JP2013118032A - Glass substrate contact film for magnetic recording medium - Google Patents

Glass substrate contact film for magnetic recording medium Download PDF

Info

Publication number
JP2013118032A
JP2013118032A JP2011265676A JP2011265676A JP2013118032A JP 2013118032 A JP2013118032 A JP 2013118032A JP 2011265676 A JP2011265676 A JP 2011265676A JP 2011265676 A JP2011265676 A JP 2011265676A JP 2013118032 A JP2013118032 A JP 2013118032A
Authority
JP
Japan
Prior art keywords
glass substrate
film
magnetic recording
alloy
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011265676A
Other languages
Japanese (ja)
Inventor
Atsushi Fukuoka
淳 福岡
Kazuya Saito
和也 斉藤
Koichi Sakamaki
功一 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011265676A priority Critical patent/JP2013118032A/en
Publication of JP2013118032A publication Critical patent/JP2013118032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass substrate contact film for magnetic recording medium, which can obtain the same film characteristics as the conventional glass substrate contact film using expensive elements and composed of Ni-Ta alloy even when using more inexpensive alloys.SOLUTION: Provided is a glass substrate contact film for magnetic recording medium, which is expressed by a composition formula in an atomic ratio of Ni-Nb, 20≤X≤70 and comprises inevitable residual impurities, in which it is preferable that the film thickness is equal to or less than 50 nm and the surface roughness is equal to or less than 0.3 nm in terms of Ra.

Description

本発明は、磁気記録媒体に用いられるガラス基板密着膜に関するものである。   The present invention relates to a glass substrate adhesion film used for a magnetic recording medium.

近年、高度情報化社会により磁気記録の高密度化が強く望まれている。この高密度化を実現する技術として、従来の面内磁気記録方式に代わり垂直磁気記録方式が実用化されている。   In recent years, high recording density has been strongly demanded by an advanced information society. As a technique for realizing this high density, a perpendicular magnetic recording system has been put into practical use instead of the conventional in-plane magnetic recording system.

垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜を媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、記録密度を上げて行ってもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度に適した方法である。そして、垂直磁気記録方式においては、一般的に、ガラス基板上に密着膜、軟磁性膜、非磁性中間膜、磁性膜、保護膜が順次成膜されている。   Perpendicular magnetic recording is a method in which the magnetic film of a perpendicular magnetic recording medium is formed so that the axis of easy magnetization is oriented perpendicularly to the medium surface. This is a method suitable for high recording density with a small decrease in recording and reproduction characteristics. In the perpendicular magnetic recording system, generally, an adhesion film, a soft magnetic film, a nonmagnetic intermediate film, a magnetic film, and a protective film are sequentially formed on a glass substrate.

垂直磁気記録媒体に用いられる密着膜には、非磁性であること、表面の平坦性を確保するためにアモルファスであること、ガラス基板との密着性が良いことが求められている。また、ガラス基板密着膜の上層に形成される軟磁性膜の磁気特性の劣化を防ぐために、ガラス基板に含まれるアルカリ金属等の汚染元素の拡散を防止する耐食性も求められている。   The adhesion film used for the perpendicular magnetic recording medium is required to be non-magnetic, amorphous to ensure surface flatness, and good adhesion to the glass substrate. Further, in order to prevent deterioration of the magnetic properties of the soft magnetic film formed on the upper layer of the glass substrate adhesion film, corrosion resistance is also required to prevent diffusion of contaminant elements such as alkali metals contained in the glass substrate.

そして、このようなガラス基板密着膜においては、Ni合金が用いられており、例えば特許文献1の実施例に具体的に開示されるNiに37.5原子%のTaを添加した合金を用いることが提案されている。   In such a glass substrate adhesion film, an Ni alloy is used. For example, an alloy obtained by adding 37.5 atomic% Ta to Ni specifically disclosed in the example of Patent Document 1 is used. Has been proposed.

特開2011−014191号公報JP 2011-014191 A

上述した特許文献1に開示されるガラス基板密着膜は、ガラス基板との密着性が高い非磁性のアモルファス密着膜であり、有効な手段であるが、高価な金属であるTaを使用しているという問題があった。
本発明の目的は、従来の高価な元素を使用したNi−Ta合金でなるガラス基板密着膜よりも安価な合金を使用しても、同等な膜特性を得ることができる磁気記録媒体用のガラス基板密着膜を提供することである。
The glass substrate adhesion film disclosed in Patent Document 1 described above is a nonmagnetic amorphous adhesion film having high adhesion to the glass substrate, and is an effective means, but uses Ta, which is an expensive metal. There was a problem.
An object of the present invention is to provide a glass for a magnetic recording medium capable of obtaining equivalent film characteristics even when an alloy that is less expensive than a glass substrate adhesion film made of a Ni-Ta alloy using an expensive element is used. It is to provide a substrate adhesion film.

本発明者らは、垂直磁気記録媒体に用いられるガラス基板密着膜について、従来のNi−Ta合金に替わる合金について種々検討した。そして、Ni−Nb合金を選択し、NiとNbの組成比について種々の検討を行った結果、ガラス基板との密着性が高く且つ耐食性に優れた非磁性のアモルファス構造を有するガラス基板密着膜に好適な組成範囲を見出し本発明に到達した。   The inventors of the present invention have made various studies on an alloy that replaces a conventional Ni—Ta alloy with respect to a glass substrate adhesion film used in a perpendicular magnetic recording medium. As a result of selecting a Ni—Nb alloy and conducting various studies on the composition ratio of Ni and Nb, a glass substrate adhesion film having a nonmagnetic amorphous structure with high adhesion to the glass substrate and excellent corrosion resistance is obtained. A suitable composition range was found and the present invention was reached.

すなわち本発明は、原子比における組成式がNi100−X−Nb、20≦X≦70で表され残部不可避的不純物でなる磁気記録媒体用ガラス基板密着膜である。
本発明の磁気記録媒体用ガラス基板密着膜は、その膜厚が50nm以下、表面粗さRaが0.3nm以下であることが好ましい。
That is, the present invention is a glass substrate adhesive film for a magnetic recording medium, wherein the composition formula in atomic ratio is expressed as Ni 100-X -Nb X , 20 ≦ X ≦ 70, and the remainder is an inevitable impurity.
The glass substrate adhesion film for a magnetic recording medium of the present invention preferably has a film thickness of 50 nm or less and a surface roughness Ra of 0.3 nm or less.

本発明は、ガラス基板との密着性が高く且つ耐食性に優れた非磁性のアモルファス構造を有するガラス基板密着膜を安価に提供でき、垂直磁気記録媒体を製造する上で有効な技術となる。   INDUSTRIAL APPLICABILITY The present invention can provide a glass substrate adhesion film having a nonmagnetic amorphous structure with high adhesion to a glass substrate and excellent corrosion resistance at low cost, and is an effective technique for producing a perpendicular magnetic recording medium.

上述したように、本発明の重要な特徴は、ガラス基板との密着性が高く且つ耐食性に優れた非磁性のアモルファス構造を有するガラス基板密着膜を実現するための最適な組成範囲を見出した点にある。
まず、本発明のガラス基板密着膜を構成するNi−Nb合金に関して説明する。
本発明の磁気記録媒体用ガラス基板密着膜を構成するNi−Nb合金は、主成分としてのNiにNbを20〜70原子%含有する。本発明でNiを主成分としたのは、Niが、ガラス基板との密着性が高く、耐食性にも優れる元素であるためである。また、Nbを添加元素として選択したのは、主成分のNiに対し、深い共晶型の状態図を示すことから、アモルファス形成能を有する元素であるためである。
また、Nbは、電位−pH図においてpHの広範囲に亘って緻密な不動態被膜を形成することが示されていることから、ガラス基板密着膜の耐食性を向上させる効果もある。そして、NbはTaよりも埋蔵量が多く、価格が安価で入手が容易である。
As described above, an important feature of the present invention is that an optimum composition range for realizing a glass substrate adhesion film having a nonmagnetic amorphous structure with high adhesion to a glass substrate and excellent corrosion resistance has been found. It is in.
First, the Ni—Nb alloy constituting the glass substrate adhesion film of the present invention will be described.
The Ni—Nb alloy constituting the glass substrate adhesion film for a magnetic recording medium of the present invention contains 20 to 70 atomic% of Nb in Ni as a main component. The reason why Ni is the main component in the present invention is that Ni is an element having high adhesion to a glass substrate and excellent corrosion resistance. The reason why Nb is selected as an additive element is that it is an element having an amorphous forming ability because it shows a deep eutectic phase diagram with respect to Ni as a main component.
In addition, since Nb has been shown to form a dense passive film over a wide range of pH in the potential-pH diagram, it has the effect of improving the corrosion resistance of the glass substrate adhesion film. And Nb has more reserves than Ta, is cheap, and is easy to obtain.

Nbの添加量が20原子%未満または70原子%を超えると、アモルファスを形成する効果が小さくなり、結晶粒界に起因した凹凸が形成されるため、ガラス基板密着膜の平坦性を確保するためには、Nbを20〜70原子%の範囲にすることが重要である。また、ガラス基板密着膜のアモルファス性を向上させて、表面粗さを低減するために、40〜60原子%にすることがより好ましい。   If the amount of Nb added is less than 20 atomic% or exceeds 70 atomic%, the effect of forming an amorphous phase is reduced, and irregularities due to crystal grain boundaries are formed, so that the flatness of the glass substrate adhesion film is ensured. For this, it is important that Nb is in the range of 20 to 70 atomic%. Moreover, in order to improve the amorphous property of a glass substrate adhesion film and to reduce surface roughness, it is more preferable to set it as 40-60 atomic%.

また、本発明のガラス基板密着膜は、その膜厚を50nm以下とすることが好ましい。それは、ガラス基板密着膜の膜厚が50nmを超えると、膜応力が大きくなり膜が剥れやすくなる上、ガラス基板密着膜を形成するのに時間がかかり、生産性が低下するためである。
また、ガラス基板に含まれるアルカリ金属等の汚染元素の拡散を防止するために膜厚は、5nm以上であることが好ましい。
Moreover, it is preferable that the film thickness of the glass substrate adhesion film of this invention shall be 50 nm or less. This is because when the film thickness of the glass substrate adhesion film exceeds 50 nm, the film stress increases and the film is easily peeled off, and it takes time to form the glass substrate adhesion film, resulting in a decrease in productivity.
The film thickness is preferably 5 nm or more in order to prevent diffusion of contaminant elements such as alkali metals contained in the glass substrate.

また、本発明のガラス基板密着膜は、その表面粗さをJIS B 0601 (2001年)に準ずる算術平均粗さRaで0.3nm以下にすることが好ましい。それは、ガラス基板密着膜の上層に形成される軟磁性膜の膜厚が数十nm〜数百nmと厚いため、ガラス基板密着膜の表面粗さがRaで0.3nmを超えると、軟磁性膜の表面平坦性が低下し、垂直磁気記録膜の形成およびヘッドの浮上性に悪影響を及ぼすためである。   Moreover, it is preferable that the surface roughness of the glass substrate adhesion film of the present invention is 0.3 nm or less in terms of an arithmetic average roughness Ra according to JIS B 0601 (2001). The film thickness of the soft magnetic film formed on the upper layer of the glass substrate adhesion film is as thick as several tens to several hundreds of nm. Therefore, if the surface roughness of the glass substrate adhesion film exceeds 0.3 nm in Ra, This is because the surface flatness of the film is lowered, which adversely affects the formation of the perpendicular magnetic recording film and the flying characteristics of the head.

また、本発明のガラス基板密着膜の形成方法としては、真空蒸着法、スパッタリング法および化学気相成長法を用いることができる。中でも、Ni−Nb合金のガラス基板密着膜と同一組成のターゲット材を用意して、スパッタリングして薄膜を形成するスパッタリング法が、高速で安定した膜が形成できるため、好ましい。   In addition, as a method for forming the glass substrate adhesion film of the present invention, a vacuum deposition method, a sputtering method, and a chemical vapor deposition method can be used. Among them, a sputtering method in which a target material having the same composition as that of the Ni—Nb alloy glass substrate adhesion film and sputtering to form a thin film is preferable because a stable film can be formed at high speed.

また、ガラス基板密着膜を形成するNi−Nb合金スパッタリングターゲット材の製造方法としては、溶解鋳造法や粉末焼結法が適用可能である。溶解鋳造法では、鋳造インゴット、もしくは、鋳造インゴットに塑性加工や加圧加工を加えたバルク体とすることで製造可能となる。
粉末焼結法では、ガスアトマイズ法でNi−Nb合金の最終組成の合金粉末を製造し原料粉末とすることや、合金粉末や純金属粉末をNi−Nb合金の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。原料粉末の焼結方法としては、熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結を用いることが可能である。
Moreover, as a manufacturing method of the Ni-Nb alloy sputtering target material which forms a glass substrate adhesion film, a melt casting method and a powder sintering method are applicable. In the melt casting method, it is possible to produce a cast ingot or a bulk body obtained by applying plastic processing or pressure processing to the cast ingot.
In the powder sintering method, the alloy powder having the final composition of the Ni—Nb alloy is manufactured by the gas atomization method and used as the raw material powder, or the alloy powder and the pure metal powder are mixed so as to have the final composition of the Ni—Nb alloy. The powder can be used as a raw material powder. As a method for sintering the raw material powder, it is possible to use pressure sintering such as hot isostatic pressing, hot pressing, discharge plasma sintering, and extrusion press sintering.

また、本発明は、Nbを選択することにより、ガラス基板密着膜を形成するためのスパッタリングターゲットを粉末焼結法で製造する場合には、次の利点がある。
一つ目に、Nbの密度は、8.57×10kg/mであり、Taの密度(16.69×10kg/m)に比べて、Niの密度(8.908×10kg/m)に近いため、原料粉末を混合において、均一な混合ができ、均一なミクロ組織を有するスパッタリングターゲットが得られる。二つ目に、Nbの融点は2468℃であり、Taの融点(2980℃)に比べて低いため、焼結を進行させやすく、空孔の少ないスパッタリングターゲットが得られる。三つ目に、ミクロ組織に形成されるNiNb合金相は、NiTa合金相に比べて硬さが低いため、割れ難いスパッタリングターゲットが得られる。
Further, the present invention has the following advantages when a sputtering target for forming a glass substrate adhesion film is produced by a powder sintering method by selecting Nb.
First, the density of Nb is 8.57 × 10 3 kg / m 3 , and compared with the density of Ta (16.69 × 10 3 kg / m 3 ), the density of Ni (8.908 × Since it is close to 10 3 kg / m 3 ), the raw material powder can be mixed uniformly and a sputtering target having a uniform microstructure can be obtained. Second, the melting point of Nb is 2468 ° C., which is lower than the melting point of Ta (2980 ° C.), so that it is easy to proceed with sintering and a sputtering target with few vacancies can be obtained. Third, since the NiNb alloy phase formed in the microstructure is lower in hardness than the NiTa alloy phase, a sputtering target that is difficult to break can be obtained.

以下の実施例で本発明を更に詳しく説明する。
(本発明例1)
ガラス基板密着膜用のNi−Nb合金スパッタリングターゲットを作製するために、それぞれ純度99.9%以上の平均粒径10μmのNi粉末と平均粒径90μmのNb粉末を準備し、原子比でNi62.5−Nb37.5合金組成となるように秤量し、V型混合機により混合して混合粉末を作製した。次に、得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力150MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し、直径180mm×厚さ6mmのNi−Nb合金スパッタリングターゲットを作製した。
The following examples further illustrate the present invention.
(Invention Example 1)
To generate Ni-Nb alloy sputtering target for the glass substrate adhesion film, respectively to prepare a Nb powder having an average particle size of 90μm and Ni powder having an average particle size of 10μm of less than 99.9% pure, Ni 62 atomic ratio It was weighed so as to .5 -Nb 37.5 alloy composition, to prepare a mixed powder were mixed by a V-type mixer. Next, after filling the obtained mixed powder into a mild steel capsule and deaeration-sealing, it was sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 150 MPa, and a holding time of 1 hour. Produced. The obtained sintered body was machined to produce a Ni—Nb alloy sputtering target having a diameter of 180 mm and a thickness of 6 mm.

上記で作製したNi−NbターゲットとC(カーボン)ターゲットをDCマグネトロンスパッタ装置(キャノンアネルバ株式会社製 型式番号:3010)のチャンバ1、チャンバ2内にそれぞれ配置し、各チャンバ内を真空到達温度2×10−5Pa以下となるまで排気を行った後、寸法50mm×25mmのガラス基板上に膜厚40nmのNi−Nb合金ガラス基板密着膜をスパッタリング成膜し、相構造評価、表面粗さ評価、ガラス密着性評価用の試料をそれぞれ作製した。
また、寸法50mm×25mmのガラス基板上に膜厚40nmのガラス基板密着膜、保護膜として膜厚5nmのC(カーボン)を順に成膜し、耐食性評価用に試料を作製した。なお、ガラス基板密着膜のスパッタリング条件は、Arガス圧0.67Pa、投入電力1500Wで、C(カーボン)のスパッタリング条件は、Arガス圧0.60Pa、投入電力1500Wで行った。
The Ni—Nb target and the C (carbon) target produced above are placed in the chamber 1 and the chamber 2 of a DC magnetron sputtering apparatus (model number: 3010 manufactured by Canon Anelva Co., Ltd.), respectively, and each chamber has a vacuum temperature 2 After evacuating to 10 × 10 −5 Pa or less, a 40 nm-thickness Ni—Nb alloy glass substrate adhesion film is formed on a glass substrate having a size of 50 mm × 25 mm by sputtering, and phase structure evaluation and surface roughness evaluation are performed. Samples for evaluating glass adhesion were prepared.
A glass substrate adhesion film with a thickness of 40 nm and a C (carbon) film with a thickness of 5 nm as a protective film were sequentially formed on a glass substrate with dimensions of 50 mm × 25 mm, and a sample was prepared for corrosion resistance evaluation. The sputtering conditions for the glass substrate adhesion film were Ar gas pressure 0.67 Pa and input power 1500 W, and the C (carbon) sputtering conditions were Ar gas pressure 0.60 Pa and input power 1500 W.

(本発明例2)
ガラス基板密着膜用のNi−Nb合金スパッタリングターゲットを作製するために、それぞれ純度99.9%以上の平均粒径10μmのNi粉末と平均粒径90μmのNb粉末を準備し、原子比でNi59.5−Nb40.5合金組成となるように、秤量し、V型混合機により混合して混合粉末を作製した。次に、得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力150MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し、直径180mm×厚さ6mmのNi−Nb合金スパッタリングターゲットを作製した。
上記で作製したターゲットを用いて、本発明例1と同様の条件でガラス基板密着膜をスパッタリング成膜し、相構造評価、表面粗さ評価、ガラス密着性評価、および耐食性評価用の試料をそれぞれ作製した。
(Invention Example 2)
To generate Ni-Nb alloy sputtering target for the glass substrate adhesion film, respectively to prepare a Nb powder having an average particle size of 90μm and Ni powder having an average particle size of 10μm of less than 99.9% pure, Ni 59 atomic ratio as a .5 -Nb 40.5 alloy composition, it was weighed, to prepare a mixed powder were mixed by a V-type mixer. Next, after filling the obtained mixed powder into a mild steel capsule and deaeration-sealing, it was sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 150 MPa, and a holding time of 1 hour. Produced. The obtained sintered body was machined to produce a Ni—Nb alloy sputtering target having a diameter of 180 mm and a thickness of 6 mm.
Using the target prepared above, a glass substrate adhesion film was formed by sputtering under the same conditions as in Invention Example 1, and samples for phase structure evaluation, surface roughness evaluation, glass adhesion evaluation, and corrosion resistance evaluation were each obtained. Produced.

(本発明例3)
ガラス基板密着膜用のNi−Nb合金スパッタリングターゲットを作製するため、それぞれ純度99.9%以上の平均粒径10μmのNi粉末と平均粒径90μmのNb粉末を準備し、原子比でNi50.0−Nb50.0合金組成となるように、秤量し、V型混合機により混合して混合粉末を作製した。次に、得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度950℃、圧力150MPa、保持時間1時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し、直径180mm×厚さ6mmのNi−Nb合金スパッタリングターゲットを作製した。
上記で作製したターゲットを用いて、本発明例1と同様の条件でガラス基板密着膜をスパッタリング成膜し、相構造評価、表面粗さ評価、ガラス密着性評価、および耐食性評価用の試料をそれぞれ作製した。
(Invention Example 3)
In order to produce a Ni—Nb alloy sputtering target for a glass substrate adhesion film, Ni powder having an average particle diameter of 10 μm and Nb powder having an average particle diameter of 90 μm each having a purity of 99.9% or more were prepared, and Ni 50. A mixed powder was prepared by weighing and mixing with a V-type mixer so as to obtain a 0- Nb 50.0 alloy composition. Next, after filling the obtained mixed powder into a mild steel capsule and deaeration-sealing, it was sintered by hot isostatic pressing under conditions of a temperature of 950 ° C., a pressure of 150 MPa, and a holding time of 1 hour. Produced. The obtained sintered body was machined to produce a Ni—Nb alloy sputtering target having a diameter of 180 mm and a thickness of 6 mm.
Using the target prepared above, a glass substrate adhesion film was formed by sputtering under the same conditions as in Invention Example 1, and samples for phase structure evaluation, surface roughness evaluation, glass adhesion evaluation, and corrosion resistance evaluation were each obtained. Produced.

(従来例1)
ガラス基板密着膜用のNi−Nb合金スパッタリングターゲットを作製するため、それぞれ純度99.9%以上の平均粒径25μmのNi粉末と平均粒径20μmのTa粉末を準備し、原子比でNi62.5−Ta37.5合金組成となるように、秤量し、V型混合機により混合して混合粉末を作製した。次に、得られた混合粉末を軟鋼カプセルに充填し、脱気封止した後、温度1250℃、圧力150MPa、保持時間2時間の条件で熱間静水圧プレスによって焼結し、焼結体を作製した。得られた焼結体に機械加工を施し、直径180mm×厚さ6mmのNi−Ta合金スパッタリングターゲットを作製した。
上記で作製したターゲットを用いて、本発明例1と同様の条件でガラス基板密着膜をスパッタリング成膜し、相構造評価、表面粗さ評価、ガラス密着性評価、および耐食性評価用の試料をそれぞれ作製した。
(Conventional example 1)
In order to prepare a Ni—Nb alloy sputtering target for a glass substrate adhesion film, Ni powder having an average particle diameter of 25 μm and Ta powder having an average particle diameter of 20 μm each having a purity of 99.9% or more were prepared, and Ni 62. A mixed powder was prepared by weighing and mixing with a V-type mixer so as to obtain a 5- Ta 37.5 alloy composition. Next, after filling the obtained mixed powder into a mild steel capsule and deaeration-sealing, it was sintered by hot isostatic pressing under conditions of a temperature of 1250 ° C., a pressure of 150 MPa, and a holding time of 2 hours. Produced. The obtained sintered body was machined to produce a Ni—Ta alloy sputtering target having a diameter of 180 mm and a thickness of 6 mm.
Using the target prepared above, a glass substrate adhesion film was formed by sputtering under the same conditions as in Invention Example 1, and samples for phase structure evaluation, surface roughness evaluation, glass adhesion evaluation, and corrosion resistance evaluation were each obtained. Produced.

(相対密度)
得られたスパッタリングターゲットの相対密度を表1に示す。尚、相対密度とは、アルキメデス法により測定されたNi−Nb合金およびNi−Ta合金ターゲットのかさ密度をその理論密度で割った値を百分率で表した。
(相構造の評価)
上記でガラス基板(寸法50mm×25mm)上に形成した本発明例1、本発明例2、本発明例3、従来例1の各試料について、株式会社リガク製のX線回折装置(型式番号:RINT2500V)を使用し、線源にCoを用いてX線回折測定を行った。その結果、全ての試料において、得られたX線回折パターンはブロードなピークであり、ガラス基板密着膜がアモルファス構造であることを確認した。
(Relative density)
The relative density of the obtained sputtering target is shown in Table 1. The relative density was expressed as a percentage obtained by dividing the bulk density of Ni—Nb alloy and Ni—Ta alloy target measured by Archimedes method by the theoretical density.
(Evaluation of phase structure)
About each sample of this invention example 1, this invention example 2, this invention example 3, and the prior art example 1 formed on the glass substrate (dimension 50 mm x 25 mm) above, the Rigaku Co., Ltd. X-ray-diffraction apparatus (model number: RINT2500V) was used, and X-ray diffraction measurement was performed using Co as the radiation source. As a result, in all the samples, the obtained X-ray diffraction patterns were broad peaks, and it was confirmed that the glass substrate adhesion film had an amorphous structure.

(表面粗さの評価)
上記でガラス基板(寸法50mm×25mm)上に形成した本発明例1、本発明例2、本発明例3、従来例1の各試料について、株式会社キーエンス製の原子間力顕微鏡(型式番号:VN−8000)を使用し、300nm×300nmの範囲の表面粗さを測定した。そして、得られた画像データから、JIS B 0601 (2001年)に準じて算術平均粗さRaを求めた。測定した結果を表1に示す。
(Evaluation of surface roughness)
For each sample of Invention Example 1, Invention Example 2, Invention Example 3 and Conventional Example 1 formed on a glass substrate (dimensions of 50 mm × 25 mm), an atomic force microscope (model number: manufactured by Keyence Corporation) is used. VN-8000) was used, and the surface roughness in the range of 300 nm × 300 nm was measured. And arithmetic average roughness Ra was calculated | required according to JISB0601 (2001) from the obtained image data. The measured results are shown in Table 1.

(ガラス密着性の評価)
上記でガラス基板(寸法50mm×25mm)上に形成した本発明例1、本発明例2、本発明例3、従来例1の各の試料について、JIS K 5400に準じてガラス密着性の評価を行った。試験方法としては、ガラス基板密着膜に2mm間隔で碁盤目状に切り目を入れてマス目を作製した後、ガラス基板密着膜の表面にテープを貼り、引き剥がしたときのマス目に残るガラス基板密着膜の面積率で評価した。測定した面積率を表1に示す。
(Evaluation of glass adhesion)
With respect to each sample of Invention Example 1, Invention Example 2, Invention Example 3, and Conventional Example 1 formed on the glass substrate (dimension 50 mm × 25 mm) as described above, evaluation of glass adhesion was performed according to JIS K 5400. went. As a test method, a glass substrate remaining in the grid when the glass substrate adhesion film is cut and cut into a grid pattern at intervals of 2 mm to create a grid, and then taped on the surface of the glass substrate adhesion film and peeled off. The area ratio of the adhesion film was evaluated. Table 1 shows the measured area ratio.

(耐食性の評価)
上記でガラス基板(寸法50mm×25mm)上に形成した本発明例1、本発明例2、本発明例3、従来例1の各試料について、純水で10%に希釈した硝酸溶液50mL中に24時間浸漬させた後、硝酸10%溶液中に溶出したNi量をICPにより分析した。測定したNi溶出量を表1に示す。
(Evaluation of corrosion resistance)
In each of the samples of Invention Example 1, Invention Example 2, Invention Example 3, and Conventional Example 1 formed on the glass substrate (dimension 50 mm × 25 mm) in the above, in 50 mL of nitric acid solution diluted to 10% with pure water. After soaking for 24 hours, the amount of Ni eluted in a 10% nitric acid solution was analyzed by ICP. The measured Ni elution amount is shown in Table 1.

Figure 2013118032
Figure 2013118032

表1に示すように、本発明例1、本発明例2、本発明例3のNi−Nb合金でなる磁気記録媒体用ガラス基板密着膜は、表面粗さRaが0.30nm以下で、ガラス基板との密着性が高く、耐食性に優れており、従来例1のNi−Ta合金である磁気記録媒体用ガラス基板密着膜と同等の膜特性を有していることが確認できた。   As shown in Table 1, the glass substrate adhesion film for magnetic recording media made of the Ni—Nb alloy of Invention Example 1, Invention Example 2, and Invention Example 3 has a surface roughness Ra of 0.30 nm or less, and has a glass It was confirmed that the adhesion to the substrate was high, the corrosion resistance was excellent, and the film characteristics were the same as those of the glass substrate adhesion film for magnetic recording media, which is the Ni—Ta alloy of Conventional Example 1.

Claims (2)

原子比における組成式がNi100−X−Nb、20≦X≦70で表され残部不可避的不純物でなることを特徴とする磁気記録媒体用ガラス基板密着膜。 Glass substrate adhesion film for a magnetic recording medium having a composition formula in atomic ratio is characterized by comprising at Ni 100-X -Nb X, 20 is represented by ≦ X ≦ 70 balance incidental impurities. 膜厚が50nm以下、表面粗さRaが0.3nm以下であることを特徴とする請求項1に記載の磁気記録媒体用ガラス基板密着膜。   The glass substrate adhesive film for a magnetic recording medium according to claim 1, wherein the film thickness is 50 nm or less and the surface roughness Ra is 0.3 nm or less.
JP2011265676A 2011-12-05 2011-12-05 Glass substrate contact film for magnetic recording medium Pending JP2013118032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265676A JP2013118032A (en) 2011-12-05 2011-12-05 Glass substrate contact film for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265676A JP2013118032A (en) 2011-12-05 2011-12-05 Glass substrate contact film for magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2013118032A true JP2013118032A (en) 2013-06-13

Family

ID=48712478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265676A Pending JP2013118032A (en) 2011-12-05 2011-12-05 Glass substrate contact film for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2013118032A (en)

Similar Documents

Publication Publication Date Title
TWI547579B (en) Fe-Pt sputtering target with dispersed C particles
US10325762B2 (en) Sputtering target for forming magnetic recording film and process for producing same
US10755737B2 (en) Fe-Pt based magnetic material sintered compact
JP5913620B2 (en) Fe-Pt sintered sputtering target and method for producing the same
JP2010159491A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL
JP5477724B2 (en) Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP2013118032A (en) Glass substrate contact film for magnetic recording medium
JP2013032573A (en) METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
JP6128417B2 (en) Soft magnetic underlayer
TWI567206B (en) Soft magnetic film and soft magnetic film forming sputtering target
JP6156734B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2010150591A (en) Cobalt-iron based alloy for soft-magnetic film
JP2013143156A (en) Co-Fe ALLOY SOFT MAGNETIC BASE LAYER
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
JP2017208147A (en) Sputtering target for forming soft magnetic ground layer and soft magnetic ground layer
JP6062586B2 (en) Sputtering target for magnetic recording film formation
JP5787273B2 (en) Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium
JP2019096372A (en) Adhesion layer for heat-assisted magnetic recording medium and spattering target for forming adhesion layer of heat-assisted magnetic recording medium
JP2017208148A (en) Sputtering target for forming adhesion layer of heat-assisted magnetic recording medium, and adhesion layer for heat-assisted magnetic recording medium
JP2021075748A (en) Sputtering target
JP2010059540A (en) METHOD FOR PRODUCING Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL AND Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL
JP2013235623A (en) Sputtering target material for perpendicular magnetic recording medium