JP4655794B2 - Spindle device with air turbine - Google Patents

Spindle device with air turbine Download PDF

Info

Publication number
JP4655794B2
JP4655794B2 JP2005202683A JP2005202683A JP4655794B2 JP 4655794 B2 JP4655794 B2 JP 4655794B2 JP 2005202683 A JP2005202683 A JP 2005202683A JP 2005202683 A JP2005202683 A JP 2005202683A JP 4655794 B2 JP4655794 B2 JP 4655794B2
Authority
JP
Japan
Prior art keywords
turbine
air
impeller
peripheral surface
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005202683A
Other languages
Japanese (ja)
Other versions
JP2007023783A (en
JP2007023783A5 (en
Inventor
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005202683A priority Critical patent/JP4655794B2/en
Publication of JP2007023783A publication Critical patent/JP2007023783A/en
Publication of JP2007023783A5 publication Critical patent/JP2007023783A5/ja
Application granted granted Critical
Publication of JP4655794B2 publication Critical patent/JP4655794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は、例えば、静電塗装機や精密加工機等を構成する為に使用するエアタービン付スピンドル装置の改良に関する。   The present invention relates to an improvement in a spindle device with an air turbine used to configure, for example, an electrostatic coating machine or a precision processing machine.

図4〜5は、静電塗装機の静電スプレーガンを構成する為に使用される、エアタービン付スピンドル装置の従来構造の第1例を示している。このエアタービン付スピンドル装置は、中空の主軸1の基端部(図4の右端部)に羽根車2を、この主軸1と同心に固定している。この羽根車2は、円輪部3と、この円輪部3の片側面(図4の右側面)の径方向中間部に固設した短円筒状の羽根車本体4とを備えたもので、上記円輪部3を上記主軸1の基端面に、ねじ止め等により結合固定している。又、上記羽根車本体4の外周面には複数のタービン羽根5、5を、全周に亙り形成している。   4 to 5 show a first example of a conventional structure of a spindle device with an air turbine used for constituting an electrostatic spray gun of an electrostatic coating machine. In this spindle apparatus with an air turbine, an impeller 2 is fixed concentrically to the main shaft 1 at a base end portion (right end portion in FIG. 4) of a hollow main shaft 1. The impeller 2 includes an annular portion 3 and a short cylindrical impeller body 4 fixed to a radial intermediate portion of one side surface (right side surface in FIG. 4) of the annular portion 3. The annular portion 3 is coupled and fixed to the base end surface of the main shaft 1 by screwing or the like. A plurality of turbine blades 5 and 5 are formed on the outer peripheral surface of the impeller body 4 over the entire periphery.

又、上記主軸1及び羽根車2は、ハウジング6の内側に、ラジアル静圧気体軸受7及びアキシアル静圧気体軸受8により、回転自在に支持している。図示の例では、このうちのラジアル静圧気体軸受7を構成する為、上記ハウジング6の中間部内側に、多孔質材により全体を円筒状に形成したラジアル軸受部材9を固定すると共に、このラジアル軸受部材9の内周面を上記主軸1の中間部外周面に微小隙間を介して対向させ、更に上記ハウジング6の内部に上記ラジアル軸受部材9に通じる給気通路10、10を設けている。又、上記アキシアル静圧気体軸受8を構成する為、上記ハウジング6の基端(図4の右端)寄り部内側に、多孔質材により断面矩形で全体を円環状に形成したアキシアル軸受部材11を固定すると共に、このアキシアル軸受部材11の側面(図4の右側面)を、上記羽根車2を構成する円輪部3の他側面(図4の左側面)の外径側部分に微小隙間を介して対向させ、更に上記アキシアル軸受部材11にも上記各給気通路10、10を通じさせている。   The main shaft 1 and the impeller 2 are rotatably supported inside the housing 6 by a radial static pressure gas bearing 7 and an axial static pressure gas bearing 8. In the illustrated example, in order to constitute the radial static pressure gas bearing 7, a radial bearing member 9 formed entirely in a cylindrical shape by a porous material is fixed inside the intermediate portion of the housing 6. The inner peripheral surface of the bearing member 9 is opposed to the outer peripheral surface of the intermediate portion of the main shaft 1 through a minute gap, and the air supply passages 10 and 10 communicating with the radial bearing member 9 are provided inside the housing 6. Further, in order to constitute the axial static pressure gas bearing 8, an axial bearing member 11 is formed on the inner side near the base end (right end in FIG. 4) of the housing 6 and is formed into a ring shape with a rectangular cross section by a porous material. While fixing, the side surface (right side surface of FIG. 4) of this axial bearing member 11 is provided with a minute gap on the outer diameter side portion of the other side surface (left side surface of FIG. 4) of the annular ring portion 3 constituting the impeller 2. Further, the air supply passages 10 and 10 are also passed through the axial bearing member 11.

上述の様なラジアル、アキシアル各静圧気体軸受7、8により、上記主軸1及び羽根車2を回転自在に支持する場合には、上記各給気通路10、10と、上記ラジアル、アキシアル各軸受部材9、11の内部に存在する多数の孔とを通じて、上記各微小隙間に、それぞれ圧縮空気を連続供給する。これにより、これら各微小隙間の全体に圧縮空気の膜を形成する事で、上記主軸1及び羽根車2を、上記ラジアル、アキシアル各軸受部材9、11に対し、非接触状態で回転自在に支持する。尚、上記各微小隙間に連続供給した圧縮空気は、上記ラジアル軸受部材9の内部に設けた排気孔12、12、上記ハウジング6の内部に設けた排気通路13、このハウジング6の内部に存在する隙間等を通じて、順次、外部空間に排出する。又、図示は省略するが、本例のエアタービン付スピンドル装置を使用して静電スプレーガンを完成させた状態では、上記羽根車2の片側面を別のアキシアル静圧気体軸受により支持する事で、上記主軸1及び羽根車2の軸方向の位置決めを図る。   When the main shaft 1 and the impeller 2 are rotatably supported by the radial and axial static pressure gas bearings 7 and 8 as described above, the air supply passages 10 and 10 and the radial and axial bearings are supported. Compressed air is continuously supplied to the minute gaps through a large number of holes existing inside the members 9 and 11. As a result, a film of compressed air is formed in the whole of these minute gaps, so that the main shaft 1 and the impeller 2 are rotatably supported in a non-contact state with respect to the radial and axial bearing members 9 and 11. To do. The compressed air continuously supplied to the minute gaps exists in the exhaust holes 12 and 12 provided in the radial bearing member 9, the exhaust passage 13 provided in the housing 6, and the housing 6. It discharges to the external space sequentially through the gap. Although not shown, when the electrostatic spray gun is completed using the spindle device with an air turbine of this example, one side of the impeller 2 is supported by another axial static pressure gas bearing. Thus, the main shaft 1 and the impeller 2 are positioned in the axial direction.

又、上記ハウジング6の基端部で、上記羽根車本体4の径方向外方に位置する部分の内周面は、この羽根車本体4の外周面に対し、全周に亙り近接対向させている。又、上記ハウジング6の基端部で、上記羽根車本体4の径方向外方に位置する部分の内部の円周方向複数個所(図示の例では、円周方向等間隔の6個所)には、タービンエアノズル孔14、14を形成している。これらタービンエアノズル孔14、14の中心軸は、それぞれ上記ハウジング6の中心軸と直交する仮想平面内に配置しており、且つ、このハウジング6の径方向に対し、同方向に所定角度傾斜させている。そして、この様な各タービンエアノズル孔14、14の上流端開口を、それぞれ上記ハウジング6の基端部外周寄り部分に全周に亙り形成したタービンエア供給通路15に連通させると共に、このタービンエア供給通路15の円周方向1個所を、上記ハウジング6の基端面に開口する状態で設けたタービンエア供給口16に連通させている。又、上記各タービンエアノズル孔14、14の下流端開口(タービンエア噴出口)を、それぞれ上記ハウジング6の基端部内周面に開口させている。これにより、上記各タービンエアノズル孔14、14の下流端開口を、それぞれ上記羽根車本体4の外周面に設けた複数のタービン羽根5、5に近接対向させている。   In addition, the inner peripheral surface of the base end portion of the housing 6 that is located radially outward of the impeller body 4 is closely opposed to the outer peripheral surface of the impeller body 4 over the entire circumference. Yes. Further, at the base end portion of the housing 6, there are a plurality of circumferential locations (six locations at regular intervals in the circumferential direction) inside the portion located radially outward of the impeller body 4. The turbine air nozzle holes 14 and 14 are formed. The central axes of the turbine air nozzle holes 14 and 14 are arranged in virtual planes orthogonal to the central axis of the housing 6 and are inclined at a predetermined angle in the same direction with respect to the radial direction of the housing 6. Yes. Then, the upstream end openings of the turbine air nozzle holes 14 and 14 are communicated with the turbine air supply passage 15 formed over the entire circumference in the vicinity of the outer periphery of the base end portion of the housing 6, and the turbine air supply. One place in the circumferential direction of the passage 15 is communicated with a turbine air supply port 16 provided in a state of opening in the base end face of the housing 6. Further, the downstream end openings (turbine air outlets) of the turbine air nozzle holes 14 and 14 are respectively opened on the inner peripheral surface of the base end portion of the housing 6. As a result, the downstream end openings of the turbine air nozzle holes 14 and 14 are opposed to the plurality of turbine blades 5 and 5 provided on the outer peripheral surface of the impeller body 4, respectively.

又、上記各タービンエアノズル孔14、14を形成した上記ハウジング6の基端部の内部で、円周方向に関してこれら各タービンエアノズル孔14、14から外れた部分には、ブレーキエアノズル孔17を形成している。このブレーキエアノズル孔17の中心軸は、上記各タービンエアノズル孔14、14の中心軸と同じ仮想平面内に配置しており、且つ、上記ハウジング6の径方向に対し、上記各タービンエアノズル孔14、14の中心軸と反対方向に所定角度傾斜させている。そして、この様なブレーキエアノズル孔17の上流端開口を、上記ハウジング6の基端面に開口する状態で設けたブレーキエア供給口18に連通させると共に、上記ブレーキエアノズル孔17の下流端開口(ブレーキエア噴出口)を、上記ハウジング6の基端部内周面に開口させている。これにより、上記ブレーキエアノズル孔17の下流端開口を、上記羽根車本体4の外周面に設けた複数のタービン羽根5、5に近接対向させている。   In addition, a brake air nozzle hole 17 is formed in a portion of the base end portion of the housing 6 in which the turbine air nozzle holes 14 and 14 are formed, in a portion that is separated from the turbine air nozzle holes 14 and 14 in the circumferential direction. ing. The central axis of the brake air nozzle hole 17 is disposed in the same virtual plane as the central axis of the turbine air nozzle holes 14, 14, and the turbine air nozzle holes 14, 14 is inclined at a predetermined angle in a direction opposite to the central axis. Then, the upstream end opening of the brake air nozzle hole 17 is communicated with a brake air supply port 18 provided in a state of opening on the base end surface of the housing 6, and the downstream end opening (brake air) of the brake air nozzle hole 17 is provided. A jet outlet is opened on the inner peripheral surface of the base end portion of the housing 6. Thereby, the downstream end opening of the brake air nozzle hole 17 is made to face and oppose the plurality of turbine blades 5 and 5 provided on the outer peripheral surface of the impeller body 4.

又、上記ハウジング6の基端寄り部分で、前記アキシアル軸受部材11の径方向内方に位置する部分に、円環状の回転検出センサ19を支持固定している。そして、この回転検出センサ19の検出面(図4の右側面)を、前記羽根車2の他側面(図4の左側面)に設けたエンコーダ(図示せず)に近接対向させる事により、この羽根車2の回転速度等の回転情報を検出する為の回転検出装置を構成している。   An annular rotation detection sensor 19 is supported and fixed to a portion of the housing 6 near the base end and located radially inward of the axial bearing member 11. Then, by making the detection surface (the right side surface in FIG. 4) of the rotation detection sensor 19 approach the encoder (not shown) provided on the other side surface (the left side surface in FIG. 4) of the impeller 2, A rotation detection device for detecting rotation information such as the rotation speed of the impeller 2 is configured.

上述の様に構成するエアタービン付スピンドル装置を使用して、静電スプレーガンを完成させた状態で、被塗装面の塗装を行なう際には、前述の様にして、ハウジング6に対し主軸1及び羽根車2を、ラジアル、アキシアル各静圧気体軸受7、8により回転自在に支持する。そして、この状態で、タービンエア供給口16及びタービンエア供給通路15を通じて複数のタービンエアノズル孔14、14に、圧縮空気を送り込む。そして、この圧縮空気を、これら各タービンエアノズル孔14、14の下流端開口から噴出し、羽根車本体4の外周面に形成した複数のタービン羽根5、5に吹き付ける。これにより、上記羽根車2及び主軸1を、正転方向(図5の矢印イ方向)に、数万min-1 程度の回転速度で高速回転させる。そして、この状態で、上記主軸1の内側に挿通した塗料供給管(図示せず)を通じて、上記主軸1の先端部(図4の左端部)のうち上記ハウジング6の外側に突出した部分に結合固定すると共に負の電極を通じさせたカップ(図示せず)内に、塗料を送り込む。そして、上記主軸1と共に高速回転するこのカップ内で、上記塗料をイオン微粒子化する。そして、このイオン微粒子化した塗料を、正の電極を通じさせた上記被塗装面に向け静電吸引力を利用して飛ばし、この被塗装面に付着させる。尚、上記各タービン羽根5、5に吹き付けられた空気は、上記ハウジング6の基端部内周面と上記羽根車本体4の外周面との間に存在する円環状空間20の基端(図4の右端)開口から、この基端開口に連通する状態で設けられた排気通路(図示せず)を通じて、外部空間に排出する。 When coating the surface to be coated with the electrostatic spray gun completed using the spindle device with an air turbine configured as described above, the main shaft 1 is attached to the housing 6 as described above. The impeller 2 is rotatably supported by radial and axial static pressure gas bearings 7 and 8. In this state, compressed air is fed into the plurality of turbine air nozzle holes 14 and 14 through the turbine air supply port 16 and the turbine air supply passage 15. Then, the compressed air is ejected from the downstream end openings of the turbine air nozzle holes 14 and 14 and blown to a plurality of turbine blades 5 and 5 formed on the outer peripheral surface of the impeller body 4. As a result, the impeller 2 and the main shaft 1 are rotated at a high speed in the forward rotation direction (in the direction of arrow A in FIG. 5) at a rotational speed of about several tens of thousands min −1 . Then, in this state, through a paint supply pipe (not shown) inserted inside the main shaft 1, the front end portion (left end portion in FIG. 4) of the main shaft 1 is coupled to a portion protruding outside the housing 6. The paint is fed into a cup (not shown) that is fixed and passed through the negative electrode. Then, in the cup that rotates at high speed together with the main shaft 1, the paint is made into ionic fine particles. Then, the ionized fine particles are applied to the surface to be coated through the positive electrode by using an electrostatic attraction force and adhered to the surface to be coated. The air blown to the turbine blades 5 and 5 is the base end of the annular space 20 existing between the inner peripheral surface of the base end portion of the housing 6 and the outer peripheral surface of the impeller body 4 (FIG. 4). From the right end) through the exhaust passage (not shown) provided in communication with the base end opening.

又、上記被塗装面の塗装作業を停止する場合には、上記各タービンノズル孔14、14への圧縮空気の供給と、上記カップ内への塗料の供給とを、それぞれ停止すると共に、ブレーキエア供給口18を通じてブレーキエアノズル孔17に、圧縮空気を送り込む。そして、この圧縮空気を、このブレーキエアノズル孔17の下流端開口から噴出し、上記各タービン羽根5、5に吹き付ける。これにより、上記羽根車2に、正転(回転)を停止させる方向(図5の矢印ロ方向)の力を付与する事で、この羽根車2及び上記主軸1の回転を早期に停止させる。そして、これら主軸1及び羽根車2の回転が停止した事を、前記回転検出センサ19により確認した時点で、上記ブレーキエアノズル孔17への圧縮空気の供給を停止する。尚、上述の様に各タービン羽根5、5に吹き付けられた空気も、上記円環状空間20の基端開口から上記排気通路を通じて、外部空間に排出する。 When stopping the painting operation on the surface to be coated, the supply of compressed air to the turbine nozzle holes 14 and 14 and the supply of paint into the cup are stopped and brake air is supplied. Compressed air is fed into the brake air nozzle hole 17 through the supply port 18. The compressed air is ejected from the downstream end opening of the brake air nozzle hole 17 and blown to the turbine blades 5 and 5. Thereby, the rotation of the impeller 2 and the main shaft 1 is stopped early by applying to the impeller 2 a force in the direction in which the forward rotation (rotation) is stopped (the direction indicated by the arrow B in FIG. 5). When the rotation detection sensor 19 confirms that the rotation of the main shaft 1 and the impeller 2 is stopped, the supply of compressed air to the brake air nozzle hole 17 is stopped. Note that the air blown to the turbine blades 5 and 5 as described above is also discharged from the proximal end opening of the annular space 20 to the external space through the exhaust passage.

上述した様な従来構造の第1例の場合には、上記タービンエアノズル孔14、14及び上記ブレーキエアノズル孔17の各下流端開口を、それぞれ上記羽根車本体4の外周面に近接対向させるべく、この羽根車本体4の外周面に上記ハウジング6の基端部内周面を、全周に亙り近接対向させている。この為、これら両周面同士の間に存在する円環状空間20の径方向の幅寸法が、全周に亙り小さくなっている。ところが、この様に円環状空間20の径方向の幅寸法が全周に亙り小さくなっていると、上記各下流端開口から上記円環状空間20に噴出した圧縮空気が、この円環状空間20から上記排気通路に排出されにくくなる為、この円環状空間20の圧力が高くなり易い。この様に円環状空間20の圧力が高くなると、上記各下流端開口からこの円環状空間20に圧縮空気が噴出される際に、この圧縮空気が十分に膨張できなくなる(背圧が高くなり、上記各エアノズル孔14、17部分での運動エネルギが低くなる)。この結果、上記羽根車2の駆動効率及び停止効率を十分に確保できなくなる為、好ましくない。   In the case of the first example of the conventional structure as described above, the downstream end openings of the turbine air nozzle holes 14 and 14 and the brake air nozzle hole 17 are respectively close to and opposed to the outer peripheral surface of the impeller body 4. The inner peripheral surface of the base end portion of the housing 6 is closely opposed to the outer peripheral surface of the impeller body 4 over the entire periphery. For this reason, the width dimension in the radial direction of the annular space 20 existing between the two peripheral surfaces is small over the entire circumference. However, when the radial width dimension of the annular space 20 is reduced over the entire circumference in this way, the compressed air ejected from the downstream end openings to the annular space 20 is discharged from the annular space 20. Since it becomes difficult to discharge into the exhaust passage, the pressure in the annular space 20 tends to increase. When the pressure in the annular space 20 is increased in this way, when the compressed air is ejected from the respective downstream end openings to the annular space 20, the compressed air cannot be sufficiently expanded (the back pressure increases, The kinetic energy at the air nozzle holes 14 and 17 is reduced. As a result, the driving efficiency and stopping efficiency of the impeller 2 cannot be sufficiently secured, which is not preferable.

これに対し、特許文献1には、図6に示す様に、ハウジング6aの基端部内周面のうち、円周方向に関して上記各下流端開口から外れた複数個所に、それぞれ凹部21、21を形成する発明が記載されている。この様な従来構造の第2例の場合には、上記各凹部21、21を形成した部分で円環状空間20aの径方向の幅寸法を大きくできる為、その分だけ各エアノズル孔14、17の下流端開口から上記円環状空間20aに噴出した圧縮空気を、この円環状空間20aから上記排気通路に排出し易くできる。従って、この円環状空間20aの圧力を下げる事ができ、上記下流端開口からこの円環状空間20aに圧縮空気を噴出する際に、この圧縮空気をより多く膨張させる事ができる。この結果、上記各エアノズル孔14、17の背圧を低く抑えて、羽根車2の駆動効率及び停止効率を向上させる事ができる。 On the other hand, in Patent Document 1, as shown in FIG. 6, recesses 21 and 21 are respectively provided at a plurality of locations out of the respective downstream end openings in the circumferential direction on the inner peripheral surface of the base end portion of the housing 6 a. The invention to be formed is described. In the case of the second example having such a conventional structure, the radial width of the annular space 20a can be increased at the portion where the concave portions 21 and 21 are formed. The compressed air ejected from the downstream end opening to the annular space 20a can be easily discharged from the annular space 20a to the exhaust passage. Therefore, the pressure in the annular space 20a can be reduced, and the compressed air can be expanded more when the compressed air is ejected from the downstream end opening into the annular space 20a. As a result, the back pressure of the air nozzle holes 14 and 17 can be kept low, and the drive efficiency and stop efficiency of the impeller 2 can be improved.

ところが、上述した従来構造の第2例の場合には、上記円環状空間20aのうち、上記各下流端開口の周辺部分(円周方向に関して上記各凹部21、21から外れた部分)の幅寸法が、依然として小さくなっている。これに対し、上記羽根車2の駆動効率及び停止効率の更なる向上を図る為には、上記円環状空間20aの径方向の幅寸法を、上記各下流端開口の周辺部分を含めた全周に亙り、大きくできる様にする事が望まれる。   However, in the case of the second example of the conventional structure described above, the width dimension of the peripheral portion of the annular space 20a (the portion that is separated from the recesses 21 and 21 in the circumferential direction) of the downstream end opening. But it is still getting smaller. On the other hand, in order to further improve the driving efficiency and stopping efficiency of the impeller 2, the radial width of the annular space 20a is set to the entire circumference including the peripheral portion of each downstream end opening. It is hoped that you can make it bigger.

特開平6−313428号公報JP-A-6-313428

本発明のエアタービン付スピンドル装置は、上述の様な事情に鑑み、ハウジングの内周面と羽根車の外周面との間に存在する円環状空間の径方向の幅寸法を、タービンエア噴出孔(及びブレーキエア噴出孔)の周辺部分を含めた全周に亙り大きくできる構造を実現すべく発明したものである。   In view of the circumstances as described above, the spindle device with an air turbine according to the present invention is configured such that the radial width dimension of the annular space existing between the inner peripheral surface of the housing and the outer peripheral surface of the impeller is set as a turbine air ejection hole. The invention was invented to realize a structure that can be enlarged over the entire circumference including the peripheral portion of (and the brake air ejection hole).

本発明のエアタービン付スピンドル装置は、ハウジングと、このハウジングの内側に挿通した主軸と、この主軸の一部でこのハウジングの内側に配置される部分にこの主軸と同心に固定(結合固定又は一体形成)した、外周面に複数のタービン羽根を形成した羽根車と、上記ハウジングの内側に上記主軸及びこの羽根車を回転自在に支持する為の静圧気体軸受と、それぞれが上記羽根車の外周面の一部に近接対向する部分に設けられ、上記各タービン羽根に向け、上記羽根車を正転させる方向の圧縮空気を噴出する1乃至複数のタービンエア噴出口とを備える。
特に、本発明のエアタービン付スピンドル装置に於いては、上記ハウジングの内周面から1乃至複数本のタービンエアノズルを突出させ、これら各タービンエアノズルの先端開口を上記各タービンエア噴出口としている。
The spindle device with an air turbine of the present invention includes a housing, a main shaft that is inserted inside the housing, and a portion of the main shaft that is concentrically fixed to the main shaft (coupled or fixed). An impeller having a plurality of turbine blades formed on the outer peripheral surface, a hydrostatic gas bearing for rotatably supporting the main shaft and the impeller inside the housing, and an outer periphery of the impeller. One or a plurality of turbine air outlets that are provided in a portion that is close to and opposed to a part of the surface, and that ejects compressed air in a direction in which the impeller rotates forward toward the turbine blades.
In particular, in the spindle apparatus with an air turbine of the present invention, one or a plurality of turbine air nozzles are projected from the inner peripheral surface of the housing, and the tip openings of the turbine air nozzles serve as the turbine air outlets.

上述の様に、本発明のタービン付スピンドル装置の場合には、ハウジングの内周面から突出させたタービンエアノズルの先端開口をタービンエア噴出口とし、このタービンエア噴出口を羽根車の外周面に近接対向させている構成を採用している。この為、この羽根車の外周面と上記ハウジングの内周面との間に存在する円環状空間の径方向の幅寸法を、全周に亙り大きくする事ができる。従って、上記タービンエア噴出口から上記円環状空間に噴出した圧縮空気を、この円環状空間から外部空間に通じる排気通路に排出し易くできる為、この円環状空間内の圧力を上昇しにくくできる。従って、上記タービンエア噴出口から上記円環状空間に圧縮空気を噴出する際に、この圧縮空気を十分に膨張させる事ができる。この結果、上記タービンエア噴出口の背圧を低く抑え、このタービンエア噴出口から噴出する空気の運動エネルギを大きくして、上記羽根車の駆動効率を十分に向上させる事ができる。   As described above, in the case of the turbine-equipped spindle device of the present invention, the front end opening of the turbine air nozzle that protrudes from the inner peripheral surface of the housing serves as a turbine air outlet, and this turbine air outlet serves as the outer peripheral surface of the impeller. Adopting a structure that is close to each other. Therefore, the radial width dimension of the annular space existing between the outer peripheral surface of the impeller and the inner peripheral surface of the housing can be increased over the entire circumference. Accordingly, the compressed air ejected from the turbine air outlet to the annular space can be easily discharged from the annular space to the exhaust passage that leads to the external space, so that the pressure in the annular space can be hardly increased. Accordingly, when the compressed air is ejected from the turbine air ejection port into the annular space, the compressed air can be sufficiently expanded. As a result, the back pressure of the turbine air outlet can be kept low, the kinetic energy of the air ejected from the turbine air outlet can be increased, and the driving efficiency of the impeller can be sufficiently improved.

本発明のエアタービン付スピンドル装置を実施する場合であって、それぞれが羽根車の外周面の円周方向一部(上記タービンエア噴出口を対向させた部分と同一の部分でも異なる部分でも良い。)に近接対向する部分に、この羽根車の外周面に形成した複数のタービン羽根に向け、この羽根車の正転を停止させる方向の圧縮空気を噴出する1乃至複数のブレーキエア噴出口を設ける場合に、好ましくは、請求項2に記載した様に、ハウジングの内周面のうちタービンエアノズルを突出させた部分以外の部分から1乃至複数のブレーキエアノズルを突出させ、これら各ブレーキエアノズルの先端開口を上記各ブレーキエア噴出口とする。
この様な構成を採用すれば、上記羽根車の停止効率を十分に向上させる事ができる。
In the case of implementing the spindle device with an air turbine of the present invention, each of them may be a part in the circumferential direction of the outer peripheral surface of the impeller (the same part as the part facing the turbine air jet outlet or a different part thereof). ) Are provided with one or more brake air jets for jetting compressed air in a direction to stop the forward rotation of the impeller toward a plurality of turbine blades formed on the outer peripheral surface of the impeller. In this case, preferably, as described in claim 2, one or a plurality of brake air nozzles are protruded from a portion other than a portion where the turbine air nozzle is protruded on the inner peripheral surface of the housing, and the front ends of the brake air nozzles are opened. Are the brake air outlets.
If such a structure is employ | adopted, the stop efficiency of the said impeller can fully be improved.

又、請求項2に記載した発明を実施する場合に、好ましくは、請求項3に記載した様に、ブレーキエアノズルの先端開口縁部の形状を、羽根車の中心軸をその中心軸とする仮想円筒面又はこの仮想円筒面に対する接平面に沿った形状とする。
この様な構成を採用すれば、上記ブレーキエアノズルの先端開口周縁部を、全周に亙り、上記羽根車の外周面に対し実質的に均一な距離で近接対向させる事ができる。この為、上記ブレーキエアノズルの先端開口から噴出した圧縮空気を、上記羽根車の外周面に形成した複数のタービン羽根に効率良く吹き付ける事ができる。従って、上記羽根車の停止効率を十分に向上させる事ができる。
Further, when the invention described in claim 2 is carried out, preferably, as described in claim 3, the shape of the edge opening edge of the brake air nozzle is assumed to be the virtual axis with the central axis of the impeller as its central axis. The shape is along a cylindrical surface or a tangent plane to the virtual cylindrical surface.
By adopting such a configuration, the peripheral edge portion of the tip opening of the brake air nozzle can be made to face and face the outer peripheral surface of the impeller at a substantially uniform distance over the entire circumference. For this reason, the compressed air which ejected from the front-end | tip opening of the said brake air nozzle can be efficiently sprayed on the some turbine blade formed in the outer peripheral surface of the said impeller. Therefore, the stop efficiency of the impeller can be sufficiently improved.

又、請求項1〜3の何れか1項に記載した発明を実施する場合に、好ましくは、請求項4に記載した様に、タービンエアノズルの先端開口縁部の形状を、羽根車の中心軸をその中心軸とする仮想円筒面又はこの仮想円筒面に対する接平面に沿った形状とする。
この様な構成を採用すれば、上記タービンエアノズルの先端開口周縁部を、全周に亙り、上記羽根車の外周面に対し実質的に均一な距離で近接対向させる事ができる。この為、上記タービンエアノズルの先端開口から噴出した圧縮空気を、上記羽根車の外周面に形成した複数のタービン羽根に効率良く吹き付ける事ができる。従って、上記羽根車の駆動効率を十分に向上させる事ができる。
In carrying out the invention according to any one of claims 1 to 3, preferably, as described in claim 4, the shape of the edge opening edge of the turbine air nozzle is set to the central axis of the impeller. And a shape along a virtual cylindrical surface having a central axis thereof or a tangential plane to the virtual cylindrical surface.
By adopting such a configuration, the peripheral edge portion of the tip opening of the turbine air nozzle can be placed close to and opposed to the outer peripheral surface of the impeller at a substantially uniform distance over the entire circumference. For this reason, the compressed air which ejected from the front-end | tip opening of the said turbine air nozzle can be efficiently sprayed on the some turbine blade formed in the outer peripheral surface of the said impeller. Accordingly, the driving efficiency of the impeller can be sufficiently improved.

図1〜2は、請求項1〜2に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、羽根車本体4の外周面と対向する、ハウジング6bの基端部内周面部分の構造にある。その他の部分の構造及び作用は、前述の図4〜5に示した従来構造の第1例の場合と同様であるから、同等部分には同一符号を付して重複する説明を省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   1 and 2 show a first embodiment of the present invention corresponding to claims 1 and 2. The feature of this embodiment is the structure of the inner peripheral surface portion of the base end portion of the housing 6b facing the outer peripheral surface of the impeller body 4. Since the structure and operation of the other parts are the same as those in the first example of the conventional structure shown in FIGS. 4 to 5 described above, the same parts are denoted by the same reference numerals, and redundant description is omitted or simplified. Hereinafter, the characteristic part of the present embodiment will be mainly described.

本実施例の場合、上記羽根車本体4の外周面と対向する、上記ハウジング6bの基端部内周面の直径を、この羽根車本体4の外周面の直径よりも十分に大きくしている。これにより、これら両周面同士の間に存在する円環状空間20bの径方向の幅寸法を、全周に亙り十分に大きくしている。   In the case of this embodiment, the diameter of the inner peripheral surface of the base end portion of the housing 6 b facing the outer peripheral surface of the impeller body 4 is sufficiently larger than the diameter of the outer peripheral surface of the impeller body 4. As a result, the width dimension in the radial direction of the annular space 20b existing between the two peripheral surfaces is sufficiently increased over the entire circumference.

又、本実施例の場合には、各タービンエアノズル孔14、14の下流端部にそれぞれ円管状のタービンエアノズル22、22の基端部を、ブレーキエアノズル孔17に円管状のブレーキエアノズル23の基端部を、それぞれ圧入固定(締り嵌めで内嵌固定)している。これにより、それぞれが上記ハウジング6bの基端部内周面から突出した、上記各タービンエアノズル22、22の先端開口をタービンエアノズル噴出孔とし、上記ブレーキエアノズル23の先端開口をブレーキエアノズル噴出孔としている。そして、これら各タービンエアノズル22、22の先端開口及びブレーキエアノズル23の先端開口を、それぞれ上記羽根車本体4の外周面に近接対向させている。尚、本実施例の場合、上記各タービンエアノズル22、22の先端開口周縁部の形状、及び、上記ブレーキエアノズル23の先端開口周縁部の形状は、それぞれ当該ノズル22、23の中心軸に直交する仮想平面に沿う形状としている。又、本発明を実施する場合、上記各ノズル22、23の基端部は、上記各ノズル孔14、17に、接着固定や螺合固定する事もできる。   In the case of this embodiment, the base end portions of the tubular turbine air nozzles 22, 22 are respectively provided at the downstream end portions of the turbine air nozzle holes 14, 14, and the base portion of the circular tubular brake air nozzle 23 is provided at the brake air nozzle hole 17. The end portions are each press-fitted and fixed (fixed with an interference fit). Thereby, the tip opening of each of the turbine air nozzles 22 and 22 projecting from the inner peripheral surface of the base end portion of the housing 6b is a turbine air nozzle ejection hole, and the tip opening of the brake air nozzle 23 is a brake air nozzle ejection hole. The front end openings of the turbine air nozzles 22 and 22 and the front end openings of the brake air nozzles 23 are respectively close to and opposed to the outer peripheral surface of the impeller body 4. In the case of the present embodiment, the shape of the peripheral edge portion of the tip opening of each turbine air nozzle 22, 22 and the shape of the peripheral edge portion of the tip opening of the brake air nozzle 23 are orthogonal to the central axes of the nozzles 22, 23, respectively. The shape is along a virtual plane. Moreover, when implementing this invention, the base end part of each said nozzle 22 and 23 can also be adhere | attached fixation and screwed fixation to each said nozzle hole 14 and 17. FIG.

上述の様に、本実施例のタービン付スピンドル装置の場合には、羽根車本体4の外周面とハウジング6bの基端部内周面との間に存在する円環状空間20bの径方向の幅寸法を、全周に亙り大きくできる。この為、上記各タービンエアノズル22、22の先端開口及び上記ブレーキエアノズル23の先端開口から上記円環状空間20bに噴出した圧縮空気を、この円環状空間20bの基端(図1の右端)開口から、この基端開口に連通する状態で設けられた排気通路(図示せず)に排出し易くできる。従って、上記円環状空間20b内の圧力を上昇しにくくできる。この為、上記各タービンエアノズル22、22の先端開口及び上記ブレーキエアノズル23の先端開口から上記円環状空間20bに圧縮空気を噴出する際に、この圧縮空気を十分に膨張させる事ができる。この結果、上記各ノズル22、23に関する背圧を小さく抑え、これら各ノズル22、23の先端開口から噴出される圧縮空気の運動エネルギを確保して、羽根車2の駆動効率及び停止効率を十分に向上させる事ができる。   As described above, in the case of the spindle device with a turbine according to the present embodiment, the radial width dimension of the annular space 20b existing between the outer peripheral surface of the impeller body 4 and the base end portion inner peripheral surface of the housing 6b. Can be increased over the entire circumference. For this reason, the compressed air jetted into the annular space 20b from the front end openings of the turbine air nozzles 22 and 22 and the front end opening of the brake air nozzle 23 is supplied from the base end (right end in FIG. 1) opening of the annular space 20b. The exhaust passage (not shown) provided in communication with the base end opening can be easily discharged. Therefore, it is difficult to increase the pressure in the annular space 20b. Therefore, when the compressed air is ejected from the front end openings of the turbine air nozzles 22 and 22 and the front end opening of the brake air nozzle 23 to the annular space 20b, the compressed air can be sufficiently expanded. As a result, the back pressure related to the nozzles 22 and 23 is suppressed to a small level, and the kinetic energy of the compressed air ejected from the tip openings of the nozzles 22 and 23 is secured, so that the driving efficiency and stopping efficiency of the impeller 2 are sufficiently high. Can be improved.

次に、図3は、請求項1〜4に対応する、本発明の実施例2を示している。本実施例の場合には、各タービンエアノズル22a、22aの先端開口周縁部の形状、及び、ブレーキエアノズル23aの先端開口周縁部の形状を、それぞれ羽根車本体4の中心軸をその中心軸とする仮想円筒面αに沿った形状としている。この様に構成する本実施例の場合には、上記各タービンエアノズル22a、22aの先端開口周縁部、及び、上記ブレーキエアノズル23aの先端開口周縁部を、それぞれ全周に亙り、上記羽根車本体4の外周面に対し均一な距離で近接対向させる事ができる。この為、本実施例の場合には、上記各先端開口から噴出した圧縮空気を、上記羽根車本体4の外周面に設けた複数のタービン羽根5、5に効率良く吹き付ける事ができる。従って、本実施例の場合には、羽根車2の駆動効率及び停止効率を、より十分に向上させる事ができる。その他の構成及び作用は、上述した実施例1の場合と同様である。   Next, FIG. 3 shows Embodiment 2 of the present invention corresponding to claims 1 to 4. In the case of the present embodiment, the shape of the tip opening peripheral portion of each turbine air nozzle 22a, 22a and the shape of the tip opening peripheral portion of the brake air nozzle 23a are respectively set with the central axis of the impeller body 4 as the central axis. The shape is along the virtual cylindrical surface α. In the case of the present embodiment configured as described above, the tip opening peripheral edge of each of the turbine air nozzles 22a and 22a and the tip opening peripheral edge of the brake air nozzle 23a are respectively spread over the entire periphery, and the impeller body 4 It is possible to make them face and face each other at a uniform distance. For this reason, in the case of the present embodiment, the compressed air ejected from each of the tip openings can be efficiently blown to the plurality of turbine blades 5 and 5 provided on the outer peripheral surface of the impeller body 4. Therefore, in the case of the present embodiment, the driving efficiency and the stopping efficiency of the impeller 2 can be more sufficiently improved. Other configurations and operations are the same as those of the first embodiment described above.

本発明の実施例1を示す断面図。Sectional drawing which shows Example 1 of this invention. 図1のA−A断面図。AA sectional drawing of FIG. 本発明の実施例2を示す、図2と同様の図。The figure similar to FIG. 2 which shows Example 2 of this invention. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 図4のB−B断面図。BB sectional drawing of FIG. 従来構造の第2例を示す、図5と同様の図。The figure similar to FIG. 5 which shows the 2nd example of conventional structure.

符号の説明Explanation of symbols

1 主軸
2 羽根車
3 円輪部
4 羽根車本体
5 タービン羽根
6、6a、6b ハウジング
7 ラジアル静圧気体軸受
8 アキシアル静圧気体軸受
9 ラジアル軸受部材
10 給気通路
11 アキシアル軸受部材
12 排気孔
13 排気通路
14 タービンエアノズル孔
15 タービンエア供給通路
16 タービンエア供給口
17 ブレーキエアノズル孔
18 ブレーキエア供給口
19 回転検出センサ
20、20a、20b 円環状空間
21 凹部
22、22a タービンエアノズル
23、23a ブレーキエアノズル
DESCRIPTION OF SYMBOLS 1 Main shaft 2 Impeller 3 Ring part 4 Impeller body 5 Turbine blade 6, 6a, 6b Housing 7 Radial static pressure gas bearing 8 Axial static pressure gas bearing 9 Radial bearing member 10 Air supply passage 11 Axial bearing member 12 Exhaust hole 13 Exhaust passage 14 Turbine air nozzle hole 15 Turbine air supply passage 16 Turbine air supply port 17 Brake air nozzle hole 18 Brake air supply port 19 Rotation detection sensor 20, 20a, 20b Annular space 21 Concave portion 22, 22a Turbine air nozzle 23, 23a Brake air nozzle

Claims (4)

ハウジングと、このハウジングの内側に挿通した主軸と、この主軸の一部でこのハウジングの内側に配置される部分にこの主軸と同心に固定した、外周面に複数のタービン羽根を形成した羽根車と、上記ハウジングの内側に上記主軸及びこの羽根車を回転自在に支持する為の静圧気体軸受と、それぞれが上記羽根車の外周面の一部に近接対向する部分に設けられ、上記各タービン羽根に向け、上記羽根車を正転させる方向の圧縮空気を噴出する1乃至複数のタービンエア噴出口とを備えたエアタービン付スピンドル装置に於いて、上記ハウジングの内周面から1乃至複数本のタービンエアノズルを突出させ、これら各タービンエアノズルの先端開口を上記各タービンエア噴出口としている、エアタービン付スピンドル装置。   A housing, a main shaft inserted through the inside of the housing, and an impeller having a plurality of turbine blades formed on the outer peripheral surface, concentrically fixed to a portion of the main shaft disposed inside the housing, concentrically with the main shaft A hydrostatic gas bearing for rotatably supporting the main shaft and the impeller on the inner side of the housing, and each of the turbine blades is provided in a portion facing and facing a part of the outer peripheral surface of the impeller. In the spindle apparatus with an air turbine provided with one or more turbine air outlets for ejecting compressed air in a direction in which the impeller rotates in the forward direction, one or more A spindle apparatus with an air turbine in which a turbine air nozzle is protruded, and a tip opening of each turbine air nozzle is used as each turbine air outlet. それぞれが羽根車の外周面の円周方向一部に近接対向する部分に、この羽根車の外周面に形成した複数のタービン羽根に向け、この羽根車の正転を停止させる方向の圧縮空気を噴出する1乃至複数のブレーキエア噴出口を設けており、ハウジングの内周面のうちタービンエアノズルを突出させた部分以外の部分から1乃至複数のブレーキエアノズルを突出させ、これら各ブレーキエアノズルの先端開口を上記各ブレーキエア噴出口としている、請求項1に記載したエアタービン付スピンドル装置。   Compressed air in a direction to stop the forward rotation of the impeller is directed to a plurality of turbine blades formed on the outer peripheral surface of the impeller at portions facing each other in the circumferential direction of the outer peripheral surface of the impeller. One or a plurality of brake air outlets for jetting are provided, and one or a plurality of brake air nozzles are protruded from a portion other than a portion where the turbine air nozzle is protruded on the inner peripheral surface of the housing, and front end openings of the respective brake air nozzles The spindle device with an air turbine according to claim 1, wherein each of the brake air ejection ports is defined as the above. ブレーキエアノズルの先端開口縁部の形状を、羽根車の中心軸をその中心軸とする仮想円筒面又はこの仮想円筒面に対する接平面に沿った形状としている、請求項2に記載したエアタービン付スピンドル装置。   The spindle with an air turbine according to claim 2, wherein the edge of the opening edge of the brake air nozzle has a shape along a virtual cylindrical surface having a central axis of the impeller as a central axis or a tangential plane to the virtual cylindrical surface. apparatus. タービンエアノズルの先端開口縁部の形状を、羽根車の中心軸をその中心軸とする仮想円筒面又はこの仮想円筒面に対する接平面に沿った形状としている、請求項1〜3の何れか1項に記載したエアタービン付スピンドル装置。   The shape of the edge opening edge part of a turbine air nozzle is made into the shape along the tangential plane with respect to the virtual cylindrical surface which uses the central axis of an impeller as the central axis, or this virtual cylindrical surface. Spindle device with air turbine described in 1.
JP2005202683A 2005-07-12 2005-07-12 Spindle device with air turbine Expired - Fee Related JP4655794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202683A JP4655794B2 (en) 2005-07-12 2005-07-12 Spindle device with air turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202683A JP4655794B2 (en) 2005-07-12 2005-07-12 Spindle device with air turbine

Publications (3)

Publication Number Publication Date
JP2007023783A JP2007023783A (en) 2007-02-01
JP2007023783A5 JP2007023783A5 (en) 2008-08-21
JP4655794B2 true JP4655794B2 (en) 2011-03-23

Family

ID=37784911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202683A Expired - Fee Related JP4655794B2 (en) 2005-07-12 2005-07-12 Spindle device with air turbine

Country Status (1)

Country Link
JP (1) JP4655794B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128053A (en) * 2010-01-14 2011-07-20 施建勇 Direct-drive air pressure turbine
CN102135015A (en) * 2010-01-21 2011-07-27 施建勇 Pulse air pressure turbine machine
CN102639816B (en) * 2010-11-29 2015-01-07 日本精工株式会社 Air motor and electrostatic coating device
JP6762808B2 (en) 2016-08-30 2020-09-30 Ntn株式会社 Air turbine drive spindle
JP6896518B2 (en) * 2017-06-21 2021-06-30 Ntn株式会社 Spindle device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327409A (en) * 1942-10-30 1943-08-24 Fay A Farrar Prime mover

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194003A (en) * 1983-04-18 1984-11-02 Toshiba Corp Turbine for refrigerating cycle
JP3485595B2 (en) * 1993-04-28 2004-01-13 Ntn株式会社 Hydrostatic gas bearing spindle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327409A (en) * 1942-10-30 1943-08-24 Fay A Farrar Prime mover

Also Published As

Publication number Publication date
JP2007023783A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP3031532B1 (en) Rotating atomizer head coater
JP4655794B2 (en) Spindle device with air turbine
US20180345304A1 (en) Spindle device
JP5842547B2 (en) Spindle device and electrostatic coating device
WO2013065216A1 (en) Spindle device and electrostatic coating device
JP5929514B2 (en) Spindle device and electrostatic coating device
JP5891743B2 (en) Static pressure gas bearing spindle and electrostatic coating device
JP2009045518A (en) Atomization head for rotation atomization type coating apparatus
JP2008020001A (en) Spindle device
WO2018043071A1 (en) Air turbine drive spindle
JP2010036090A (en) Rotary spray coater
JP5929495B2 (en) Spindle device and electrostatic coating device
JP4729183B2 (en) Painting gun
JP2016033367A (en) Spindle device and electrostatic coating device
JP5736273B2 (en) Coating method and coating apparatus
JP7363108B2 (en) Spindle device for electrostatic coating machine
JP6648521B2 (en) Spindle device
JP2017025771A (en) Air turbine driving spindle
JP6648512B2 (en) Spindle device
JP6613846B2 (en) Spindle device
JP6613847B2 (en) Spindle device
JP2017094291A (en) Spindle device
JP2016036771A (en) Bell cup of rotary atomization type coating apparatus
JP2011041893A (en) Rotary atomization type coating device
JPS6154249A (en) Rotary atomizing electrostatic coating device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees