JP2013117088A - Earthquake strengthening method of electric pole - Google Patents

Earthquake strengthening method of electric pole Download PDF

Info

Publication number
JP2013117088A
JP2013117088A JP2011263630A JP2011263630A JP2013117088A JP 2013117088 A JP2013117088 A JP 2013117088A JP 2011263630 A JP2011263630 A JP 2011263630A JP 2011263630 A JP2011263630 A JP 2011263630A JP 2013117088 A JP2013117088 A JP 2013117088A
Authority
JP
Japan
Prior art keywords
displacement
electric pole
electrified
column
suppressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011263630A
Other languages
Japanese (ja)
Other versions
JP5579688B2 (en
Inventor
Kaoru Kobayashi
薫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2011263630A priority Critical patent/JP5579688B2/en
Publication of JP2013117088A publication Critical patent/JP2013117088A/en
Application granted granted Critical
Publication of JP5579688B2 publication Critical patent/JP5579688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent breakage of an electric pole even when a high acceleration acts.SOLUTION: In an earthquake strengthening method of an electric pole (20) built on a foundation part (10), support members (30) of displacement suppressing reinforcement materials (40, 50) are arranged and fixed at an appropriate interval from an upper end to a lower part of the electric pole, the displacement suppressing reinforcement materials are attached through the respective support members, a lower end of the displacement suppressing reinforcement material is fixed to the foundation part, and thus displacement of the respective parts of the electric pole is restrained.

Description

本発明は電車線等の支持に用いられる電化柱の地震時の折損を防止するための耐震補強方法に関する。   The present invention relates to a seismic reinforcement method for preventing breakage of an electric pole used for supporting a train line or the like during an earthquake.

電化柱は主として電車に電力を供給する給電線の支持に用いられて線路に沿って所定間隔で建植される。このような電化柱は、PC鋼線を配置した型枠内にコンクリートを流し込み、その状態で型枠を回転させてコンクリートを締め固め、所定の養生を行って円筒状のコンクリート製品として製造される。このような方法で製作されたコンクリートの性質として、水分が少なく緻密で高強度である反面、強度の限界を超えた瞬間に粉砕化する、いわゆる爆裂と言われる破壊挙動を示す。つまり、高強度であるがねばりが小さい(脆性)という特性である。
このため、電化柱が地震の影響を受けて振動すると、限界変位に達した瞬間にコンクリートの爆裂が発生してコンクリートが粉砕化して折損し、最近の大きな地震で電化柱の被害が多く発生している。
Electric poles are mainly used to support power supply lines that supply power to trains and are erected at predetermined intervals along the tracks. Such an electric pole is manufactured as a cylindrical concrete product by pouring concrete into a formwork in which PC steel wires are arranged, rotating the formwork in that state, compacting the concrete, and performing predetermined curing. . The concrete produced by such a method shows a fracture behavior called so-called explosion, which is pulverized at the moment when the limit of strength is exceeded, while it is dense and has high strength with little moisture. That is, it is a characteristic of high strength but small stickiness (brittleness).
For this reason, if an electric pole vibrates due to an earthquake, the concrete explosion will occur at the moment the critical displacement is reached, and the concrete will be crushed and broken. ing.

電化柱の耐震補強に関しては,1978年の宮城県沖地震後、1995年の兵庫県南部地震以降に実施されている。この電化柱本体の耐震性能を向上させる方法としては、電化柱の中空部に補強鉄筋を挿入してコンクリートを充填する方法、電化柱外周部を鋼板で巻き立て、鋼板と電化柱との空隙をモルタル等で充填する方法が実施されている。この場合、設計作用荷重に対して2倍程度以上の安全率を有するような補強対策工法となっている。
また、高架橋上の電化柱の基礎構造として電化柱周辺に砂を充填する砂基礎が適用されている。この砂基礎は、電化柱がある一定以上の振動で挙動した場合、基礎上端部の薄いモルタルが破壊し、砂基礎内で電化柱が動き、砂の減衰効果を利用して電化柱へ入力される加速度を低減しようとするものである。砂基礎の導入は,1978年の宮城県沖地震において、建設中の東北新幹線の被害を契機として開発され適用されている。
Seismic reinforcement of electrified poles has been implemented since the 1978 Miyagi-oki-oki earthquake and after the 1995 Hyogo-ken Nanbu earthquake. As a method of improving the seismic performance of the electric pole body, a method of filling the concrete by inserting reinforcing bars into the hollow part of the electric pole, winding up the outer circumference of the electric pole with a steel plate, and creating a gap between the steel plate and the electric pole A method of filling with mortar or the like has been implemented. In this case, the reinforcement countermeasure method has a safety factor of about twice or more with respect to the design working load.
Moreover, a sand foundation for filling sand around the electrification pillar is applied as a foundation structure of the electrification pillar on the viaduct. When the sand foundation behaves with a certain level of vibration, the thin mortar at the top of the foundation breaks down, and the pillar moves in the sand foundation and is input to the electricity pillar using the sand damping effect. It is intended to reduce the acceleration. The introduction of sand foundation was developed and applied in the 1978 Miyagi-oki earthquake, triggered by the damage of the Tohoku Shinkansen currently under construction.

高架橋上の電化柱の地震被害は近年の比較的規模の大きな地震において発生しているがこの電化柱の被害の発生メカニズムを図3により説明する。
図3において、1は列車が走行する高架橋であり、線路に沿って所定間隔で電化柱3が建植されている。5は電化柱の先端部に取り付けられた絶縁用の碍子を示している。ここに波形Aで示すような地震動の入力があると、高架橋1の上端には矢印Bで示すような水平動成分と、矢印Cで示すような回転成分とが加わって高架橋は破線で示すように揺れ、高架橋上の電化柱3には大きな加速度が作用する。その結果、電化柱は揺れて破線で示すように変形し、限界変形量に達した瞬間に折損してしまう。
The earthquake damage of a power pole on a viaduct has occurred in a relatively large earthquake in recent years. The generation mechanism of this power pole damage will be described with reference to FIG.
In FIG. 3, reference numeral 1 denotes a viaduct on which a train travels, and electric poles 3 are erected at predetermined intervals along the track. Reference numeral 5 denotes an insulator for insulation attached to the tip of the electric pole. When there is an input of ground motion as shown by waveform A, a horizontal motion component as indicated by arrow B and a rotational component as indicated by arrow C are added to the upper end of viaduct 1 so that the viaduct is indicated by a broken line. A large acceleration acts on the electric pillar 3 on the viaduct. As a result, the electric pole sways and deforms as indicated by the broken line, and breaks at the moment when the limit deformation amount is reached.

このような電化柱の大きな変形は、高架橋と電化柱の共振、あるいは相互に共振に近い固有周期を有することに起因している。また、高架橋の固有周期が電化柱より小さい場合、地震の影響で高架橋の柱等にひび割れが生じると固有周期が伸びていき、電化柱の固有周期に接近することで電化柱が大きく揺れ、限界変位に達した瞬間に折損する。高架橋上に建植されている電化柱は高架橋と電化柱が共振すると,電化柱に作用する応答加速度は10G(Gは重力加速度)にも達する。
従来の電化柱を鋼板等で巻き立てる方法や、中空部への高強度モルタルの充填する方法などの補強対策では10Gの応答加速度に対応することは不可能である。
Such a large deformation of the electric pole is caused by the resonance of the viaduct and the electric pole, or the natural period close to the resonance. In addition, if the natural period of the viaduct is smaller than that of the electrified pillar, the natural period will increase if cracks occur in the pillar of the viaduct due to the earthquake, and the electrified pillar will shake greatly as it approaches the natural period of the electrified pillar. Break when the displacement is reached. When the electrification pillars built on the viaduct resonate, the response acceleration acting on the electrification pillar reaches 10G (G is gravitational acceleration).
It is impossible to cope with a response acceleration of 10 G by reinforcing measures such as a conventional method of winding up an electric pole with a steel plate or a method of filling a hollow portion with high-strength mortar.

本発明は上記課題を解決しようとするもので、大きな加速度が作用しても電化柱の折損を防止することを目的とする。
そのために本発明は、基礎部に建植した電化柱の耐震補強方法において、電化柱の上端から下方にわたって適宜間隔で変位抑制用補強材の支持部材を配置固定し、変位抑制用補強材を各支持部材を通して取り付けて下端を基礎部に固定することで電化柱各部の変位を拘束するようにしたことを特徴とする。
また、本発明は、前記変位抑制用補強材を取り付ける支持部材は、電化柱に作用する加速度、変位の大きい電荷柱の下端部と上端部で間隔を狭くして配置するようにしたことを特徴とする。
また、本発明は、前記電化柱の変位抑制用補強材は、鋼材、鋼線、または合成繊維材からなることを特徴とする。
また、本発明は、前記変位抑制用補強材にダンパーを取り付けたことを特徴とする。
また、本発明は、前記変位抑制用補強材は、電化柱周囲を螺旋状に巻回して配置されることを特徴とする。
また、本発明は、前記変位抑制用補強材は、電化柱周囲に所定角度間隔で直線状に配置されることを特徴とする。
The present invention is intended to solve the above-described problem, and an object of the present invention is to prevent breakage of an electric pole even when a large acceleration is applied.
For this purpose, the present invention provides a method for seismic reinforcement of an electrified column built on a foundation, by arranging and fixing support members for displacement suppression reinforcement at appropriate intervals from the upper end of the electrification column to each of the displacement suppression reinforcements. It is characterized in that the displacement of each part of the electrification column is constrained by attaching through the support member and fixing the lower end to the base part.
Further, the present invention is characterized in that the support member to which the displacement suppressing reinforcing material is attached is arranged such that the acceleration acting on the electrification column and the lower end portion and the upper end portion of the charge column having a large displacement are arranged at a small interval. And
In the invention, it is preferable that the reinforcing member for suppressing displacement of the electric pole is made of a steel material, a steel wire, or a synthetic fiber material.
Further, the present invention is characterized in that a damper is attached to the displacement suppressing reinforcing material.
Further, the present invention is characterized in that the displacement suppressing reinforcing material is disposed by spirally winding around the electric pole.
Further, the present invention is characterized in that the displacement suppressing reinforcing material is linearly arranged around the electrification column at a predetermined angular interval.

本発明は、電化柱の上端から下方にわたって適宜間隔で変位抑制用補強材の支持部材を配置し、上端の支持部材から順次下方の支持部材に取り付けて基礎部に固定することで変位抑制用補強材を取り付けて電化柱各部の変位を拘束するようにしたので、大きな加速度が作用しても電荷柱の変位を抑制し、コストをかけずに電化柱の折損を防止することが可能である。
また、変位抑制用補強材は単に適宜間隔で配置した支持部材に取り付ければよいので、電化柱のいろいろな添加物に影響せずに取り付けることができる。
According to the present invention, displacement suppressing reinforcement members are arranged at appropriate intervals from the upper end to the lower side of the electric pole, and are attached to the lower supporting member sequentially from the upper end supporting member and fixed to the base portion, thereby reinforcing the displacement suppressing reinforcement. Since the displacement of each part of the electrification column is restricted by attaching the material, it is possible to suppress the displacement of the charge column even if a large acceleration is applied, and to prevent the breakage of the electrification column without cost.
Further, since the displacement suppressing reinforcing material may be simply attached to the support members arranged at appropriate intervals, it can be attached without affecting the various additives of the electric pole.

電化柱の耐震補強方法の例を説明する図である。It is a figure explaining the example of the seismic reinforcement method of an electric pole. 電化柱の耐震補強方法の他の例を説明する図である。It is a figure explaining the other example of the seismic reinforcement method of an electric pole. 地震により高架橋上の電化柱が折損する状況を説明する図である。It is a figure explaining the situation where the electric pole on a viaduct breaks by an earthquake.

以下、本実施形態について説明する。
図1は本発明の電化柱の耐震補強方法の例を説明する図である。
前述したように、電化柱は地震により揺れて変形したとき、限界変形量に達した瞬間に折損する。そこで、地震による電化柱の折損を防止するためには、高架橋等の基礎部が振動しても電化柱自身の揺れを可能な限り止めて限界変位に達しないようにすればよい。そのために本実施形態では、電化柱の地震時変形量を拘束するための補強材を配置する。
図1において、基礎部10に建植した電化柱20には上端部から下部に渡って適宜間隔で複数箇所に支持部材30を取り付ける。支持部材の設置間隔は、作用する加速度や変位の大きい下端部や上端部では狭く、中間部は広くするなど適宜設定する。支持部材30は、例えば、向かい合った一対の半円弧状バンドの一端同士が蝶番結合され、各半円弧状バンド自由端をボルト締めできる部材を電化柱に固定して支持金具を取り付けるなどして構成する。電化柱の上端部の支持部材の支持金具に、変位抑制用としての鋼材、鋼線、合成繊維からなるワイヤ等の補強材40、50の一端を相互に対称な位置に取り付け、電化柱を相互に対称的に螺旋状に巻回して各支持部材30の支持金具に取り付けて電化柱の下端まで巻回し、端部を基礎部10に固定する。
Hereinafter, this embodiment will be described.
FIG. 1 is a diagram for explaining an example of the seismic reinforcement method for an electric pole according to the present invention.
As described above, when the electric pole is deformed by shaking due to an earthquake, it breaks at the moment when the limit deformation is reached. Therefore, in order to prevent the breakage of the electric pole due to the earthquake, it is only necessary to prevent the electric pole itself from swaying as much as possible even if the foundation such as a viaduct vibrates so as not to reach the limit displacement. Therefore, in this embodiment, the reinforcing material for constraining the amount of deformation of the electrification column during an earthquake is arranged.
In FIG. 1, support members 30 are attached to a plurality of locations at appropriate intervals from the upper end portion to the lower portion of the electrification column 20 built on the foundation portion 10. The installation interval of the support members is set as appropriate, such as narrowing at the lower end and upper end where the applied acceleration and displacement are large and widening the middle. The support member 30 is configured, for example, such that one end of a pair of semicircular arc bands facing each other is hinge-coupled, and a member capable of bolting each semicircular arc band free end is fixed to an electric pole and a support fitting is attached. To do. One end of a reinforcing member 40, 50 such as a steel material, a steel wire, or a wire made of synthetic fiber is attached to the support bracket of the support member at the upper end of the electric pole at a symmetrical position, and the electric pole is attached to each other. Are attached to the support metal fittings of the respective support members 30 and wound to the lower end of the electrification column, and the end portion is fixed to the base portion 10.

このように螺旋状に変位抑制用補強材を巻き付けることで、どのような方向から電化柱に大きな加速度が作用しても、各支持部材間に張られた補強材により電化柱各部の変位が拘束されるため折損を生ずる限界変位以内に抑えることができる。
なお、ワイヤ等の補強材は必ずしも2本でなくて1本でもよい。また、さらに本数を増やして螺旋状に巻回してもよく、また、必ずしも螺旋状に巻回しなくても、例えば3本の補強材を120°間隔、或いは4本の補強材を90°間隔というように所定の角度間隔で複数本の補強材を電化柱の上端から下端まで直線状に各支持部材に取り付けて基礎部に固定することで、どのような方向から電化柱に加速度が作用しても変位を拘束することが可能である。電荷柱の変位を拘束することで、電柱基礎への影響も軽減するので、電柱基礎の損傷防止にも有効となる。
By wrapping the displacement suppression reinforcement in a helical manner in this way, the displacement of each part of the electrical pole is constrained by the reinforcement that is stretched between the support members, regardless of the direction in which the acceleration is applied to the electrical pole. Therefore, it can be suppressed within a limit displacement that causes breakage.
Note that the number of reinforcing materials such as wires is not necessarily two but may be one. Further, the number of the reinforcing members may be increased to be spirally wound. Further, for example, three reinforcing members may be called 120 ° intervals or four reinforcing members may be called 90 ° intervals. By attaching a plurality of reinforcing materials to each support member in a straight line from the upper end to the lower end of the electric pole at predetermined angular intervals and fixing them to the foundation, acceleration can be applied to the electric pole from any direction. Can also restrain the displacement. By restraining the displacement of the charge pole, the influence on the power pole foundation is also reduced, which is effective in preventing damage to the power pole foundation.

図2は本発明の電化柱の耐震補強方法の他の例を説明する図である。
この例は、図1の耐震補強方法に、さらに補強材の下端部に振動吸収機構としてオイルダンパー等からなるダンパー60を付加したものである。このようなダンパーを配置することで、電化柱に大きな加速度が作用し、各補強材に大きな引張り力が作用しても、ダンパー60によりその力を吸収して減衰させることができる。なお、ダンパーは補強材下端部に限らず、補強材の中間部等任意の位置に複数箇所設けるようにしてもよい。
FIG. 2 is a diagram for explaining another example of the seismic reinforcement method for electric poles according to the present invention.
This example is obtained by adding a damper 60 made of an oil damper or the like as a vibration absorbing mechanism to the lower end portion of the reinforcing material in addition to the seismic reinforcement method of FIG. By disposing such a damper, even if a large acceleration acts on the electrification column and a large tensile force acts on each reinforcing member, the damper 60 can absorb and attenuate the force. Note that the damper is not limited to the lower end portion of the reinforcing material, and a plurality of dampers may be provided at arbitrary positions such as an intermediate portion of the reinforcing material.

10…基礎部、20…電化柱、30…支持部材、40,50…変位抑制用補強材、60…ダンパー DESCRIPTION OF SYMBOLS 10 ... Base part, 20 ... Electric pole, 30 ... Support member, 40, 50 ... Displacement suppression reinforcement material, 60 ... Damper

Claims (6)

基礎部に建植した電化柱の耐震補強方法において、
電化柱の上端から下方にわたって適宜間隔で変位抑制用補強材の支持部材を配置固定し、変位抑制用補強材を各支持部材を通して取り付けて下端を基礎部に固定することで電化柱各部の変位を拘束するようにしたことを特徴とする電化柱の耐震補強方法。
In the seismic reinforcement method for electrified pillars built on the foundation,
Displacement restraint reinforcement support members are arranged and fixed at appropriate intervals from the upper end to the bottom of the electrification pole, and the displacement restraint reinforcement is attached through the support members and the lower end is fixed to the base portion to displace the displacement of each part of the electrification pillar. Seismic reinforcement method for electrified pillars, characterized by restraining.
前記変位抑制用補強材を取り付ける支持部材は、電化柱に作用する加速度、変位の大きい電荷柱の下端部と上端部で間隔を狭くして配置するようにした請求項1記載の電化柱の耐震補強方法。   The support member to which the displacement suppressing reinforcing material is attached is arranged such that the acceleration acting on the electrification column and the lower end portion and the upper end portion of the charge column having a large displacement are arranged at a narrow interval. Reinforcement method. 前記電化柱の変位抑制用補強材は、鋼材、鋼線、または合成繊維材からなる請求項1または2記載の電化柱の耐震補強方法。   The method for seismic reinforcement of an electrified column according to claim 1 or 2, wherein the reinforcing member for suppressing displacement of the electrified column is made of steel, steel wire, or synthetic fiber material. 前記変位抑制用補強材にダンパーを取り付けた請求項1乃至3いずれか1項記載の電化柱の耐震補強方法。   The seismic reinforcement method for an electrified column according to any one of claims 1 to 3, wherein a damper is attached to the displacement suppressing reinforcement material. 前記変位抑制用補強材は、電化柱周囲を螺旋状に巻回して配置される請求項1乃至4いずれか1項記載の電化柱の耐震補強方法。   The seismic reinforcement method for an electrified column according to any one of claims 1 to 4, wherein the displacement suppressing reinforcing material is disposed by spirally winding around the electrified column. 前記変位抑制用補強材は、電化柱周囲に所定角度間隔で直線状に配置される請求項1乃至4いずれか1項記載の電化柱の耐震補強方法。 The seismic reinforcement method for an electric pole according to any one of claims 1 to 4, wherein the reinforcing member for suppressing displacement is arranged linearly around the electric pole at predetermined angular intervals.
JP2011263630A 2011-12-01 2011-12-01 Seismic reinforcement method for electric poles Expired - Fee Related JP5579688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263630A JP5579688B2 (en) 2011-12-01 2011-12-01 Seismic reinforcement method for electric poles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011263630A JP5579688B2 (en) 2011-12-01 2011-12-01 Seismic reinforcement method for electric poles

Publications (2)

Publication Number Publication Date
JP2013117088A true JP2013117088A (en) 2013-06-13
JP5579688B2 JP5579688B2 (en) 2014-08-27

Family

ID=48711828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263630A Expired - Fee Related JP5579688B2 (en) 2011-12-01 2011-12-01 Seismic reinforcement method for electric poles

Country Status (1)

Country Link
JP (1) JP5579688B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042817A (en) * 2013-08-26 2015-03-05 東日本旅客鉄道株式会社 Aseismatic reinforcement structure of electrification pole and aseismatic reinforcement method of electrification pole
JP2015169040A (en) * 2014-03-10 2015-09-28 公益財団法人鉄道総合技術研究所 Reinforcement structure of columnar structure
JP2016044516A (en) * 2014-08-26 2016-04-04 株式会社竹中工務店 Flexural reinforcement structure for existing tower-like structure
JP2016089494A (en) * 2014-11-06 2016-05-23 東日本旅客鉄道株式会社 Wire member support, and seismic strengthening method for electrified pole using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346634A (en) * 1993-06-03 1994-12-20 Shimizu Corp Tower structure
JP2003027768A (en) * 2001-07-13 2003-01-29 Ntt Power & Building Facilities Inc Tower structure
JP2004143920A (en) * 2002-09-30 2004-05-20 Nippon Steel Corp Supporting structure of pole
JP2005232822A (en) * 2004-02-20 2005-09-02 East Japan Railway Co Aseismatic reinforcing method of reinforced concrete column

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346634A (en) * 1993-06-03 1994-12-20 Shimizu Corp Tower structure
JP2003027768A (en) * 2001-07-13 2003-01-29 Ntt Power & Building Facilities Inc Tower structure
JP2004143920A (en) * 2002-09-30 2004-05-20 Nippon Steel Corp Supporting structure of pole
JP2005232822A (en) * 2004-02-20 2005-09-02 East Japan Railway Co Aseismatic reinforcing method of reinforced concrete column

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042817A (en) * 2013-08-26 2015-03-05 東日本旅客鉄道株式会社 Aseismatic reinforcement structure of electrification pole and aseismatic reinforcement method of electrification pole
JP2015169040A (en) * 2014-03-10 2015-09-28 公益財団法人鉄道総合技術研究所 Reinforcement structure of columnar structure
JP2016044516A (en) * 2014-08-26 2016-04-04 株式会社竹中工務店 Flexural reinforcement structure for existing tower-like structure
JP2016089494A (en) * 2014-11-06 2016-05-23 東日本旅客鉄道株式会社 Wire member support, and seismic strengthening method for electrified pole using the same

Also Published As

Publication number Publication date
JP5579688B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5579688B2 (en) Seismic reinforcement method for electric poles
JP4735585B2 (en) Concrete rod-shaped damper structure
CN104453002A (en) Swing damp self-reset module and manufacturing method thereof
CN109898691A (en) A kind of damping earthing type assembled steel reinforced concrete tuning quality damping wall
KR20160109629A (en) Connection structure for internally confined hollow rc column-foundation connection reinforced with external tube and the method for the same
JP2015055293A (en) Vibration control device
JP6029318B2 (en) Seismic control structure of utility pole
CN109853722A (en) A kind of damping Anti-seismic steel building
JP6058332B2 (en) Seismic reinforcement structure for concrete column and seismic reinforcement method for concrete column
KR102076853B1 (en) Connecting insulator with overhead stability
JP2009228296A (en) Seismic strengthening method for bridge
CN208717720U (en) A kind of bridge substructure using ultra-tough fiber concrete
CN103696420A (en) Embedded component and cement consolidation body
EP2933815A2 (en) Seismic isolation device for a switch of the type used in high-voltage electric systems
JP2009299325A (en) Plastic hinge structure of concrete-based member, and concrete-based member
JP2013040497A (en) Vibration control beam and gantry beam having vibration control beam
JP6004617B2 (en) Damping beam and portal beam having the damping beam
JP6154247B2 (en) Seismic reinforcement structure for electrified columns and seismic strengthening method for electrified columns
JP7068067B2 (en) Pendulum type vibration damping device
CN203766764U (en) Subway platform reinforcing device
KR20100086185A (en) Joining construction for pillar and beam of prestressed concrete structure
JP5809487B2 (en) Column structure and column reinforcement method
CN107034779B (en) The girder falling bracing means of beam bridge drop in beam section
JP3636924B2 (en) Foundation structure
JP2019056274A (en) Dynamic response reduction countermeasure structure for railway bridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5579688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees