavoidable impurities,
Among the components, Ti and N satisfy the relationship of Ti / N> 5,
Further, among the above components, Ti and C satisfy the relationship of (48/12) C-Ti * > 0.03% [where Ti * = Ti- (48/14) N],
A high-strength cold-rolled steel sheet excellent in shape freezing property having an aging index (AI) of 30 MPa or less.
前記Cの含量が0.015〜0.035%であることを特徴とする請求項1記載の形状凍結性に優れた高強度冷延鋼板。   The high-strength cold-rolled steel sheet having excellent shape freezing property according to claim 1, wherein the C content is 0.015 to 0.035%. 前記Tiの含量が0.01〜0.04%であることを特徴とする請求項1記載の形状凍結性に優れた高強度冷延鋼板。   The high-strength cold-rolled steel sheet having excellent shape freezing properties according to claim 1, wherein the Ti content is 0.01 to 0.04%. 前記(48/12)C−Tiが0.06〜0.11%であることを特徴とする請求項1乃至請求項3のいずれか1項記載の形状凍結性に優れた高強度冷延鋼板。 The high strength cold rolling excellent in shape freezing property according to any one of claims 1 to 3, wherein the (48/12) C-Ti * is 0.06 to 0.11%. steel sheet. 重量%で、C:0.01〜0.05%、Ti:0.005〜0.06%、Mn:0.1〜1%、Si:0.1%以下、P:0.03%以下、S:0.03%以下、可溶Al:0.08%以下、N:0.01%以下、残部Fe及び不可避的不純物からなり、
前記成分のうちTiとNがTi/N>5の関係を満足し、
さらに前記成分のうちTiとCが(48/12)C−Ti>0.03%[但し、Ti=Ti−(48/14)N]の関係を満足し、
時効指数(AI)が30MPa以下の鋼をAr以上の温度で仕上げ圧延する段階と、
前記仕上げ圧延された熱延板を50℃/sec以上の冷却速度で急冷した後650℃以下の温度で巻取する段階と、
前記巻取された熱延板を酸洗した後、50〜80%の圧下率で冷間圧延する段階と、
前記冷間圧延された冷延板を再結晶温度〜Acの温度で加熱して焼鈍する段階と、
その後、600〜700℃まで3℃/sec以上の冷却速度で1次冷却し、再度100〜500℃まで30℃/sec以上の冷却速度で2次冷却する段階と、
前記冷却した鋼板を200〜500℃の温度で10分以内の時間過時効処理する段階と、
前記過時効処理された鋼板を0.5%以上の圧下率で調質する段階と、
を含む形状凍結性に優れた高強度冷延鋼板の製造方法。
By weight, C: 0.01 to 0.05%, Ti: 0.005 to 0.06%, Mn: 0.1 to 1%, Si: 0.1% or less, P: 0.03% or less S: 0.03% or less, soluble Al: 0.08% or less, N: 0.01% or less, balance Fe and unavoidable impurities,
Among the components, Ti and N satisfy the relationship of Ti / N> 5,
Further, among the above components, Ti and C satisfy the relationship of (48/12) C-Ti * > 0.03% [where Ti * = Ti- (48/14) N],
Finishing and rolling a steel having an aging index (AI) of 30 MPa or less at a temperature of Ar 3 or more;
The finish-rolled hot-rolled sheet is rapidly cooled at a cooling rate of 50 ° C./sec or more and then wound at a temperature of 650 ° C. or less;
After pickling the wound hot-rolled sheet, cold rolling at a rolling reduction of 50 to 80%;
Heating the cold-rolled cold-rolled sheet at a recrystallization temperature to a temperature of Ac 3 and annealing,
Thereafter, primary cooling to 600 to 700 ° C. at a cooling rate of 3 ° C./sec or more, and secondary cooling to 100 to 500 ° C. at a cooling rate of 30 ° C./sec or more,
A step of over-aging the cooled steel sheet at a temperature of 200 to 500 ° C. for a time of 10 minutes or less;
Refining the over-aged steel sheet at a rolling reduction of 0.5% or more;
A method for producing a high-strength cold-rolled steel sheet having excellent shape freezing properties.
前記Cの含量が0.015〜0.035%であることを特徴とする、請求項5記載の形状凍結性に優れた高強度冷延鋼板の製造方法。   The method for producing a high-strength cold-rolled steel sheet having excellent shape freezing property according to claim 5, wherein the C content is 0.015 to 0.035%. 前記Tiの含量が0.01〜0.04%であることを特徴とする、請求項5記載の形状凍結性に優れた高強度冷延鋼板の製造方法。   The method for producing a high-strength cold-rolled steel sheet having excellent shape freezing properties according to claim 5, wherein the Ti content is 0.01 to 0.04%. 前記(48/12)C−Tiが0.06〜0.11%であることを特徴とする、請求項5乃至請求項7のいずれか1項記載の形状凍結性に優れた高強度冷延鋼板の製造方法。 8. The high-strength cooling with excellent shape freezing property according to claim 5, wherein the (48/12) C—Ti * is 0.06 to 0.11%. A method for producing rolled steel sheets. 前記仕上げ圧延後急冷の際、仕上げ圧延終了後1秒以内に急冷することを特徴とする、請求項5記載の形状凍結性に優れた高強度冷延鋼板の製造方法。   6. The method for producing a high-strength cold-rolled steel sheet having excellent shape freezing property according to claim 5, wherein the rapid cooling is performed within 1 second after the finish rolling is finished. 前記焼鈍は760〜820℃で5分間以下で行うことを特徴とする、請求項5記載の形状凍結性に優れた高強度冷延鋼板の製造方法。   The method for producing a high-strength cold-rolled steel sheet having excellent shape freezing properties according to claim 5, wherein the annealing is performed at 760 to 820 ° C for 5 minutes or less. 前記焼鈍のための昇温の際、昇温速度が3℃/sec以上であることを特徴とする、請求項5または請求項10記載の形状凍結性に優れた高強度冷延鋼板の製造方法。   The method for producing a high-strength cold-rolled steel sheet having excellent shape freezing property according to claim 5 or 10, wherein a rate of temperature rise is 3 ° C / sec or more at the time of temperature rise for the annealing. .
JP2007534514A 2004-09-30 2005-09-30 High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof Withdrawn JP2008514820A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040077814A KR20060028909A (en) 2004-09-30 2004-09-30 High strength cold rolled steel sheet excellent in shape freezability,and manufacturing method thereof
PCT/KR2005/003239 WO2006080670A1 (en) 2004-09-30 2005-09-30 High strength cold rolled steel sheet having excellent shape freezability, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008514820A true JP2008514820A (en) 2008-05-08

Family

ID=36740656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007534514A Withdrawn JP2008514820A (en) 2004-09-30 2005-09-30 High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof

Country Status (6)

Country Link
US (1) US20070289679A1 (en)
EP (1) EP1805339A4 (en)
JP (1) JP2008514820A (en)
KR (1) KR20060028909A (en)
CN (1) CN100494449C (en)
WO (1) WO2006080670A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119653A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp Hot-rolled steel plate as material for cold-rolling, and manufacturing method therefor
KR20150130612A (en) * 2014-05-13 2015-11-24 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
CN105441802A (en) * 2015-12-01 2016-03-30 攀钢集团西昌钢钒有限公司 Titanium-containing acid pickling plate and preparation method thereof
CN106929757A (en) * 2015-11-13 2017-07-07 Posco公司 The excellent high intensity uncoated tinplate base of flange processing and its manufacture method
WO2017171366A1 (en) * 2016-03-28 2017-10-05 주식회사 포스코 High-strength cold rolled steel sheet with excellent yield strength and ductility, coated steel plate, and method for manufacturing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060619A (en) * 2011-09-12 2013-04-04 Jfe Steel Corp Thin steel sheet excellent in workability and method for producing the same
US9657380B2 (en) * 2012-04-26 2017-05-23 Jfe Steel Corporation High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method of manufacturing the same
JP7343788B2 (en) 2020-03-26 2023-09-13 日本製鉄株式会社 Heat treatment simulation method, heat treatment simulation device, and program
CN113122690B (en) * 2021-04-16 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 Low-delta r-value micro-carbon steel cold-rolled steel plate and preparation method thereof
CN115627424B (en) * 2022-11-07 2023-08-18 鞍钢股份有限公司 1.5 GPa-grade high-plasticity cold-rolled DH steel and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR800000710B1 (en) * 1979-09-15 1980-07-23 히라이도미 사부로오 High strength cold rolled steel sheet having bake-hardening properties
JPS57169022A (en) * 1981-04-11 1982-10-18 Sumitomo Metal Ind Ltd Production of cold rolled mild steel plate by continuous annealing
DE3803064C2 (en) * 1988-01-29 1995-04-20 Preussag Stahl Ag Cold rolled sheet or strip and process for its manufacture
EP0435968B2 (en) * 1989-05-09 2002-06-05 Salzgitter Aktiengesellschaft Process for manufacturing shaped parts from coil-break-free hot strip
CA2037316C (en) * 1990-03-02 1997-10-28 Shunichi Hashimoto Cold-rolled steel sheets or hot-dip galvanized cold-rolled steel sheets for deep drawing
JP2814818B2 (en) * 1992-01-22 1998-10-27 日本鋼管株式会社 Manufacturing method of cold-rolled steel sheet for deep drawing with excellent material stability
DE19622164C1 (en) * 1996-06-01 1997-05-07 Thyssen Stahl Ag Cold rolled steel sheet with good drawing properties
JP3546287B2 (en) * 1997-10-15 2004-07-21 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and method for producing the same
US6375765B1 (en) * 1998-07-27 2002-04-23 Nippon Steel Corporation Ferrite-based thin steel sheet excellent in shape freezing feature and manufacturing method thereof
TW550296B (en) * 2000-02-29 2003-09-01 Kawasaki Steel Co High tensile cold-rolled steel sheet having excellent strain aging hardening properties and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119653A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp Hot-rolled steel plate as material for cold-rolling, and manufacturing method therefor
KR20150130612A (en) * 2014-05-13 2015-11-24 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
KR101594670B1 (en) 2014-05-13 2016-02-17 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
CN106929757A (en) * 2015-11-13 2017-07-07 Posco公司 The excellent high intensity uncoated tinplate base of flange processing and its manufacture method
CN105441802A (en) * 2015-12-01 2016-03-30 攀钢集团西昌钢钒有限公司 Titanium-containing acid pickling plate and preparation method thereof
WO2017171366A1 (en) * 2016-03-28 2017-10-05 주식회사 포스코 High-strength cold rolled steel sheet with excellent yield strength and ductility, coated steel plate, and method for manufacturing same

Also Published As

Publication number Publication date
KR20060028909A (en) 2006-04-04
WO2006080670A1 (en) 2006-08-03
CN100494449C (en) 2009-06-03
US20070289679A1 (en) 2007-12-20
EP1805339A4 (en) 2009-03-25
EP1805339A1 (en) 2007-07-11
CN101031666A (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP6703111B2 (en) Automotive parts having high strength and excellent durability and method for producing the same
JP2008514820A (en) High-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
WO2010114131A1 (en) Cold-rolled steel sheet and process for producing same
JP5043248B1 (en) High-strength bake-hardening cold-rolled steel sheet and manufacturing method thereof
EP1731626A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
KR20060115314A (en) Cold rolled steel sheet having good formability and process for producing the same
JP2007284783A (en) High strength cold rolled steel sheet and its production method
CN111218620A (en) High-yield-ratio cold-rolled dual-phase steel and manufacturing method thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2009001909A (en) Manufacturing method of high-strength cold-rolled steel sheet
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP2013064172A (en) Cold rolled high tensile strength steel sheet excellent in resistance to surface distortion, bake hardenability, and stretch flange formability, and method for producing the same
JP5483562B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
CN115505847B (en) Cold-rolled ultrahigh-strength steel plate with excellent impact property and preparation method thereof
KR20130093177A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
KR20120099144A (en) Cold-rolled steel plate and method for producing same
CN114763594A (en) Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet
KR101263612B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP2022515107A (en) High-strength steel plate with excellent ductility and workability, and its manufacturing method
WO2019203251A1 (en) Hot-rolled steel sheet
KR20140041290A (en) Cold-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090601

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090701

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20090811