JP2013113179A - Static pressure gas bearing spindle and electrostatic coating apparatus - Google Patents

Static pressure gas bearing spindle and electrostatic coating apparatus Download PDF

Info

Publication number
JP2013113179A
JP2013113179A JP2011258644A JP2011258644A JP2013113179A JP 2013113179 A JP2013113179 A JP 2013113179A JP 2011258644 A JP2011258644 A JP 2011258644A JP 2011258644 A JP2011258644 A JP 2011258644A JP 2013113179 A JP2013113179 A JP 2013113179A
Authority
JP
Japan
Prior art keywords
turbine
blade
main shaft
turbine blades
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011258644A
Other languages
Japanese (ja)
Other versions
JP5891743B2 (en
Inventor
Atsushi Takahashi
淳 高橋
Hideki Kin
秀樹 金
Naoya Kobayashi
直也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011258644A priority Critical patent/JP5891743B2/en
Publication of JP2013113179A publication Critical patent/JP2013113179A/en
Application granted granted Critical
Publication of JP5891743B2 publication Critical patent/JP5891743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0415Driving means; Parts thereof, e.g. turbine, shaft, bearings

Abstract

PROBLEM TO BE SOLVED: To provide a static pressure gas bearing spindle capable of highly efficiently rotating a main shaft.SOLUTION: A turbine blade 20 is formed so that the blade height is gradually reduced in a flowing direction of high-presure fluid supplied from a turbine nozzle. An inner wall 21 of a housing facing the turbine blade in the height direction is formed so that it adjacently faces the top of the turbine blade whose blade height is gradually changed.

Description

本発明は、ハウジング内の気体軸受に高圧気体を供給して主軸を回転自在に支持すると共に、タービン羽根に高圧気体を供給して主軸を高速回転する静圧気体軸受スピンドル及びこの静圧気体軸受スピンドルを使用した静電塗装装置に関する。   The present invention relates to a hydrostatic gas bearing spindle that supplies high-pressure gas to a gas bearing in a housing and rotatably supports the main shaft, and supplies high-pressure gas to turbine blades to rotate the main shaft at high speed, and the hydrostatic gas bearing. The present invention relates to an electrostatic coating apparatus using a spindle.

静圧気体軸受スピンドルは、主軸を高圧気体の圧力により非接触状態で支持するため、他の軸受形式に比べて摩擦損失が小さく、高速スピンドルに適しており、従来、静電塗装装置、研削盤、小径穴明機などのスピンドルに使用されている。
図5及び図6は、静電塗装装置のスピンドルに適用した従来の静圧気体軸受スピンドルを示すものである。
The static pressure gas bearing spindle supports the spindle in a non-contact state by the pressure of high-pressure gas, so it has less friction loss than other bearing types and is suitable for high-speed spindles. Conventionally, electrostatic coating equipment, grinding machines Used in spindles for small diameter drilling machines.
5 and 6 show a conventional static pressure gas bearing spindle applied to a spindle of an electrostatic coating apparatus.

この静圧気体軸受スピンドルは、中空形状の主軸2と、この主軸2の一部を外部に突出させて収納しているハウジング3とを備えている。
主軸2は、円筒形状の主軸本体4と、主軸本体4の一端部に形成したワーク固定部5と、主軸本体4の他端部に形成したフランジ6とで構成されている。
ハウジング3は、主軸本体4を収納するハウジング本体7と、ハウジング本体7と締結ボルト(不図示)を介して一体化されてフランジ6を収納するプレート部8とで構成されている。
The hydrostatic gas bearing spindle includes a hollow main shaft 2 and a housing 3 in which a part of the main shaft 2 protrudes and is housed.
The main shaft 2 includes a cylindrical main body 4, a work fixing portion 5 formed at one end of the main body 4, and a flange 6 formed at the other end of the main body 4.
The housing 3 includes a housing main body 7 that accommodates the main spindle body 4 and a plate portion 8 that is integrated with the housing main body 7 via a fastening bolt (not shown) to accommodate the flange 6.

主軸本体4及びフランジ6は、ラジアル軸受9及びアキシアル軸受10により非接触状態で支持されている。
ラジアル軸受9及びアキシアル軸受10は、ハウジング3に設けた気体供給路11と連通する給気ノズル9a,9b,9c,10aが設けられており、プレート部8に形成した軸受エア供給口8aから供給された高圧気体が、気体供給路11、給気ノズル9a,9b,9c,10aを介してラジアル軸受9及びアキシアル軸受10の軸受隙間に供給される。なお、アキシアル軸受10には磁石(不図示)が組み込まれており、空気の反発と磁石の吸引力とがバランスして適正な軸受隙間が保たれている。
The main spindle body 4 and the flange 6 are supported in a non-contact state by a radial bearing 9 and an axial bearing 10.
The radial bearing 9 and the axial bearing 10 are provided with air supply nozzles 9 a, 9 b, 9 c, 10 a communicating with a gas supply path 11 provided in the housing 3, and supplied from a bearing air supply port 8 a formed in the plate portion 8. The high-pressure gas thus supplied is supplied to the bearing gap between the radial bearing 9 and the axial bearing 10 through the gas supply path 11 and the supply nozzles 9a, 9b, 9c, and 10a. Note that a magnet (not shown) is incorporated in the axial bearing 10, and an appropriate bearing gap is maintained by balancing the repulsion of air and the attractive force of the magnet.

主軸2のフランジ6の外周面には、円周方向に所定間隔で多数のタービン羽根12が形成されている。
ハウジング3のプレート部8は、多数のタービン羽根12を外周及び高さ方向から囲むタービン収納凹部13と、プレート部8の軸方向に形成されて外部からタービン用エアが供給されるタービンエア吸気口14と、プレート部8の内面外周側に形成されてタービンエア吸気口14に連通する円周溝15と、円周溝15及びタービン収納凹部13の間を連通するようにプレート部8の内面に形成した複数のタービン用ノズル16とを備えている。
A large number of turbine blades 12 are formed at predetermined intervals in the circumferential direction on the outer peripheral surface of the flange 6 of the main shaft 2.
The plate portion 8 of the housing 3 includes a turbine housing recess 13 that surrounds a large number of turbine blades 12 from the outer periphery and the height direction, and a turbine air intake port that is formed in the axial direction of the plate portion 8 and is supplied with turbine air from the outside. 14, a circumferential groove 15 formed on the outer peripheral side of the inner surface of the plate portion 8 and communicating with the turbine air inlet 14, and an inner surface of the plate portion 8 so as to communicate between the circumferential groove 15 and the turbine housing recess 13. And a plurality of turbine nozzles 16 formed.

また、主軸2のワーク固定部5には、塗料拡散用のカップ17が着脱自在に装着されている。
そして、軸受エア供給口8aから供給した高圧気体がラジアル軸受9及びアキシアル軸受10の軸受隙間に供給されることで、主軸2が非接触状態で支持される。そして、タービン用ノズル16からタービン羽根12に向かって高圧気体が噴出することで、主軸2に回転力が与えられてカップ17が高速回転する。これにより、カップ17に塗料供給管(不図示)を通して塗料を供給すると、カップ17の遠心力によって塗料が微細化されて塗装が行われる。
A paint diffusion cup 17 is detachably mounted on the work fixing portion 5 of the main shaft 2.
The high pressure gas supplied from the bearing air supply port 8a is supplied to the bearing gap between the radial bearing 9 and the axial bearing 10, so that the main shaft 2 is supported in a non-contact state. The high pressure gas is ejected from the turbine nozzle 16 toward the turbine blade 12, whereby a rotational force is applied to the main shaft 2 and the cup 17 rotates at a high speed. Thus, when the paint is supplied to the cup 17 through a paint supply pipe (not shown), the paint is made fine by the centrifugal force of the cup 17 and is applied.

ところで、フランジ6に形成されている多数のタービン羽根12は、羽根外径側から羽根内径側までの高さが同一寸法に設定されており、これらタービン羽根12を囲っているプレート部8のタービン収納凹部13の高さは、タービン羽根12より僅かに高い寸法に設定されている。
そして、タービン羽根12は、図6に示すように、各タービン羽根12の厚みを増大させることで、隣接するタービン羽根の羽根外径側の羽根間距離Cに対して、隣接するタービン羽根の羽根内径側の羽根間距離Dを小さくしている(D<C)。このようなタービン羽根12の配列にすることで、タービン用ノズル16の開口部に近接しているタービン羽根12の羽根外径側を、タービン用ノズル16から噴出する気体のエネルギを受けて回転力を発生する衝動部としている。また、羽根外径側の羽根間距離Cに対して羽根内径側の羽根間距離Dを小さくすることで隣接するタービン羽根12,12の間の流路断面積を徐々に減少させ、タービン羽根12,12の間を通過する気体の流速を増大させているタービン羽根12の羽根内径側(タービン用ノズル16の開口部から離間した側)は、主軸2の回転方向の後方に気体を噴出させて回転力を発生させる反動部とされている。
By the way, many turbine blades 12 formed on the flange 6 are set to have the same height from the blade outer diameter side to the blade inner diameter side, and the turbine of the plate portion 8 surrounding these turbine blades 12. The height of the storage recess 13 is set to be slightly higher than the turbine blade 12.
Then, as shown in FIG. 6, the turbine blades 12 increase the thickness of each turbine blade 12 so that the blade blades of adjacent turbine blades have a blade-to-blade distance C on the blade outer diameter side of the adjacent turbine blades. The inter-blade distance D on the inner diameter side is reduced (D <C). With such an arrangement of the turbine blades 12, the rotational force of the blade outer diameter side of the turbine blades 12 adjacent to the opening of the turbine nozzle 16 is received by the energy of the gas ejected from the turbine nozzle 16. Is an impulse part. Further, by reducing the inter-blade distance D on the blade inner diameter side relative to the inter-blade distance C on the blade outer diameter side, the flow passage cross-sectional area between the adjacent turbine blades 12 and 12 is gradually reduced, and the turbine blade 12 , 12 is increasing the flow velocity of the gas between the blade inner diameter side of the turbine blade 12 (the side away from the opening of the turbine nozzle 16), and jets the gas to the rear in the rotational direction of the main shaft 2. The reaction portion generates a rotational force.

ところで、上述したように隣接するタービン羽根の羽根外径側の羽根間距離Cと羽根内径側の羽根間距離Dとの関係をD<Cにすると、タービン羽根の厚みが厚くなって主軸2の質量が増大し、質量が増大した主軸2は、慣性モーメントの増大により加減速時間が長くなるので回転効率が悪くなるという問題がある。また、タービン羽根の質量増により遠心力による応力が高くなり、回転数を抑えなければならなくなる。   By the way, when the relation between the blade distance C on the blade outer diameter side of the adjacent turbine blade and the blade distance D on the blade inner diameter side is set to D <C as described above, the thickness of the turbine blade 2 increases. The main shaft 2 having an increased mass has a problem in that the rotation efficiency is deteriorated because the acceleration / deceleration time becomes longer due to the increase of the moment of inertia. Further, the increase in the mass of the turbine blades increases the stress due to the centrifugal force, and the rotational speed must be suppressed.

そこで、例えば特許文献1に記載されているように、各タービン羽根(特許文献1では回転翼と称している)の厚みを増大させず(反動部を設けず)、タービン羽根の回転方向の前方を向く第1の面の外周部(羽根外径側)に前方平面部を設け、第1の面の内周部(羽根内径側)に前方局面部を設け、前述した前方平面部と、タービン用ノズルから供給される気体の噴出方向とが実質的に平行となるように構成することで、気体の流れに乱れを生じさせず、エネルギ損失を抑制して高効率で主軸を回転させる技術が知られている。   Therefore, for example, as described in Patent Document 1, the thickness of each turbine blade (referred to as a rotor blade in Patent Document 1) is not increased (no reaction portion is provided), and the front of the turbine blade in the rotation direction is increased. A front plane portion is provided on the outer peripheral portion (blade outer diameter side) of the first surface facing the front side, and a front surface portion is provided on the inner peripheral portion (blade inner diameter side) of the first surface. The technology to rotate the main shaft with high efficiency by suppressing energy loss without causing turbulence in the gas flow by configuring the gas ejection direction from the nozzle for gas to be substantially parallel. Are known.

特開2006−300024号公報JP 2006-300024 A

しかし、特許文献1は、多数のタービン羽根の第1の面に、気体の噴出方向と実質的に平行となる前方平面部を高精度に形成しなければならず、タービン羽根の形成に複雑な工程が必要となるので、製造コストが高騰するおそれがある。また、図6で示した隣接するタービン羽根の羽根外径側の羽根間距離Cに対して隣接するタービン羽根の羽根内径側の羽根間距離Dを小さくして反動部を設ける構造と比較すると、主軸の回転効率が低下する。   However, in Patent Document 1, a front plane portion that is substantially parallel to the gas ejection direction must be formed on the first surface of a large number of turbine blades with high accuracy, which is complicated in the formation of turbine blades. Since a process is required, the manufacturing cost may increase. Compared to the structure shown in FIG. 6 in which the distance between the blades D on the blade inner diameter side of the adjacent turbine blade is made smaller than the distance C between the blades on the blade outer diameter side of the adjacent turbine blade, and the reaction portion is provided. The rotational efficiency of the main shaft is reduced.

そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、高効率に主軸を回転させるとともに、製造コストの低減化を図ることができる静圧気体軸受スピンドル及び静電塗装装置を提供することを目的としている。   Therefore, the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and a static pressure gas bearing spindle and a static pressure gas bearing spindle capable of rotating the spindle with high efficiency and reducing the manufacturing cost. The object is to provide an electropainting device.

上記目的を達成するために、本発明に係る請求項1記載の静圧気体軸受スピンドルは、主軸と、主軸を収納するハウジングと、高圧気体の供給により、前記ハウジングに対して前記主軸を非接触で回転自在に支持する気体軸受と、前記主軸の一部の円周方向に配列した複数のタービン羽根と、前記複数のタービン羽根を囲っている前記ハウジングの内部に設けられ、前記複数のタービン羽根に向かって高圧気体を噴出して前記主軸を回転させるタービン用ノズルと、を備えた静圧気体軸受スピンドルにおいて、前記複数のタービン羽根を、前記タービン用ノズルから供給された前記高圧流体が流れる方向に向かって羽根高さが徐々に低くなるように形成するとともに、前記複数のタービン羽根に高さ方向から対向している前記ハウジングの内壁を、羽根高さが徐々に変化している前記タービン羽根の頂部に近接して対向するように形成した。   In order to achieve the above object, a hydrostatic gas bearing spindle according to claim 1 according to the present invention comprises a main shaft, a housing that houses the main shaft, and a high-pressure gas supplied so that the main shaft is not in contact with the housing. A plurality of turbine blades disposed in the housing surrounding the plurality of turbine blades, a gas bearing rotatably supported by the plurality of turbine blades, a plurality of turbine blades arranged in a circumferential direction of the main shaft, and the plurality of turbine blades. A hydrostatic gas bearing spindle including a turbine nozzle that ejects high-pressure gas toward the turbine to rotate the main shaft, and a flow direction of the high-pressure fluid supplied from the turbine nozzle to the plurality of turbine blades Of the housing that is formed so that the blade height gradually decreases toward the turbine and that faces the plurality of turbine blades from the height direction. It was formed so as to face in proximity to the top of the turbine blade which blade height is gradually changed.

また、請求項2記載の発明は、請求項1記載の静圧気体軸受スピンドルにおいて、周方向に隣接する一対のタービン羽根の前記高圧流体の入側の羽根間距離と、前記一対のタービン羽根の前記高圧流体の出側の羽根間距離とを同一寸法に設定した。
また、請求項3記載の静電塗装装置は、請求項1又は2記載の静圧気体軸受スピンドルを備えている。
According to a second aspect of the present invention, in the hydrostatic gas bearing spindle according to the first aspect, the distance between the blades on the inlet side of the high-pressure fluid of the pair of turbine blades adjacent in the circumferential direction, and the pair of turbine blades The distance between the blades on the outlet side of the high-pressure fluid was set to the same dimension.
An electrostatic coating apparatus according to a third aspect includes the static pressure gas bearing spindle according to the first or second aspect.

本発明に係る静圧気体軸受スピンドル及び静電塗装装置によれば、複数のタービン羽根を、タービン用ノズルから供給された高圧流体が流れる方向に向かって羽根高さが徐々に低くなるように形成し、前記複数のタービン羽根に高さ方向から対向しているハウジングの内壁を、羽根高さが徐々に変化しているタービン羽根の頂部に近接して対向するように形成したことで、高圧流体が流れる方向に向かって流路断面積が徐々に小さくなるので、タービン用ノズルから供給された気体が多数のタービン羽根の間を通過する際に、主軸に大きな回転力を発生することができ、高効率に主軸を回転させることができる。   According to the static pressure gas bearing spindle and the electrostatic coating apparatus according to the present invention, the plurality of turbine blades are formed so that the blade height gradually decreases in the direction in which the high-pressure fluid supplied from the turbine nozzle flows. And the inner wall of the housing that faces the plurality of turbine blades from the height direction is formed so as to face the top of the turbine blade, the blade height of which gradually changes, so that the high-pressure fluid Since the flow path cross-sectional area gradually decreases in the direction in which the gas flows, when the gas supplied from the turbine nozzle passes between a large number of turbine blades, a large rotational force can be generated in the main shaft. The spindle can be rotated with high efficiency.

本発明に係る静圧気体軸受スピンドルを示す断面図である。It is sectional drawing which shows the static pressure gas bearing spindle which concerns on this invention. 図1のI−I線矢視図である。It is the II arrow directional view of FIG. 本発明に係るタービン羽根の形状及びタービン羽根を高さ方向から覆っているハウジングの内壁を示す図である。It is a figure which shows the inner wall of the housing which has covered the shape of the turbine blade which concerns on this invention, and the turbine blade from a height direction. 本発明に係るタービン羽根の形状を示す斜視図である。It is a perspective view which shows the shape of the turbine blade which concerns on this invention. 従来の静圧気体軸受スピンドルを示す断面図である。It is sectional drawing which shows the conventional static pressure gas bearing spindle. 図5のII−II線矢視図である。It is the II-II arrow directional view of FIG.

以下、本発明を実施するための形態(以下、実施形態という。)を、図面を参照しながら詳細に説明する。
図1から図4は、回転霧化型静電塗装機のスピンドルに適用した本発明に係る静圧気体軸受スピンドルを示すものである。なお、図5及び図6で示した構成と同一構成部分には、同一符号を付してその説明は省略する。
DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings.
1 to 4 show a hydrostatic gas bearing spindle according to the present invention applied to a spindle of a rotary atomizing electrostatic coating machine. In addition, the same code | symbol is attached | subjected to the component same as the structure shown in FIG.5 and FIG.6, and the description is abbreviate | omitted.

本実施形態の主軸2のフランジ6の外周面には、円周方向に所定間隔で多数のタービン羽根20が形成されている。
各タービン羽根20は、図3及び図4に示すように、羽根外径側の高さh1に対して羽根内径側の高さh2が小さくなるように、背高外径部20a、背低内径部20b及びそれらの間に傾斜部20cが形成されている。そして、各タービン羽根20の厚さは、図6で示したタービン羽根12と比較して厚みを薄くして形成されており、隣接するタービン羽根20,20の羽根外径側の羽根間距離Aと羽根内径側の羽根間距離Bとは、同一寸法に設定されている(A=B)。
A large number of turbine blades 20 are formed at predetermined intervals in the circumferential direction on the outer peripheral surface of the flange 6 of the main shaft 2 of the present embodiment.
As shown in FIGS. 3 and 4, each turbine blade 20 has a tall outer diameter portion 20a and a small inner diameter so that the height h2 on the blade inner diameter side is smaller than the height h1 on the blade outer diameter side. The part 20b and the inclined part 20c are formed between them. The thickness of each turbine blade 20 is smaller than that of the turbine blade 12 shown in FIG. 6, and the blade-to-blade distance A on the blade outer diameter side of the adjacent turbine blades 20, 20. And the distance B between the blades on the blade inner diameter side are set to the same dimension (A = B).

ハウジング本体7と一体化されてフランジ6を収納するプレート部8には、多数のタービン羽根20を外周及び高さ方向から囲むタービン収納凹部21が形成されている。
そして、多数のタービン羽根20に対して高さ方向から対向しているタービン収納凹部21の内壁は、図3に示すように、タービン羽根20の背高外径部20aに近接して対向している環状の背高外径側内壁21aと、タービン羽根20の背低内径部20bに近接して対向している円形状の背低内径側内壁21bと、背高外径側内壁21a及び背低内径側内壁21bの間でタービン羽根20の傾斜部20aに近接して対向している環状の傾斜側内壁21cとを備えている。
The plate portion 8 that is integrated with the housing body 7 and accommodates the flange 6 is formed with a turbine accommodating recess 21 that surrounds a large number of turbine blades 20 from the outer periphery and the height direction.
And the inner wall of the turbine accommodating recess 21 facing the numerous turbine blades 20 from the height direction is close to the tall outer diameter portion 20a of the turbine blade 20 as shown in FIG. An annular tall outer diameter side inner wall 21a, a circular inner diameter lower inner diameter wall 21b facing the lower inner diameter portion 20b of the turbine blade 20, and a tall outer diameter inner wall 21a and a lower height. An annular inclined inner wall 21c is provided between the inner diameter side inner walls 21b and facing the inclined portion 20a of the turbine blade 20 in close proximity.

本実施形態の静圧気体軸受スピンドルは、軸受エア供給口8aから供給した高圧気体がラジアル軸受9及びアキシアル軸受10の軸受隙間に供給されることで、主軸2が非接触状態で支持されるとともに、タービン用ノズル16から多数のタービン羽根20の羽根外形側に向けて高圧気体が噴出することで、主軸2に回転力が与えられてカップ17が高速回転する。これにより、カップ17に塗料供給管(不図示)を通して塗料を供給すると、カップ17の遠心力によって塗料が微細化されて塗料が行われるようになっている。   In the static pressure gas bearing spindle of the present embodiment, the high pressure gas supplied from the bearing air supply port 8a is supplied to the bearing gap between the radial bearing 9 and the axial bearing 10 so that the main shaft 2 is supported in a non-contact state. The high pressure gas is ejected from the turbine nozzle 16 toward the blade outer shape side of the large number of turbine blades 20, whereby a rotational force is applied to the main shaft 2 and the cup 17 rotates at a high speed. As a result, when the paint is supplied to the cup 17 through a paint supply pipe (not shown), the paint is made fine by the centrifugal force of the cup 17 to be applied.

ここで、本発明の複数のタービン羽根をタービン用ノズルから供給された高圧流体が流れる方向に向かって羽根高さが徐々に低くなるように形成するという構成は、背高外径部20a、背低内径部20b及び傾斜部20cに対応し、本発明のタービン羽根に高さ方向から対向しているハウジングの内壁が、背高外径側内壁21a、背低内径側内壁21b及び傾斜側内壁21cに対応している。   Here, the configuration in which the plurality of turbine blades according to the present invention are formed such that the blade height gradually decreases in the direction in which the high-pressure fluid supplied from the turbine nozzle flows, The inner wall of the housing corresponding to the low inner diameter portion 20b and the inclined portion 20c and facing the turbine blade of the present invention from the height direction is the tall outer diameter inner wall 21a, the lower inner diameter inner wall 21b, and the inclined inner wall 21c. It corresponds to.

次に、本実施形態において、タービン用ノズル16からタービン羽根20に向けて高圧気体が噴出する際の作用について説明する。
多数のタービン羽根20は、羽根外径側から羽根内径側に向けて背高外径部20a、傾斜部20c及び背低内径部20bを形成し、タービン用ノズル16から供給された気体が流れる方向に向かって羽根高さを徐々に低く設定した構造としているとともに、多数のタービン羽根20に対して高さ方向から対向しているタービン収納凹部21の内壁は、背高外径部20aに近接して対向している背高外径側内壁21aと、傾斜部20cに近接して対向している傾斜側内壁21cと、背低内径部20bに近接して対向している背低内径側内壁21bとを備えている。これにより、隣接するタービン羽根20,20と、フランジ6の外周面、タービン収納凹部21とで囲まれてなる流路断面積は、羽根外径側から羽根内径側に向かうに従い徐々に小さく設定されている。
Next, in this embodiment, an operation when high-pressure gas is ejected from the turbine nozzle 16 toward the turbine blade 20 will be described.
Many turbine blades 20 form a tall outer diameter portion 20a, an inclined portion 20c, and a lower inner diameter portion 20b from the blade outer diameter side toward the blade inner diameter side, and the direction in which the gas supplied from the turbine nozzle 16 flows. And the inner wall of the turbine housing recess 21 facing the numerous turbine blades 20 from the height direction is close to the tall outer diameter portion 20a. The inner wall 21a, which is opposed to the tall outer diameter, the inner wall 21c, which is opposed to the inclined portion 20c, and the inner wall 21b, which is opposed to the lower inner diameter portion 20b. And. As a result, the cross-sectional area of the flow path surrounded by the adjacent turbine blades 20 and 20, the outer peripheral surface of the flange 6 and the turbine housing recess 21 is gradually set smaller from the blade outer diameter side toward the blade inner diameter side. ing.

そして、多数のタービン羽根20の羽根外径側(背高外径部20a)は、衝動部としてタービン用ノズル16から供給された高圧気体のエネルギを受けて主軸2に対して回転力を発生する。
また、隣接するタービン羽根20,20と、フランジ6の外周面と、タービン収納凹部21とで囲まれて形成された流路断面積が、羽根外径側から羽根内径側に向かうに従い徐々に小さくなるように設定されているので、多数のタービン羽根20の間を通過して羽根内径側に向かう気体は再度流速が増大していく。これにより、多数のタービン羽根20の羽根内径側(背低内径側内壁21b)は、主軸2の回転方向の後方に流速が増大した気体を噴出させ、反動部として主軸2に大きな回転力を発生する。
The blade outer diameter side (the tall outer diameter portion 20a) of the large number of turbine blades 20 receives the energy of the high-pressure gas supplied from the turbine nozzle 16 as an impulse portion and generates a rotational force with respect to the main shaft 2. .
Further, the flow passage cross-sectional area formed by being surrounded by the adjacent turbine blades 20, 20, the outer peripheral surface of the flange 6, and the turbine housing recess 21 gradually becomes smaller from the blade outer diameter side toward the blade inner diameter side. Therefore, the flow velocity of the gas passing between the numerous turbine blades 20 and moving toward the blade inner diameter side increases again. As a result, the blade inner diameter side (the inner wall 21b on the lower inner diameter side) of the large number of turbine blades 20 ejects a gas having an increased flow velocity to the rear in the rotation direction of the main shaft 2, and generates a large rotational force on the main shaft 2 as a reaction part. To do.

本実施形態の効果について説明する。
本実施形態の静圧気体軸受スピンドルによると、隣接するタービン羽根20,20と、フランジ6の外周面と、タービン収納凹部21とで囲まれて形成された流路断面積が、羽根外径側から羽根内径側に向かうに従い徐々に小さくなるように設定されているので、タービン用ノズル16から供給された気体が多数のタービン羽根20の間を通過すると、主軸2に大きな回転力を発生する。また、隣接するタービン羽根20,20の羽根外径側の羽根間距離Aと羽根内径側の羽根間距離Bとを同一寸法に設定し、各タービン羽根20の厚みを薄く設定したことから主軸2の質量が減少し、主軸2の慣性モーメントは低減する。したがって、タービン用ノズル16から供給された気体が多数のタービン羽根20の間を通過することで、多数のタービン羽根20の衝動部及び反動部から主軸2に大きな回転力が付与され、慣性モーメントが低減した主軸2が回転するので、高効率に主軸2を回転させることができる。
The effect of this embodiment will be described.
According to the static pressure gas bearing spindle of the present embodiment, the flow passage cross-sectional area formed by being surrounded by the adjacent turbine blades 20, 20, the outer peripheral surface of the flange 6, and the turbine housing recess 21 is the blade outer diameter side. Therefore, when the gas supplied from the turbine nozzle 16 passes between a large number of turbine blades 20, a large rotational force is generated on the main shaft 2. Further, since the inter-blade distance A on the blade outer diameter side and the inter-blade distance B on the blade inner diameter side of the adjacent turbine blades 20 and 20 are set to the same dimension, and the thickness of each turbine blade 20 is set thin, the spindle 2 And the moment of inertia of the main shaft 2 is reduced. Therefore, when the gas supplied from the turbine nozzle 16 passes between a large number of turbine blades 20, a large rotational force is applied to the main shaft 2 from the impulse and reaction portions of the large number of turbine blades 20, and the moment of inertia is increased. Since the reduced main shaft 2 rotates, the main shaft 2 can be rotated with high efficiency.

また、本実施形態の多数のタービン羽根20は、エネルギ損失を抑制するための特殊加工を施しておらず、隣接するタービン羽根20,20の羽根外径側の羽根間距離Aと羽根内径側の羽根間距離Bとを同一寸法に設定した簡便な構造としているので、タービン羽根20を形成する際に複雑な工程を必要とせず、製造コストの低減化を図ることができる。   In addition, the large number of turbine blades 20 of the present embodiment are not subjected to special processing for suppressing energy loss, and the blade-to-blade distance A on the blade outer diameter side and the blade inner diameter side of the adjacent turbine blades 20, 20. Since it is set as the simple structure which set the distance B between blades to the same dimension, when forming the turbine blade 20, a complicated process is not required and reduction of manufacturing cost can be aimed at.

2…主軸、3…ハウジング、4…主軸本体、5…ワーク固定部、6…フランジ、7…ハウジング本体、8…プレート部、8a…軸受エア供給口、9…ラジアル軸受、9a,9b,9c,10a…給気ノズル、10…アキシアル軸受、11…気体供給路、14…タービンエア吸気口、15…円周溝、16…タービン用ノズル、17…カップ、20…タービン羽根、20a…背高外径部、20b…背低内径部、20c…傾斜部、21…タービン収納凹部、21a…背高外径側内壁、21b…背低い内径側内壁、21c…傾斜側内壁、A,B…羽根間距離   DESCRIPTION OF SYMBOLS 2 ... Main shaft, 3 ... Housing, 4 ... Main shaft main body, 5 ... Work fixing | fixed part, 6 ... Flange, 7 ... Housing main body, 8 ... Plate part, 8a ... Bearing air supply port, 9 ... Radial bearing, 9a, 9b, 9c , 10a ... Air supply nozzle, 10 ... Axial bearing, 11 ... Gas supply path, 14 ... Turbine air inlet, 15 ... Circumferential groove, 16 ... Turbine nozzle, 17 ... Cup, 20 ... Turbine blade, 20a ... Tall Outer diameter portion, 20b ... Lower inner diameter portion, 20c ... Inclined portion, 21 ... Turbage recess, 21a ... Tall outer diameter side inner wall, 21b ... Lower inner diameter side inner wall, 21c ... Inclined side inner wall, A, B ... Blade Distance

Claims (3)

主軸と、主軸を収納するハウジングと、高圧気体の供給により、前記ハウジングに対して前記主軸を非接触で回転自在に支持する気体軸受と、前記主軸の一部の円周方向に配列した複数のタービン羽根と、前記複数のタービン羽根を囲っている前記ハウジングの内部に設けられ、前記複数のタービン羽根に向かって高圧気体を噴出して前記主軸を回転させるタービン用ノズルと、を備えた静圧気体軸受スピンドルにおいて、
前記複数のタービン羽根を、前記タービン用ノズルから供給された前記高圧流体が流れる方向に向かって羽根高さが徐々に低くなるように形成するとともに、
前記複数のタービン羽根に高さ方向から対向している前記ハウジングの内壁を、羽根高さが徐々に変化している前記タービン羽根の頂部に近接して対向するように形成したことを特徴とする静圧気体軸受スピンドル。
A main shaft, a housing that houses the main shaft, a gas bearing that rotatably supports the main shaft in a non-contact manner with respect to the housing by supplying high-pressure gas, and a plurality of circumferentially arranged portions of the main shaft A static pressure provided with a turbine blade, and a turbine nozzle that is provided inside the housing surrounding the plurality of turbine blades and jets high-pressure gas toward the plurality of turbine blades to rotate the main shaft. In the gas bearing spindle,
The plurality of turbine blades are formed such that the blade height gradually decreases in the direction in which the high-pressure fluid supplied from the turbine nozzle flows,
The inner wall of the housing facing the plurality of turbine blades from the height direction is formed so as to face the top of the turbine blade where the blade height is gradually changing. Hydrostatic gas bearing spindle.
周方向に隣接する一対のタービン羽根の前記高圧流体の入側の羽根間距離と、前記一対のタービン羽根の前記高圧流体の出側の羽根間距離とを同一寸法に設定したことを特徴とする請求項1記載の静圧気体軸受スピンドル。   The distance between the blades on the inlet side of the high-pressure fluid of the pair of turbine blades adjacent in the circumferential direction and the distance between the blades on the outlet side of the high-pressure fluid of the pair of turbine blades are set to the same dimension. The hydrostatic gas bearing spindle according to claim 1. 請求項1又は2記載の静圧気体軸受スピンドルを備えていることを特徴とする静電塗装装置。   An electrostatic coating apparatus comprising the static pressure gas bearing spindle according to claim 1.
JP2011258644A 2011-11-28 2011-11-28 Static pressure gas bearing spindle and electrostatic coating device Expired - Fee Related JP5891743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258644A JP5891743B2 (en) 2011-11-28 2011-11-28 Static pressure gas bearing spindle and electrostatic coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011258644A JP5891743B2 (en) 2011-11-28 2011-11-28 Static pressure gas bearing spindle and electrostatic coating device

Publications (2)

Publication Number Publication Date
JP2013113179A true JP2013113179A (en) 2013-06-10
JP5891743B2 JP5891743B2 (en) 2016-03-23

Family

ID=48708954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258644A Expired - Fee Related JP5891743B2 (en) 2011-11-28 2011-11-28 Static pressure gas bearing spindle and electrostatic coating device

Country Status (1)

Country Link
JP (1) JP5891743B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063824A1 (en) * 2013-10-28 2015-05-07 エイブル株式会社 Culture-tank stirring means drive device and culture device
WO2016116275A1 (en) * 2015-01-20 2016-07-28 Dürr Systems GmbH Rotary atomizer turbine
GB2544709A (en) * 2014-12-07 2017-05-31 Ali Sadiq Sadiq Ali's flywheel turbine (SAFT) for zero carbon energy generation and air conditioning systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275625A (en) * 2002-03-15 2003-09-30 J Eberspaesher Gmbh & Co Kg Spray nozzle
JP2004232635A (en) * 2003-01-30 2004-08-19 Gat G Fuer Antriebstechnik Mbh Turbine wheel for driving tool that is rotated at high speed
JP2006300024A (en) * 2005-04-25 2006-11-02 Ntn Corp Static pressure gas bearing spindle
JP2009221984A (en) * 2008-03-17 2009-10-01 Ihi Corp Centrifugal compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275625A (en) * 2002-03-15 2003-09-30 J Eberspaesher Gmbh & Co Kg Spray nozzle
JP2004232635A (en) * 2003-01-30 2004-08-19 Gat G Fuer Antriebstechnik Mbh Turbine wheel for driving tool that is rotated at high speed
JP2006300024A (en) * 2005-04-25 2006-11-02 Ntn Corp Static pressure gas bearing spindle
JP2009221984A (en) * 2008-03-17 2009-10-01 Ihi Corp Centrifugal compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063824A1 (en) * 2013-10-28 2015-05-07 エイブル株式会社 Culture-tank stirring means drive device and culture device
GB2544709A (en) * 2014-12-07 2017-05-31 Ali Sadiq Sadiq Ali's flywheel turbine (SAFT) for zero carbon energy generation and air conditioning systems
GB2544709B (en) * 2014-12-07 2018-08-29 Ali Sadiq Variable mass flywheel turbine (VMFT)
WO2016116275A1 (en) * 2015-01-20 2016-07-28 Dürr Systems GmbH Rotary atomizer turbine
US10493472B2 (en) 2015-01-20 2019-12-03 Dürr Systems Ag Rotary atomizer turbine

Also Published As

Publication number Publication date
JP5891743B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
EP2100697B1 (en) Spindle device with rotor jetting driving fluid
EP3382223A1 (en) Spindle device
JP5891743B2 (en) Static pressure gas bearing spindle and electrostatic coating device
PT1384516E (en) Turbine for a rotary atomizer
US9216428B2 (en) Spindle system and electrostatic painting system
CN203730529U (en) Spindle
JP5929514B2 (en) Spindle device and electrostatic coating device
JP4655794B2 (en) Spindle device with air turbine
JP5842547B2 (en) Spindle device and electrostatic coating device
CN203730560U (en) Spindle
JP2008020001A (en) Spindle device
CN111727326B (en) Spindle device
WO2018043071A1 (en) Air turbine drive spindle
JP2010036090A (en) Rotary spray coater
JP5929495B2 (en) Spindle device and electrostatic coating device
CN111742156A (en) Spindle device
JP2016033367A (en) Spindle device and electrostatic coating device
JP5838753B2 (en) Hydrostatic gas bearing spindle and electrostatic coating apparatus having the same
JP2017025771A (en) Air turbine driving spindle
WO2019160053A1 (en) Spindle device
JP2017094291A (en) Spindle device
WO2019160052A1 (en) Spindle device
JP2013038945A (en) Spindle unit blocking electromagnetic vibration
JP2017115710A (en) Spindle device
JP2017106373A (en) Spindle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees