JPH0655515A - Manufacture of fiber reinforced ceramics and manufacturing equipment - Google Patents

Manufacture of fiber reinforced ceramics and manufacturing equipment

Info

Publication number
JPH0655515A
JPH0655515A JP4206609A JP20660992A JPH0655515A JP H0655515 A JPH0655515 A JP H0655515A JP 4206609 A JP4206609 A JP 4206609A JP 20660992 A JP20660992 A JP 20660992A JP H0655515 A JPH0655515 A JP H0655515A
Authority
JP
Japan
Prior art keywords
fiber
ceramics
cylinder
reinforced ceramics
inorganic fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4206609A
Other languages
Japanese (ja)
Inventor
Tsukasa Shiomi
司 塩見
Tsuneo Tateno
常男 立野
Katsuhiko Maehara
克彦 前原
Kazuhiko Asano
和彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4206609A priority Critical patent/JPH0655515A/en
Publication of JPH0655515A publication Critical patent/JPH0655515A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To provide the manufacturing method and device of fiber reinforced ceramics, with which the anisotropies of bending strength and of fracture toughness are improved while contriving to densify compact so as to allow increase its use for machine part and structural material. CONSTITUTION:When ceramics compact 10 is produced by extruding mixture 9, which is prepared by mixing ceramics powder 7 and inorganic fibers 8 and, after that, filled in a cylinder 2, under pressure through the extrusion nozzle 4 of the cylinder 2, axially helically extending projected strips 5 are protrusively provided on the inner peripheral wall 4a of the nozzle 4 so as to give twisting to the mixture 9 by passing through the nozzle 4. Thus, compact 10, in which inorganic fibers 6 are helically orientated, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスマトリッ
ク中に無機質繊維を配合してなる繊維強化セラミックス
成形体の製造方法,装置に関し、詳細には成形体の緻密
化を図りながら、曲げ強度,破壊靱性の異方性を改善し
て、用途を拡大できるようにした製造方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a fiber-reinforced ceramics molded body in which an inorganic fiber is mixed in a ceramics matrix. The present invention relates to a manufacturing method and an apparatus for improving the anisotropy of toughness and expanding the application.

【0002】[0002]

【従来の技術】セラミックス中に無機質繊維を混入して
なる繊維強化セラミックスは、強度,靱性,耐摩耗性等
の機械的性質に優れた特性を有しており、各種の機械部
品,構造用材料として注目されている。この繊維強化セ
ラミックスの製造方法として、従来からセラミックス材
料中に無機質繊維を配合して混練物を形成し、この混練
物を金型,CIP,押出し等により成形する方法等があ
る。しかし、これにより得られた成形体は、無機質繊維
がランダムに配列されていることから、焼結時にセラミ
ックスの収縮が阻害され、その結果焼結体の緻密化を困
難にしている。このため無機質繊維の配合量を少量に限
定している。このようなセラミックスの収縮性を向上す
るために、従来、HIPやホットプレス等により成形体
を高温,高圧下で焼結して緻密体を得る方法がある。ま
た、特開昭62-270470 号公報, 特開平2-263768 号公報
には、無機質繊維を一方向に配列して焼結性を改善し、
これにより緻密化を図るとともに、無機質繊維の配合量
を増大できるようにした方法,装置が提案されている。
これは、図2に示すように、セラミックス材料11と無
機質繊維12との混練物13をシリンダ14内に充填
し、この混練物13を加圧パンチ15で加圧しつつシリ
ンダ14の押出しノズル16から押し出すように構成さ
れている。上記押し出しの際にランダムに配列していた
各繊維12は徐々に押出し方向に配向し、これにより無
機質繊維12が一方向に配列した細径状の中間成形体1
7が得られる。この後、中間成形体17を積層したり,
束ねたりした後、金型,CIP等で加圧成形し、これに
より所定の大きさ,形状の一体成形体を形成し、この後
HIPやホットプレス等で高温,高圧焼結するようにし
ている。またロール等による圧延により緻密体を得る方
法もある。
2. Description of the Related Art Fiber-reinforced ceramics prepared by mixing inorganic fibers into ceramics have excellent mechanical properties such as strength, toughness, and wear resistance, and are suitable for various mechanical parts and structural materials. Is being watched as. As a method for producing this fiber-reinforced ceramics, there has been a conventional method in which inorganic fibers are mixed into a ceramic material to form a kneaded product, and the kneaded product is molded by a die, CIP, extrusion or the like. However, since the inorganic fibers are randomly arranged in the molded body thus obtained, the shrinkage of the ceramics is hindered during sintering, and as a result, it is difficult to densify the sintered body. For this reason, the blending amount of the inorganic fiber is limited to a small amount. In order to improve the shrinkability of such ceramics, conventionally, there is a method of obtaining a dense body by sintering a molded body under high temperature and high pressure by HIP, hot pressing, or the like. Further, in JP-A-62-270470 and JP-A-2-263768, inorganic fibers are arranged in one direction to improve sinterability,
A method and an apparatus have been proposed in which the density of the inorganic fibers can be increased while increasing the densification.
As shown in FIG. 2, a kneaded material 13 of a ceramic material 11 and an inorganic fiber 12 is filled in a cylinder 14, and the kneaded material 13 is pressed by a pressure punch 15 while being ejected from an extrusion nozzle 16 of the cylinder 14. It is configured to extrude. The fibers 12 arranged randomly at the time of the extrusion are gradually oriented in the extrusion direction, and as a result, the small-diameter intermediate molded body 1 in which the inorganic fibers 12 are arranged in one direction.
7 is obtained. After that, the intermediate molded body 17 is laminated,
After bundling, pressure molding is performed with a mold, CIP, etc., thereby forming an integrally molded body of a predetermined size and shape, and thereafter, high temperature and high pressure sintering is performed with HIP, hot pressing, etc. . There is also a method of obtaining a dense body by rolling with a roll or the like.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来の
各公報による製造方法は、緻密な成形体を得るには有効
であるものの、無機質繊維が軸方向に配列した構造であ
るから、曲げ強度,破壊靱性等に異方性が生じ、その結
果機械部品,構造用材料への用途が限られるという問題
がある。
However, although the manufacturing methods according to the above-mentioned conventional publications are effective for obtaining a dense molded body, since the inorganic fibers have a structure in which they are arranged in the axial direction, the bending strength, There is a problem that anisotropy occurs in fracture toughness and the like, and as a result, its application to mechanical parts and structural materials is limited.

【0004】本発明の目的は、成形体の緻密化を図りな
がら、曲げ強度,破壊靱性に対する異方性を改善するこ
とにより、機械的性質を向上でき、ひいては用途を拡大
できる繊維強化セラミックスの製造方法及び装置を提供
することにある。
The object of the present invention is to manufacture a fiber-reinforced ceramics which can improve mechanical properties by improving anisotropy with respect to bending strength and fracture toughness while densifying a molded body, and eventually expanding its application. A method and apparatus are provided.

【0005】[0005]

【課題を解決するための手段】本件発明者らは、成形体
の緻密化を図りながら異方性を改善するために検討した
ところ、押出し成形時に無機質繊維が押し出し方向に配
向する点に着目し、この繊維を押し出し方向に対して螺
旋状に配向させることによって異方性を改善できること
を見出し、本発明を成したものである。
[Means for Solving the Problems] The inventors of the present invention have conducted a study to improve the anisotropy while densifying the molded body. As a result, attention has been paid to the fact that the inorganic fibers are oriented in the extrusion direction during extrusion molding. It was found that the anisotropy can be improved by orienting this fiber spirally with respect to the extrusion direction, and the present invention has been accomplished.

【0006】そこで請求項1の発明は、セラミックス粉
末に無機質繊維を配合してなる混練物をシリンダ内に充
填し、該混練物を加圧しつつシリンダの押出しノズルか
ら押し出してセラミックス成形体を形成するようにした
繊維強化セラミックスの製造方法において、上記混練物
に捩じりを付与しながら押し出し、これにより上記無機
質繊維が一方向に、かつ螺旋状に配列された成形体を得
ることを特徴としている。また請求項2の発明は、上記
方法を実施するための装置であり、押出しノズルの内面
に螺旋状の凸条を形成したことを特徴としている。
Therefore, the invention of claim 1 fills the kneaded material in which the ceramic powder is mixed with the inorganic fiber into the cylinder, and extrudes from the extrusion nozzle of the cylinder while pressurizing the kneaded material to form a ceramic molded body. In the method for producing fiber-reinforced ceramics, the kneaded product is extruded while being twisted, thereby obtaining a molded product in which the inorganic fibers are arranged in one direction and in a spiral shape. . The invention of claim 2 is an apparatus for carrying out the above method, which is characterized in that a spiral ridge is formed on the inner surface of the extrusion nozzle.

【0007】ここで、上記セラミックス粉末には、Al
2 3 ,ZrO2 ,Si3 4 ,SiC等の酸化物,窒
化物,炭化物が採用できる。さらに上記無機質繊維に
は、短繊維状の酸化物,窒化物,炭化物が採用でき、こ
れの配合量は10〜20wt%の範囲が望ましい。
Here, the ceramic powder is Al
Oxides, nitrides, and carbides such as 2 O 3 , ZrO 2 , Si 3 N 4 , and SiC can be adopted. Further, short fiber oxides, nitrides, and carbides can be adopted as the above-mentioned inorganic fibers, and the compounding amount thereof is preferably in the range of 10 to 20 wt%.

【0008】[0008]

【作用】本発明に係る繊維強化セラミックスの製造方法
によれば、押出しノズルで混練物に捩じりを付与したの
で、ランダムに配列した無機質繊維は上記押出しノズル
を通過する際に一方向に、かつ所定の角度でもって螺旋
状に配列することとなり、これにより緻密で、かつ異方
性を持たない成形体を製造できる。その結果、曲げ強
度,破壊靱性等の機械的特性に優れた繊維強化セラミッ
クスを得ることができ、機械部品,構造用材料への用途
を拡大できる。
According to the method for producing a fiber-reinforced ceramics of the present invention, since the kneaded product is twisted by the extrusion nozzle, the randomly arranged inorganic fibers are unidirectional when passing through the extrusion nozzle. In addition, they are arranged in a spiral shape at a predetermined angle, whereby a compact compact having no anisotropy can be manufactured. As a result, fiber-reinforced ceramics having excellent mechanical properties such as bending strength and fracture toughness can be obtained, and the application to machine parts and structural materials can be expanded.

【0009】[0009]

【実施例】以下、本発明の実施例を図について説明す
る。図1は、本発明の一実施例による繊維強化セラミッ
クスの製造方法を説明するための図である。図におい
て、1は本実施例方法の実施に採用される押出し装置で
ある。この装置1は、シリンダ2内に加圧パンチ3を進
退自在に挿入するとともに、シリンダ2の先端部に押出
しノズル4を接続形成して構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining a method for manufacturing fiber-reinforced ceramics according to an embodiment of the present invention. In the figure, reference numeral 1 is an extruder used for carrying out the method of this embodiment. This device 1 is configured by inserting a pressure punch 3 into a cylinder 2 so as to be able to move back and forth, and connecting and forming an extrusion nozzle 4 at the tip of the cylinder 2.

【0010】上記押出しノズル4の内周壁4aには、軸
方向に螺旋状に延びる複数本の突条5が凸設されてお
り、この各突条5の傾斜角度は約45度に設定されてい
る。これにより混練物に捩じりを付与し、あるいはこれ
を回転させながら捩じりを付与するように構成されてい
る。
On the inner peripheral wall 4a of the extrusion nozzle 4, a plurality of projections 5 extending in a spiral shape in the axial direction are provided in a protruding manner, and the inclination angle of each projection 5 is set to about 45 degrees. There is. Thereby, the kneaded product is twisted, or twisted while rotating the kneaded product.

【0011】次に、上記押出し装置1による繊維強化セ
ラミックスの一製造方法を説明する。まず、アルミナ粉
末7に、短繊維状のSiCウィスカ8を10〜20wt%の範
囲で配合し、これに結合剤,可塑剤を添加して所定硬さ
の混練物9を形成する。この混練物9を真空,又は減圧
容器内で再混練して十分脱気処理する。これによりマト
リックスとなるアルミナ粉末7中にSiCウィスカ8が
ランダムに配列された混練物9を形成する。
Next, a method of manufacturing the fiber reinforced ceramics by the above-mentioned extrusion device 1 will be described. First, a short fiber SiC whisker 8 is mixed with alumina powder 7 in the range of 10 to 20 wt%, and a binder and a plasticizer are added thereto to form a kneaded material 9 having a predetermined hardness. The kneaded material 9 is re-kneaded in a vacuum or reduced pressure vessel to be sufficiently deaerated. As a result, a kneaded material 9 in which SiC whiskers 8 are randomly arranged in the alumina powder 7 serving as a matrix is formed.

【0012】次に、上記混練物9をシリンダ2内に充填
し、この状態で加圧パンチ3を下降させて混練物9を加
圧する。すると混練物9は押出しノズル4の各突条5に
沿って回転しながら捩じれた状態で押し出される。これ
によりSiCウィスカ8が押し出し方向に傾斜し、かつ
螺旋状に均一に配列されたセラミックス成形体10が得
られる。ここで、この成形体10の外周面には、上記突
起部5による溝状の凹部が形成されることとなるが、こ
の凹部は上記成形体10表面を削り取ることにより除去
する。
Next, the kneaded material 9 is filled in the cylinder 2, and in this state, the pressure punch 3 is lowered to pressurize the kneaded material 9. Then, the kneaded material 9 is extruded in a twisted state while rotating along each protrusion 5 of the extrusion nozzle 4. As a result, the ceramic molded body 10 in which the SiC whiskers 8 are inclined in the extrusion direction and uniformly arranged in a spiral shape is obtained. Here, on the outer peripheral surface of the molded body 10, a groove-shaped concave portion is formed by the protrusion 5, and the concave portion is removed by scraping off the surface of the molded body 10.

【0013】このようにして得られた成形体10を、不
活性ガス雰囲気中にて500 ℃に加熱して結合剤等を除去
した後、続いて1800℃程度に昇温加熱して常圧焼結す
る。これにより本実施例の繊維強化セラミックスが製造
される。
The molded body 10 thus obtained is heated to 500 ° C. in an inert gas atmosphere to remove the binder and the like, and subsequently heated to about 1800 ° C. and heated at atmospheric pressure. Tie. As a result, the fiber-reinforced ceramics of this example is manufactured.

【0014】このように本実施例によれば、押出しノズ
ル4の内周壁4aに螺旋状に延びる突条5を形成し、該
突条5で混練物9に捩じりを付与したので、ランダムに
配列したSiCウィスカ8は押し出される際に所定の角
度でもって螺旋状に配列することとなる。これにより緻
密で、かつ異方性の少ない成形体10を得ることがで
き、曲げ強度,破壊靱性等の機械的特性に優れた繊維強
化セラミックスを製造でき、軸用部品,構造用材料への
用途を大幅に拡大できる。
As described above, according to this embodiment, since the protrusion 5 extending in a spiral shape is formed on the inner peripheral wall 4a of the extrusion nozzle 4 and the kneaded material 9 is twisted by the protrusion 5, random kneading is performed. The SiC whiskers 8 arranged in the above are spirally arranged at a predetermined angle when being extruded. This makes it possible to obtain a compact compact 10 with little anisotropy, to manufacture fiber-reinforced ceramics having excellent mechanical properties such as bending strength and fracture toughness, and to use it for shaft parts and structural materials. Can be greatly expanded.

【0015】また、本実施例方法は、混練物9に捩じり
を付与するだけで緻密な成形体10を得るという方法で
あることから、常圧焼結を行ってもセラミックスの収縮
性を向上でき、従来のHIPやホットプレス等による高
温,高圧焼結を不要にできる。
Further, since the method of the present embodiment is a method of obtaining a dense compact 10 only by imparting a twist to the kneaded material 9, the shrinkage of the ceramics can be maintained even if the pressureless sintering is performed. It can be improved, and high temperature and high pressure sintering by conventional HIP or hot pressing can be eliminated.

【0016】次に、本実施例による製造方法の効果を確
認するために行った試験について説明する。この試験
は、上述した本実施例の製造方法により、3mm×4mm×
40mmの3点曲げ試験片を作成し、この試験片の常温での
曲げ試験, 及びマイクロビッカース(荷重50Kg/mm2) に
よる破壊靱性値を測定した。また、比較するために、図
2に示す従来の押出し装置で、SiCウィスカを一軸方
向に配列してなる成形体を製造し、同様の測定を行っ
た。なお、上記各試験片のSiCウィスカの配合量は10
wt%とした。
Next, a test carried out to confirm the effect of the manufacturing method according to this embodiment will be described. This test is performed by the manufacturing method of the present embodiment described above, 3 mm × 4 mm ×
A 40 mm 3-point bending test piece was prepared, and the fracture toughness value of this test piece was measured by a bending test at room temperature and by micro-Vickers (load 50 Kg / mm 2 ). Further, for comparison, a conventional extrusion apparatus shown in FIG. 2 was used to manufacture a molded body in which SiC whiskers were arranged in a uniaxial direction, and the same measurement was performed. The amount of SiC whiskers in each of the above test pieces was 10
It was set to wt%.

【0017】[0017]

【表1】 [Table 1]

【0018】表1からも明らかなように、SiCウィス
カを一軸方向に配列してなる従来試料の場合(第1欄)
、曲げ強度は80Kg/cm2と高く、また破壊靱性値は軸直
角方向で7.3MPam1/2と高いものの、軸方向では3.5MPam
1/2と低く、両者に2倍以上の差があり、異方性が生じ
ている。これに対して螺旋状に配列してなる本実施例試
料の場合(第2欄)、曲げ強度は73Kg/cm2と若干低いも
のの、破壊靱性値は軸直角方向,軸方向とも6.7,5.9MPa
m1/2となっており、異方性が改善されていることがわか
る。また、上記本実施例試料の軸方向縦断面を光学顕微
鏡で観察したところ、SiCウィスカが押し出し方向に
対して約35〜40度に傾斜していることが確認できた。さ
らに、上記本実施例試料の焼結後の相対密度を測定した
ところ100 %に達しており、しかも割れ, 剥離等は全く
生じていなかった。
As is clear from Table 1, in the case of a conventional sample in which SiC whiskers are uniaxially arranged (first column).
The bending strength is as high as 80 kg / cm 2 and the fracture toughness value is as high as 7.3 MPa m 1/2 in the direction perpendicular to the axis, but 3.5 MPa in the axis direction.
It is as low as 1/2, and there is a difference of more than twice, and anisotropy occurs. On the other hand, in the case of the sample of this example which is arranged in a spiral shape (column 2), although the bending strength is slightly low at 73 Kg / cm 2 , the fracture toughness value is 6.7 and 5.9 MPa in both the axis-perpendicular direction and the axial direction.
Since it is m 1/2 , it can be seen that the anisotropy is improved. Further, when the longitudinal cross section of the sample of this example was observed by an optical microscope, it was confirmed that the SiC whiskers were inclined at about 35 to 40 degrees with respect to the extrusion direction. Further, when the relative density of the above-mentioned sample of this example after sintering was measured, it reached 100%, and cracking, peeling, etc. did not occur at all.

【0019】[0019]

【発明の効果】以上のように本発明に係る繊維強化セラ
ミックスの製造方法によれば、混練物を押し出す際にこ
れに捩じりを付与したので、これにより無機質繊維が一
方向に、かつ螺旋状に配列された成形体を形成でき、緻
密で、かつ曲げ強度,破壊靱性に対する異方性を持たな
い成形体を製造することができ、その結果強度,靱性を
向上できることから、軸物切削工具機械部品,構造用材
料への用途を拡大できる効果がある。
As described above, according to the method for producing a fiber-reinforced ceramics of the present invention, when the kneaded product is extruded, the twist is imparted to the kneaded product, which allows the inorganic fiber to spiral in one direction. It is possible to form compacts arranged in a shape, and it is possible to manufacture compact compacts that do not have anisotropy with respect to bending strength and fracture toughness. As a result, strength and toughness can be improved. This has the effect of expanding the application to parts and structural materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による繊維強化セラミックス
の製造方法を実施するための押出し装置を示す図であ
る。
FIG. 1 is a diagram showing an extrusion apparatus for carrying out a method for producing fiber-reinforced ceramics according to an embodiment of the present invention.

【図2】従来の押出し成形方法を示す図である。FIG. 2 is a diagram showing a conventional extrusion molding method.

【符号の説明】[Explanation of symbols]

2 シリンダ 4 押出しノズル 7 アルミナ粉末(セラミックス粉末) 8 SiCウィスカ(無機質繊維) 9 混練物 10 成形体 2 Cylinder 4 Extrusion Nozzle 7 Alumina Powder (Ceramics Powder) 8 SiC Whisker (Inorganic Fiber) 9 Kneaded Product 10 Molded Product

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 和彦 兵庫県明石市魚住町金ヶ崎西大池179番1 株式会社神戸製鋼所明石工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Asano 179-1, Kanegasaki Nishioike, Uozumi-cho, Akashi-shi, Hyogo Kobe Steel Works Akashi Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粉末に無機質繊維を配合し
てなる混練物をシリンダ内に充填し、該混練物を加圧し
つつシリンダの押出しノズルから押し出してセラミック
ス成形体を形成するようにした繊維強化セラミックスの
製造方法において、上記混練物に捩じりを付与しながら
押し出し、これにより上記無機質繊維が一方向に、かつ
螺旋状に配列された成形体を得ることを特徴とする繊維
強化セラミックスの製造方法。
1. A fiber-reinforced ceramics which is prepared by filling a cylinder with a kneaded material obtained by mixing ceramic powder with inorganic fibers, and extruding the kneaded material from an extrusion nozzle of the cylinder while pressurizing the kneaded material to form a ceramic molded body. In the method for producing a fiber-reinforced ceramics, the kneaded product is extruded while being twisted to obtain a molded product in which the inorganic fibers are arranged in one direction and in a spiral shape. .
【請求項2】 セラミックス粉末に無機質繊維を配合し
てなる混練物をシリンダ内に充填し、該混練物を加圧し
つつシリンダの押出しノズルから押し出してセラミック
ス成形体を形成するようにした繊維強化セラミックスの
製造装置において、上記押出しノズルの内面に螺旋状の
凸条を形成したことを特徴とする繊維強化セラミックス
の製造方法及び製造装置。
2. A fiber-reinforced ceramics which is prepared by filling a kneaded material obtained by blending ceramic powder with inorganic fibers into a cylinder and extruding the kneaded material from an extrusion nozzle of the cylinder while pressurizing the kneaded material to form a ceramic molded body. The manufacturing apparatus and the manufacturing apparatus of the fiber-reinforced ceramics, wherein a spiral ridge is formed on the inner surface of the extrusion nozzle.
JP4206609A 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment Withdrawn JPH0655515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206609A JPH0655515A (en) 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206609A JPH0655515A (en) 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH0655515A true JPH0655515A (en) 1994-03-01

Family

ID=16526222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206609A Withdrawn JPH0655515A (en) 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0655515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013111727A (en) * 2011-11-30 2013-06-10 Kyocera Corp Cutting tool
KR20200017926A (en) * 2018-08-10 2020-02-19 대구대학교 산학협력단 Removable and Attachable Blade-Type Nozzle to Control and Improve the Direction and Dispersion of Fibers in Fiber-Reinforced Cement Composite Materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013111727A (en) * 2011-11-30 2013-06-10 Kyocera Corp Cutting tool
KR20200017926A (en) * 2018-08-10 2020-02-19 대구대학교 산학협력단 Removable and Attachable Blade-Type Nozzle to Control and Improve the Direction and Dispersion of Fibers in Fiber-Reinforced Cement Composite Materials

Similar Documents

Publication Publication Date Title
US5645781A (en) Process for preparing textured ceramic composites
US7387757B2 (en) Methods for preparation of three-dimensional bodies
US6803003B2 (en) Compositions and methods for preparing multiple-component composite materials
US6899777B2 (en) Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
KR0167427B1 (en) Silicon nitride ceramic and method of shaping the same
US20020140139A1 (en) Consolidation and densification methods for fibrous monolith processing
US6355338B1 (en) Continuous composite coextrusion methods, apparatuses, and compositions
JPH0655515A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
JPH0655514A (en) Manufacture of fiber reinforced ceramics
JPH0655519A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
Vaidyanathan et al. Extrusion freeform fabrication of functional ceramic prototypes
JPH0655518A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
JPH0655517A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
JP2757011B2 (en) Method for producing extruded aluminum nitride article
JPS60118676A (en) Manufacture of ceramic sintered body
KR20050095219A (en) Ceramic body having 2-dimensional or 3-dimensional fibrous array
Vaidyanathan et al. FREEFORM FABRICATION OF FUNCTIONAL CERAMIC
JPH0655516A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
JP2971770B2 (en) Medical laser probe and method of manufacturing the same
JP2535458B2 (en) Method for manufacturing ceramic with pores
JPH07126070A (en) Production of silicon carbide sintered material
JP3224645B2 (en) Ceramics molding method
JPH04149067A (en) Double hollow cylinder made of carbon
JPH02145704A (en) Composition for compacting and manufacture of sintered body using it
JPH07102993B2 (en) Method for manufacturing silicon nitride sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005