JP2013110095A - Production method of powder for micro wave-absorption heating unit, powder for micro wave-absorption heating unit, and micro wave-absorption heating unit with the same - Google Patents

Production method of powder for micro wave-absorption heating unit, powder for micro wave-absorption heating unit, and micro wave-absorption heating unit with the same Download PDF

Info

Publication number
JP2013110095A
JP2013110095A JP2012169760A JP2012169760A JP2013110095A JP 2013110095 A JP2013110095 A JP 2013110095A JP 2012169760 A JP2012169760 A JP 2012169760A JP 2012169760 A JP2012169760 A JP 2012169760A JP 2013110095 A JP2013110095 A JP 2013110095A
Authority
JP
Japan
Prior art keywords
powder
mass
heating element
absorption heating
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169760A
Other languages
Japanese (ja)
Other versions
JP5828812B2 (en
Inventor
Yukiko Nakamura
由紀子 中村
Mikio Takahashi
幹雄 高橋
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012169760A priority Critical patent/JP5828812B2/en
Publication of JP2013110095A publication Critical patent/JP2013110095A/en
Application granted granted Critical
Publication of JP5828812B2 publication Critical patent/JP5828812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide powder for a micro wave-absorption heating unit which is made of a substance of white color and is capable of effectively absorbing micro waves to generate heat.SOLUTION: The method comprises the step of sintering a mixture of powdered raw materials including 50 mass% or less of silicon oxide (not including 0 mass%) in terms of SiO, and 50 mass% or more of zinc oxide (not including 100 mass%) in terms of ZnO in a temperature range between 750°C and 1350°C inclusive.

Description

本発明は、電子レンジ用調理皿などに用いられる特殊セラミック材料に関するものであり、特に2.45GHzのマイクロ波を吸収して優れた発熱性能を示し、しかも白色を呈するマイクロ波吸収発熱体用の粉末の製造方法およびマイクロ波吸収発熱体用粉末、ならびにその粉末を用いたマイクロ波吸収発熱体に関するものである。   The present invention relates to a special ceramic material used for a cooking dish for a microwave oven and the like, and particularly for a microwave absorption heating element that absorbs microwaves of 2.45 GHz and exhibits excellent heat generation performance and exhibits white color. The present invention relates to a powder manufacturing method, a powder for a microwave absorption heating element, and a microwave absorption heating element using the powder.

電子レンジは、通常2.45GHzのマイクロ波を食品に照射し、食品中の水分子がマイクロ波を吸収して振動する現象を利用して食品を加熱する調理機器である。ここで、マイクロ波を吸収できるのは水分子に限定されるものではなく、誘電損失や磁気損失の高い材料であれば、食品と同様にマイクロ波を吸収して温度が上昇することが知られている。   A microwave oven is a cooking device that heats food using a phenomenon in which microwaves of 2.45 GHz are normally irradiated onto food and water molecules in the food absorb and vibrate microwaves. Here, the ability to absorb microwaves is not limited to water molecules, and it is known that if the material has a high dielectric loss or magnetic loss, it will absorb microwaves and rise in temperature like foods. ing.

近年、電子レンジ用調理皿として、2.45GHzのマイクロ波を吸収して発熱する性質をそなえる特殊セラミックス材料を利用した製品が提案されている(例えば、(有)東彼セラミックス製「ドリームキッチン」など)。このような電子レンジ用の加熱調理器具は、電子レンジの放射するマイクロ波を食材に照射して調理するものではなく、マイクロ波で調理器具本体を発熱させ、その熱で食材を加熱して調理するものである。
そのため、調理器具本体の素材にマイクロ波吸収発熱粉を混合したり、表面にマイクロ波吸収発熱粉を含有する層を焼き付けたりして、マイクロ波吸収発熱性能を発現させている。
In recent years, products using special ceramic materials that have the property of generating heat by absorbing microwaves of 2.45 GHz have been proposed as cooking dishes for microwave ovens (for example, “Dream Kitchen” manufactured by Tohi Ceramics) Such). Such cooking utensils for microwave ovens do not irradiate the ingredients with microwaves radiated from microwave ovens, but heat the cooking utensils with microwaves and heat the ingredients to cook To do.
Therefore, microwave absorption heat generation powder is mixed with the raw material of a cooking utensil body, or the layer containing microwave absorption heat generation powder is baked on the surface, and microwave absorption heat generation performance is expressed.

マイクロ波吸収発熱体としては、従来より、炭化珪素のように誘電損失の高い物質や鉄系酸化物のように磁気損失の高い物質が用いられている。また、近年、発明者らにより開示した、特許文献1に記載のMgCu系フェライト粉を用いたマイクロ波吸収発熱体などがある。
しかしながら、これらの物質は黒色、暗茶色、灰色などを呈するため、調理器具の色に制約があり、白色や明るい色調の発熱調理器具を作製するには適さなかった。
As the microwave absorption heating element, conventionally, a substance having a high dielectric loss such as silicon carbide or a substance having a high magnetic loss such as iron-based oxide has been used. Further, in recent years, there is a microwave absorption heating element using the MgCu-based ferrite powder disclosed in Patent Document 1 disclosed by the inventors.
However, since these substances are black, dark brown, gray, etc., there are restrictions on the color of the cooking utensil, and it is not suitable for producing a white or light-colored exothermic cooking utensil.

ここに、マイクロ波吸収発熱性能を発現する白色の物質としては、誘電率の高いZnO、TiBaOなどが知られているが、これらの酸化物は、上記した炭化珪素や鉄系酸化物と比べて発熱性能に劣り、短時間のマイクロ波照射で200℃を超える高温まで昇温させることは困難であった。
このため、優れたマイクロ波吸収発熱性能を有し、かつ白色系で色調の自由度が高くデザイン性に富んだ発熱体が求められていた。
Here, ZnO, TiBaO 3 and the like having a high dielectric constant are known as white substances that exhibit microwave absorption heat generation performance. These oxides are compared with the above-described silicon carbide and iron-based oxides. Therefore, it was difficult to raise the temperature to over 200 ° C. by short-time microwave irradiation.
Therefore, there has been a demand for a heating element that has excellent microwave absorption heat generation performance, is white, has a high degree of freedom in color tone, and is rich in design.

特許第4663005号公報Japanese Patent No. 4666305

本発明は、上記の現状に鑑み開発されたもので、白い色調の物質で、かつマイクロ波吸収発熱性能に優れたマイクロ波吸収発熱体用粉末およびマイクロ波吸収発熱体を得ることを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and an object thereof is to obtain a powder for a microwave absorption heating element and a microwave absorption heating element that are white-colored substances and have excellent microwave absorption heating performance. .

発明者らは、上記した問題を解決するために、種々の白色粉体の化合物におけるマイクロ波吸収発熱特性について鋭意検討を行った。その結果、ZnOとSiOを所定量混合した粉体を、所定の条件で熱処理することにより、優れた発熱性能を持つ白色粉(マイクロ波吸収発熱体用粉末)が得られることを見出した。
本発明は、上記の知見に立脚するものである。
In order to solve the above-mentioned problems, the inventors diligently studied microwave absorption heat generation characteristics in various white powder compounds. As a result, it was found that white powder (powder for microwave absorption heating element) having excellent heat generation performance can be obtained by heat-treating a powder obtained by mixing a predetermined amount of ZnO and SiO 2 under predetermined conditions.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.原料粉を、混合して、粉状または成形体とした後、焼成し、ついで必要に応じて粉砕や、分級を施して所定の粒子サイズに調整するマイクロ波吸収発熱体用粉末の製造方法において、
上記原料粉として、
SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、
ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物とを含む混合物を用い、
かつ750℃以上、1350℃未満の温度範囲で焼成する
ことを特徴とするマイクロ波吸収発熱体用粉末の製造方法。
That is, the gist configuration of the present invention is as follows.
1. In the method for producing a powder for a microwave absorption heating element, the raw material powder is mixed to form a powder or molded body, then fired, and then pulverized or classified as necessary to adjust to a predetermined particle size. ,
As the raw material powder,
Silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 ;
Using a mixture containing 50 mass% or more (but not including 100 mass%) of zinc oxide in terms of ZnO,
And a method for producing a powder for a microwave-absorbing heating element, comprising firing at a temperature range of 750 ° C. or higher and lower than 1350 ° C.

2.原料粉として、
SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、
ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物とを含む混合物を焼成してなるマイクロ波吸収発熱体用粉末であって、
上記マイクロ波吸収発熱体用粉末:シリコン樹脂を、75:25(mass%)の比率で混合し成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’≧3で、かつε’’≧0.5であることを特徴とするマイクロ波吸収発熱体用粉末。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
2. As raw material powder,
Silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 ;
A powder for microwave-absorbing heating element obtained by firing a mixture containing zinc oxide at 50 mass% or more (excluding 100 mass%) in terms of ZnO,
When the complex dielectric constant ε at 2.45 GHz of the resin sheet formed by mixing and molding the above powder for microwave absorption heating element: silicone resin at a ratio of 75:25 (mass%) is expressed by the following formula (1): A powder for a microwave absorption heating element, wherein ε ′ ≧ 3 and ε ″ ≧ 0.5.
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.

3.前記2に記載の粉末を、少なくとも一部に含有することを特徴とするマイクロ波吸収発熱体。 3. A microwave-absorbing heating element comprising the powder described in 2 above at least in part.

また、本発明では、前記2に記載されたマイクロ波吸収発熱体用粉末に、耐熱性樹脂を混合して成形したり、釉薬を混合した混合液をセラミックス基材の表面に塗布後、焼成したりして、マイクロ波吸収発熱体とすることができる。
さらに、上記マイクロ波吸収発熱体用粉末に、陶磁器の原料粉末を混合し、成形後、焼成して、マイクロ波吸収発熱体とすることもできる。
Further, in the present invention, the microwave absorbing heating element powder described in 2 above is mixed with a heat-resistant resin and molded, or a mixed liquid in which a glaze is mixed is applied to the surface of the ceramic substrate and then fired. Alternatively, a microwave absorption heating element can be obtained.
Furthermore, a ceramic raw material powder may be mixed with the above-mentioned powder for microwave absorption heating element, molded and fired to obtain a microwave absorption heating element.

本発明によれば、2.45GHzのマイクロ波を吸収して優れた発熱性能を示し、しかも白色を呈して色調調整に優れたマイクロ波吸収発熱体用の粉末およびその粉末を用いたマイクロ波吸収発熱体を得ることができる。   According to the present invention, a powder for a microwave-absorbing heating element exhibiting excellent heat generation performance by absorbing a microwave of 2.45 GHz and exhibiting white color and excellent color tone adjustment, and microwave absorption using the powder A heating element can be obtained.

SiO含有量と試料表面温度との関係を示したグラフである。Is a graph showing the relationship between the content of SiO 2 and the sample surface temperature. 焼成温度と試料表面温度との関係を示したグラフである。It is the graph which showed the relationship between a calcination temperature and a sample surface temperature.

以下、本発明を具体的に説明する。
本発明は、原料粉を混合して、粉状または成形体とした後、焼成し、ついで必要に応じて粉砕や、分級を施して所定の粒子サイズに調整してマイクロ波吸収発熱体用粉末を製造する方法およびその際に得られるマイクロ波吸収発熱体用粉末およびその粉末を用いたマイクロ波吸収発熱体に関するものである。
Hereinafter, the present invention will be specifically described.
In the present invention, the raw material powder is mixed to form a powder or molded body, then fired, and then pulverized or classified as necessary to adjust to a predetermined particle size to obtain a powder for microwave absorption heating element In particular, the present invention relates to a powder for a microwave absorption heating element obtained at that time, and a microwave absorption heating element using the powder.

まず、本発明に用いる原料粉の基本組成について説明する。なお、以下に示すマイクロ波吸収発熱体用粉末(以下、発熱粉ともいう)およびマイクロ波吸収発熱体の成分組成を表す%表示は、とくに断らない限りmass%を意味する。
シリコン酸化物: SiO換算で50%以下(0%は含まない)
亜鉛酸化物: ZnO換算で50%以上(100%は含まない)
ZnOは、単体でもマイクロ波を吸収して発熱する物質であり、500Wで1分間のマイクロ波照射で150℃程度にまで発熱する。従って、亜鉛酸化物はZnO換算で50%以上添加させる。
これに、SiOを添加し、熱処理することで、発熱性能が一段と向上し、200℃以上までの昇温が可能となる。しかしながら、SiO自体は発熱しない物質であるため、シリコン酸化物がSiO換算で50%を超えると発熱性能が低下し、その添加効果が無くなる。従って、シリコン酸化物はSiO換算で50%以下が必須である。好ましくは5〜40%、より好ましくは7〜35%の範囲である。
なお、シリコン酸化物および亜鉛酸化物以外にも、Al,MgO,TiOおよびBaTiOなど種々のセラミックス粉末を混合させることができるが、これらの合計量が50%以上になると、200℃を超える高温まで発熱することが困難になるため、ZnO、SiO以外の成分の含有量は50%未満とする。
First, the basic composition of the raw material powder used in the present invention will be described. In addition, the% display showing the component composition of the powder for microwave absorption heating elements (hereinafter also referred to as heating powder) and the microwave absorption heating element shown below means mass% unless otherwise specified.
Silicon oxide: 50% or less (excluding 0%) in terms of SiO 2
Zinc oxide: 50% or more in terms of ZnO (not including 100%)
ZnO is a substance that absorbs microwaves and generates heat alone, and generates heat up to about 150 ° C. by microwave irradiation at 500 W for 1 minute. Therefore, 50% or more of zinc oxide is added in terms of ZnO.
By adding SiO 2 to this and performing heat treatment, the heat generation performance is further improved, and the temperature can be raised to 200 ° C. or higher. However, since SiO 2 itself is a substance that does not generate heat, if the silicon oxide exceeds 50% in terms of SiO 2 , the heat generation performance is reduced and the effect of addition is lost. Accordingly, the silicon oxide must be 50% or less in terms of SiO 2 . Preferably it is 5 to 40%, More preferably, it is 7 to 35% of range.
In addition to silicon oxide and zinc oxide, various ceramic powders such as Al 2 O 3 , MgO, TiO 2 and BaTiO 3 can be mixed. Since it becomes difficult to generate heat up to a high temperature exceeding ℃, the content of components other than ZnO and SiO 2 is less than 50%.

また、上記した亜鉛酸化物やシリコン酸化物の所定の粒径に特別の限定はないが、亜鉛酸化物は、平均粒径で0.1〜10μm程度、またシリコン酸化物は平均粒径で0.05〜10μm程度とするのが好ましい。
その他のセラミックス粉末は、平均粒径:0.1〜10μm程度が好ましい。
Further, there is no particular limitation on the predetermined particle size of the above-described zinc oxide or silicon oxide, but zinc oxide has an average particle size of about 0.1 to 10 μm, and silicon oxide has an average particle size of 0. It is preferable to be about 0.05 to 10 μm.
Other ceramic powders preferably have an average particle size of about 0.1 to 10 μm.

ここに、上記の成分組成量を満足することで、優れたマイクロ波吸収発熱性能が得られる機構について、発明者らは、以下のように考えている。
すなわち、所定量のZnOとSiOが共存すると、特定の温度域で、オリビン化合物であるZnSiOが生成するため、発熱体の誘電特性が向上して、良好な発熱特性が得られるものと推測している。
Here, the inventors consider as follows the mechanism by which excellent microwave absorption heat generation performance can be obtained by satisfying the above component composition amounts.
That is, when a predetermined amount of ZnO and SiO 2 coexist, Zn 2 SiO 4 which is an olivine compound is generated in a specific temperature range, so that the dielectric properties of the heating element are improved and good heat generation properties can be obtained. I guess.

次に、焼成温度の限定理由について説明する。
焼成温度:750〜1350℃
焼成温度は、ZnOとSiOの反応性に大きな影響を及ぼす。すなわち、焼成温度が750℃に満たないと、発熱特性を改善するオリビン化合物の生成反応が十分に進行しないため、発熱体が200℃を超える高温まで昇温できなくなる。一方、焼成温度が1350℃を超えると、ZnOの蒸発やSiOの構造変化の影響を受けるため、発熱体の発熱特性が劣化する。従って、焼成温度は750〜1350℃の範囲に限定する。好ましくは、850〜1200℃の範囲である。なお、焼成時間については、特別の限定はないが、0.5〜10h程度とするのが好ましい。
Next, the reason for limiting the firing temperature will be described.
Firing temperature: 750 to 1350 ° C.
The firing temperature greatly affects the reactivity between ZnO and SiO 2 . That is, when the firing temperature is less than 750 ° C., the olivine compound generating reaction that improves the heat generation characteristics does not proceed sufficiently, so that the heating element cannot be heated to a high temperature exceeding 200 ° C. On the other hand, if the firing temperature exceeds 1350 ° C., it is affected by the evaporation of ZnO and the structural change of SiO 2 , so that the heat generation characteristics of the heating element deteriorate. Therefore, the firing temperature is limited to the range of 750 to 1350 ° C. Preferably, it is the range of 850-1200 degreeC. The firing time is not particularly limited, but is preferably about 0.5 to 10 hours.

その他のマイクロ波吸収発熱体用粉末を製造する工程、すなわち、混合工程や、粉状または成形体とする工程、さらには、粉砕や分級などを施して所定の粒子サイズに調整する工程などは、常法に従えば良い。   Steps for producing other powders for microwave-absorbing heating elements, that is, a mixing step, a step to form a powder or a molded body, and a step of adjusting to a predetermined particle size by performing pulverization or classification, etc. Just follow the usual method.

上記した製造方法により得られたマイクロ波吸収発熱体用粉末は、マイクロ波吸収発熱体用粉末:シリコン樹脂を75:25(mass%)の比率で混合して成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’(実数部)およびε’’(虚数部)が所定の値を示すことが肝要である。なお、上記混合および成形は常法による。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
The powder for a microwave absorption heating element obtained by the above-described manufacturing method is a resin sheet formed by mixing a powder for a microwave absorption heating element: silicone resin at a ratio of 75:25 (mass%) at 2.45 GHz. When the complex permittivity: ε is expressed by the following formula (1), it is important that ε ′ (real part) and ε ″ (imaginary part) indicate predetermined values. In addition, the said mixing and shaping | molding are based on a conventional method.
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.

ε’≧3かつε’’≧0.5
上記した所定の値とは、ε’が3以上で、かつε’’が0.5以上である。というのは、ε’およびε’’のいずれかが、上記範囲を外れると、2.45GHzのマイクロ波に対する誘電損失が小さすぎるために、200℃以上の高温まで発熱することができないからである。
なお、好ましい範囲は、ε’が3.6以上、かつ、ε’’が0.8以上である。また、ε’およびε’’の上限に特別の限定はないが、工業的に有利なのは、ε’が、30程度、ε’’が、15程度である。
ε ′ ≧ 3 and ε ″ ≧ 0.5
The predetermined value mentioned above is that ε ′ is 3 or more and ε ″ is 0.5 or more. This is because if either ε ′ or ε ″ is out of the above range, the dielectric loss for the microwave of 2.45 GHz is too small to generate heat up to a high temperature of 200 ° C. or higher. .
In addition, as for a preferable range, (epsilon) 'is 3.6 or more, and (epsilon)''is 0.8 or more. Further, although there are no particular limitations on the upper limits of ε ′ and ε ″, it is industrially advantageous that ε ′ is about 30 and ε ″ is about 15.

複素誘電率の測定方法
測定対象になる粉末とシリコン樹脂(溶剤:トルエン)(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製YSR3022)と硬化触媒(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製YC6843)を混合し、シート状に成形後、溶剤を揮発させた。成形品中の粉末:シリコン樹脂の比率が、75:25(maas%)となるようにした。なお、硬化触媒は成形品中のシリコン樹脂100質量部に対して10質量部となるように混合した。
該シートから、外径:7mm、内径:3mm、厚さ:1mm程度のリング形状を切り出して、APC7型の同軸サンプルホルダーに設置し、ネットワークアナライザーを用いてSパラメータ法で2.45GHzの複素誘電率を測定した。なお、後述する実施例においても上記方法により、ε’およびε’’の値を測定した。
Measurement method of complex dielectric constant Powder and silicon resin (solvent: toluene) (YSR3022 made by Momentive Performance Materials Japan GK) and curing catalyst (YC6843 made by Momentive Performance Materials Japan GK) Were mixed and formed into a sheet, and then the solvent was volatilized. The ratio of powder: silicone resin in the molded product was set to 75:25 (maas%). The curing catalyst was mixed so as to be 10 parts by mass with respect to 100 parts by mass of the silicon resin in the molded product.
A ring shape having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 1 mm is cut out from the sheet, placed on an APC7 type coaxial sample holder, and a complex dielectric of 2.45 GHz by a S-parameter method using a network analyzer. The rate was measured. In the examples described later, the values of ε ′ and ε ″ were measured by the above method.

次に、上記のマイクロ波吸収発熱体用粉末を用いて、電子レンジ用の加熱調理器具(マイクロ波吸収発熱体)、例えば調理皿を製造する場合について説明する。
まず、前述したような好適成分組成に調整した亜鉛酸化物とシリコン酸化物を混合し、粉末状または成形体として、大気雰囲気中で750〜1350℃の温度として熱処理した後、必要に応じて粉砕、分級などを施して所定の粒子サイズに調整し、ε’およびε’’の値を前記の所定値としたマイクロ波吸収発熱体用粉末とする。その際、湿式合成法、水熱合成法など特殊な原料製造方法を用いることもできる。
Next, the case where a cooking device for microwave oven (microwave absorption heating element), for example, a cooking dish is manufactured using the above powder for microwave absorption heating element will be described.
First, zinc oxide and silicon oxide adjusted to the preferred component composition as described above are mixed, heat-treated at a temperature of 750 to 1350 ° C. in an air atmosphere as a powder or molded body, and then pulverized as necessary Then, classification is performed to adjust to a predetermined particle size, and a powder for a microwave absorption heating element is obtained in which the values of ε ′ and ε ″ are set to the predetermined values. In that case, special raw material manufacturing methods, such as a wet synthesis method and a hydrothermal synthesis method, can also be used.

ついで、上記マイクロ波吸収発熱体用粉末を、シリコン樹脂などの耐熱性樹脂と混合して発熱調理器具を成形したのち、必要に応じて加熱して固化させる。その際の混合比率は、所望の発熱温度に応じて5〜75%程度の間で選定するのが好ましい。また、釉薬などと混合し、セラミックス基材の調理皿の表面に塗布後、焼成して使用することができる。このとき、被膜層の厚みは50〜300μm程度とするのが好ましい。さらに、陶磁器の原料粉末に、本発明に従うマイクロ波吸収発熱体用粉末を混合して、発熱体とすることもできる。このとき、およそ10%以上、好ましくは30%以下添加した原料を用いて、成形して焼成し調理皿を作製しても良い。   Next, the microwave-absorbing heating element powder is mixed with a heat-resistant resin such as silicone resin to form a heating cooker, and then heated and solidified as necessary. The mixing ratio at that time is preferably selected from about 5 to 75% depending on the desired exothermic temperature. Moreover, it can mix with a glaze etc., and can be used by baking after apply | coating to the surface of the cooking tray of a ceramic base material. At this time, the thickness of the coating layer is preferably about 50 to 300 μm. Furthermore, the powder for a microwave absorption heating element according to the present invention may be mixed with the ceramic raw material powder to form a heating element. At this time, using a raw material added to approximately 10% or more, preferably 30% or less, it may be molded and fired to prepare a cooking dish.

本発明に従うマイクロ波吸収発熱体用粉末の用途は、上述した電子レンジ用発熱調理器具に限定されることはなく、マイクロ波加熱装置の壁や床材、電子レンジで加温して使用するカイロ、あんか、衣料品、接着剤など、マイクロ波を利用して温度上昇させる用途を有する物品全般に利用することができる。   The use of the powder for a microwave absorption heating element according to the present invention is not limited to the above-described heating cooker for a microwave oven, and the warmer is used by heating the wall or floor material of a microwave heating device or a microwave oven. It can be used for general articles having a purpose of raising the temperature by using microwaves, such as an anchor, clothing, and adhesive.

上記物品に利用する際、樹脂等の素地とマイクロ波吸収発熱体用粉末の混合比率を調整することで、用途に応じた発熱温度に調整することができる。また、本発明に従うマイクロ波吸収発熱体用粉末は白色であるため、他の色調の顔料を添加することで、種々の色調の発熱体を簡単に作製することができる。   When using for the said article | item, it can adjust to the heat_generation | fever temperature according to a use by adjusting the mixing ratio of base materials, such as resin, and the powder for microwave absorption heat generating bodies. Moreover, since the powder for microwave absorption heat generating bodies according to this invention is white, the heat generating body of a various color tone can be easily produced by adding the pigment of another color tone.

以下、本発明の具体的実施例について説明する。
〔実施例1〕
原料粉として、ZnO,SiO,Al,MgO,TiOおよびBaTiOを用い、表1に示す成分配合比で原料を秤量して、混合し、熱処理なし、または大気中で1100℃、2hの条件で焼成して、発熱粉を得た。得られた発熱粉の色を目視観察した。また、得られた発熱粉をシリコン樹脂と混練して、発熱粉:樹脂=75:25(%)のシートを成形し、40×40×約1mmの形状に切り出して、シートサンプルを作製した。これらのシートサンプルを、市販の電子レンジ(日立製作所製MRO-GS8型)の中に置き、500Wのマイクロ波を60秒間照射した直後のシートの表面温度を、放射温度計で測定した。また、上記シートから外径:7mm、内径:3mm、厚さ:1mm程度のリング形状を切り出して、ε’およびε’’の値を前記したSパラメータ法でそれぞれ測定した。
表1に、得られた測定結果を併記する。
Hereinafter, specific examples of the present invention will be described.
[Example 1]
Using ZnO, SiO 2 , Al 2 O 3 , MgO, TiO 2 and BaTiO 3 as the raw material powder, the raw materials are weighed and mixed at the component blending ratios shown in Table 1, without heat treatment, or in the atmosphere at 1100 ° C. Baking was performed for 2 hours to obtain exothermic powder. The color of the obtained exothermic powder was visually observed. Further, the obtained exothermic powder was kneaded with silicon resin to form a sheet of exothermic powder: resin = 75: 25 (%) and cut into a shape of 40 × 40 × about 1 mm to prepare a sheet sample. These sheet samples were placed in a commercially available microwave oven (MRO-GS8 type manufactured by Hitachi, Ltd.), and the surface temperature of the sheet immediately after irradiation with 500 W microwave for 60 seconds was measured with a radiation thermometer. Further, a ring shape having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 1 mm was cut out from the sheet, and the values of ε ′ and ε ″ were measured by the S parameter method described above.
Table 1 shows the measurement results obtained.

Figure 2013110095
Figure 2013110095

表1に示したとおり、本発明の条件に従いZnO、SiOなどを混合し、焼成したものであって、ε’およびε’’の値を本発明の範囲とした場合は、200℃を超える高温まで、シートが発熱する。一方、本発明以外の発熱粉では、シートが200℃以上に発熱することはなかった。 As shown in Table 1, when ZnO, SiO 2 and the like are mixed and fired according to the conditions of the present invention and the values of ε ′ and ε ″ are within the range of the present invention, the temperature exceeds 200 ° C. The sheet generates heat up to a high temperature. On the other hand, in the exothermic powder other than the present invention, the sheet did not generate heat at 200 ° C. or higher.

〔実施例2〕
発熱粉として、SiO粉:0〜100(%)とZnO粉を種々の割合で秤量して、混合し、大気中で950℃、3hの条件で焼成して、発熱粉を得た。この発熱粉は白色を呈していた。また、得られた発熱粉をシリコン樹脂と混練して、発熱粉:樹脂=75:25(%)のシートを成形し、40×40×約1mmの形状に切り出して、シートサンプルを作製した。これらのシートサンプルを市販の電子レンジ(日立製作所製MRO-GS8型)の中に置き、500Wのマイクロ波を60秒間照射した時のシートの表面温度を放射温度計で測定した。また、上記シートから外径:7mm、内径:3mm、厚さ:1mm程度のリング形状を切り出して、ε’およびε’’の値を前記したSパラメータ法でそれぞれ測定した。
[Example 2]
As the exothermic powder, SiO 2 powder: 0 to 100 (%) and ZnO powder were weighed and mixed in various proportions, mixed, and baked in the atmosphere at 950 ° C. for 3 hours to obtain exothermic powder. The exothermic powder was white. Further, the obtained exothermic powder was kneaded with silicon resin to form a sheet of exothermic powder: resin = 75: 25 (%) and cut into a shape of 40 × 40 × about 1 mm to prepare a sheet sample. These sheet samples were placed in a commercially available microwave oven (MRO-GS8 type manufactured by Hitachi, Ltd.), and the surface temperature of the sheet when irradiated with a 500 W microwave for 60 seconds was measured with a radiation thermometer. Further, a ring shape having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 1 mm was cut out from the sheet, and the values of ε ′ and ε ″ were measured by the S parameter method described above.

図1に、得られた測定結果を示す。図中、測定点上の数値は、分子の数値がε’、分母の数値がε’’を意味する。
同図から明らかなように、本発明に従う割合でZnOとSiOとを混合し、焼成したものであって、ε’およびε’’の値を本発明の範囲とした場合、シートは200℃を超える高温まで発熱した。一方、混合割合が本発明の範囲外の場合には、シートが200℃以上に発熱することはなかった。
FIG. 1 shows the measurement results obtained. In the figure, the numerical value on the measurement point means that the numerical value of the numerator is ε ′ and the numerical value of the denominator is ε ″.
As is clear from the figure, ZnO and SiO 2 were mixed and fired at a ratio according to the present invention, and when the values of ε ′ and ε ″ were within the scope of the present invention, the sheet was 200 ° C. Exothermic to a high temperature exceeding On the other hand, when the mixing ratio was outside the range of the present invention, the sheet did not generate heat at 200 ° C. or higher.

〔実施例3〕
発熱粉として、SiO:ZnO=17:83(%)の配合比の原料を秤量して、混合し、大気中で300〜1370℃、2hの条件で焼成して、発熱粉を得た。この発熱粉は白色を呈していた。得られた発熱粉をシリコン樹脂と混練して、発熱粉:樹脂=75:25(%)のシートを成形し、40×40×約1mmの形状に切り出して、シートサンプルを作製した。これらのシートサンプルを市販の電子レンジ(日立製作所製MRO-GS8型)の中に置き、500Wのマイクロ波を60秒間照射した時のシートの表面温度を放射温度計で測定した。また、上記シートから外径:7mm、内径:3mm、厚さ:1mm程度のリング形状を切り出して、ε’およびε’’の値を前記したSパラメータ法でそれぞれ測定した。
Example 3
As the exothermic powder, raw materials having a compounding ratio of SiO 2 : ZnO = 17: 83 (%) were weighed and mixed, and baked in the atmosphere at 300 to 1370 ° C. for 2 hours to obtain exothermic powder. The exothermic powder was white. The obtained exothermic powder was kneaded with silicon resin to form a exothermic powder: resin = 75: 25 (%) sheet, and cut into a shape of 40 × 40 × about 1 mm to prepare a sheet sample. These sheet samples were placed in a commercially available microwave oven (MRO-GS8 type manufactured by Hitachi, Ltd.), and the surface temperature of the sheet when irradiated with a 500 W microwave for 60 seconds was measured with a radiation thermometer. Further, a ring shape having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 1 mm was cut out from the sheet, and the values of ε ′ and ε ″ were measured by the S parameter method described above.

図2に、得られた結果を示す。図中、測定点上の数値は、分子の数値がε’、分母の数値がε’’を意味する。
同図から明らかなように、本発明に従う添加量で混合した原料粉を、本発明に従う焼成温度で焼成したものであって、ε’およびε’’の値を本発明の範囲とした場合、シートは200℃を超える高温まで発熱した。一方、本発明の範囲外の焼成温度では、シートが200℃以上に発熱することはなかった
FIG. 2 shows the obtained results. In the figure, the numerical value on the measurement point means that the numerical value of the numerator is ε ′ and the numerical value of the denominator is ε ″.
As is clear from the figure, when the raw material powder mixed in the addition amount according to the present invention is fired at the firing temperature according to the present invention, and the values of ε ′ and ε ″ are within the scope of the present invention, The sheet exothermed to a high temperature exceeding 200 ° C. On the other hand, at a firing temperature outside the range of the present invention, the sheet did not generate heat at 200 ° C. or higher.

以上、実施例で示したとおり、本発明に従うマイクロ波吸収発熱体用粉末は、ZnOおよびSiOが主成分のため白色を呈し、かつそのマイクロ波吸収発熱体用粉末を用いて作製したマイクロ波吸収発熱体は、500W、60秒のマイクロ波照射によって200℃以上に昇温することが確認された。
なお、本発明におけるマイクロ波吸収発熱体中のマイクロ波吸収発熱体用粉末の含有量は、75(%)に限定されるものではなく、上記含有量を調整することで、発熱温度を、50℃程度の低温から350℃を超える高温まで任意の温度に調整することができる。
As described above, as shown in the examples, the powder for a microwave absorption heating element according to the present invention is white because ZnO and SiO 2 are main components, and the microwave produced using the powder for a microwave absorption heating element It was confirmed that the absorption heating element was heated to 200 ° C. or higher by microwave irradiation of 500 W for 60 seconds.
In addition, the content of the powder for a microwave absorption heating element in the microwave absorption heating element in the present invention is not limited to 75 (%), and the exothermic temperature is adjusted to 50 by adjusting the content. It can be adjusted to an arbitrary temperature from a low temperature of about 0 ° C. to a high temperature exceeding 350 ° C.

Claims (3)

原料粉を、混合して、粉状または成形体とした後、焼成し、ついで必要に応じて粉砕や、分級を施して所定の粒子サイズに調整するマイクロ波吸収発熱体用粉末の製造方法において、
上記原料粉として、
SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、
ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物とを含む混合物を用い、
かつ750℃以上、1350℃以下の温度範囲で焼成する
ことを特徴とするマイクロ波吸収発熱体用粉末の製造方法。
In the method for producing a powder for a microwave absorption heating element, the raw material powder is mixed to form a powder or molded body, then fired, and then pulverized or classified as necessary to adjust to a predetermined particle size. ,
As the raw material powder,
Silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 ;
Using a mixture containing 50 mass% or more (but not including 100 mass%) of zinc oxide in terms of ZnO,
And the manufacturing method of the powder for microwave absorption heat generating bodies characterized by baking in the temperature range of 750 degreeC or more and 1350 degrees C or less.
原料粉として、
SiO換算で50mass%以下(但し、0mass%は含まない)のシリコン酸化物と、
ZnO換算で50mass%以上(但し、100mass%は含まない)の亜鉛酸化物とを含む混合物を焼成してなるマイクロ波吸収発熱体用粉末であって、
上記マイクロ波吸収発熱体用粉末:シリコン樹脂を、75:25(mass%)の比率で混合し成形した樹脂シートの2.45GHzにおける複素誘電率:εを、下記式(1)で表す時、ε’≧3で、かつε’’≧0.5であることを特徴とするマイクロ波吸収発熱体用粉末。

ε = ε’+ε’’i ・・・(1)
ただし、iは、虚数単位である。
As raw material powder,
Silicon oxide of 50 mass% or less (excluding 0 mass%) in terms of SiO 2 ;
A powder for microwave-absorbing heating element obtained by firing a mixture containing zinc oxide at 50 mass% or more (excluding 100 mass%) in terms of ZnO,
When the complex dielectric constant ε at 2.45 GHz of the resin sheet formed by mixing and molding the above powder for microwave absorption heating element: silicone resin at a ratio of 75:25 (mass%) is expressed by the following formula (1): A powder for a microwave absorption heating element, wherein ε ′ ≧ 3 and ε ″ ≧ 0.5.
Record
ε = ε ′ + ε ″ i (1)
However, i is an imaginary unit.
請求項2に記載の粉末を、少なくとも一部に含有することを特徴とするマイクロ波吸収発熱体。   A microwave-absorbing heating element comprising at least a part of the powder according to claim 2.
JP2012169760A 2011-10-27 2012-07-31 Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder Active JP5828812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169760A JP5828812B2 (en) 2011-10-27 2012-07-31 Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011236441 2011-10-27
JP2011236441 2011-10-27
JP2012169760A JP5828812B2 (en) 2011-10-27 2012-07-31 Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder

Publications (2)

Publication Number Publication Date
JP2013110095A true JP2013110095A (en) 2013-06-06
JP5828812B2 JP5828812B2 (en) 2015-12-09

Family

ID=48706621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169760A Active JP5828812B2 (en) 2011-10-27 2012-07-31 Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder

Country Status (1)

Country Link
JP (1) JP5828812B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066169A (en) * 2019-04-17 2019-07-30 华南理工大学 A kind of oxidation silicon substrate dielectric constant microwave ceramic medium and preparation method

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272025A (en) * 1986-02-13 1987-11-26 Syst Kurieitsu:Kk Microwave heating promoter
JPS6314014A (en) * 1986-07-01 1988-01-21 Hosokawa Funtai Kogaku Kenkyusho:Kk Heater utilizing electromagnetic wave
JPH0120793Y2 (en) * 1985-05-07 1989-06-22
JPH02501795A (en) * 1986-10-23 1990-06-21 ザ、ピルズベリー、カンパニー Foods and manufacturing methods
JPH04112498U (en) * 1991-03-16 1992-09-30 テイーデイーケイ株式会社 Heating elements and cooking containers for microwave ovens
JPH10270159A (en) * 1997-03-27 1998-10-09 Narumi China Corp Electromagnetic cooking plate
JPH11251051A (en) * 1998-03-03 1999-09-17 Toutsuu:Kk Ceramic container for electromagnetic induction heating cooking device
JP2002053368A (en) * 2000-04-27 2002-02-19 Kyocera Corp Porcelain excellent in high-frequency characteristic and its manufacturing method
JP2004075888A (en) * 2002-08-20 2004-03-11 Konica Minolta Holdings Inc Fluorescent coating material or fluorescent ink and fluorescent image, and its formation method
JP2005075697A (en) * 2003-09-02 2005-03-24 Fukui Prefecture Microwave-absorbing exothermal ceramic
JP2006223782A (en) * 2005-02-14 2006-08-31 Buhei Kono Technique for cooking, heating, and thawing by using microwave of microwave oven and giving heat exchanging function pottery
JP2006282849A (en) * 2005-03-31 2006-10-19 Sk Kaken Co Ltd Heat-insulation material and heat-storing method
JP2008097862A (en) * 2006-10-06 2008-04-24 Konica Minolta Holdings Inc Microwave heating method
JP2008116058A (en) * 2005-05-30 2008-05-22 Buhei Kono Technological development for carrying out cooking and chemical reaction, chemical synthesis, metal working, metal crystallization, metal sintering and metallurgy by heating pottery with microwave for converting into far infrared or infrared wave radiation and improving heat efficiency
JP2009221068A (en) * 2008-03-18 2009-10-01 Doshisha Zn2SiO4 CERAMICS AND ITS MANUFACTURING METHOD
JP2010006617A (en) * 2008-06-24 2010-01-14 Jfe Chemical Corp MgCu-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT
JP2010014355A (en) * 2008-07-04 2010-01-21 Panasonic Corp High-frequency heating element, cooking utensil for high-frequency heating apparatus using the same, and high-frequency heating cooker

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0120793Y2 (en) * 1985-05-07 1989-06-22
JPS62272025A (en) * 1986-02-13 1987-11-26 Syst Kurieitsu:Kk Microwave heating promoter
JPS6314014A (en) * 1986-07-01 1988-01-21 Hosokawa Funtai Kogaku Kenkyusho:Kk Heater utilizing electromagnetic wave
JPH02501795A (en) * 1986-10-23 1990-06-21 ザ、ピルズベリー、カンパニー Foods and manufacturing methods
JPH04112498U (en) * 1991-03-16 1992-09-30 テイーデイーケイ株式会社 Heating elements and cooking containers for microwave ovens
JP2564990Y2 (en) * 1991-03-16 1998-03-11 ティーディーケイ株式会社 Heating element for microwave oven and cooking container
JPH10270159A (en) * 1997-03-27 1998-10-09 Narumi China Corp Electromagnetic cooking plate
JPH11251051A (en) * 1998-03-03 1999-09-17 Toutsuu:Kk Ceramic container for electromagnetic induction heating cooking device
JP2002053368A (en) * 2000-04-27 2002-02-19 Kyocera Corp Porcelain excellent in high-frequency characteristic and its manufacturing method
JP2004075888A (en) * 2002-08-20 2004-03-11 Konica Minolta Holdings Inc Fluorescent coating material or fluorescent ink and fluorescent image, and its formation method
JP2005075697A (en) * 2003-09-02 2005-03-24 Fukui Prefecture Microwave-absorbing exothermal ceramic
JP2006223782A (en) * 2005-02-14 2006-08-31 Buhei Kono Technique for cooking, heating, and thawing by using microwave of microwave oven and giving heat exchanging function pottery
JP2006282849A (en) * 2005-03-31 2006-10-19 Sk Kaken Co Ltd Heat-insulation material and heat-storing method
JP2008116058A (en) * 2005-05-30 2008-05-22 Buhei Kono Technological development for carrying out cooking and chemical reaction, chemical synthesis, metal working, metal crystallization, metal sintering and metallurgy by heating pottery with microwave for converting into far infrared or infrared wave radiation and improving heat efficiency
JP2008097862A (en) * 2006-10-06 2008-04-24 Konica Minolta Holdings Inc Microwave heating method
JP2009221068A (en) * 2008-03-18 2009-10-01 Doshisha Zn2SiO4 CERAMICS AND ITS MANUFACTURING METHOD
JP2010006617A (en) * 2008-06-24 2010-01-14 Jfe Chemical Corp MgCu-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT
JP2010014355A (en) * 2008-07-04 2010-01-21 Panasonic Corp High-frequency heating element, cooking utensil for high-frequency heating apparatus using the same, and high-frequency heating cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066169A (en) * 2019-04-17 2019-07-30 华南理工大学 A kind of oxidation silicon substrate dielectric constant microwave ceramic medium and preparation method
CN110066169B (en) * 2019-04-17 2022-01-18 华南理工大学 Silica-based low-dielectric-constant microwave dielectric ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP5828812B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP4663005B2 (en) MgCu ferrite powder for microwave absorption heating element
JP2012522892A (en) Fever glaze and fever container applied here
JP2009532827A (en) Composite materials and equipment comprising single crystal silicon carbide heated by electromagnetic radiation
CN101665350A (en) Ceramic microwave absorbing material and preparation method and application thereof
CN101828855B (en) Microwave oven chinaware capable of frying and roasting
JP5828812B2 (en) Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder
JP5850821B2 (en) Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof
CN106136850A (en) The manufacture method of cooking container, cooking container and cooking apparatus
KR100470316B1 (en) Ceramic heating element and method of the same
JP5824411B2 (en) Method for producing powder for microwave-absorbing heating element and method for producing microwave-absorbing heating element using the powder
JP5017438B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
KR101602574B1 (en) Cookware and Cookware manufacturing method for microwave oven
JP5468825B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JP5713931B2 (en) NiMgCuZn ferrite powder for microwave absorption heating element and microwave absorption heating element using the powder
JP5546671B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JP2012218970A (en) Exothermic enamel glaze, electromagnetic induction heating apparatus, and exothermic enameled product
JP5912994B2 (en) Method for producing NiCuZn ferrite powder for microwave absorption heating element, and method for producing microwave absorption heating element using powder produced by the production method
JP2016201358A (en) Microwave absorption heating powder and microwave absorption heating element
KR20030033196A (en) Ceramic pyrogen composition absorbing microwave and method for manufacturing the same
JP2017027933A (en) Microwave-absorbing heating body
KR20000059947A (en) Microwave-heated hot pack material and mathod thereof
JP2014024692A (en) MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME
WO2001014278A1 (en) Method for preparing far-infrared radiation ceramics
JP6276107B2 (en) Microwave absorption heating element using MgCuZn ferrite powder for microwave absorption heating element
JPH07249487A (en) Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5828812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150