JP2013118586A - 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム - Google Patents

基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム Download PDF

Info

Publication number
JP2013118586A
JP2013118586A JP2011266001A JP2011266001A JP2013118586A JP 2013118586 A JP2013118586 A JP 2013118586A JP 2011266001 A JP2011266001 A JP 2011266001A JP 2011266001 A JP2011266001 A JP 2011266001A JP 2013118586 A JP2013118586 A JP 2013118586A
Authority
JP
Japan
Prior art keywords
frequency band
station apparatus
unit
base station
allocated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011266001A
Other languages
English (en)
Inventor
Kazunari Yokomakura
一成 横枕
Hiroki Takahashi
宏樹 高橋
Jungo Goto
淳悟 後藤
Osamu Nakamura
理 中村
Yasuhiro Hamaguchi
泰弘 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011266001A priority Critical patent/JP2013118586A/ja
Priority to PCT/JP2012/081448 priority patent/WO2013084908A1/ja
Priority to US14/362,631 priority patent/US20140341179A1/en
Publication of JP2013118586A publication Critical patent/JP2013118586A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0076Allocation utility-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

【課題】直交変換する際のポイント数に制約があっても、周波数帯域の利用効率の低下を抑えることができること。
【解決手段】送信信号を直交変換し、サブキャリアに配置して送信する複数の通信装置の各々に、サブキャリアの周波数帯域を割り当てる割り当て決定部と、複数の通信装置のうち、割当て決定部が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数ではない通信装置を選択する通信装置選択部と、選択した通信装置の各々に割り当てる周波数帯域を、割当て決定部が割り当てた周波数帯域から変更する周波数帯域調整部とを具備し、周波数帯域調整部は、変更の結果の周波数帯域の各々に含まれるサブキャリアの数が、前述の所定の数となるように、変更を行うことを特徴とする基地局装置。
【選択図】図1

Description

本発明は、基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラムに関する。
第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution)システムの標準化が完了し、最近ではLTEシステムをより発展させたLTE−A(LTE-Advanced)が、第4世代の無線通信システム(IMT−Aなどとも称する)の一つとして標準化が行われている。
これらのシステムの上りリンク(移動局から基地局への回線)のアクセス方式としては、シングルキャリア周波数分割多元接続方式(SC−FDMA:Single Carrier Frequency Division Multiple Access)とClustered DFT−S−OFDMA(DFT Spread Orthogonal Frequency Division Multiple Access)の2つが採用されている。SC−FDMAは、DFT(Discrete Fourier Transform;離散フーリエ変換)により時間信号を周波数信号に時間周波数変換し、得られた周波数信号をシステム帯域内の任意の周波数に連続して配置する方式であり、DFT−S−OFDMなどとも称される。一方、Clustered DFT−S−OFDMAでは、SC−FDMAと同様にして得られた周波数信号を複数のクラスタと呼ばれる部分スペクトルに分割し、各クラスタをシステム帯域内の任意の周波数に不連続に配置することができる。なお、LTE−Aでは最大のクラスタ数は2であるが、クラスタ数は任意の数に設定することができる。
ここで、LTEやLTE−Aでは、DFTの演算量を削減するために、高速フーリエ変換(FFT:Fast Fourier Transform)の考え方に基づいてバタフライ演算で使用するDFTポイント数に制限を設けている。具体的には、各移動局装置が使用可能なDFTポイント数は、リソースブロックに含まれるサブキャリア数の整数倍で、かつ式(1)を満たすものに限定される(非特許文献1)。
Figure 2013118586
ここで、NscはDFTポイント数(帯域幅と同一であるため、サブキャリア数や離散周波数のポイント数ともいえる。)であり、α、β、γはゼロ以上の整数を表す。式(1)は、DFTを実現するバタフライ演算を構成するDFTポイント数が2と3と5のみでよいことを意味している。これにより、送信処理に係る演算量および回路規模を削減することができる。
3GPP、"Evolved Universal Terrestrial Radio Access(E-UTRA);Physical channels and modulation"、TS36.211 v10.2.0
しかしながら、上述の非特許文献1においては、DFTポイント数の制約により、移動局装置に割り当てる周波数帯域幅に制約が生じるために、周波数帯域の利用効率が低下することがあるという問題がある。例えば、未割り当ての周波数帯域として、7RB(Resource Block;リソースブロック、非特許文献1では1RBは12サブキャリアである)があっても、ある移動局装置に割り当てることができる周波数帯域は、式(1)を満たさなければならないために6RBとなってしまい、周波数帯域の利用効率が低くなってしまう。
本発明は、このような事情に鑑みてなされたもので、その目的は、直交変換する際のポイント数に制約があっても、周波数帯域の利用効率の低下を抑えることができる基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラムを提供することにある。
(1)この発明は上述した課題を解決するためになされたもので、本発明の一態様は、送信信号を直交変換し、サブキャリアに配置して送信する複数の通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる割り当て決定部と、前記複数の通信装置のうち、前記割当て決定部が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数ではない前記通信装置を選択する通信装置選択部と、前記選択した通信装置の各々に割り当てる周波数帯域を、前記割当て決定部が割り当てた周波数帯域から変更する周波数帯域調整部とを具備し、前記周波数帯域調整部は、前記変更の結果の周波数帯域の各々に含まれるサブキャリアの数が、前記所定の数となるように、前記変更を行うことを特徴とする基地局装置である。
(2)また、本発明の他の態様は、上述の基地局装置であって、前記割り当て決定部は、前記複数の通信装置の間で、割り当てられる周波数帯域が重複しないように、前記周波数帯域の割り当てを行い、前記周波数帯域調整部は、前記選択した通信装置と他の前記通信装置との間で、割り当てられる周波数帯域の重複を許容し、かつ、前記割り当て決定部が割り当てた周波数帯域に対して周波数帯域を追加することで、前記変更を行うことを特徴とする。
(3)また、本発明の他の態様は、上述の基地局装置であって、前記周波数帯域調整部は、前記周波数帯域の追加を行う際、割り当て可能な周波数帯域のうち、優先度の高いものから順に追加することを特徴とする。
(4)また、本発明の他の態様は、上述の基地局装置であって、前記周波数帯域調整部が追加する周波数帯域は、前記割り当て決定部が割り当てた周波数帯域に隣接する周波数帯域であることを特徴とする。
(5)また、本発明の他の態様は、上述の基地局装置であって、前記複数の通信装置が送信した信号を受信する受信部と、前記受信した信号から前記通信装置各々の信号を検出する信号検出部とを具備し、前記信号検出部は、前記割り当てられた周波数帯域が他の前記通信装置と重複している前記通信装置の信号については、干渉キャンセリングを行って、前記受信した信号から分離することを特徴とする。
(6)また、本発明の他の態様は、上述の基地局装置であって、前記干渉キャンセリングは、ターボ原理に基づく非線形繰り返し等化またはシリアル干渉キャンセリングであることを特徴とする。
(7)また、本実施形態の他の態様は、上述の基地局装置であって、前記直交変換は、時間周波数変換であることを特徴とする。
(8)また、本発明の他の態様は、複数の通信装置と、基地局装置とを具備する無線通信システムであって、前記通信装置は、送信信号を直交変換し、サブキャリアに配置して送信する送信部を具備し、前記基地局装置は、前記通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる割り当て決定部を具備し、前記基地局装置または前記通信装置は、前記割当て決定部が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記割当て決定部が割り当てた周波数帯域を変更する周波数帯域調整部を具備し、前記周波数帯域調整部は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うことを特徴とする。
(9)また、本発明の他の態様は、送信信号を直交変換し、基地局装置が割り当てた周波数帯域のサブキャリアに、前記直交変換した信号を配置して送信する無線通信装置であって、前記基地局装置が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記基地局装置が割り当てた周波数帯域を変更する周波数帯域調整部を具備し、前記周波数帯域調整部は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うことを特徴とする。
(10)また、本発明の他の態様は、基地局装置における周波数帯域割り当て方法であって、送信信号を直交変換し、サブキャリアに配置して送信する複数の通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる第1の過程と、前記複数の通信装置のうち、前記第1の過程にて割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数ではない前記通信装置を選択する第2の過程と、前記選択した通信装置の各々に割り当てる周波数帯域を、前記第1の過程が割り当てた周波数帯域から変更する第3の過程とを有し、前記第3の過程において、前記変更の結果の周波数帯域の各々に含まれるサブキャリアの数が、前記所定の数となるように、前記変更を行うことを特徴とする。
(11)また、本発明の他の態様は、送信信号を直交変換し、基地局装置が割り当てた周波数帯域のサブキャリアに、前記直交変換した信号を配置して送信する無線通信装置における周波数帯域割り当て方法であって、前記基地局装置が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記基地局装置が割り当てた周波数帯域を変更する第1の過程を有し、前記第1の過程は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うことを特徴とする周波数帯域割り当て方法である。
(12)また、本発明の他の態様は、基地局装置のコンピュータを、送信信号を直交変換し、サブキャリアに配置して送信する複数の通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる割り当て決定部、前記複数の通信装置のうち、前記割当て決定部が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数ではない前記通信装置を選択する通信装置選択部、前記選択した通信装置の各々に割り当てる周波数帯域を、前記割当て決定部が割り当てた周波数帯域から変更する周波数帯域調整部として機能させるためのプログラムであって、前記周波数帯域調整部は、前記変更の結果の周波数帯域の各々に含まれるサブキャリアの数が、前記所定の数となるように、前記変更を行うことを特徴とする。
(13)また、本発明の他の態様は、送信信号を直交変換し、基地局装置が割り当てた周波数帯域のサブキャリアに、前記直交変換した信号を配置して送信する無線通信装置のコンピュータを、前記基地局装置が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記基地局装置が割り当てた周波数帯域を変更する周波数帯域調整部として機能させるためのプログラムであって、前記周波数帯域調整部は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うことを特徴とする。
この発明によれば、直交変換する際のポイント数に制約があっても、周波数帯域の利用効率の低下を抑えることができる。
本発明の第1の実施形態における無線通信システムの構成を示す概略ブロック図である。 同実施形態における移動局装置110の構成を示す概略ブロック図である。 同実施形態における基地局装置120の構成を示す概略ブロック図である。 同実施形態におけるスケジューリング部27の構成を示す概略ブロック図である。 同実施形態におけるスケジューリング部27の動作を説明するフローチャートである。 同リソース決定部42による割り当て結果の例を示す図である。 同実施形態におけるスケジューリング部27による割り当て結果の例を示す図である。 従来の割り当て結果の例を示す図である。 本発明の第2の実施形態におけるリソース決定部42による割り当て結果の例を示す図である。 同実施形態におけるスケジューリング部27による割り当て結果の例を示す図である。 従来の割り当て結果の例を示す図である。 本発明の第3の実施形態におけるリソース決定部42による割り当て結果の例を示す図である。 同実施形態におけるスケジューリング部27による割り当て結果の例を示す図である。 従来の割り当て結果の例を示す図である。
[第1の実施形態]
以下、図面を参照しながら、本発明の第1の実施形態について説明する。図1は、本実施形態における無線通信システム100の構成を示す概略ブロック図である。図1に示すように、無線通信システム100は、複数の移動局装置110(通信装置)と、これらの移動局装置110と通信する基地局装置120とを含んで構成される。基地局装置120は、各移動局装置110に対して、上りリンクの送信に用いるサブキャリアの周波数帯域を割り当てる。移動局装置110の各々は、基地局装置120が割り当てた周波数帯域のサブキャリアに、信号を配置して送信する。なお、本実施形態における無線通信システム100は、アップリンクにシングルキャリア周波数分割多元接続(SC−FDMA)を用いる。すなわち、移動局装置110は、送信信号をDFTにより時間周波数変換して、周波数信号(周波数領域の信号ともいう)を生成する。そして、移動局装置110は、基地局装置120が割り当てた周波数帯域のサブキャリアに、該周波数領域の信号を配置して送信する。なお、本実施形態では時間周波数変換としてDFTを使用しているが、高速フーリエ変換(FFT:Fast Fourie Transform)を使用するようにしてもよい。また、この変換は、DFTに対する式(1)によるポイント数の制限のように、ポイント数が制限される可能性のある直交変換であればよく、例えば、2のべき乗が一般的に使用されるウォルシュ系列(アダマール変換)を用いた周波数拡散などを適用してもよい。
図2は、移動局装置110の構成を示す概略ブロック図である。移動局装置110は、符号部1、変調部2、DFT部3、リソース割当部4、復調用参照信号多重部5、IFFT部6、切替部7、サウンディング参照信号多重部8、CP挿入部9、送信部10、送信アンテナ11、受信部12、制御情報検出部13、MCS識別部14、リソース識別部15、復調用参照信号生成部16、サウンディング参照信号生成部17、受信アンテナ18を含んで構成される。
受信アンテナ18は、基地局装置120が送信した信号を受信する。受信部12は、受信アンテナ18が受信した信号に対して、ダウンコンバージョンおよびA/D(Analog to Digital)変換などを行い、ディジタルデータを生成する。制御信号検出部13は、このディジタルデータから制御情報を抽出する。この制御情報は、例えば、LTEやLTE−Aでは、PDCCH(Physical Downlink Control Channel)と呼ばれる制御チャネルで伝送され、DCI(Downlink Control Information)フォーマットと呼ばれる伝送制御に使用される制御ビットである。ただし、伝送制御に使用される制御情報であればよく、LTEやLTE−Aの制御情報に限定されない。なお、LTEやLTE−Aでは、上りリンクの伝送制御に使用されるDCIフォーマットは、DCIフォーマット0またはDCIフォーマット4と定義されており、制御信号検出部13は、これらを検出する。このように制御信号検出部13は、上りリンクの伝送制御に使用される制御ビットを検出する。移動局装置110は、この制御ビットに従い、送信データを送信する。
制御信号検出部13は、検出した制御ビットが示すトランスポートブロックサイズ(情報ビット数)、符号化率、変調方式を、MCS識別部14に通知する。また、制御信号検出部13は、検出した制御ビットが示すDFTポイント数及びリソースインデックスをリソース識別部15に通知する。ここで、DFTポイント数は、DFTを施す際の変調シンボル数である。また、リソースインデックスは、周波数帯域割当て情報ともいい、周波数信号を配置する周波数位置(サブキャリア)を表す。本実施形態では、移動局装置110の各々には、連続した周波数帯域が割り当てられる。そのため、周波数帯域割当て情報は、例えば、割り当てられた周波数帯域の低周波側の端を示すインデックスと、周波数帯域の帯域幅を示すインデックスとからなる。なお、制御情報にはDFTポイント数が含まれておらず、制御信号検出部13が、制御情報に含まれるリソースインデックスからDFTポイント数を算出するようにしてもよい。例えば、リソースインデックスが示す周波数帯域に含まれるサブキャリア数を、DFTポイント数とする。また、制御信号検出部13は、検出した制御ビットが示す復調用参照信号(DMRS:DeModulation Reference Signal)のパターンを、復調用信号参照信号生成部16に通知する。ここで、復調用参照信号のパターンとは、例えば、復調用参照信号として用いる符号系列を指定する情報である。
MCS識別部14は、制御信号検出部13から通知されたトランスポートブロックサイズと、符号化率とを、符号部1に通知する。また、MCS識別部14は、制御信号検出部13から通知された変調方式を変調部2に通知する。リソース識別部15は、制御信号検出部13から通知されたDFTポイント数をDFT部3に通知する。また、リソース識別部15は、制御信号検出部13から通知されたリソースインデックスをリソース割当部4に通知する。復調用参照信号生成部16は、制御信号検出部13から通知されたパターンの復調用参照信号(DMRS)を生成して、復調用参照信号多重部5に出力する。
符号化部1は、入力された情報ビットTxを、通知されたトランスポートブロックサイズのビット数毎に分割する。符号化部1は、分割した情報ビットTxを、通知された符号化率にて誤り訂正符号化し、符号化ビットを生成する。変調部2は、通知された変調方式に従い符号化ビットを変調して、四相位相変調(QPSK:Quaternary Phase Shift Keying)や16値直交振幅変調(16QAM:16-ary Quadrature Amplitude Modulation)などの変調信号を生成する。DFT部3は、通知されたDFTポイント数の変調信号に対して、時間周波数変換を施して、周波数信号を生成する。なお、この時間周波数変換は、DFTにより行われる。また、DFT部3が実行可能なDFTのDFTポイント数は、素因数として2、3、5のみを含む数(所定の数)である。すなわち、DFTポイント数は、式(1)を満たすNscでなければならない。
リソース割当部4は、通知されたリソースインデックスにより指定された周波数位置に、周波数信号を配置する。復調用参照信号多重部5は、リソース割当部4により周波数信号が各周波数位置に配置された信号に、DMRSを時間多重する。なお、DMRSが多重される周波数位置は、リソース割当部4が周波数信号を配置した周波数位置と同じである。なお、MMRSは受信側において復調(信号検出)の際に用いられるように多重されればよく、DMRSを多重する周波数位置や多重方法(時間多重、周波数多重など)は、これに限定されない。IFFT部6は、DMRSが多重された信号に対して、IFFT(Inverse Fast Fourier Transform;逆高速フーリエ変換)を施して、時間信号(時間領域信号ともいう)を生成する。なお、このIFFTは、無線通信システム100で定義されたFFTポイント数(システム帯域)にて行われる。
切替部7は、IFFT部6が生成した時間領域信号を送信するサブフレームが、サウンディング参照信号(SRS:Sounding Reference Signal)を送信するサブフレームであるか否かを判断する。なお、サブフレームとは、移動局装置110にリソースを割り当てる際の時間方向の最小単位であり、所定の数のDFTブロックを時間多重して構成される。また。フレームやパケットなどとも称される。SRSは、基地局装置120にて伝搬路状態を測定(サウンディング)するための参照信号である。この伝搬路状態は、後述するように各移動局装置110への周波数帯域の割り当てを決定する際などに用いられる。SRSを送信するサブフレームであると判断した場合には、切替部7は、IFFT部6が生成した時間領域信号をサウンディング参照信号多重部8に出力する。一方、SRSを送信するサブフレームではないと判断した場合には、切替部7は、何もせずに、時間領域信号をCP挿入部9に出力する。
サウンディング参照信号生成部17は、SRSを生成する。サウンディング参照信号多重部8は、切替部7から入力された時間領域信号と、SRSとを時間多重して、CP挿入部9に出力する。CP挿入部9は、サウンディング参照信号多重部8または切替部7から入力された時間領域信号に対して、サイクリックプレフィックス(CP:Cyclic Prefix)を挿入する。CPとは、時間領域信号の後方部分を、予め定義された長さだけコピーしたものである。CP挿入部9は、このCPを、時間領域信号の先頭に挿入することで、CPの挿入を行う。送信部10は、CPが挿入された時間領域信号に対して、D/A(Digital to Analog)変換、アップコンバージョン、増幅などの送信処理が施した後、送信アンテナ11から基地局装置120に送信する。
図3は、基地局装置120の構成を示す概略ブロック図である。基地局装置120は、受信アンテナ21、受信部22、CP除去部23、切替部24、サウンディング参照信号分離部25、伝搬路サウンディング部26、スケジューリング部27、制御信号生成部28、送信部29、FFT部30、復調用参照信号分離部31、伝搬路推定部32、リソース分離部33、信号検出部34、送信アンテナ35を含んで構成される。なお、復調用参照信号分離部31、伝搬路推定部32、リソース分離部33、信号検出部34を、無線通信システム100を構成する移動局装置110の台数と同じだけ備え、各々がいずれかの移動局装置110の信号を検出対象とするようにしてもよい。あるいは、復調用参照信号分離部31、伝搬路推定部32、リソース分離部33、信号検出部34を一つずつ備えるようにしてもよい。この場合は、これらの各部は、移動局装置110の台数と同じ回数だけ繰り返し動作して、該繰り返しの各回において、いずれかの移動局装置110の信号を検出対象とする。
受信アンテナ21は、移動局装置11が送信した信号を受信する。受信部22は、受信アンテナ21が受信した信号に対し、ダウンコンバージョンやA/D変換などの受信処理を行ない、ディジタル信号を得る。CP除去部23は、このディジタル信号からサイクリックプレフィックス(CP)を除去する。切替部24は、CPが除去された信号が含まれるサブフレームがサウンディング参照信号(SRS)が多重されたサブフレームか否かを判断する。ここで、SRSが多重されたサブフレームではないと判断した場合には、切替部24は、CPが除去された信号をそのまま、FFT部30に出力する。一方、SRSが多重されたサブフレームであると判断した場合には、切替部24は、CPが除去された信号をそのまま、サウンディング参照信号分離部25に出力する。サウンディング参照信号分離部25は、CPが除去された信号から、SRSを分離する。サウンディング参照信号分離部25は、分離したSRSを、伝搬路サウンディング部26に出力し、残りの信号をFFT部30に出力する。
伝搬路サウンディング部26は、サウンディング参照信号分離部25が分離したSRSから、該SRSが配置された周波数の伝搬路状態を算出する。なお、SRSは、各移動局装置110が送信するので、伝搬路サウンディング部26は、伝搬路状態の算出を、各移動局装置110について行う。なお、伝搬路状態の算出は、本実施形態では、リソースブロック(12サブキャリア)単位で行うが、そのサブキャリア単位など、その他の伝送制御単位で行ってもよい。伝搬路状態とは、例えば、受信SINR(Signal to Interference plus Noise power Ratio;信号対干渉雑音電力比)や、通信路容量(伝送路容量、Channel Capacity)である。
スケジューリング部27は、伝搬路サウンディング部26が算出した伝搬路状態に基づいて、各移動局装置110に割り当てる周波数帯域およびDFTポイント数を決定する。また、スケジューリング部27は、周波数帯域の割り当てに加えて、移動局装置110毎に、符号化率、変調方式も決定する。スケジューリング部27は、決定したこれらの情報を、制御信号生成部28に出力する。なお、スケジューリング部27による周波数割り当て方法については後述する。制御信号生成部28は、スケジューリング部27から入力された情報に基づき、移動局装置110の各々について、制御情報を生成し、該制御情報を表す制御信号を生成する。この制御情報は、周波数帯域の割り当て結果を示すリソースインデックスと、DFTポイント数を示す情報と、符号化率を示す情報と、変調方式を示す情報とを含む。送信部29は、この制御信号に対して、アップコンバージョンやD/A変換などの無線送信処理を行った後、送信アンテナ35から各移動局装置110に送信する。
FFT部30は、切替部24あるいはサウンディング参照信号分離部25から入力された信号を、高速フーリエ変換により時間周波数変換して、周波数信号を生成する。復調用参照信号分離部31は、この周波数信号からDMRSを分離する。復調用参照信号分離部31は、分離したDMRSを伝搬路推定部32に出力し、残りの周波数信号をリソース分離部33に出力する。伝搬路推定部32は、各移動局装置110が伝送に用いたサブキャリア(離散周波数)の伝搬路特性と、他セルからの干渉を含む雑音電力とを推定し、得られた結果を信号検出部34に出力する。
リソース分離部33は、復調用参照信号分離部31から入力された周波数信号から、検出対象の移動局装置110が使用した周波数帯域の信号のみを抽出する。なお、移動局装置110が使用した周波数帯域は、スケジューリング部27が該移動局装置110に割り当てた周波数帯域である。そのため、リソース分離部33は、スケジューリング部27から該情報を取得する。信号検出部34は、リソース分離部33が抽出した信号に対して、等化、変調シンボルの復調、誤り訂正復号などの信号検出を行い、検出対象の移動局装置110に入力された情報ビットTxに対応する復号ビットRxを得る。なお、後述するように、各移動局装置110に割り当てられる周波数帯域は、移動局装置110間で重複している場合がある。このため、信号検出部34が信号検出をする際には、重複している周波数帯域の周波数信号から、検出対象の移動局装置110からの信号を分離する処理も含まれる。この分離処理は、ターボ原理に基づく非線形繰り返し等化(ターボ等化)による干渉キャンセリングにより実現してもよいし、SIC(Successive Interference Cancellation)のようなランキングしてシリアルに各移動局装置110の信号を検出するようなシリアル干渉キャンセリングにより実現してもよい。
図4は、本実施形態におけるスケジューリング部27の構成を示す概略ブロック図である。スケジューリング部27は、優先度算出部41、リソース決定部42、RB調整部43、移動局装置選択部44を含んで構成される。優先度算出部41は、サウンディング部26から入力された各移動局装置110の各リソースブロックの伝搬路状態に基づき、各リソースブロックにおける各移動局装置110の優先度を算出する。優先度算出部41は、この優先度の算出を、例えば、受信SINRを各移動局装置110の優先度するMax CIR法や、式(2)により優先度を算出するPF(Proportional Fairness)法などを用いて行う。
Figure 2013118586
式(2)において、P(u,m)はu番目の移動局装置110のm番目のリソースブロックの優先度である。この値が大きいほど、このリソースブロックの優先度が高いことを表す。また、R(u,m)はu番目の移動局装置110にm番目のリソースブロックを割り当てたと仮定した場合の見込みスループット、Rave(u)はu番目の移動局装置110のスケジューリングのタイミングまでに達成した平均スループットを表す。
リソース決定部42(割り当て決定部)は、このように算出された優先度に基づき、各リソースブロック(周波数帯域)を、該リソースブロックで最も優先度の高い移動局装置110に割り当てる。すなわち、リソース決定部42は、移動局装置110各々に、周波数帯域を割り当てる。ただし、リソース決定部42は、各移動局装置110には周波数方向に連続したリソースブロックを割り当てるという条件Aと、各リソースブロックには複数の移動局装置110を割り当てないという条件Bを満たすように、この割り当てを行う。なお、本実施形態の上りリンクでは、シングルキャリア周波数分割多元接続方式が用いられているため、割り当て結果は条件Aを満たすように、割り当てている。例えば、リソース決定部42は、平均スループットの低い移動局装置110から順に、上述の条件A、Bを満たし、割り当て結果のリソースブロックの優先度の合計が最も大きくなる割り当てを探すことで、割り当てを行う。なお、各移動局装置110に割り当てるリソースブロック数は、例えば、予め決められた数でもよいし、各移動局装置110が要求した数にしてもよいし、QoS(Quality of Service)に従って決定された数にしてもよい。
移動局装置選択部44(通信装置選択部9には、リソース決定部42による割り当ての結果が入力される。移動局装置選択部44は、各移動局装置110について、割り当て結果が示すDFTポイント数が式(1)を満たすか否かを判定する。すなわち、移動局装置選択部44は、各移動局装置110について、割り当て結果が示すDFTポイント数(サブキャリア数を同数となる)が、2、3、5のみを素因数とする数(所定の数)であるか否かを判定する。移動局装置選択部44は、そのDFTポイント数が式(1)を満たすと判定した移動局装置110については、リソース決定部42による割り当ての結果を、そのまま最終的な周波数帯域の割り当て結果として出力する。一方、移動局装置選択部44は、そのDFTポイント数が式(1)を満たさない(なお、式(1)を満たさないDFTポイント数となるリソースブロック数を、「割当不可能なリソースブロック数」と以下ではいう)と判定した移動局装置110については、リソース決定部42による割り当ての結果を、RB調整部43に出力する。
RB調整部43(周波数帯域調整部)は、移動局装置選択部44から入力された割り当ての結果を、式(1)を満たすように、変更する。より具体的には、RB調整部43は、割り当てるリソースブロックを増加させる。この増加させる際、RB調整部43は、該割り当ての対象となっている移動局装置110と他の移動局装置110との間で、割り当てられるリソースブロックの重複を許容する。そして、RB調整部43は、増加させた結果を、最終的な周波数帯域の割り当て結果として出力する。
具体的には、RB調整部43は、割り当ての結果のリソースブロック群に隣接するリソースブロックのいずれか一方を、割り当て結果が式(1)を満たすまで追加する。両端のうち、どちらを追加するかは、例えば、優先度の高い方を選択してもよいし、他の移動局装置110に割り当てられていない方を選択するようにしてもよい。なお、ここでは、増加させるリソースブロックの数が最小となる場合を示したが、受信処理で信号を分離できると判断される場合や、スループットが結果的に高くなると判断される場合などには、さらにRB数を増加させてもよい。
図5は、本実施形態におけるスケジューリング部27の動作を説明するフローチャートである。まず、ステップS1において、優先度算出部41は、リソースブロック(RB)と移動局装置110との組合せごとに優先度を算出する。次に、ステップS2において、リソース決定部42は、優先度に基づき、移動局装置110各々にRBを割り当てる。次に、ステップS3において、移動局装置選択部44は、各移動局装置110に仮想的な通し番号(IDでもよい)を割り当てる。次に、ステップS4において、移動局装置選択部44は、処理対象の移動局装置110を示す通し番号u=1とする。
次に、ステップS5において、移動局装置選択部44は、番号uの移動局装置110に対するステップS2による割り当て結果が、割当不可能なRB数か否かを判定する。割当不可能なRB数であると判定したときは(S5−Yes)、ステップS6に遷移する。ステップS6において、RB調整部43は、割当可能なRB数になるまでRBを増加させる。次に、ステップS7において、RB調整部43は、割り当てを確定する。すなわち、RB調整部43は、これまでの割り当ての結果を、最終的な周波数帯域の割り当て結果とし、ステップS9に遷移する。一方、ステップS5において、割当不可能なRB数でないと判定したときは(S5−No)、上述のステップS7に直接遷移する。
ステップS9では、u番目の移動局装置110が最後の番号の移動局装置110か否かを判定する。最後の番号の移動局装置110であると判定したときは(S9−Yes)、割当を終了する。一方、最後の番号の移動局装置110でないと判定したときは(S9−No)、ステップS8に遷移する。ステップS8において、移動局装置選択部44は、通し番号uに1を加算して、通し番号uを割り当てが未確定の移動局装置110の番号にして、ステップS5に戻る。このように、最後の番号の移動局装置110までステップS5以降を繰り返すことで、全ての移動局装置110について周波数帯域の割り当てを確定させる。
図6は、リソース決定部42による割り当て結果の例を示す図である。図6において、横軸は周波数である。また、符号RB1、RB2・・・RB15は、それぞれリソースブロックである。図6に示す例では、リソース決定部42は、第1の移動局装置110に、符号B1を付した周波数帯域(リソースブロックRB1からRB7)を割り当て、第2の移動局装置110に、符号B2を付した周波数帯域(リソースブロックRB8からRB15)を割り当てている。周波数帯域B1は、7リソースブロックであるので、対応するDFTポイント数は7×12=84である。84の素因数は、2、3、7であり、式(1)を満たさない。一方、周波数帯域B2は、8リソースブロックであるので、対応するDFTポイント数は8×12=96である。96の素因数は、2、3のみであり、式(1)を満たす。
図7は、本実施形態におけるスケジューリング部27による割り当て結果の例を示す図である。図7において、横軸は周波数である。図7の割り当て結果は、リソース決定部42が図6に示す割り当てを行ったときの、スケジューリング部27による割り当て結果の例である。図6の周波数帯域B1は、式(1)を満たさないので、RB調整部43は、周波数帯域B1にリソースブロックRB8を追加した周波数帯域B1’を、スケジューリング部27による第1の移動局装置110への割り当て結果としている。周波数帯域B1’は、リソースブロック数は8であるので、対応するDFTポイント数は8×12=96であり、式(1)を満たす。一方、図6の周波数帯域B2は、式(1)を満たすので、移動局装置選択部44は、リソース決定部42による割り当て結果である周波数帯域B2をそのままスケジューリング部27による第2の移動局装置110への割り当て結果としている。
図8は、従来の割り当て結果の例を示す図である。図8の例は、リソース決定部42が図6のように割り当てた場合と同様の状況における従来の割り当て結果である。非特許文献1などの従来の方法では、SC−FDMAを用いている場合、前述の条件A、Bに加えて、式(1)を満たすように割り当てる。このため、第2の移動局装置には、図7と同様に周波数帯域B2を割り当てるが、第1の移動局装置には、周波数帯域B1からリソースブロックB7を除いて、リソースブロックRB1からRB6からなる周波数帯域B1”を割り当てている。
このように、本実施形態では、第1の移動局装置110に周波数帯域B1’を割り当ててRB数(DFTポイント数)の制限を回避している。また、リソースブロックRB8において、第1の移動局装置110の割り当て周波数帯域と、第2の移動局装置110の割り当て周波数帯域とが重複するという非直交多重(無線リソースの共有方法という意味で非直交アクセスと呼んでもよい)を行う。これは、受信アンテナが2本以上であれば直交多重と考えることもできるため、直交多重と呼んでもよいが、ここでは意図的に部分的な重複を行うことを非直交多重と呼ぶ。このように、リソースブロックRB8の非直交アクセスとRB8以外の直交アクセスが混在するこのような直交/非直交ハイブリッドアクセスをRB数の制限の回避に使用することで、システム帯域全体のリソースに対して割り当てたリソースの使用率も高くすることができる。
このように、本実施形態は、割当不可能なリソースブロック数を避けつつ、割り当てるべきリソースブロックを各移動局装置110が使用することができ、その結果周波数利用効率が高まる。すなわち、DFTポイント数に制約があっても、周波数帯域の利用効率の低下を抑えることができる。さらに、例えば、図7に示されるように、システム全体のRB数が15であるのに対し、第1と第2の移動局装置に割り当てたRB数がそれぞれ8であることから、合計で16RB使っていることと等価である。したがって、一部のリソースブロックで無線リソースを多く割り当てることができることにより無線資源の利用効率も高い。
なお、本実施形態は、基地局装置120が、移動局装置110に周波数帯域を割り当てている。しかし、移動局装置110がRB調整部43を備え、基地局装置120が割り当てて通知した周波数帯域が割当不可能なリソースブロック数であるときに、移動局装置110のRB調整部43が、使用するリソースブロック数が割当不可能なリソースブロック数とならないように、使用するリソースブロック数を増加させるようにしてもよい。なお、どのリソースブロックを増やすかに関しては受信品質が把握できる場合には受信品質を用いてもよいし、予め決められたルールに基づいてもよい。例えば、割り当てられたリソースブロック数を越える最小の割当不可能でないリソースブロック数に高周波成分のリソースブロックを増やすなどといった方法などが考えられるが、一意に認識できればどのようなルールにしてもよい。
さらに、受信処理を行う基地局装置120では、複数の移動局装置110の信号が重複されて受信してもよい。また、この場合、基地局装置120では通知したリソースブロック数と異なるリソースブロック数で受信されることになるので、移動局装置110側から増加したリソースブロックのインデックスを通知するよう予め決定してもよいし、信号検出の際に増加させたリソースブロックの全ての候補に対して複数回信号処理を試みて、最も受信性能のよいものを検出結果とする方法を用いてもよい。
[第2の実施形態]
以下、図面を参照しながら、本発明の第2の実施形態について説明する。本実施形態では、上りリンクに、分割数(クラスタ数)に制約のないClustered DFT−S−OFDMAを用いる場合について説明する。ここで分割数とは、移動局装置110に割り当てる周波数帯域の分割数のことである。第1の実施形態では、割り当てる周波数帯域は、連続であったので、分割数は0である。Clustered DFT−S−OFDMAは、送信信号をDFTにより時間周波数変換して、サブキャリアに配置して送信するSC−FDMAとは他の例である。
本実施形態における無線通信システム100、移動局装置110及び基地局装置120の構成は図1、図2、図3、図4と同様であるため説明を省略する。ただし、基地局装置120のリソース決定部42の動作が、第1の実施形態とは異なる。第1の実施形態では、リソース決定部4は、周波数帯域の割り当てを行う際に、移動局装置110には周波数方向に連続したリソースブロックを割り当てるという条件Aを満たすようにしていた。しかし、本実施形態の上りリンクは、Clustered DFT−S−OFDMAを用いるので、本実施形態におけるリソース決定部42は、前述の条件Aの制約を受けずに周波数帯域の割り当てを行う。
図9は、本実施形態におけるリソース決定部42による割り当て結果の例を示す図である。図9において、横軸は周波数である。また、符号RB1、RB2・・・RB15は、それぞれリソースブロックである。図9に示す例では、リソース決定部42は、第1の移動局装置110に、符号B11を付した周波数帯域(リソースブロックRB1〜RB3、RB7、RB9、RB13〜RB15)を割り当てている。また、第2の移動局装置110に、符号B12を付した周波数帯域(リソースブロックRB4〜RB6、RB8、RB10〜RB12)を割り当てている。周波数帯域B11は、8リソースブロックであるので、対応するDFTポイント数は8×12=96である。96の素因数は、2、3のみであり、式(1)を満たす。一方、周波数帯域B12は、7リソースブロックであるので、対応するDFTポイント数は7×12=84である。84の素因数は、2、3、7であり、式(1)を満たさない。
図10は、本実施形態におけるスケジューリング部27による割り当て結果の例を示す図である。図10において、横軸は周波数である。図10の割り当て結果は、リソース決定部42が図9に示す割り当てを行ったときの、スケジューリング部27による割り当て結果の例である。図9の周波数帯域B12は、式(1)を満たさないので、RB調整部43は、周波数帯域B12にリソースブロックRB15を追加した周波数帯域B12’を、スケジューリング部27による第2の移動局装置110への割り当て結果としている。周波数帯域B12’は、リソースブロック数は8であるので、対応するDFTポイント数は8×12=96であり、式(1)を満たす。一方、図9の周波数帯域B11は、式(1)を満たすので、移動局装置選択部44は、リソース決定部42による割り当て結果である周波数帯域B11をそのままスケジューリング部27による第1の移動局装置110への割り当て結果としている。
図11は、従来の割り当て結果の例を示す図である。図11の例は、リソース決定部42が図9のように割り当てた場合と同様の状況における従来の割り当て結果である。非特許文献1などの従来の方法では、分割数に制約のないClustered DFT−S−OFDMを用いている場合、前述の条件Bに加えて、式(1)を満たすように割り当てる。このため、第1の移動局装置には、図10と同様に周波数帯域B11を割り当てるが、第2の移動局装置には、周波数帯域B12からリソースブロックB8を除いて、リソースブロックRB4〜RB6、RB10〜RB12からなる周波数帯域B12”を割り当てている。
このように、上りリンクにClustered DFT−S−OFDMAを用いる場合でも、割当不可能なリソースブロック数を避けつつ、割り当てるべきリソースブロックを各移動局装置110が使用することができ、その結果周波数利用効率が高まる。このとき、図11のように、式(1)を満たすために空きRBを作ってしまい無線資源の利用効率を下げることを避けることができる。すなわち、DFTポイント数に制約があっても、周波数帯域の利用効率の低下を抑えることができる。
なお、本実施形態において、RB調整部43は、追加するリソースブロックとして、割り当て可能な周波数帯域のうち、最も優先度の値の大きいものから順に選択するようにしてもよいし、重複したRBの信号の分離をしやすいなどといった条件で選択するようにしてもよい。また、追加することで、割り当てる周波数帯域の分割数が減るものを選択するようにしてもよい。分割数を減らすことで、送信信号のPAPR(Peak to Average Power Ratio;ピーク対平均電力比)の改善や、帯域外輻射の削減などの効果を得ることができる。
[第3の実施形態]
以下、図面を参照しながら、本発明の第3の実施形態について説明する。本実施形態では、上りリンクに、分割数(クラスタ数)に制約のあるClustered DFT−S−OFDMAを用いる場合について説明する。本実施形態では、分割数が2である場合について説明する。
本実施形態における無線通信システム100、移動局装置110及び基地局装置120の構成は図1、図2、図3、図4と同様であるため説明を省略する。ただし、基地局装置120のリソース決定部42の動作が、第1および第2の実施形態とは異なる。本実施形態では、リソース決定部42は、周波数帯域の割り当てを行う際に、前述の条件Aに変えて、移動局装置110に割り当てるリソースブロック群は、2分割まで許容するという条件A’を満たすようにする。
図12は、本実施形態におけるリソース決定部42による割り当て結果の例を示す図である。図12において、横軸は周波数である。また、符号RB1、RB2・・・RB15は、それぞれリソースブロックである。図12に示す例では、リソース決定部42は、第1の移動局装置110に、符号B21を付した周波数帯域(リソースブロックRB1〜RB4、RB9〜RB12)を割り当てている。また、第2の移動局装置110に、符号B22を付した周波数帯域(リソースブロックRB5〜RB8、RB13〜RB15)を割り当てている。周波数帯域B21は、8リソースブロックであるので、対応するDFTポイント数は8×12=96である。96の素因数は、2、3のみであり、式(1)を満たす。一方、周波数帯域B22は、7リソースブロックであるので、対応するDFTポイント数は7×12=84である。84の素因数は、2、3、7であり、式(1)を満たさない。
図13は、本実施形態におけるスケジューリング部27による割り当て結果の例を示す図である。図13において、横軸は周波数である。図13の割り当て結果は、リソース決定部42が図12に示す割り当てを行ったときの、スケジューリング部27による割り当て結果の例である。図12の周波数帯域B22は、式(1)を満たさないので、RB調整部43は、周波数帯域B22に、いずれかのリソースブロックを追加する。追加するリソースブロックは、既に割り当てられているリソースブロック群のいずれかの端に隣接するものなので、図12の場合、追加することができるRBは{RB4、RB9、RB12}である。これを割当可能なRBと定義する。RB調整部43は、これら割当可能なRBの中から優先度が最大のものを選択して追加する。具体的には、割当可能なRBの集合をSとし、割当不可能なリソースブロック数の移動局装置のインデックスをu’とすると、次式で割り当てるRBを決定する。
Figure 2013118586
式(3)により決定されたインデックスmのRBをu’番目の移動局装置110に割り当てる。第1の実施形態の場合、集合Sに含まれるRBは第1の移動局装置110におけるRB8であり、第2の実施形態の場合はクラスタ数が無限であることから全てのRBが含まれる。
また、式(3)で1RB増加させてもなお割当不可能な周波数インデックスであった場合(例えば、14RBとなった場合など)は、式(3)で増加させたRBを割当リソースとして再度集合Sを定義し、式(3)によりさらに割当リソース数を増加させ、この処理を割当不可能なリソースブロック数でない状態になるまで繰り返すことでいかなる場合でも適用できる。
このようにしてリソースブロックRB12を追加した周波数帯域B22’を、スケジューリング部27による第2の移動局装置110への割り当て結果としている。周波数帯域B22’は、リソースブロック数は8であるので、対応するDFTポイント数は8×12=96であり、式(1)を満たす。一方、図12の周波数帯域B21は、式(1)を満たすので、移動局装置選択部44は、リソース決定部42による割り当て結果である周波数帯域B21をそのままスケジューリング部27による第1の移動局装置110への割り当て結果としている。
図14は、従来の割り当て結果の例を示す図である。図14の例は、リソース決定部42が図12のように割り当てた場合と同様の状況における従来の割り当て結果である。非特許文献1などの従来の方法では、前述の条件A’、Bに加えて、式(1)を満たすように割り当てる。このため、第1の移動局装置には、図12と同様に周波数帯域B21を割り当てるが、第2の移動局装置には、周波数帯域B22からリソースブロックB13を除いて、リソースブロックRB4〜RB6、RB14〜RB15からなる周波数帯域B22”を割り当てている。
このように、分割数に制限のあるClustered DFT−S−OFDMであっても、割当不可能なリソースブロック数を避けつつ、割り当てるべきリソースブロックを各移動局装置110が使用することができる。すなわち、DFTポイント数に制約があっても、周波数帯域の利用効率の低下を抑えることができる。さらに、一部のRBで無線リソースを多く割り当てていることと等価であるため、無線資源の利用効率も高い。
また、上述した各実施形態における移動局装置110および基地局装置120の一部、または全部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより移動局装置110および基地局装置120を実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
また、上述した各実施形態における移動局装置110および基地局装置120の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置110および基地局装置120の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明は、携帯電話装置を移動局装置とする移動体通信システムに用いて好適であるが、これに限定されない。
1…符号部
2…変調部
3…DFT部
4…リソース割当部
5…復調用参照信号多重部
6…IFFT部
7…切替部
8…サウンディング参照信号多重部
9…CP挿入部
10…送信部
11…送信アンテナ
12…受信部
13…制御情報検出部
14…MCS識別部
15…リソース識別部
16…復調用参照信号生成部
17…サウンディング参照信号生成部
18…受信アンテナ
21…受信アンテナ
22…受信部
23…CP除去部
24…切替部
25…サウンディング参照信号分離部
26…伝搬路サウンディング部
27…スケジューリング部
28…制御信号生成部
29…送信部
30…FFT部
31…復調用参照信号分離部
32…伝搬路推定部
33…リソース分離
34…信号検出部
35…送信アンテナ
41…優先度算出部
42…リソース決定部
43…RB調整部
44…移動局装置選択部
100…無線通信システム
110…移動局装置
120…基地局装置

Claims (13)

  1. 送信信号を直交変換し、サブキャリアに配置して送信する複数の通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる割り当て決定部と、
    前記複数の通信装置のうち、前記割当て決定部が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数ではない前記通信装置を選択する通信装置選択部と、
    前記選択した通信装置の各々に割り当てる周波数帯域を、前記割当て決定部が割り当てた周波数帯域から変更する周波数帯域調整部と
    を具備し、
    前記周波数帯域調整部は、前記変更の結果の周波数帯域の各々に含まれるサブキャリアの数が、前記所定の数となるように、前記変更を行うこと
    を特徴とする基地局装置。
  2. 前記割り当て決定部は、前記複数の通信装置の間で、割り当てられる周波数帯域が重複しないように、前記周波数帯域の割り当てを行い、
    前記周波数帯域調整部は、前記選択した通信装置と他の前記通信装置との間で、割り当てられる周波数帯域の重複を許容し、かつ、前記割り当て決定部が割り当てた周波数帯域に対して周波数帯域を追加することで、前記変更を行うこと
    を特徴とする請求項1に記載の基地局装置。
  3. 前記周波数帯域調整部は、前記周波数帯域の追加を行う際、割り当て可能な周波数帯域のうち、優先度の高いものから順に追加することを特徴とする請求項2に記載の基地局装置。
  4. 前記周波数帯域調整部が追加する周波数帯域は、前記割り当て決定部が割り当てた周波数帯域に隣接する周波数帯域であることを特徴とする請求項2に記載の基地局装置。
  5. 前記複数の通信装置が送信した信号を受信する受信部と、
    前記受信した信号から前記通信装置各々の信号を検出する信号検出部と
    を具備し、
    前記信号検出部は、前記割り当てられた周波数帯域が他の前記通信装置と重複している前記通信装置の信号については、干渉キャンセリングを行って、前記受信した信号から分離すること
    を特徴とする請求項2に記載の基地局装置。
  6. 前記干渉キャンセリングは、ターボ原理に基づく非線形繰り返し等化またはシリアル干渉キャンセリングであることを特徴とする請求項5に記載の基地局装置。
  7. 前記直交変換は、時間周波数変換であることを特徴とする請求項1に記載の基地局装置。
  8. 複数の通信装置と、基地局装置とを具備する無線通信システムであって、
    前記通信装置は、送信信号を直交変換し、サブキャリアに配置して送信する送信部を具備し、
    前記基地局装置は、前記通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる割り当て決定部を具備し、
    前記基地局装置または前記通信装置は、前記割当て決定部が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記割当て決定部が割り当てた周波数帯域を変更する周波数帯域調整部を具備し、
    前記周波数帯域調整部は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うこと
    を特徴とする無線通信システム。
  9. 送信信号を直交変換し、基地局装置が割り当てた周波数帯域のサブキャリアに、前記直交変換した信号を配置して送信する無線通信装置であって、
    前記基地局装置が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記基地局装置が割り当てた周波数帯域を変更する周波数帯域調整部
    を具備し、
    前記周波数帯域調整部は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うこと
    を特徴とする無線通信装置。
  10. 基地局装置における周波数帯域割り当て方法であって、
    送信信号を直交変換し、サブキャリアに配置して送信する複数の通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる第1の過程と、
    前記複数の通信装置のうち、前記第1の過程にて割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数ではない前記通信装置を選択する第2の過程と、
    前記選択した通信装置の各々に割り当てる周波数帯域を、前記第1の過程が割り当てた周波数帯域から変更する第3の過程と
    を有し、
    前記第3の過程において、前記変更の結果の周波数帯域の各々に含まれるサブキャリアの数が、前記所定の数となるように、前記変更を行うこと
    を特徴とする周波数帯域割り当て方法。
  11. 送信信号を直交変換し、基地局装置が割り当てた周波数帯域のサブキャリアに、前記直交変換した信号を配置して送信する無線通信装置における周波数帯域割り当て方法であって、
    前記基地局装置が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記基地局装置が割り当てた周波数帯域を変更する第1の過程
    を有し、
    前記第1の過程は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うこと
    を特徴とする周波数帯域割り当て方法。
  12. 基地局装置のコンピュータを、
    送信信号を直交変換し、サブキャリアに配置して送信する複数の通信装置の各々に、前記サブキャリアの周波数帯域を割り当てる割り当て決定部、
    前記複数の通信装置のうち、前記割当て決定部が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数ではない前記通信装置を選択する通信装置選択部、
    前記選択した通信装置の各々に割り当てる周波数帯域を、前記割当て決定部が割り当てた周波数帯域から変更する周波数帯域調整部
    として機能させるためのプログラムであって、
    前記周波数帯域調整部は、前記変更の結果の周波数帯域の各々に含まれるサブキャリアの数が、前記所定の数となるように、前記変更を行うこと
    を特徴とするプログラム。
  13. 送信信号を直交変換し、基地局装置が割り当てた周波数帯域のサブキャリアに、前記直交変換した信号を配置して送信する無線通信装置のコンピュータを、
    前記基地局装置が割り当てた周波数帯域に含まれるサブキャリアの数が、所定の数であるときは、前記基地局装置が割り当てた周波数帯域を変更する周波数帯域調整部
    として機能させるためのプログラムであって、
    前記周波数帯域調整部は、前記変更の結果の周波数帯域に含まれるサブキャリアの数が、前記所定の数とならないように、前記変更を行うこと
    を特徴とするプログラム。
JP2011266001A 2011-12-05 2011-12-05 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム Pending JP2013118586A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011266001A JP2013118586A (ja) 2011-12-05 2011-12-05 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム
PCT/JP2012/081448 WO2013084908A1 (ja) 2011-12-05 2012-12-05 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム
US14/362,631 US20140341179A1 (en) 2011-12-05 2012-12-05 Base station device, wireless communication system, wireless communication device, frequency band allocation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266001A JP2013118586A (ja) 2011-12-05 2011-12-05 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2013118586A true JP2013118586A (ja) 2013-06-13

Family

ID=48574266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266001A Pending JP2013118586A (ja) 2011-12-05 2011-12-05 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム

Country Status (3)

Country Link
US (1) US20140341179A1 (ja)
JP (1) JP2013118586A (ja)
WO (1) WO2013084908A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021626A (ja) * 2014-07-14 2016-02-04 Necプラットフォームズ株式会社 中継装置、通信制御方法及びプログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370005B2 (en) * 2011-11-07 2016-06-14 Panasonic Intellectual Property Corporation Of America Relay station, base station, and band frequency allocation method
US10862634B2 (en) 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
US10172147B2 (en) * 2014-04-30 2019-01-01 Telecom Italia S.P.A. Method and system for allocating radio resources for uplink transmission in cellular networks
WO2017167938A1 (en) * 2016-03-31 2017-10-05 British Telecommunications Public Limited Company Method and apparatus for transmitting data over a plurality of pairs of wires
US10856310B2 (en) * 2017-02-03 2020-12-01 Qualcomm Incorporated Retuning in machine type communications
MX2021000132A (es) * 2018-11-01 2021-03-25 Panasonic Ip Corp America Estacion movil, estacion base, metodo de transmision y metodo de recepcion.
US11245552B2 (en) 2019-03-29 2022-02-08 Skyworks Solutions, Inc. Sounding reference signal switching
US20220407755A1 (en) 2021-06-14 2022-12-22 Skyworks Solutions, Inc. Sounding reference signal switching system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054128A1 (en) * 2006-11-01 2008-05-08 Lg Electronics Inc. Method for allocating pilots
JP4827695B2 (ja) * 2006-11-13 2011-11-30 パナソニック株式会社 無線受信装置
WO2008081876A1 (ja) * 2006-12-28 2008-07-10 Sharp Kabushiki Kaisha 無線送信装置、制御装置、無線通信システムおよび通信方法
JP5086880B2 (ja) * 2008-04-22 2012-11-28 シャープ株式会社 送信装置、受信装置及び無線通信システム
WO2009154250A1 (ja) * 2008-06-20 2009-12-23 シャープ株式会社 通信システム、通信装置、プログラム及び通信方法
WO2010000309A1 (en) * 2008-07-01 2010-01-07 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a telecommunication system
JP5660705B2 (ja) * 2010-05-26 2015-01-28 シャープ株式会社 通信装置、無線通信システム、および周波数割当方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021626A (ja) * 2014-07-14 2016-02-04 Necプラットフォームズ株式会社 中継装置、通信制御方法及びプログラム

Also Published As

Publication number Publication date
US20140341179A1 (en) 2014-11-20
WO2013084908A1 (ja) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5900884B2 (ja) 制御局装置、および無線通信システム
CN113115463B (zh) 下一代蜂窝网络中的数据传输的方法和装置
WO2013084908A1 (ja) 基地局装置、無線通信システム、無線通信装置、周波数帯域割り当て方法およびプログラム
RU2436252C2 (ru) Способ передачи управляющих сигналов в системе беспроводной связи
RU2554539C2 (ru) Устройство базовой станции радиосвязи и способ радиосвязи, используемые для связи с множеством несущих
US10237110B2 (en) Synchronization method and apparatus in mobile communication system
CN106717089B (zh) 一种参考信号的传输设备、方法及系统
US9220108B2 (en) Scheduling method and control station apparatus
EP2649851B1 (en) Resource allocation in a wireless communication system
RU2472292C2 (ru) Устройство и способ назначения поднесущих при кластерном мультиплексировании с ортогональным частотным разделением и дискретным преобразованием фурье
KR20190098237A (ko) 기준 신호 전송 방법 및 장치
KR101093331B1 (ko) 무선 통신 시스템에서의 신호 다중 방법 및 송신국
KR101878504B1 (ko) 무선 통신 장치, 할당 리소스 통지 방법 및 데이터 할당 방법
CN106788926A (zh) 一种降低网络延迟的无线通信方法和装置
US20240064790A1 (en) Device and method for associating resource information with channel metric information in wireless networks
KR100849329B1 (ko) 주파수 다이버시티를 위한 전송 자원 할당과 시그널링 방법및 장치
EP3567819A1 (en) Method, device and system for use in wireless communication
JP2010081349A (ja) 無線通信システム、通信装置、スケジューリング方法およびプログラム
JP5066536B2 (ja) 移動端末装置、無線基地局装置および無線アクセス方法
CN106982109B (zh) 一种无线通信的回程传输方法、控制器、基站、网关
JP5441811B2 (ja) 受信装置、基地局装置、無線通信システム、伝搬路推定方法、制御プログラムおよび集積回路
JP2010200077A (ja) 移動通信システム、基地局装置、移動局装置および移動通信方法
KR20170083971A (ko) 기준신호 송신 장치 및 방법
CN113115462B (en) Method and apparatus for data transmission in a next generation cellular network
US20150208412A1 (en) Communication system, communication device, and communication method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929