JP2014024692A - MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME - Google Patents

MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME Download PDF

Info

Publication number
JP2014024692A
JP2014024692A JP2012164892A JP2012164892A JP2014024692A JP 2014024692 A JP2014024692 A JP 2014024692A JP 2012164892 A JP2012164892 A JP 2012164892A JP 2012164892 A JP2012164892 A JP 2012164892A JP 2014024692 A JP2014024692 A JP 2014024692A
Authority
JP
Japan
Prior art keywords
temperature
ferrite powder
heating element
mgcuzn
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012164892A
Other languages
Japanese (ja)
Inventor
Yukiko Nakamura
由紀子 中村
Mikio Takahashi
幹雄 高橋
Satoshi Goto
聡志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012164892A priority Critical patent/JP2014024692A/en
Publication of JP2014024692A publication Critical patent/JP2014024692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a MgCuZn-based ferrite powder for a microwave absorption heating element, excellent in heat-generating performance to the predetermined temperature and capable of arbitrarily selecting a heat-up stop temperature in a low temperature range such as 30 to 100°C, and to provide a microwave absorption heating element using the same.SOLUTION: An average particle size of a MgCuZn-based ferrite powder is in the range of 2 to 500 μm as the MgCuZn-based ferrite powder having a predetermined component composition.

Description

本発明は、電子レンジなどのマイクロ波を吸収して発熱し、所望の温度で昇温を停止するマイクロ波吸収発熱体用フェライト粉およびその粉末を用いたマイクロ波吸収発熱体に関するものであり、特に、保温材、懐炉、温湿布、温熱療法などに好適に用いることのできる、常温から100℃程度の比較的低温域において昇温を停止することができるマイクロ波吸収発熱体用MgCuZnフェライト粉に関するものである。   The present invention relates to a ferrite powder for a microwave absorption heating element that absorbs microwaves such as a microwave oven and generates heat, and stops heating at a desired temperature, and a microwave absorption heating element using the powder, In particular, the present invention relates to a MgCuZn ferrite powder for a microwave absorption heating element that can be suitably used for a heat insulating material, a furnace, a hot compress, a thermotherapy, etc., and can be stopped at a relatively low temperature range from room temperature to about 100 ° C. Is.

電子レンジは、通常、2.45GHzのマイクロ波を食品に照射し、食品中の水分子がマイクロ波を吸収して振動する現象を利用して、食品を加熱する調理機器である。ここで、マイクロ波を吸収できるのは水分子に限定されるものではなく、誘電損失や磁気損失の高い材料であれば、食品と同様にマイクロ波を吸収して温度が上昇することが知られている。   A microwave oven is a cooking device that heats food using a phenomenon in which a food is usually irradiated with microwaves of 2.45 GHz and water molecules in the food absorb the microwaves and vibrate. Here, the ability to absorb microwaves is not limited to water molecules, and it is known that if the material has a high dielectric loss or magnetic loss, it will absorb microwaves and rise in temperature like foods. ing.

しかしながら、誘電損失を利用したマイクロ波吸収発熱体は、マイクロ波を吸収するとかなり高温まで温度上昇し続けるため、安全に使用するには、発熱粉の含有量を調整して放熱とのバランスを考慮する必要がある。   However, microwave-absorbing heating elements that use dielectric loss continue to rise to very high temperatures when they absorb microwaves. Therefore, for safe use, the content of heat-generating powder must be adjusted to balance heat dissipation. There is a need to.

そこで、発明者らは、誘電損失が小さく、磁気損失の寄与のみで発熱するMg系フェライトに注目して技術開発を行い、その結果として、マイクロ波を吸収して優れた発熱性能を示し、なおかつ、所定温度で昇温を停止するマイクロ波吸収発熱体用MgCuZnフェライト粉を提案した(特許文献1参照)。ここに、特許文献1に記載の技術は、優れた昇温特性を有すると共に、所望の温度でその昇温を止めることができるという優れた技術である。   Therefore, the inventors have developed technology focusing on Mg-based ferrite that generates heat only with the contribution of magnetic loss with a small dielectric loss, and as a result, absorbs microwaves and exhibits excellent heat generation performance. The MgCuZn ferrite powder for microwave absorption heating elements that stops the temperature rise at a predetermined temperature was proposed (see Patent Document 1). Here, the technique described in Patent Document 1 is an excellent technique that has excellent temperature rise characteristics and can stop the temperature rise at a desired temperature.

特許第4663005号公報Japanese Patent No. 4666305

しかしながら、上掲特許文献1に記載されたMgCuZnフェライト粉は、電子レンジで焦げ目を付ける調理器具に用いることを主目的とするため、その昇温停止温度は、100〜290℃の範囲に限定されており、100℃より低い温度域での昇温停止は極めて困難であった。   However, since the MgCuZn ferrite powder described in the above-mentioned Patent Document 1 is mainly used for cooking utensils that are burnt with a microwave oven, the temperature rise stop temperature is limited to a range of 100 to 290 ° C. Therefore, it was extremely difficult to stop the temperature increase in a temperature range lower than 100 ° C.

また、携帯用カイロや温湿布などのように、人体に直接触れる可能性がある保温材は、火傷の危険のない温度範囲で使用する必要がある。例えば、白元製「ホッカイロ(登録商標)首・肩用」の製品仕様は、最高温度60℃、平均温度47℃とある。さらに、食品の保温材として用いる場合は、保温による食材の乾燥を抑えるために、70℃程度の温度に保持することが望ましい。
従って、これらの用途に用いるためには、マイクロ波を吸収して急速に発熱するだけでなく、100℃以下の所望の温度で昇温停止するマイクロ波吸収発熱粉が必要となる。
Moreover, it is necessary to use a heat insulating material that may be in direct contact with the human body, such as a portable body warmer or a warm compress, in a temperature range in which there is no risk of burns. For example, the product specification of “Hokkairo (registered trademark) for neck and shoulder” manufactured by Hakugen has a maximum temperature of 60 ° C. and an average temperature of 47 ° C. Furthermore, when used as a heat insulating material for food, it is desirable to maintain the temperature at about 70 ° C. in order to suppress drying of the food material due to heat insulation.
Therefore, in order to use in these applications, a microwave absorbing exothermic powder that not only absorbs microwaves but generates heat rapidly but also stops temperature rising at a desired temperature of 100 ° C. or lower is required.

本発明は、上記の現状に鑑み開発されたもので、所定温度までの発熱性能に優れるのはいうまでもなく、30〜100℃という低温域での昇温停止温度を任意に選択できるマイクロ波吸収発熱体用MgCuZnフェライト粉と、その粉末を用いたマイクロ波吸収発熱体を提案することを目的とする。   The present invention has been developed in view of the above-described present situation, and it is needless to say that the heat generation performance up to a predetermined temperature is excellent, and a microwave that can arbitrarily select a temperature rise stop temperature in a low temperature range of 30 to 100 ° C. The object is to propose an MgCuZn ferrite powder for an absorption heating element and a microwave absorption heating element using the powder.

発明者らは、上記した発熱体用MgCuZnフェライト粉の問題を解決するために、MgCuZnフェライトの基本組成と昇温停止温度の関係について、鋭意検討を加えた。その結果、MgO,ZnO,CuOおよびFeの組成比を所定の範囲に調整し、さらにフェライト粉の粒子径を適切に選定することにより、30〜100℃という温度範囲での昇温停止温度が調整できることを知見したのである。
本発明は、上記の知見に立脚するものである。
In order to solve the above-described problems of the MgCuZn ferrite powders for heating elements, the inventors diligently studied the relationship between the basic composition of MgCuZn ferrite and the temperature rise stop temperature. As a result, by adjusting the composition ratio of MgO, ZnO, CuO and Fe 2 O 3 to a predetermined range, and further selecting the particle diameter of the ferrite powder appropriately, the temperature rise is stopped in a temperature range of 30 to 100 ° C. They found that the temperature could be adjusted.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.鉄酸化物がFe換算で46〜51mol%、
銅酸化物がCuO換算で2〜15mol%および
亜鉛酸化物がZnO換算で28mol%超33mol%以下を含み
残部は酸化マグネシウムおよび不可避的不純物からなるMgCuZnフェライト粉であって、該MgCuZnフェライト粉の平均粒子サイズが2〜500μmであることを特徴とするマイクロ波吸収発熱体用MgCuZnフェライト粉。
That is, the gist configuration of the present invention is as follows.
1. 46~51Mol% iron oxide in terms of Fe 2 O 3,
The copper oxide contains 2 to 15 mol% in terms of CuO and the zinc oxide contains more than 28 mol% and less than or equal to 33 mol% in terms of ZnO, and the balance is MgCuZn ferrite powder composed of magnesium oxide and inevitable impurities, and the average of the MgCuZn ferrite powder MgCuZn ferrite powder for microwave-absorbing heating elements, wherein the particle size is 2 to 500 μm.

2.マイクロ波を吸収して発熱するマイクロ波吸収発熱体であって、
前記1に記載のMgCuZnフェライト粉を、少なくとも一部に含有することを特徴とするマイクロ波吸収発熱体。
2. A microwave absorption heating element that generates heat by absorbing microwaves,
2. A microwave-absorbing heating element comprising the MgCuZn ferrite powder according to 1 described above at least partially.

本発明によれば、電子レンジの2.45GHzにおけるマイクロ波を効果的に吸収して、急速に加熱、昇温し、かつ30〜100℃という低い温度範囲の所望の温度で、その昇温が停止するマイクロ波吸収発熱体を得ることができる。   According to the present invention, microwaves in a microwave oven at 2.45 GHz are effectively absorbed, heated and heated rapidly, and at a desired temperature in a low temperature range of 30 to 100 ° C., the temperature rise A microwave absorbing heating element that stops can be obtained.

本発明に従うフェライト樹脂シートに、500Wのマイクロ波を照射した時の昇温特性を、従来(本発明外)のフェライト樹脂シートの昇温特性と比較して示したグラフである。It is the graph which showed the temperature rising characteristic at the time of irradiating the 500 W microwave to the ferrite resin sheet according to this invention compared with the temperature rising characteristic of the conventional (outside of this invention) ferrite resin sheet. 本発明に従うフェライト樹脂シートに、500Wのマイクロ波を照射した時の昇温特性を、炭化ケイ素粉末を含有した樹脂シートの昇温特性と比較して示したグラフである。It is the graph which showed the temperature rising characteristic when 500 W of microwaves were irradiated to the ferrite resin sheet according to this invention compared with the temperature rising characteristic of the resin sheet containing silicon carbide powder.

以下、本発明を具体的に説明する。
まず、本発明における昇温停止温度:Tsとは、フェライト粉を圧縮成形した後、焼成して、縦横の大きさが40mm×40mmで、厚さが約5mmの板状焼結体(発熱体)を作製し、市販の電子レンジを用いて、500Wのマイクロ波を照射した後の板状焼結体の表面温度が、60〜90秒間、ほとんど温度変化がなく一定と見なされた時の温度とする。なお、上記板状焼結体の表面温度は、放射温度計で測定する。
また、本発明における昇温停止温度:Tsrとは、フェライト粉を樹脂等の媒体に混練して、成形した後、圧縮成形した後、縦横の大きさが40mm×40mmで、厚さが約5mmの板状に切出し、市販の電子レンジを用いて、500Wのマイクロ波を照射した後の板状焼結体の表面温度が、60〜90秒間、ほとんど温度変化がなく一定と見なされた時の温度とする。
Hereinafter, the present invention will be specifically described.
First, the temperature rise stop temperature: Ts in the present invention is a plate-like sintered body (heating element) having a vertical and horizontal size of 40 mm × 40 mm and a thickness of about 5 mm after compression molding of ferrite powder and firing. ) And using a commercially available microwave oven, the surface temperature of the plate-like sintered body after being irradiated with 500 W microwave is considered to be constant with almost no temperature change for 60 to 90 seconds. And The surface temperature of the plate-like sintered body is measured with a radiation thermometer.
Further, the temperature rise stop temperature: Tsr in the present invention means that the ferrite powder is kneaded in a medium such as a resin, molded and then compression molded, and then the vertical and horizontal dimensions are 40 mm × 40 mm and the thickness is about 5 mm. When the surface temperature of the plate-like sintered body after being irradiated with 500 W microwave using a commercially available microwave oven is considered to be constant with almost no temperature change for 60 to 90 seconds. Let it be temperature.

次に、本発明におけるMgCuZnフェライト粉の基本組成について説明する。なお、以下に示すMgCuZnフェライト粉の成分組成を表す%表示は、とくに断らない限りmol%を意味する。
鉄酸化物:Fe換算で46〜51%
鉄は、フェライト相の安定性および比抵抗に影響を与え、マイクロ波印加による昇温速度に大きく作用する。鉄酸化物量がFe換算で46%に満たないと、フェライト以外の相が生成してフェライト単相を得ることが難しくなり、発熱体の昇温速度が低下する。一方、鉄酸化物量がFe換算で51%を超えると、発熱体の比抵抗が低下して金属のようにマイクロ波を反射して発熱性能が低下したり、マイクロ波を照射した時にスパークしたりするおそれが生じる。
従って、鉄酸化物量はFe換算で46〜51%の範囲に限定する。好ましくは48〜49.8%の範囲である。
Next, the basic composition of the MgCuZn ferrite powder in the present invention will be described. In addition, unless otherwise indicated, the% display showing the component composition of the MgCuZn ferrite powder shown below means mol%.
Iron oxide: 46-51% in terms of Fe 2 O 3
Iron affects the stability and specific resistance of the ferrite phase, and greatly affects the rate of temperature rise due to microwave application. If the amount of iron oxide is less than 46% in terms of Fe 2 O 3 , a phase other than ferrite is generated and it is difficult to obtain a ferrite single phase, and the heating rate of the heating element decreases. On the other hand, when the amount of iron oxide exceeds 51% in terms of Fe 2 O 3 , the specific resistance of the heating element is lowered, and the heat generation performance is reduced by reflecting the microwave like metal, or when the microwave is irradiated There is a risk of sparking.
Therefore, the amount of iron oxide is limited to the range of 46 to 51% in terms of Fe 2 O 3 . Preferably it is 48 to 49.8% of range.

銅酸化物:CuO換算で2〜15%
銅は、マイクロ波印加による発熱体の昇温特性において、高温での昇温停止挙動に影響する。銅酸化物量がCuO換算で2%に満たないか、または15%を超えたときは、いずれの場合も、発熱体の昇温が停止せずに、マイクロ波照射と共に、発熱体の温度が上昇し続けてしまう。従って、銅酸化物量はCuO換算で2〜15%の範囲に限定する。好ましくは3〜12%、さらに好ましくは4〜9%の範囲である。
Copper oxide: 2 to 15% in terms of CuO
Copper affects the temperature rise stop behavior at a high temperature in the temperature rise characteristics of the heating element by microwave application. When the amount of copper oxide is less than 2% or more than 15% in terms of CuO, in any case, the temperature of the heating element rises with microwave irradiation without stopping the heating of the heating element Will continue to do. Therefore, the amount of copper oxide is limited to a range of 2 to 15% in terms of CuO. Preferably it is 3 to 12%, More preferably, it is 4 to 9% of range.

亜鉛酸化物:ZnO換算で28%超33%以下
亜鉛は、マイクロ波印加による発熱体の昇温特性において、Ts(またはTsr)に影響する元素である。本発明では、亜鉛酸化物量をZnO換算で28%超33%以下に調整することで、30〜100℃の低い温度範囲全般にわたってTs(またはTsr)を任意に設定することができる。ここで、発明者らの実験によると、Ts(またはTsr)とZnO配合比率の関係は、以下の(1)式で近似される。
Ts(またはTsr)(℃)=−10.5×ZnO(%)+374 ・・・(1)
上記(1)式から明らかなように、亜鉛酸化物量が多いほどTs(またはTsr)が低下し、ZnO換算で33%を超えるとTs(またはTsr)が30℃未満になるため、実用的な用途がなくなる。一方、亜鉛酸化物が少ないほどTsは上昇し、亜鉛酸化物量がZnO換算で28.0%以下になると、Tsが高くなってしまい、懐炉等に使用すると火傷の危険性が高まるため適さない。
従って、亜鉛酸化物量は、ZnO換算で28.0%超33%以下の範囲に限定する。好ましくは29〜32%、さらに好ましくは30.5%以上32%以下の範囲である。
Zinc oxide: more than 28% and not more than 33% in terms of ZnO Zinc is an element that affects Ts (or Tsr) in the temperature rise characteristics of the heating element by applying microwaves. In the present invention, Ts (or Tsr) can be arbitrarily set over a low temperature range of 30 to 100 ° C. by adjusting the amount of zinc oxide to more than 28% and 33% or less in terms of ZnO. Here, according to experiments by the inventors, the relationship between Ts (or Tsr) and the ZnO compounding ratio is approximated by the following equation (1).
Ts (or Tsr) (° C.) = − 10.5 × ZnO (%) + 374 (1)
As apparent from the above formula (1), Ts (or Tsr) decreases as the amount of zinc oxide increases, and when it exceeds 33% in terms of ZnO, Ts (or Tsr) becomes less than 30 ° C. Use is lost. On the other hand, Ts increases as the amount of zinc oxide decreases, and when the amount of zinc oxide becomes 28.0% or less in terms of ZnO, Ts increases.
Therefore, the amount of zinc oxide is limited to a range of more than 28.0% and not more than 33% in terms of ZnO. Preferably it is 29 to 32%, more preferably 30.5% or more and 32% or less.

残部:マグネシウム酸化物および不可避的不純物
残部の主成分であるマグネシウム酸化物量は、MgO換算で1〜25%程度の範囲となる。マグネシウム酸化物量がMgO換算で1%より少ないとCuO等の配合比率が増大し、原料コストが高価になるため好ましくない。一方、マグネシウム酸化物量がMgO換算で25%を超えると、フェライト相以外の異相が残留し易くなり、昇温特性が劣化するため、好ましくない。より好ましいマグネシウム酸化物量の範囲はMgO換算で6〜22%である。
なお、フェライト粉中には、原料成分や製造過程で、SiOやMn,Ca,AlおよびPなどが不可避的不純物として混入する場合があるが、これらは、合計量が0.5%以下であれば特に問題はない。
Remainder: Magnesium oxide and inevitable impurities The amount of magnesium oxide which is the main component of the remainder is in the range of about 1 to 25% in terms of MgO. If the amount of magnesium oxide is less than 1% in terms of MgO, the compounding ratio of CuO or the like increases, and the raw material cost becomes expensive. On the other hand, if the amount of magnesium oxide exceeds 25% in terms of MgO, a foreign phase other than the ferrite phase tends to remain and the temperature rise characteristics deteriorate, which is not preferable. A more preferable range of the amount of magnesium oxide is 6 to 22% in terms of MgO.
Note that in the ferrite powder, the raw material composition and manufacturing process, SiO 2 and Mn, Ca, but as Al and P in some cases be mixed as inevitable impurities, these are a total amount of 0.5% or less If there is no particular problem.

以上、本発明のMgCuZnフェライト粉の成分組成について説明したが、本発明では、成分組成が上記の範囲を満足するだけでは不十分で、フェライト粉の粒径を所定の範囲におさめることが肝要である。
フェライト粉の平均粒子サイズ: 2〜500μm
フェライト粉の粒子サイズは、マイクロ波の吸収効率に大きく影響する。フェライト粉を樹脂と混練する際、所望する発熱量を得るために、樹脂との合計量に対して10〜80mass%程度のフェライト粉を添加することが望ましいが、粒子サイズが2μmより細かいと、マイクロ波吸収発熱体のマイクロ波の吸収効率が低くなり、発熱体の昇温速度および到達温度が低下する。一方、粒子サイズが500μmを超えると、樹脂に添加して使用した時に、滑らかな表面の発熱体が得られなくなる。
従って、本発明に従うフェライト粉の平均粒子サイズは、2〜500μmの範囲に限定する。好ましい平均粒子サイズは3〜250μm、より好ましくは5〜100μmの範囲である。
なお、本発明における平均粒子サイズは、レーザー回折式粒度分布計で測定した時に得られる50%粒径値(D50)を意味する。また、後述する実施例においては、試作したMgCuZnフェライト粉からサンプリングを行い、D50を測定した。
The component composition of the MgCuZn ferrite powder of the present invention has been described above. However, in the present invention, it is not sufficient that the component composition satisfies the above range, and it is important to keep the particle size of the ferrite powder within a predetermined range. is there.
Average particle size of ferrite powder: 2 to 500 μm
The particle size of the ferrite powder greatly affects the microwave absorption efficiency. When kneading the ferrite powder with the resin, in order to obtain a desired calorific value, it is desirable to add about 10-80 mass% ferrite powder with respect to the total amount with the resin, but when the particle size is finer than 2 μm, The microwave absorption efficiency of the microwave absorption heating element is lowered, and the heating rate and the reaching temperature of the heating element are lowered. On the other hand, if the particle size exceeds 500 μm, a heating element with a smooth surface cannot be obtained when used by adding to the resin.
Therefore, the average particle size of the ferrite powder according to the present invention is limited to the range of 2 to 500 μm. A preferred average particle size is in the range of 3 to 250 μm, more preferably 5 to 100 μm.
The average particle size in the present invention means a 50% particle size value (D 50 ) obtained when measured with a laser diffraction particle size distribution meter. In the examples described below, it was sampled from the MgCuZn ferrite powder the prototype was measured D 50.

次に、前記のフェライト粉を用いた発熱体を製造する場合について説明する。
本発明では、前記したMgCuZnフェライト粉を、発熱体の少なくとも一部に含有させるか、または、表面に含有させることで、本発明に従うマイクロ波吸収発熱体を得ることができる。勿論、上記発熱体の全体に均一または適宜偏析させて含有させても問題はない。
従って、本発明における発熱体の少なくとも一部とは、上記の含有形態のいずれでも良いことになる。
Next, the case where the heat generating body using the said ferrite powder is manufactured is demonstrated.
In the present invention, the above-described MgCuZn ferrite powder is contained in at least a part of the heating element or is included in the surface, whereby the microwave absorption heating element according to the present invention can be obtained. Of course, there is no problem even if the whole heating element is contained uniformly or appropriately segregated.
Accordingly, at least a part of the heating element in the present invention may be any of the above-mentioned inclusion forms.

まず、前記の好適成分組成に調整したFe,CuO,ZnOおよびMgOを出発原料として、混合し、粉砕または成形体としたのち、850〜1200℃の範囲で熱処理(焼成)をしてフェライト化し、その後、必要に応じてさらに粉砕や、分級などを施して所定の粒子サイズに調整する。粉砕は、アトマイザーや振動ミルなどの乾式粉砕機を用いるのが好ましいが、アトライターや回転ボールミルなどの湿式粉砕機を用いても良い。分級は篩い分け、気流分級機などの一般的な分級機を用いることができる。 First, Fe 2 O 3 , CuO, ZnO and MgO adjusted to the above preferred component composition are mixed as a starting material, pulverized or molded, and then heat-treated (fired) in the range of 850 to 1200 ° C. Ferrite is formed and then further pulverized or classified as necessary to adjust to a predetermined particle size. For the pulverization, a dry pulverizer such as an atomizer or a vibration mill is preferably used, but a wet pulverizer such as an attritor or a rotating ball mill may be used. For classification, a general classifier such as sieving or air classifier can be used.

その際、上記した焼成温度は、フェライト生成反応と結晶粒成長に大きな影響を及ぼす。焼成温度が850℃に満たないと、フェライト生成反応が十分に進行せずに、未反応のFeやMgOなどが残留し、マイクロ波吸収発熱性能が低下するおそれがあるため、好ましくない。一方、焼成温度が1200℃を超えると、異相であるCuO相が析出し、発熱体の誘電特性が変化するために、昇温停止挙動が得られなくなって、やはり好ましくない。
従って、本発明における焼成温度は、850〜1200℃の範囲とするのが好ましい。より好ましくは、900〜1150℃の範囲である。なお、焼成時間については、特別の限定はないが、0.5〜10時間程度とするのが好ましい。
なお、本発明のMgCuZnフェライト粉は、混合焙焼法や共沈法など特殊なフェライト原料製造方法を用いることもできる。
At that time, the firing temperature described above has a great influence on the ferrite formation reaction and the crystal grain growth. If the firing temperature is less than 850 ° C., the ferrite formation reaction does not proceed sufficiently, unreacted Fe 2 O 3 , MgO, etc. may remain, which may reduce the microwave absorption heat generation performance, which is not preferable. . On the other hand, when the firing temperature exceeds 1200 ° C., a Cu 2 O phase, which is a different phase, precipitates and the dielectric properties of the heating element change, which makes it impossible to obtain a temperature rise stop behavior, which is also not preferable.
Therefore, the firing temperature in the present invention is preferably in the range of 850 to 1200 ° C. More preferably, it is the range of 900-1150 degreeC. The firing time is not particularly limited but is preferably about 0.5 to 10 hours.
The MgCuZn ferrite powder of the present invention can also use a special ferrite raw material manufacturing method such as a mixed roasting method or a coprecipitation method.

本発明では、上記の方法で得られたMgCuZnフェライト粉を、樹脂やゴムに添加して成形物を作製したり、粉体を袋に充填したりすることで、フェライト粉をマイクロ波吸収発熱体の表面や一部、または全部に含有させて、発熱体として使用することができる。また、フェライト粉のみ(すなわち100mass%フェライト粉)を、所定の形状に成形したのち、焼成して塊状とし、ついで発熱体として使用することができる。   In the present invention, the MgCuZn ferrite powder obtained by the above method is added to a resin or rubber to produce a molded product, or the powder is filled into a bag, so that the ferrite powder is microwave-absorbing heating element. It can be used as a heating element by being contained in the surface, part or all of the above. Further, only ferrite powder (that is, 100 mass% ferrite powder) can be formed into a predetermined shape, and then fired to form a lump, and then used as a heating element.

その他のMgCuZnフェライト粉を製造する工程、およびマイクロ波吸収発熱体を製造する工程は、特にその条件に限定はなく、いわゆる常法に従えば良い。   The process for producing the other MgCuZn ferrite powder and the process for producing the microwave-absorbing heating element are not particularly limited in the conditions, and may follow a so-called ordinary method.

以下、本発明の具体的実施例について説明する。
〔実施例1〕
成分組成比率が、Feを49%,CuOを6%と固定し、残部となるZnOおよびMgOを、表1に示す組成比率となるように秤量してボールミルで湿式混合した後、900℃で焼成し、ついで解砕し、分級して、平均粒径D50=45〜55μmのMgCuZnフェライト粉を得た。
上記MgCuZnフェライト粉に、ポリビニルアルコール(PVA)を少量添加して混合した後、縦横の大きさが40mm×40mmで、厚さが約5mm、質量:30gの板状形状に成形し、1100℃で熱処理してMgCuZnフェライト板を作製した。
得られたMgCuZnフェライト板を、市販の電子レンジの中に置き、500Wのマイクロ波を10〜90秒間照射した時のMgCuZnフェライト板の表面温度を放射温度計で測定した。
ここで、70秒、80秒および90秒の表面温度の差が10℃以内となった場合を昇温停止状態とみなし、その際の表面温度の平均値を昇温停止温度:Tsとした。
表1に得られた結果を併記する。
Hereinafter, specific examples of the present invention will be described.
[Example 1]
The component composition ratio was fixed at 49% Fe 2 O 3 and 6% CuO, and the remaining ZnO and MgO were weighed so as to have the composition ratio shown in Table 1 and wet-mixed with a ball mill, then 900 It fired at ° C., then crushed and classified to obtain MgCuZn ferrite powder having an average particle diameter D 50 = 45 to 55 μm.
After a small amount of polyvinyl alcohol (PVA) is added to the MgCuZn ferrite powder and mixed, it is molded into a plate-like shape having a vertical and horizontal size of 40 mm × 40 mm, a thickness of about 5 mm, and a mass of 30 g at 1100 ° C. An MgCuZn ferrite plate was produced by heat treatment.
The obtained MgCuZn ferrite plate was placed in a commercially available microwave oven, and the surface temperature of the MgCuZn ferrite plate when irradiated with a 500 W microwave for 10 to 90 seconds was measured with a radiation thermometer.
Here, the case where the difference between the surface temperatures of 70 seconds, 80 seconds, and 90 seconds was within 10 ° C. was regarded as the temperature increase stop state, and the average value of the surface temperature at that time was defined as the temperature increase stop temperature: Ts.
Table 1 shows the results obtained.

Figure 2014024692
Figure 2014024692

同表から明らかなように、本発明に従うZnO,MgOの組成比範囲を有するMgCuZnフェライト板は、いずれも30〜100℃の温度域で昇温が停止することが確認された。これに対して、ZnOが本発明の上限値を超える比較例1は、マイクロ波を照射しても30℃以上に昇温せず、ZnOが本発明の下限値に満たない比較例2は、昇温停止温度が100℃を超えた。   As is clear from the table, it was confirmed that the temperature increase of the MgCuZn ferrite plate having the composition ratio range of ZnO and MgO according to the present invention was stopped in the temperature range of 30 to 100 ° C. On the other hand, Comparative Example 1 in which ZnO exceeds the upper limit of the present invention does not raise the temperature to 30 ° C. or higher even when irradiated with microwaves, and Comparative Example 2 in which ZnO does not satisfy the lower limit of the present invention is The temperature rise stop temperature exceeded 100 ° C.

〔実施例2〕
成分組成比率が、ZnOを31.5%で固定し、残部のFe,CuOおよびMgOを表2に示す組成比率となるように秤量し、ボールミルで湿式混合した後、1000℃で焼成し、ついで解砕し、分級して、平均粒径D50=40〜50μmのMgCuZnフェライト粉とした。
上記MgCuZnフェライト粉をシリコン樹脂に混練して、フェライト粉含有量70mass%の樹脂シートを作製した。縦横の大きさが40mm×40mmで、厚さ約1mmに切断加工したシートサンプルを、市販の電子レンジの中に置き、500Wのマイクロ波を10〜90秒間照射した時のシートサンプルの表面温度を放射温度計で測定した。
ここで、70秒、80秒および90秒の表面温度の差が10℃以内となった場合を昇温停止状態とみなし、その際の表面温度の平均値を昇温停止温度:Tsrとした。
表2および図1に、得られた結果をそれぞれ示す。
[Example 2]
The component composition ratio is fixed at 31.5% ZnO, the remaining Fe 2 O 3 , CuO and MgO are weighed so as to have the composition ratio shown in Table 2, and wet-mixed with a ball mill, and then fired at 1000 ° C. Then, it was crushed and classified to obtain MgCuZn ferrite powder having an average particle diameter D 50 = 40 to 50 μm.
The MgCuZn ferrite powder was kneaded with silicon resin to prepare a resin sheet having a ferrite powder content of 70 mass%. A sheet sample having a size of 40 mm x 40 mm and cut to a thickness of about 1 mm is placed in a commercially available microwave oven, and the surface temperature of the sheet sample when irradiated with 500 W microwave for 10 to 90 seconds is set. Measured with a radiation thermometer.
Here, the case where the difference between the surface temperatures of 70 seconds, 80 seconds and 90 seconds was within 10 ° C. was regarded as the temperature rise stop state, and the average value of the surface temperature at that time was defined as the temperature rise stop temperature: Tsr.
Table 2 and FIG. 1 show the obtained results, respectively.

Figure 2014024692
Figure 2014024692

表2および図1から明らかなように、本発明に従うFe,CuOおよびMgOの組成比範囲のシートサンプルは、いずれも30〜100℃の温度域で昇温が停止することが確認された。これに対して、比較例5および7はマイクロ波を照射しても30℃を超えて昇温することができず、比較例3,4,6および8は昇温停止挙動を得ることができなかった。 As is clear from Table 2 and FIG. 1, it was confirmed that the temperature increase of the sheet samples in the composition ratio range of Fe 2 O 3 , CuO and MgO according to the present invention was stopped in the temperature range of 30 to 100 ° C. It was. In contrast, Comparative Examples 5 and 7 cannot raise the temperature above 30 ° C. even when irradiated with microwaves, and Comparative Examples 3, 4, 6, and 8 can obtain a temperature rise stop behavior. There wasn't.

〔実施例3〕
成分組成比率が、表2に示した実施例6と同様のモル比率になるように、Fe,CuO,ZnOおよびMgOを秤量して、ボールミルで湿式混合した後、大気中、950℃で2時間焼成し、粉砕および分級を施して、表3に示すように、D50=1.5〜549μmのMgCuZnフェライト粉を得た。
ついで、得られたMgCuZnフェライト粉を、シリコン樹脂に混練して、フェライト粉含有量70mass%の樹脂シートを作製した。さらに、縦横の大きさが40mm×40mmで、厚さ約1mmに切断加工したシートサンプルを市販の電子レンジの中に置き、500Wのマイクロ波を10〜90秒間照射した時のシートサンプルの表面温度を放射温度計で測定した。
ここで、70秒、80秒および90秒の表面温度の差が10℃以内となった場合を昇温停止状態とみなし、その際の表面温度の平均値を昇温停止温度:Tsrとした。
また、シートの表面状態を目視観察した。
表3中、◎は凹凸がないもの、○はわずかな凹凸が生じたもの、×は明らかに凹凸が生じたものである。
表3に、得られた結果を併記する。
Example 3
Fe 2 O 3 , CuO, ZnO and MgO were weighed so that the component composition ratio would be the same molar ratio as in Example 6 shown in Table 2, and wet-mixed with a ball mill, and then at 950 ° C. in the atmosphere. And pulverized and classified for 2 hours to obtain MgCuZn ferrite powder with D 50 = 1.5 to 549 μm as shown in Table 3.
Next, the obtained MgCuZn ferrite powder was kneaded with a silicon resin to prepare a resin sheet having a ferrite powder content of 70 mass%. Furthermore, the surface temperature of the sheet sample when a sheet sample having a size of 40 mm × 40 mm and cut to a thickness of about 1 mm is placed in a commercially available microwave oven and irradiated with 500 W microwave for 10 to 90 seconds. Was measured with a radiation thermometer.
Here, the case where the difference between the surface temperatures of 70 seconds, 80 seconds and 90 seconds was within 10 ° C. was regarded as the temperature rise stop state, and the average value of the surface temperature at that time was defined as the temperature rise stop temperature: Tsr.
Further, the surface state of the sheet was visually observed.
In Table 3, ◎ indicates that there is no unevenness, ○ indicates that there is slight unevenness, and × indicates that unevenness is apparently generated.
Table 3 shows the results obtained.

Figure 2014024692
Figure 2014024692

同表から明らかなように、本発明に従う粒径範囲のMgCuZnフェライトは、いずれも30〜100℃の温度域で明瞭な昇温停止挙動が確認された。これに対して、比較例9は、マイクロ波を照射しても30℃を超えて昇温せず、比較例10は、シート表面に凹凸が見られた。   As is clear from the table, the MgCuZn ferrite having a particle size range according to the present invention has a clear temperature rise stop behavior in the temperature range of 30 to 100 ° C. On the other hand, even if the comparative example 9 irradiated microwaves, it did not heat up exceeding 30 degreeC, and the comparative example 10 showed the unevenness | corrugation on the sheet | seat surface.

〔実施例4〕
温湿布を想定して、60±3℃で昇温停止するフェライト含有樹脂シートを作製した。
まず、成分組成比が、Fe:CuO:MgO:ZnO=49:6:16.7:28.3(%)となるように秤量し、振動ミルで乾式混合した後、1000℃で焼成し、ついで解砕、分級して、平均粒径D50=60μmのMgCuZnフェライト粉とした。
ついで、得られたMgCuZnフェライト粉をシリコン樹脂に混練して、フェライト粉含有量65mass%の樹脂シートを作製した。縦横の大きさが40mm×40mmで、厚さ約1.5mmに切断加工したシートサンプルを市販の電子レンジの中に置き、500Wのマイクロ波を10〜90秒間照射した時のシート表面の温度を放射温度計で測定した。
同様に、市販の発熱粉(炭化ケイ素粉末、D50=80μm)を用いて発熱粉含有量65mass%の樹脂シートを作製し、縦横の大きさが40mm×40mmで、厚さ約1.5mmに切断加工したシートサンプルを市販の電子レンジの中に置き、500Wのマイクロ波を10〜90秒間照射した時のシート表面の温度を放射温度計で測定した。
Example 4
A ferrite-containing resin sheet that stops heating at 60 ± 3 ° C. was prepared assuming a hot compress.
First, the component composition ratio was weighed so as to be Fe 2 O 3 : CuO: MgO: ZnO = 49: 6: 16.7: 28.3 (%), and dry-mixed with a vibration mill, then at 1000 ° C. Firing, then pulverizing and classifying to obtain an MgCuZn ferrite powder having an average particle diameter D 50 = 60 μm.
Subsequently, the obtained MgCuZn ferrite powder was kneaded with a silicon resin to prepare a resin sheet having a ferrite powder content of 65 mass%. A sheet sample having a length and width of 40 mm × 40 mm and cut to a thickness of about 1.5 mm is placed in a commercially available microwave oven, and the temperature of the sheet surface when irradiated with 500 W microwave for 10 to 90 seconds is set. Measured with a radiation thermometer.
Similarly, a resin sheet having a heat generation powder content of 65 mass% is prepared using a commercially available heat generation powder (silicon carbide powder, D 50 = 80 μm), and the length and width are 40 mm × 40 mm and the thickness is about 1.5 mm. The cut sheet sample was placed in a commercially available microwave oven, and the surface temperature of the sheet when irradiated with 500 W microwave for 10 to 90 seconds was measured with a radiation thermometer.

図2に、得られた結果を示す。同図から明らかなように、本発明に従うMgCuZnフェライトシート(発明例12)は、20秒で58℃まで温度上昇し,その後マイクロ波を照射し続けても60±3℃を維持することができる。一方、比較例11は、60℃で使用する場合、12〜15秒程度の極短時間でマイクロ波を停止する必要がある。というのは、照射し続けると100℃を超えて温度上昇し続けるため、火傷や樹脂劣化のおそれがあるからである。   FIG. 2 shows the obtained results. As is clear from the figure, the MgCuZn ferrite sheet according to the present invention (Invention Example 12) can be maintained at 60 ± 3 ° C. even if the temperature rises to 58 ° C. in 20 seconds and then microwave irradiation continues. . On the other hand, when the comparative example 11 is used at 60 ° C., it is necessary to stop the microwave in an extremely short time of about 12 to 15 seconds. This is because if the irradiation continues, the temperature will continue to rise above 100 ° C., which may cause burns and resin degradation.

以上、それぞれの実施例で示したように、本発明に従うMgCuZnフェライト粉は、マイクロ波照射によって急速に昇温し、かつMgCuZnフェライトの板状焼結体やMgCuZnフェライト粉を含有する樹脂シートを用いた評価では、30〜100℃の温度域における所望の温度で昇温が停止するという、本発明の効果が確認された。なお、上記した実施例では、発熱体の全部にMgCuZnフェライト粉を含有する発明例を示したが、発熱体の一部(表層含む)にでも本発明に従うMgCuZnフェライト粉を含有していれば、上記した発明例と同様に、良好な発熱性能と昇温停止性能を有していることを確認している。
As described above, as shown in each example, the MgCuZn ferrite powder according to the present invention is rapidly heated by microwave irradiation, and uses a plate-like sintered body of MgCuZn ferrite or a resin sheet containing MgCuZn ferrite powder. In the evaluation, the effect of the present invention was confirmed that the temperature increase stopped at a desired temperature in the temperature range of 30 to 100 ° C. In addition, in the above-mentioned Example, although the invention example which contains MgCuZn ferrite powder in the whole heat generating body was shown, if the MgCuZn ferrite powder according to the present invention is contained in a part of the heat generating body (including the surface layer), Similar to the above-described invention examples, it has been confirmed that it has good heat generation performance and temperature rise stop performance.

Claims (2)

鉄酸化物がFe換算で46〜51mol%、
銅酸化物がCuO換算で2〜15mol%および
亜鉛酸化物がZnO換算で28mol%超33mol%以下を含み
残部は酸化マグネシウムおよび不可避的不純物からなるMgCuZnフェライト粉であって、
該MgCuZnフェライト粉の平均粒子サイズが2〜500μmであることを特徴とするマイクロ波吸収発熱体用MgCuZnフェライト粉。
46~51Mol% iron oxide in terms of Fe 2 O 3,
MgCuZn ferrite powder comprising 2 to 15 mol% copper oxide in terms of CuO and zinc oxide exceeding 28 mol% to 33 mol% in terms of ZnO, the balance being magnesium oxide and inevitable impurities,
The MgCuZn ferrite powder for microwave absorption heating elements, wherein the MgCuZn ferrite powder has an average particle size of 2 to 500 µm.
マイクロ波を吸収して発熱するマイクロ波吸収発熱体であって、
請求項1に記載のMgCuZnフェライト粉を、少なくとも一部に含有することを特徴とするマイクロ波吸収発熱体。
A microwave absorption heating element that generates heat by absorbing microwaves,
A microwave absorption heating element comprising the MgCuZn ferrite powder according to claim 1 at least partially.
JP2012164892A 2012-07-25 2012-07-25 MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME Pending JP2014024692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012164892A JP2014024692A (en) 2012-07-25 2012-07-25 MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012164892A JP2014024692A (en) 2012-07-25 2012-07-25 MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME

Publications (1)

Publication Number Publication Date
JP2014024692A true JP2014024692A (en) 2014-02-06

Family

ID=50198698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164892A Pending JP2014024692A (en) 2012-07-25 2012-07-25 MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME

Country Status (1)

Country Link
JP (1) JP2014024692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111869321A (en) * 2018-01-18 2020-10-30 微波化学有限公司 Microwave processing device and method for producing carbon fiber
JP2021031527A (en) * 2019-08-20 2021-03-01 タイガースポリマー株式会社 Resin composition and aroma generation method with resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135958A (en) * 1983-12-23 1985-07-19 Toda Kogyo Corp Spherical magnetic carrier particles and their manufacture
JPH04137482A (en) * 1990-01-19 1992-05-12 Koransha Co Ltd Microwave absorption heating material
JPH0737709A (en) * 1993-07-20 1995-02-07 Tokin Corp Magnetic heater element and magnetic material used therefor
JP2001130954A (en) * 1999-10-29 2001-05-15 Tdk Corp Ferrite sintered compact
JP2001139368A (en) * 1999-11-08 2001-05-22 Tdk Corp Ferrite sintered compact for inductor element
JP2006206416A (en) * 2005-01-31 2006-08-10 Tdk Corp Magnetic heating body and ferrite used for the same
JP2010006617A (en) * 2008-06-24 2010-01-14 Jfe Chemical Corp MgCu-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135958A (en) * 1983-12-23 1985-07-19 Toda Kogyo Corp Spherical magnetic carrier particles and their manufacture
JPH04137482A (en) * 1990-01-19 1992-05-12 Koransha Co Ltd Microwave absorption heating material
JPH0737709A (en) * 1993-07-20 1995-02-07 Tokin Corp Magnetic heater element and magnetic material used therefor
JP2001130954A (en) * 1999-10-29 2001-05-15 Tdk Corp Ferrite sintered compact
JP2001139368A (en) * 1999-11-08 2001-05-22 Tdk Corp Ferrite sintered compact for inductor element
JP2006206416A (en) * 2005-01-31 2006-08-10 Tdk Corp Magnetic heating body and ferrite used for the same
JP2010006617A (en) * 2008-06-24 2010-01-14 Jfe Chemical Corp MgCu-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111869321A (en) * 2018-01-18 2020-10-30 微波化学有限公司 Microwave processing device and method for producing carbon fiber
JP2021031527A (en) * 2019-08-20 2021-03-01 タイガースポリマー株式会社 Resin composition and aroma generation method with resin composition

Similar Documents

Publication Publication Date Title
JP4663005B2 (en) MgCu ferrite powder for microwave absorption heating element
CN107226694B (en) PTCR ceramic material, preparation method and application thereof
JP2007223849A (en) Gallium oxide-based sintered compact and method of manufacturing the same
CN105993053B (en) Compound soft magnetic material and preparation method thereof
Choi et al. Dependence of microwave dielectric properties on crystallization behaviour of CaMgSi2O6 glass-ceramics
JP2014024692A (en) MgCuZn-BASED FERRITE POWDER FOR MICROWAVE ABSORPTION HEATING ELEMENT AND MICROWAVE ABSORPTION HEATING ELEMENT USING THE SAME
CN104311004B (en) PTC ceramic material and method for improving resistance temperature stability below curie point of PTC ceramic material
JP4492370B2 (en) Magnetic heating element and ferrite used therefor
JP5713931B2 (en) NiMgCuZn ferrite powder for microwave absorption heating element and microwave absorption heating element using the powder
JP2013204978A (en) Container for food heating
JP5017438B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JP6276107B2 (en) Microwave absorption heating element using MgCuZn ferrite powder for microwave absorption heating element
JP5468825B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
CN112912447A (en) Magnesium oxide, method for producing same, highly thermally conductive magnesium oxide composition, and magnesium oxide ceramic using same
JP5546671B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JP2016201358A (en) Microwave absorption heating powder and microwave absorption heating element
JP2017027933A (en) Microwave-absorbing heating body
JP6305913B2 (en) Heating method of thermoplastic resin
JP6088417B2 (en) Li-based ferrite for microwave-absorbing heating element and method for producing the same, Li-based ferrite powder for microwave-absorbing heating element, Li-based ferrite sintered body for microwave-absorbing heating element, and microwave-absorbing heating element
JP5912994B2 (en) Method for producing NiCuZn ferrite powder for microwave absorption heating element, and method for producing microwave absorption heating element using powder produced by the production method
WO2014064519A4 (en) A new composition of microwavable phase change material
JP5828812B2 (en) Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder
CN104446391A (en) NTC (negative temperature coefficient) thermistor material with high B value and, high electrical resistivity and preparation method of thermistor material
JP2013242974A (en) Method for producing powder for microwave absorption heating element and method for manufacturing microwave absorption heating element using the powder
JP2019014960A (en) Soft magnetic alloy powder and method for producing the same, and, dust core using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728