JP2013111727A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2013111727A
JP2013111727A JP2011262239A JP2011262239A JP2013111727A JP 2013111727 A JP2013111727 A JP 2013111727A JP 2011262239 A JP2011262239 A JP 2011262239A JP 2011262239 A JP2011262239 A JP 2011262239A JP 2013111727 A JP2013111727 A JP 2013111727A
Authority
JP
Japan
Prior art keywords
cutting edge
fiber
cutting
tool
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011262239A
Other languages
Japanese (ja)
Other versions
JP5743868B2 (en
Inventor
Masato Matsuzawa
正人 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011262239A priority Critical patent/JP5743868B2/en
Publication of JP2013111727A publication Critical patent/JP2013111727A/en
Application granted granted Critical
Publication of JP5743868B2 publication Critical patent/JP5743868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool that prevents cracks to be generated by baking and has high chipping resistance by using a composite fiber body composed of core materials and coating layers for a cutting edge part.SOLUTION: The cutting tool includes a tool body 12 and a cutting edge chip 14 provided on a mounting base of the tool body 12. The cutting edge part 18 of the cutting edge chip 14 comprises fibers of: a plurality of fiber-like core materials arranged side by side; and coating layers surrounding the outer peripheries of the core materials and having different compositions from the core materials. The fiber arrangement direction of the fibers at a flank 12 is bent relative to the ridge direction of a cutting edge 17, so as to form a larger angle than a lower face mounting base 13 side of the tool body 12 immediately below the ridge of the cutting edge 17.

Description

本発明は、特に耐欠損性および耐摩耗性が改善された切削工具に関する。   The present invention particularly relates to a cutting tool having improved fracture resistance and wear resistance.

金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミック、鋼などの各種材料からなる切削工具は、精密切削から汎用切削まで幅広く使用されているが、上記従来の切削工具では靭性が十分ではなく切刃の耐欠損性をより高めることが必要とされている。   Cutting tools widely used for metal cutting are widely used from precision cutting to general-purpose cutting, such as cemented carbide, cermet, ceramic and steel. Tools have insufficient toughness, and it is necessary to further improve the fracture resistance of the cutting edge.

そこで、特許文献1によれば、ダイヤモンド等からなる複合繊維体状の芯材の外周にWC等からなる被覆層を配置した靭性の高い複合繊維体が開示され、これを掘削工具等の刃先全周に複合繊維体を貼り付けることによって掘削工具の耐欠損性を改善することが提案されている。また、特許文献2では、繊維体の繊維の向きを力のかかる方向に揃えた切削工具が開示されている。   Therefore, according to Patent Document 1, a composite fiber body having high toughness in which a coating layer made of WC or the like is arranged on the outer periphery of a composite fiber body core material made of diamond or the like is disclosed. It has been proposed to improve the fracture resistance of excavation tools by attaching composite fiber bodies to the periphery. Moreover, in patent document 2, the cutting tool which aligned the direction of the fiber of the fiber body in the direction where force is applied is disclosed.

米国特許第6063502号公報US Pat. No. 6,063,502 特開2004−202597号公報JP 2004-202597 A

しかしながら、特許文献1には、掘削工具用としての具体例について記載されるが、旋削やフライス切削などの切削工具については記載されておらず、複合繊維体をこのような切削工具に応用する際の繊維体の特性を十分に発揮するための具体的な構造については全く検討されていない。また、特許文献2のように、切刃に対して繊維の向きをそろえる構造では、通常の切削加工に対しては高い耐欠損性を発揮するものの、突発的に異なる方向から衝撃がかかるような加工に対しては時として大きな欠損が発生する場合があった。また、同時焼成またはロウ付けによって他の部材と接合する場合、接合部にクラックや剥離が発生する場合があった。   However, Patent Document 1 describes a specific example for an excavating tool, but does not describe a cutting tool such as turning or milling, and applies a composite fiber body to such a cutting tool. A specific structure for sufficiently exhibiting the characteristics of the fibrous body has not been studied at all. Moreover, in the structure which aligns the direction of the fiber with respect to the cutting edge as in Patent Document 2, although high fracture resistance is exhibited for normal cutting, an impact is suddenly applied from different directions. In some cases, large defects sometimes occur during machining. Moreover, when joining with another member by simultaneous baking or brazing, a crack and peeling may generate | occur | produce in the junction part.

本発明の切削工具は、工具本体と、該工具本体の取付台座設けられた切刃チップとからなり、該切刃チップの切刃部が、複数本が並んだ繊維状の芯材と該芯材の外周を取り囲んで該芯材とは異なる組成の被覆層との複合繊維体からなり、逃げ面における前記複合繊維体の繊維配列方向が、切刃の稜線方向に対して、前記切刃稜線直下では前記工具本体にロウ付けされる下面側よりも大きい角度となるように屈曲しているものである。   The cutting tool of the present invention comprises a tool body and a cutting blade tip provided on the mounting base of the tool body, and the cutting blade portion of the cutting blade chip includes a fibrous core material in which a plurality of blades are arranged and the core. The cutting edge ridge line is formed of a composite fiber body that surrounds the outer periphery of the material and has a coating layer having a composition different from that of the core material, and the fiber arrangement direction of the composite fiber body on the flank is relative to the ridge line direction of the cutting edge Directly below, it is bent so as to have a larger angle than the lower surface side brazed to the tool body.

本発明の切削工具によれば、切刃チップが工具本体の取り付け台座にロウ付けされるか、または裏打部材と切刃チップとが同時焼成された裏打部材をロウ付けして、工具本体の取付台座に切刃チップがもうけられているとともに、切刃部となる複合繊維体の繊維の配列が、切刃稜線直下では工具本体にロウ付けされる下面側よりも切刃の稜線に対して大きい角度となるように屈曲していることによって、切削時に切刃部にかかる衝撃を分散できることから耐欠損性が向上するとともに、同時焼成される裏打部材または切刃部の直下に存在するロウ付け部との密着性を高めて、複合繊維体と裏打部材またはロウ付け部との界面での剥離やクラックの発生を抑制できる。   According to the cutting tool of the present invention, the cutting edge tip is brazed to the mounting base of the tool body, or the backing member obtained by simultaneously firing the backing member and the cutting edge tip is brazed to attach the tool body. A cutting edge tip is provided on the pedestal, and the fiber arrangement of the composite fiber body that becomes the cutting edge portion is larger than the lower surface side brazed to the tool body directly below the cutting edge ridge line with respect to the ridge line of the cutting edge By bending so as to form an angle, the impact applied to the cutting edge during cutting can be dispersed, so that the fracture resistance is improved, and the brazing part that exists immediately below the backing member or cutting edge that is simultaneously fired It is possible to suppress the occurrence of peeling and cracks at the interface between the composite fiber body and the backing member or the brazed portion.

本発明にかかる切削工具の一実施形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of the cutting tool concerning this invention. 図1の切削工具の一実施形態について、(a)逃げ面から見た組織写真、(b)(a)のA部を拡大した模式図である。FIG. 2A is a schematic diagram of an embodiment of the cutting tool of FIG. 1, in which (a) a structural photograph viewed from the flank, and (b) an enlarged view of part A of (a). 図1、2の複合繊維体を構成する繊維の構造を示す斜視図である。It is a perspective view which shows the structure of the fiber which comprises the composite fiber body of FIG. 図3の繊維を集束した複合繊維体の構造を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the structure of the composite fiber body which bundled the fiber of FIG. 繊維の製造方法を説明するための図であり、シングルタイプの繊維の製造方法を示す工程図である。It is a figure for demonstrating the manufacturing method of a fiber, and is process drawing which shows the manufacturing method of a single type fiber. 繊維の製造方法を説明するための図であり、図5のシングルタイプの繊維からマルチタイプの繊維を製造する方法を示す工程図である。It is a figure for demonstrating the manufacturing method of a fiber, and is process drawing which shows the method of manufacturing a multitype fiber from the single type fiber of FIG. 繊維を屈曲させる方法を説明するための工程図である。It is process drawing for demonstrating the method of bending a fiber.

以下、本発明の一実施形態について詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail.

図1は本発明の切削工具を示す概略斜視図であり、図2は、図1の切削工具の一実施形態について、(a)逃げ面から見た組織写真、(b)(a)のA部を拡大した模式図である。   FIG. 1 is a schematic perspective view showing a cutting tool of the present invention, and FIG. 2 is (a) a structural photograph viewed from the flank, (b) A of FIG. It is the schematic diagram which expanded the part.

図1に示す切削工具11は、平板状をなし、工具本体12の角部に形成された取付台座13には、裏打部材19と切刃部18である複合繊維体20とが一体化された切刃チップ14がロウ付けされている。また、この切削工具11によれば、すくい面15と逃げ面16との交差稜線部に切刃17が構成されている。さらに、切削工具11の中央部には、バイトなどの工具に取り付けるためのクランプねじ等が挿通される取付孔25が形成されている。なお、図1では、切刃部18である複合繊維体20を裏打部材19と一体化することなく、切刃部18である複合繊維体20を工具本体12の取付台座13に直接ロウ付けするものであってもよい。   The cutting tool 11 shown in FIG. 1 has a flat plate shape, and the backing member 19 and the composite fiber body 20 that is the cutting edge portion 18 are integrated with the mounting base 13 formed at the corner of the tool body 12. The cutting edge tip 14 is brazed. Further, according to the cutting tool 11, the cutting edge 17 is configured at the intersecting ridge line portion between the rake face 15 and the flank face 16. Further, an attachment hole 25 through which a clamp screw or the like for attaching to a tool such as a cutting tool is inserted is formed at the center of the cutting tool 11. In FIG. 1, the composite fiber body 20 that is the cutting edge portion 18 is directly brazed to the mounting base 13 of the tool body 12 without integrating the composite fiber body 20 that is the cutting edge portion 18 with the backing member 19. It may be a thing.

本発明によれば、切刃チップ14の切刃部18が、図3に示すような、繊維状の芯材32と芯材32の外周を取り囲んで芯材32とは異なる組成の被覆層33との繊維31が集束されて、複数本が並んだ芯材32の周囲を被覆層33が取り囲んだ図2の複合繊維体20からなり、図2に示すように、逃げ面16における複合繊維体20の繊維配列方向が、切刃17の稜線方向に対して、切刃17の稜線直下がなす角度αが、工具本体2にロウ付けされる複合繊維体20の下面直上22である下側取付台座13a側がなす角度βよりも大きい角度となるように屈曲している構成からなる。すなわち、複合繊維体20は、図2に示すように、取付台座側の下面では繊維31の長手方向に近い向きで向き、切刃17の稜線直下では、繊維31の断面が上面を向くように曲がっている。この構成によれば、切削時に切刃17にかかる衝撃が屈曲部に分散されることから、大きな欠損が発生することを抑制できるとともに、複合繊維体20の直下の、同時焼成される裏打部材19またはロウ付けされるロウ付け部21との密着性を高めて、複合繊維体20と裏打部材19またはロウ付け部21との界面での剥離やクラックの発生を抑制できる。なお、ロウ付け部21は工具本体12の取付台座13の表面に形成される。   According to the present invention, the cutting edge 18 of the cutting edge tip 14 surrounds the outer periphery of the fibrous core 32 and the core 32 as shown in FIG. 2 is composed of a composite fiber body 20 of FIG. 2 in which a coating layer 33 surrounds a core 32 in which a plurality of fibers 31 are arranged. As shown in FIG. An angle α formed by the fiber arrangement direction 20 directly below the ridge line of the cutting edge 17 with respect to the ridge line direction of the cutting edge 17 is the lower attachment in which the composite fiber body 20 brazed to the tool body 2 is directly above the lower surface 22. It is configured to be bent so as to have an angle larger than the angle β formed by the pedestal 13a side. That is, as shown in FIG. 2, the composite fiber body 20 faces in the direction close to the longitudinal direction of the fiber 31 on the lower surface on the mounting base side, and the cross section of the fiber 31 faces the upper surface immediately below the ridge line of the cutting blade 17. bent. According to this configuration, since the impact applied to the cutting edge 17 at the time of cutting is dispersed in the bent portion, it is possible to suppress the occurrence of a large defect, and at the same time, the backing member 19 to be simultaneously fired directly under the composite fiber body 20. Or the adhesiveness with the brazing part 21 to be brazed can be enhanced, and the occurrence of peeling or cracking at the interface between the composite fiber body 20 and the backing member 19 or the brazing part 21 can be suppressed. The brazing portion 21 is formed on the surface of the mounting base 13 of the tool body 12.

ここで、切刃17の稜線直下における複合繊維体20の繊維31の切刃17の稜線とがなす望ましい角度αは55〜90°であり、工具本体12にロウ付けされる下面直上22における繊維31の切刃17の稜線とがなす角度βの望ましい範囲は0〜45°である。なお、本発明において、複合繊維体20の繊維31が切刃17の稜線となす角度は、90°以下の鋭角とする。また、複合繊維体20の繊維31が切刃17の稜線となす角度の測
定は、角度の測定が可能な切刃17の稜線のうちの直線部分について測定し、各繊維31と切刃17の稜線とのなす角度をそれぞれ測定して、その平均値を算出する。
Here, the desired angle α formed by the ridge line of the cutting edge 17 of the fiber 31 of the composite fiber body 20 immediately below the ridge line of the cutting edge 17 is 55 to 90 °, and the fiber in the upper surface 22 just above the lower surface to be brazed to the tool body 12. A desirable range of the angle β formed by the ridge lines of the 31 cutting edges 17 is 0 to 45 °. In the present invention, the angle formed by the fiber 31 of the composite fiber body 20 with the ridgeline of the cutting edge 17 is an acute angle of 90 ° or less. Moreover, the measurement of the angle which the fiber 31 of the composite fiber body 20 makes with the ridgeline of the cutting edge 17 is measured for the straight line portion of the ridgeline of the cutting edge 17 capable of measuring the angle, and each fiber 31 and the cutting edge 17 are measured. The angle formed with the ridge line is measured, and the average value is calculated.

また、切刃チップ14の複合繊維体20の下側に超硬合金からなる裏打部材19が配置されている場合には、複合繊維体20と裏打部材19との密着性が高くて剥離しにくく、かつ裏打部材19と工具本体2とも同じ超硬合金同士であるためにロウ付け強度が高くなるとの効果がある。   Further, when the backing member 19 made of a cemented carbide is disposed on the lower side of the composite fiber body 20 of the cutting edge tip 14, the adhesion between the composite fiber body 20 and the backing member 19 is high and is difficult to peel off. In addition, since the backing member 19 and the tool body 2 are made of the same cemented carbide, there is an effect that the brazing strength is increased.

図3(a)(b)は、本発明において用いられている複合繊維体20の基本となる繊維の概略斜視図である。(a)の繊維31sは、芯材32とこの芯材32の外周を被覆し芯材32とは異なる組成の材料からなる被覆層33とからなるシングルタイプの繊維体であり、(b)の繊維31mは、(a)のシングルタイプの繊維31sの集合体を伸延したものでマルチタイプの繊維である。本発明によれば、切刃17を形成する複合繊維体20は、このような(a)または(b)の繊維31s、31mを集束した構造体によって形成されている。望ましくは、(b)のマルチタイプの繊維31mを用いることが耐欠損性に優れる。   3 (a) and 3 (b) are schematic perspective views of fibers serving as the basis of the composite fiber body 20 used in the present invention. The fiber 31 s of (a) is a single type fiber body that includes a core material 32 and a coating layer 33 that covers the outer periphery of the core material 32 and is made of a material having a composition different from that of the core material 32. The fiber 31m is a multi-type fiber obtained by extending the assembly of the single-type fibers 31s of (a). According to the present invention, the composite fiber body 20 forming the cutting edge 17 is formed by a structure in which the fibers 31s and 31m of (a) or (b) are converged. Desirably, using the multi-type fiber 31m of (b) is excellent in fracture resistance.

具体的には、図4(a)に示すように、複合繊維体20は、複数の繊維31を再度束ねて、直径が10mm以上のサイズに共押出成形した円柱状のロッドを所定の厚みに切り出した複合シート35、または図4(b)に示すように、繊維31を幅方向に並べた複合シート36を所定の厚みに切り出したものからなる。このような構成からなる複合繊維体20は、複数本が並んだ繊維状の芯材32と芯材32の外周を取り囲んで芯材32とは異なる組成の被覆層33とから構成される。なお、図4(a)(b)では複合シート35、36の繊維31の断面は円形で表わしているが、これは焼成前の繊維31を並べた状態を表わしており、焼成後の複合繊維体20においては繊維31の断面は六角形に変形する。   Specifically, as shown in FIG. 4 (a), the composite fiber body 20 includes a cylindrical rod having a predetermined thickness obtained by bundling a plurality of fibers 31 and co-extrusion to a size of 10 mm or more in diameter. As shown in FIG. 4B, the composite sheet 35 cut out or a composite sheet 36 in which the fibers 31 are arranged in the width direction is cut out to a predetermined thickness. The composite fiber body 20 having such a configuration includes a fibrous core material 32 in which a plurality of fibers are arranged, and a coating layer 33 that surrounds the outer periphery of the core material 32 and has a composition different from that of the core material 32. 4 (a) and 4 (b), the cross section of the fiber 31 of the composite sheets 35 and 36 is represented by a circle. This represents a state in which the fibers 31 before firing are arranged, and the composite fibers after firing. In the body 20, the cross section of the fiber 31 is deformed into a hexagon.

本発明によれば、図1、2のように、工具本体12の切刃部分を切り欠いて繊維31からなる複合繊維体20を有する切刃チップ14を取付台座13にはめ込んでロウ付け等で固定することによって、工具の切刃形状に対する繊維31s、31mの繊維方向を容易に制御することができる。この手法では、複数のコーナーに切刃を設ける際にも繊維31s、31mの配列が容易に行えるというメリットがある。   According to the present invention, as shown in FIGS. 1 and 2, the cutting edge portion 14 of the tool main body 12 is cut out and the cutting edge tip 14 having the composite fiber body 20 made of the fiber 31 is fitted into the mounting base 13 and brazed or the like. By fixing, the fiber direction of the fibers 31s and 31m with respect to the cutting edge shape of the tool can be easily controlled. This technique has an advantage that the fibers 31s and 31m can be easily arranged even when cutting edges are provided at a plurality of corners.

本発明において用いる繊維31s、31mの芯材32を構成する材質としては、立方晶窒化硼素(以下cBNとする)20〜99質量%を、周期律表4a、5a、6a族金属およびシリコン、アルミニウムの炭化物、窒化物、炭窒化物、硼素化物および酸化物と、鉄族金属の1種以上から選ばれる結合材1〜80質量%にて結合してなるcBN焼結体が好適に使用可能である。   As a material constituting the core material 32 of the fibers 31s and 31m used in the present invention, cubic boron nitride (hereinafter referred to as cBN) 20 to 99% by mass is included in the periodic table 4a, 5a and 6a group metals and silicon and aluminum. A cBN sintered body obtained by bonding a carbide, nitride, carbonitride, boride, and oxide of 1% to 80% by mass of a binder selected from one or more of iron group metals can be suitably used. is there.

また、芯材32を構成する他の材質としては、ダイヤモンド60〜99質量%を、鉄族金属、炭酸塩、硫酸塩および水酸化物から選ばれる少なくとも一種、特にコバルトおよび/またはニッケルからなる結合金属1〜40質量%にて結合してなるダイヤモンド焼結体が好適に使用可能である。なお、ダイヤモンド焼結体中には適宜周期律表4a、5aおよび6a族金属の炭化物、窒化物および炭窒化物の1種以上からなる硬質粒子を含有せしめることも可能である。   Moreover, as another material which comprises the core material 32, the bond which consists of 60-99 mass% of diamonds at least 1 type chosen from an iron group metal, carbonate, a sulfate, and a hydroxide, especially cobalt and / or nickel. A diamond sintered body formed by bonding at 1 to 40% by mass of metal can be suitably used. Note that the diamond sintered body may appropriately contain hard particles made of one or more of carbides, nitrides, and carbonitrides of the periodic table 4a, 5a, and 6a metals.

さらに、芯材32を構成する材質としては、周期律表4a、5aおよび6a族金属の炭化物、窒化物および炭窒化物の1種以上からなる第1の硬質粒子、特に炭化タングステン、炭化チタン、炭窒化チタン、窒化チタン、炭化タンタル、炭化ニオブ、炭化ジルコニウム、窒化ジルコニウム、炭化バナジウム、炭化クロムおよび炭化モリブデンの群から選ばれる少なくとも1種、さらには炭化タングステン、炭化チタンまたは炭窒化チタンの群か
ら選ばれる少なくとも1種65〜98質量%を、鉄、コバルトおよびニッケルの群から選ばれる少なくとも1種、特にコバルトおよび/またはニッケルからなる結合金属2〜35質量%にて結合してなる第1の硬質焼結体、特に超硬合金またはサーメットが好適に使用可能である。
Further, as the material constituting the core member 32, first hard particles composed of one or more of carbides, nitrides and carbonitrides of the periodic table 4a, 5a and 6a metals, particularly tungsten carbide, titanium carbide, At least one selected from the group consisting of titanium carbonitride, titanium nitride, tantalum carbide, niobium carbide, zirconium carbide, zirconium nitride, vanadium carbide, chromium carbide and molybdenum carbide, and further from the group of tungsten carbide, titanium carbide or titanium carbonitride First selected by binding at least one selected from 65 to 98% by weight with at least one selected from the group consisting of iron, cobalt and nickel, in particular from 2 to 35% by weight of a binding metal comprising cobalt and / or nickel. A hard sintered body, particularly a cemented carbide or cermet, can be suitably used.

また、芯材32を構成するさらに他の材質として、上記硬質焼結体以外にも、周期律表4a、5aおよび6a族金属、アルミニウム、シリコンの群から選ばれる少なくとも1種の酸化物、炭化物、窒化物および炭窒化物からなる第1のセラミックス、中でもアルミナ−炭化チタン(炭窒化チタン)、炭化珪素、窒化珪素、ジルコニア、硼化チタンの群から選ばれる少なくとも1種、さらにはアルミナ−炭化チタン(炭窒化チタン)および/または炭化珪素が好適に使用可能である。なお、第1のセラミックス中には適宜焼結助剤成分を含有せしめることも可能である。   In addition to the hard sintered body, at least one oxide or carbide selected from the group of periodic table 4a, 5a and 6a metals, aluminum, and silicon can be used as another material constituting the core member 32. , A first ceramic composed of nitride and carbonitride, especially at least one selected from the group consisting of alumina-titanium carbide (titanium carbonitride), silicon carbide, silicon nitride, zirconia, titanium boride, and further alumina-carbonized Titanium (titanium carbonitride) and / or silicon carbide can be suitably used. In addition, it is also possible to appropriately include a sintering aid component in the first ceramic.

一方、芯材32の外周を覆う被覆層33の材質としては、芯材32とは異なる組成または材質の硬質焼結体またはセラミックスを用いる。また、鉄、コバルトおよびニッケルなどの金属も単独で使用可能である。   On the other hand, as the material of the covering layer 33 covering the outer periphery of the core material 32, a hard sintered body or ceramics having a composition or material different from that of the core material 32 is used. Also, metals such as iron, cobalt and nickel can be used alone.

さらに、芯材32−被覆層33との組み合わせは、例えば同材質で組成の異なる構成、または、超硬合金−サーメット、超硬合金−cBN焼結体、超硬合金−ダイヤモンド焼結体、超硬合金−アルミナ、超硬合金−窒化珪素、サーメット−超硬合金、サーメット−cBN焼結体、サーメット−ダイヤモンド焼結体、サーメット−アルミナ、サーメット−窒化珪素、(アルミナ,炭窒化チタン)−アルミナ、炭化珪素−窒化珪素、(炭化珪素、窒化珪素)−窒化珪素、炭化珪素−ダイヤモンド焼結体、cBN焼結体−サーメット、cBN焼結体−超硬合金、およびダイヤモンド焼結体−超硬合金の群から選ばれる1種が特に好適に使用可能である。   Further, the combination of the core material 32 and the covering layer 33 may be, for example, the same material and a different composition, or a cemented carbide-cermet, cemented carbide-cBN sintered body, cemented carbide-diamond sintered body, Hard alloy-alumina, cemented carbide-silicon nitride, cermet-cemented carbide, cermet-cBN sintered body, cermet-diamond sintered body, cermet-alumina, cermet-silicon nitride, (alumina, titanium carbonitride)-alumina , Silicon carbide-silicon nitride, (silicon carbide, silicon nitride) -silicon nitride, silicon carbide-diamond sintered body, cBN sintered body-cermet, cBN sintered body-superhard alloy, and diamond sintered body-superhard One kind selected from the group of alloys can be used particularly preferably.

一方、芯材32をなす焼結体の結晶粒子の平均粒径は、繊維31s、31mの硬度および強度向上の点、および芯材32と被覆層33中の結合材(結合金属、焼結助剤)の含有量を適正化する点で0.05〜10μm、特に0.1〜3μmであることが望ましく、他方、被覆層33をなす結晶粒子の平均粒径は、繊維31s、31mの靭性向上の点で、0.01〜5μm、特に0.01〜2μmであることが望ましい。   On the other hand, the average particle size of the crystal particles of the sintered body forming the core material 32 is that the hardness and strength of the fibers 31s and 31m are improved, and the bonding material (bonding metal, sintering aid) in the core material 32 and the coating layer 33. In view of optimizing the content of the agent, it is preferably 0.05 to 10 μm, particularly 0.1 to 3 μm. On the other hand, the average particle size of the crystal particles forming the coating layer 33 is the toughness of the fibers 31 s and 31 m. In terms of improvement, it is desirable that the thickness is 0.01 to 5 μm, particularly 0.01 to 2 μm.

また、繊維31のサイズは、工具としての耐欠損性を高めるために、芯材32の直径が5〜300μm、被覆層33を含めた繊維31の1本の直径が6〜500μmであることが望ましい。なお、芯材32の直径は芯材32の断面積から芯材32の形状を円に換算した際の直径として算出する。また、被覆層33の厚みは、隣接する繊維31の芯材32との距離の半分の厚みとして算出する。   Further, the size of the fiber 31 is such that the diameter of the core material 32 is 5 to 300 μm and the diameter of one fiber 31 including the covering layer 33 is 6 to 500 μm in order to improve the fracture resistance as a tool. desirable. The diameter of the core material 32 is calculated as the diameter when the shape of the core material 32 is converted into a circle from the cross-sectional area of the core material 32. Further, the thickness of the covering layer 33 is calculated as a thickness that is half the distance from the core 32 of the adjacent fiber 31.

ここで、ロウ付けされる下面側における複合繊維体20の平均繊維径dが切刃17の稜線直下における複合繊維体20の平均繊維径dよりも小さい構成からなることによって、切刃17における耐摩耗性が高く、かつ切刃チップ14の下面側における裏打部材19またロウ付け部21との耐剥離性を高めることができる。 Here, the cutting blade 17 has a configuration in which the average fiber diameter d 1 of the composite fiber body 20 on the lower surface side to be brazed is smaller than the average fiber diameter d 2 of the composite fiber body 20 immediately below the ridge line of the cutting blade 17. In addition, the abrasion resistance of the cutting edge tip 14 can be increased, and the peeling resistance of the backing member 19 and the brazing portion 21 on the lower surface side of the cutting edge tip 14 can be improved.

次に、本発明の切削工具の製造方法について説明する。まず、本発明において用いられる複合繊維体20の製造方法について説明する。図5は、図3の繊維31s、31mの製造方法を説明するための工程図である。   Next, the manufacturing method of the cutting tool of this invention is demonstrated. First, the manufacturing method of the composite fiber body 20 used in the present invention will be described. FIG. 5 is a process diagram for explaining a method of manufacturing the fibers 31s and 31m of FIG.

複合繊維体を作製するにあたり、まず、芯材用成形体を作製する。芯材用成形体を作製する方法は基本的には公知の粉末冶金法、つまり原料粉末と結合剤(バインダ)とを混合して成形する方法によって作製することができる。   In producing the composite fiber body, first, a core body molded body is produced. The core material can be basically produced by a known powder metallurgy method, that is, a method in which a raw material powder and a binder (binder) are mixed and molded.

一方、芯材用成形体31aとは異なる組成の被覆層をなす材料を前述したバインダとともに混錬してプレス成形、押出成形または鋳込み成形等の成形方法により半割円筒形状の2本の被覆層用成形体31bを作製し、この被覆層用成形体31bを芯材用成形体31aの外周を覆うように配置した成形体31cを作製する(図5(a)−(c)参照)。   On the other hand, two half-cylindrical coating layers are formed by kneading a material having a coating layer having a composition different from that of the core material molded body 31a together with the above-described binder by a molding method such as press molding, extrusion molding or casting. A molded body 31b is produced, and a molded body 31c is produced in which the coating body molded body 31b is arranged so as to cover the outer periphery of the core material molded body 31a (see FIGS. 5A to 5C).

そして、押出機100を用いて芯材用成形体31aと被覆層用成形体31bとからなる上記成形体31cを共押出成形することにより、芯材用成形体31aの周囲に被覆層用成形体31bが被覆され、細い径に伸延された図3(a)のシングルタイプの繊維成形31sを作製することができる(図5(d)参照)。   Then, by using the extruder 100, the molded body 31c composed of the core material molded body 31a and the coated layer molded body 31b is coextruded to form a coated layer molded body around the core molded body 31a. The single-type fiber molding 31s shown in FIG. 3A covered with 31b and extended to a thin diameter can be produced (see FIG. 5D).

また、繊維31の形成にあたり、図6に示すように、上記共押出した長尺状の繊維成形体31sを複数本集束した集束体34を再度共押出成形することによって、繊維密度の高いマルチタイプの繊維31mを作製することができる。   Further, in forming the fiber 31, as shown in FIG. 6, a multi-type having a high fiber density is formed by co-extrusion molding of the converging body 34 obtained by converging a plurality of the co-extruded long fiber molded bodies 31s. Fiber 31m can be produced.

次に、図4(a)に示したように、この長尺状の繊維成形体31s、31mを整列させて直径が10mm以上のサイズに共押出成形した後、所定の厚みに切り出すことによって複合シート35を作製するか、または図4(b)に示したように、繊維成形体31s、31mを集束して、所望によって所定の厚みに切断することにより複合シート36を得る。   Next, as shown in FIG. 4A, the long fiber molded bodies 31s and 31m are aligned and coextruded to a size of 10 mm or more in diameter, and then cut into a predetermined thickness to form a composite. The composite sheet 36 is obtained by preparing the sheet 35 or converging the fiber molded bodies 31s and 31m and cutting them to a predetermined thickness as desired, as shown in FIG. 4B.

そして、図7に示すように、複合シート35、36を、超硬合金等の硬質焼結体で形成された上面の中央に凹部37を有する裏打部材19の凹部37内に収納して、複合シート35、36を上面から加圧して変形させることにより繊維成形体31s、31mを所定の方向に屈曲させる。このとき、複合シート35のサイズと凹部形状の裏打部材19の凹部37のサイズを調整することによって、繊維成形体31s、31mの屈曲状態を変化させることができる。   Then, as shown in FIG. 7, the composite sheets 35 and 36 are accommodated in the concave portion 37 of the backing member 19 having the concave portion 37 at the center of the upper surface formed of a hard sintered body such as cemented carbide. The fiber molded bodies 31s and 31m are bent in a predetermined direction by pressing and deforming the sheets 35 and 36 from the upper surface. At this time, the bending state of the fiber molded bodies 31s and 31m can be changed by adjusting the size of the composite sheet 35 and the size of the concave portion 37 of the concave backing member 19.

その後、複合シート35を300〜700℃で10〜200時間で昇温または保持させて脱バインダ処理し、超高圧装置内にこの複合シート35を挿入した裏打部材19を配置して、4.5〜5.5GPaの圧力をかけ、1500〜1600℃で10〜20分間焼成する。なお、裏打部材19は、この焼成によって焼成された複合繊維体20と一体化する。   Thereafter, the composite sheet 35 is heated or held at 300 to 700 ° C. for 10 to 200 hours to remove the binder, and the backing member 19 in which the composite sheet 35 is inserted is placed in the ultrahigh pressure apparatus. Baking is performed at 1500-1600 ° C. for 10-20 minutes under a pressure of ˜5.5 GPa. The backing member 19 is integrated with the composite fiber body 20 fired by this firing.

この複合繊維体20は、切削工具11の切刃17との関係が前述したように所定の角度αとなるように、ワイヤー放電加工機、切削、研磨等で切刃形状に加工する。そして、裏打部材19と複合繊維体20とが一体化された切刃チップ14を、取付台座13に銀ロウなどを用いてロウ付けする。なお、複合繊維体20に裏打部材19を取り付けず、複合繊維体20を工具本体12に直接ロウ付けすることも可能である。   The composite fiber body 20 is processed into a cutting edge shape by a wire electric discharge machine, cutting, polishing, or the like so that the relationship with the cutting edge 17 of the cutting tool 11 is a predetermined angle α as described above. Then, the cutting edge chip 14 in which the backing member 19 and the composite fiber body 20 are integrated is brazed to the mounting base 13 using silver solder or the like. It is also possible to braze the composite fiber body 20 directly to the tool body 12 without attaching the backing member 19 to the composite fiber body 20.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
実施例
平均粒径1.5μmのcBN粉末に、TiC粉末、AlN粉末、有機バインダとしてセルロース、ポリエチレングリコールを、溶剤としてポリビニルアルコールを総量で100体積部加えて混錬して、直径が20mmの円柱形状にプレス成形して芯材用成形体を作製した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to a following example.
Example CBN powder having an average particle diameter of 1.5 μm, TiC powder, AlN powder, cellulose, polyethylene glycol as an organic binder, and 100 parts by volume of polyvinyl alcohol as a solvent are added and kneaded to form a cylinder having a diameter of 20 mm. The core was formed by press molding into a shape.

一方、平均粒径1.5μmのcBN粉末に、TiN粉末、AlN粉末、有機バインダとしてセルロース、ポリエチレングリコールを、溶剤としてポリビニルアルコールを総量で
100体積部加えて混錬して、半割円筒形状の厚さが1mmの被覆層用成形体をプレス成形にて2つ作製し、これらを前記芯材用成形体の外周を覆うように配置して複合繊維体を作製した。
On the other hand, cBN powder having an average particle size of 1.5 μm, TiN powder, AlN powder, cellulose as an organic binder, polyethylene glycol, and 100 parts by volume of polyvinyl alcohol as a solvent are added and kneaded to form a halved cylindrical shape. Two coating layers for the coating layer having a thickness of 1 mm were produced by press molding, and these were arranged so as to cover the outer periphery of the core material molding to produce a composite fiber body.

そして、上記複合繊維体を共押出して直径が約2mmの伸延された複合成形体を作製した後、この伸延された複合成形体100本を集束して再度共押出成形し、直径が1mmのマルチフィラメント構造の複合繊維体を作製した。   Then, the composite fiber body is coextruded to produce a stretched composite molded body having a diameter of about 2 mm, and then the 100 stretched composite molded bodies are converged and coextruded again to obtain a multi-stretch having a diameter of 1 mm. A composite fiber body having a filament structure was produced.

次に、上記マルチフィラメント構造の複合繊維成形体を100mmの長さにカットし、図4(a)の方向に整列させた成形体を作製した。   Next, the composite fiber molded body having the multifilament structure was cut to a length of 100 mm, and a molded body aligned in the direction of FIG.

その後、この積層体を直径が20mmで深さが5mmの凹部を有する超硬合金からなる裏打部材の凹部内に配し、この状態で複合繊維成形体に15MPaの圧力をかけて、焼成
後の繊維配列が表1の状態となるように変形させた。そして、300〜700℃まで100時間で昇温することによって脱バインダ処理を行った後、超高圧装置に配置し、5GPa、1450℃×15分の条件で焼成し、複合構造体と裏打部材が一体化された切刃チップを作製した。その後、この切刃チップを加工して、逃げ面における繊維方向が表1となるように切り出して、裏打部材を超硬合金からなる工具本体の取付台座に、銀ロウを用いて700℃でロウ付けした。
Thereafter, this laminate was placed in a concave portion of a backing member made of a cemented carbide having a concave portion with a diameter of 20 mm and a depth of 5 mm. In this state, a pressure of 15 MPa was applied to the composite fiber molded body, The fiber array was deformed so as to be in the state shown in Table 1. And after performing a binder removal process by heating up to 300-700 degreeC in 100 hours, it arrange | positions to an ultrahigh pressure apparatus and baked on 5GPa and 1450 degreeC * 15 minute conditions, and a composite structure and a backing member are An integrated cutting edge tip was produced. Thereafter, this cutting edge tip is processed and cut so that the fiber direction on the flank face is as shown in Table 1, and the backing member is brazed at 700 ° C. using silver brazing on a mounting base of a tool body made of cemented carbide. I attached.

上記のようにして作製した各切削工具を用いて、切削性能を評価した。
被削材: SCM415マルH浸炭焼入鋼
切込み量ap:0.2mm
切削速度Vc:150m/分
送りf:0.15mm/rev
切削環境:湿式
評価項目:8個穴付きワークの端面旋削加工にて、欠損またはチッピングが発生するまでの断続加工衝撃回数(ヒット数)およびその時の複合繊維体の下面の状態
Cutting performance was evaluated using each cutting tool produced as described above.
Work material: SCM415 Maru H carburized and hardened steel cutting depth ap: 0.2 mm
Cutting speed Vc: 150 m / min Feed f: 0.15 mm / rev
Cutting environment: Wet evaluation items: The number of interrupted machining impacts (number of hits) until chipping or chipping occurs in end turning of a workpiece with 8 holes, and the state of the bottom surface of the composite fiber body at that time

表1から明らかなとおり、逃げ面における繊維の角度が切刃稜線直下では工具本体にロウ付けされる下面側よりも大きい角度となるように屈曲している試料No.1〜5では、加工可能な衝撃回数が多く、特に下面側の繊維の角度が10〜45°の試料No.1〜4では、良好なロウ付け状態を示した。これに対して、逃げ面における繊維の角度が切刃稜線直下と工具本体にロウ付けされる下面側とが同じで屈曲していない試料No.6、および逃げ面において繊維を切刃稜線と平行な方向に配列させて、切刃稜線直下と工具本体に
ロウ付けされる下面側とがともに0°の試料No.7では、いずれも衝撃回数が少ない状態で欠損した。
As can be seen from Table 1, the sample No. 2 bent so that the angle of the fiber on the flank face is larger than the lower surface side brazed to the tool body immediately below the cutting edge ridge line. Nos. 1 to 5 have a large number of impacts that can be processed. In 1-4, the favorable brazing state was shown. On the other hand, the angle of the fiber on the flank is the same between the ridge line directly below the cutting edge ridge line and the lower surface side brazed to the tool body, and the sample No. 6 and the flank face in which the fibers are arranged in a direction parallel to the cutting edge ridge line, and the sample number of 0 ° between the part directly below the cutting edge ridge line and the lower surface side brazed to the tool body. No. 7 was lost in a state where the number of impacts was small.

11 切削工具
12 工具本体
13 取付台座
13a 下側取付台座
14 切刃チップ
15 すくい面
16 逃げ面
17 切刃
18 切刃部
19 裏打部材
20 複合繊維体
21 ロウ付け部材
22 複合繊維体の下面直上
25 取付孔
31 繊維
32 芯材
33 被覆層
35、36 複合シート
37 凹部
DESCRIPTION OF SYMBOLS 11 Cutting tool 12 Tool main body 13 Mounting base 13a Lower side mounting base 14 Cutting edge tip 15 Rake face 16 Flank face 17 Cutting edge 18 Cutting edge part 19 Backing member 20 Composite fiber body 21 Brazing member 22 Right above the lower surface of the composite fiber body 25 Mounting hole 31 Fiber 32 Core material 33 Coating layer 35, 36 Composite sheet 37 Recess

Claims (3)

工具本体と、該工具本体の取付台座に設けられた切刃チップとからなり、
該切刃チップの切刃部が、複数本が並んだ繊維状の芯材と該芯材の外周を取り囲み該芯材とは異なる組成の被覆層との複合繊維体からなり、
逃げ面における前記複合繊維体の繊維配列方向が、切刃稜線方向に対して、前記切刃稜線直下では前記工具本体の下面取付台座側よりも大きい角度となるように屈曲している切削工具。
It consists of a tool body and a cutting edge tip provided on the mounting base of the tool body,
The cutting edge portion of the cutting edge chip is composed of a composite fibrous body of a fibrous core material in which a plurality of the fibers are arranged and a coating layer that surrounds the outer periphery of the core material and has a composition different from that of the core material,
A cutting tool that is bent so that the fiber arrangement direction of the composite fiber body on the flank face is greater than the cutting edge ridge line at an angle directly below the cutting edge ridge line than the lower surface mounting base side of the tool body.
前記工具本体の取付台座側における複合繊維体の平均繊維径が前記切刃稜線直下における複合繊維体の平均繊維径よりも小さい請求項1記載の切削工具。   The cutting tool according to claim 1, wherein an average fiber diameter of the composite fiber body on the mounting base side of the tool body is smaller than an average fiber diameter of the composite fiber body immediately below the cutting edge ridge line. 前記切刃チップの前記複合繊維体の下側に裏打部材が配置されている請求項1または2記載の切削工具。   The cutting tool according to claim 1 or 2, wherein a backing member is disposed below the composite fiber body of the cutting edge tip.
JP2011262239A 2011-11-30 2011-11-30 Cutting tools Active JP5743868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262239A JP5743868B2 (en) 2011-11-30 2011-11-30 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262239A JP5743868B2 (en) 2011-11-30 2011-11-30 Cutting tools

Publications (2)

Publication Number Publication Date
JP2013111727A true JP2013111727A (en) 2013-06-10
JP5743868B2 JP5743868B2 (en) 2015-07-01

Family

ID=48707818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262239A Active JP5743868B2 (en) 2011-11-30 2011-11-30 Cutting tools

Country Status (1)

Country Link
JP (1) JP5743868B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655515A (en) * 1992-08-03 1994-03-01 Kobe Steel Ltd Manufacture of fiber reinforced ceramics and manufacturing equipment
JP2005511890A (en) * 2001-12-04 2005-04-28 アドヴァンスト セラミックス リサーチ インコーポレイテッド Aligned composite structures for impact damage mitigation and wear resistance in dynamic environments
JP2005262384A (en) * 2004-03-18 2005-09-29 Kyocera Corp Diamond tool
JP2006255853A (en) * 2005-03-18 2006-09-28 Kyocera Corp Sintered tool
JP2008238343A (en) * 2007-03-27 2008-10-09 Kyocera Corp Throw-away tip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655515A (en) * 1992-08-03 1994-03-01 Kobe Steel Ltd Manufacture of fiber reinforced ceramics and manufacturing equipment
JP2005511890A (en) * 2001-12-04 2005-04-28 アドヴァンスト セラミックス リサーチ インコーポレイテッド Aligned composite structures for impact damage mitigation and wear resistance in dynamic environments
JP2005262384A (en) * 2004-03-18 2005-09-29 Kyocera Corp Diamond tool
JP2006255853A (en) * 2005-03-18 2006-09-28 Kyocera Corp Sintered tool
JP2008238343A (en) * 2007-03-27 2008-10-09 Kyocera Corp Throw-away tip

Also Published As

Publication number Publication date
JP5743868B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5414744B2 (en) Cubic boron nitride sintered body and cutting tool using the same
EP3124147B1 (en) Composite member and cutting tool
JP4192037B2 (en) Cutting tool and manufacturing method thereof
JP4796316B2 (en) Composite fiber body and cutting tool using the same
JP5743868B2 (en) Cutting tools
JP4960126B2 (en) Brazing cBN tool
EP3378587B1 (en) Tool
JP5656076B2 (en) cBN insert
JP4220814B2 (en) Cutting tool and manufacturing method thereof
JP2005281759A (en) Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool
JP3954896B2 (en) Cutting tool with breaker
JP4484535B2 (en) Diamond sintered body and cutting tool
JP4061222B2 (en) Cutting tools
JP5241123B2 (en) Throwaway tip
JP2004202597A (en) Cutting tool
JP4889226B2 (en) Composite sintered body and cutting tool
JP3954903B2 (en) Cutting tools
JP2019065330A (en) Composite sintered body
JP4309777B2 (en) Cutting tools
JP2005014164A (en) Cutting tool
JP4061247B2 (en) Drill and end mill
JP2004249404A (en) Cutting tool
JP4195797B2 (en) Composite hard sintered body and cutting tool using the same
JP2005074532A (en) Rotating tool
JP4574129B2 (en) Method for manufacturing composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5743868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150