JPH07249487A - Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven - Google Patents

Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven

Info

Publication number
JPH07249487A
JPH07249487A JP6078251A JP7825194A JPH07249487A JP H07249487 A JPH07249487 A JP H07249487A JP 6078251 A JP6078251 A JP 6078251A JP 7825194 A JP7825194 A JP 7825194A JP H07249487 A JPH07249487 A JP H07249487A
Authority
JP
Japan
Prior art keywords
microwave
weight
emitting body
heat emitting
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6078251A
Other languages
Japanese (ja)
Inventor
Tsutomu Suzuki
務 鈴木
Keiichi Miura
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP6078251A priority Critical patent/JPH07249487A/en
Publication of JPH07249487A publication Critical patent/JPH07249487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Cookers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a microwave absorptive heat emitting body together with its method of manufacturing, in which the electromagnetic energy of microwaves is converted into thermal energy, and provide a cooking vessel for microwave oven which is formed of the microwave absorptive heat emitting body. CONSTITUTION:A microwave absorptive heat emitting body is made of a sintered substance containing 92-97wt.% zinc oxide and 8-3wt.% aluminum oxide. The heat emitting body is fabricated by preparing a mixture of the zinc oxide and aluminum oxide in the mentioned proportion and subjecting the obtained mixture to a sintering process at a temp. between 1000-1700 deg.C. An intended cooking vessel for a microwave oven is formed from this heat emitting body obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波の電磁エネ
ルギーを熱エネルギーに変換するマイクロ波吸収発熱体
及びその製造方法並びに該マイクロ波吸収発熱体で形成
された電子レンジ調理用容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave absorbing heating element for converting microwave electromagnetic energy into heat energy, a method for producing the same, and a microwave oven cooking container formed of the microwave absorbing heating element.

【0002】[0002]

【従来の技術】電子レンジは周波数2450MHzのマ
イクロ波により被調理物を加熱処理するもので各種の被
調理物の加熱に広く用いられているが、被調理物に焦げ
目を付けることができないという欠点がある。例えばハ
ンバーグ、ホットケーキ、魚、肉などでは焦げ目が付か
ないと食欲がでないという被調理物があり、焦げ目を付
けることができる電子レンジ調理用容器の開発が要望さ
れていた。この要望に応ずるため、電子レンジのオーブ
ン内に磁気損失の大きいフェライト、誘電損失の大きい
チタン酸バリウム、電気抵抗の小さい炭化珪素等よりな
る調理用容器を配置し、この容器の発熱により被調理物
に焦げ目を付けることが提案されている。しかしなが
ら、フェライトやチタン酸バリウムは発熱量が少なく、
また、炭化珪素は高価であり、成形、焼結が難しく、長
期の使用で空気中の酸素により酸化反応を起こしてしま
い発熱効果が低下するため実用に至っていないのが現状
である。酸化物セラミックスである酸化亜鉛もマイクロ
波(2450MHz)を吸収し発熱することが知られて
いるが、発熱量が十分でなく昇温に時間がかかりすぎる
ため電子レンジ調理の特徴である短時間での調理には適
していない。
2. Description of the Related Art A microwave oven heats an object to be cooked by a microwave having a frequency of 2450 MHz and is widely used for heating various kinds of objects to be cooked, but it has a drawback that it cannot be browned. There is. For example, hamburgers, pancakes, fish, meat, and the like have foods that have no appetite unless they are charred, and there has been a demand for the development of a microwave cooking container that can be charred. To meet this demand, a cooking container made of ferrite with large magnetic loss, barium titanate with large dielectric loss, silicon carbide with small electric resistance, etc. is placed in the oven of the microwave oven, and the heat generated by this container causes the food to be cooked. It has been proposed to brown the. However, ferrite and barium titanate generate less heat,
In addition, silicon carbide is expensive, is difficult to mold and sinter, and the oxygen generation reaction is caused by oxygen in the air over a long-term use, and the exothermic effect is deteriorated. It is known that zinc oxide, which is an oxide ceramic, also absorbs microwaves (2450 MHz) and generates heat. However, the amount of heat generated is not sufficient and it takes too long to raise the temperature. Is not suitable for cooking.

【0003】[0003]

【発明が解決しようとする課題】本発明は、安価でかつ
酸化に対して安定な素材を用いマイクロ波(2450M
Hz)を吸収して短時間で被調理物に焦げ目のつく温度
に達する発熱特性を有するマイクロ波吸収発熱体及びそ
の製造方法並びに該マイクロ波吸収発熱体で形成された
電子レンジ調理用容器を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention uses a microwave (2450M
And a microwave absorption heating element having a heat generation characteristic of reaching a temperature at which the food to be cooked is burnt in a short time, a method for producing the same, and a microwave oven cooking container formed of the microwave absorption heating element. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記の課
題を解決せんと鋭意研究した結果、下記発明を完成し
た。すなわち、第1の発明は、酸化亜鉛92〜97重量
%と酸化アルミニウム8〜3重量%との焼結体よりなる
マイクロ波吸収発熱体である。また、第2の発明は、酸
化亜鉛92〜97重量%と酸化アルミニウム8〜3重量
%との混合物を成形し、1000〜1700℃の温度で
焼結することを特徴とするマイクロ波吸収発熱体の製造
方法であり、さらに、第3の発明は、酸化亜鉛92〜9
7重量%と酸化アルミニウム8〜3重量%との焼結体で
形成された電子レンジ調理用容器である。第1の発明に
おいて、後述するように被調理物に焦げ目を付けること
ができる200℃以上の温度に短時間で達するようにす
るには、酸化亜鉛と酸化アルミニウムとの割合は、93
〜96.5重量%:7〜3.5重量%とするのが好まし
く、95重量%:5重量%とするのが更に好ましい。ま
た、第2の発明においては、酸化亜鉛と酸化アルミニウ
ムとの配合割合は、第1の発明と同様であるが、焼結を
行う際の温度は1000〜1700℃、好ましくは12
00〜1300℃である。1000℃未満では焼結体に
マイクロ波を照射しても発熱が起こらず、1700℃を
超えると酸化亜鉛が昇華してしまう。また、焼結時間は
30〜120分とするのが好ましい。なお、酸化亜鉛、
酸化アルミニウムは、それぞれ0.5〜10μmの粒度
であるのが好ましい。両者の混合物から焼結用の成形体
をつくるには、プレス成形、スリップキャスト成形等の
セラミックス製造の分野で一般的な成形法で成形する。
その際、成形バインダー等を添加しても発熱特性上なん
ら問題とならない。さらに、第3の発明において、容器
の形状は、電子レンジ調理用に現在用いられている容器
の形状である各種の皿状のものや、その他被調理物の加
熱に適合する形状のものとするのがよい。以下に、これ
らの発明を実験例に基づきさらに説明する。
Means for Solving the Problems The present inventors have completed the following inventions as a result of intensive research aimed at solving the above problems. That is, the first aspect of the present invention is a microwave absorption heating element formed of a sintered body of 92 to 97% by weight of zinc oxide and 8 to 3% by weight of aluminum oxide. A second invention is a microwave absorption heating element, characterized in that a mixture of 92 to 97% by weight of zinc oxide and 8 to 3% by weight of aluminum oxide is molded and sintered at a temperature of 1000 to 1700 ° C. And a third invention is zinc oxide 92-9.
It is a microwave cooking container formed of a sintered body of 7% by weight and 8 to 3% by weight of aluminum oxide. In the first invention, the proportion of zinc oxide and aluminum oxide is 93 in order to reach a temperature of 200 ° C. or higher at which the food to be cooked can be browned as described later in a short time.
˜96.5% by weight: 7 to 3.5% by weight is preferable, and 95% by weight: 5% by weight is more preferable. Further, in the second invention, the mixing ratio of zinc oxide and aluminum oxide is the same as in the first invention, but the temperature at the time of sintering is 1000 to 1700 ° C., preferably 12
It is 00 to 1300 ° C. If the temperature is lower than 1000 ° C, no heat is generated even if the sintered body is irradiated with microwaves, and if the temperature exceeds 1700 ° C, zinc oxide sublimes. The sintering time is preferably 30 to 120 minutes. In addition, zinc oxide,
The aluminum oxide preferably has a particle size of 0.5 to 10 μm, respectively. In order to form a molded body for sintering from a mixture of the two, it is molded by a molding method generally used in the field of ceramics manufacturing such as press molding and slip cast molding.
At that time, even if a molding binder or the like is added, there is no problem in terms of heat generation characteristics. Further, in the third invention, the shape of the container is various dish-like shapes which are the shapes of containers currently used for microwave oven cooking, and other shapes suitable for heating an object to be cooked. Is good. Hereinafter, these inventions will be further described based on experimental examples.

【0005】実験例 表1に示した配合割合になるように、酸化亜鉛粉末(添
川理化学社製、純度99.99%、粒度1μm)と、酸
化アルミニウム粉末(レアメタル社製、純度99.99
%、粒度1μm)とを秤り取り、これにエタノールを加
えボールミルで湿式混合した。混合物を十分乾燥し、径
20mm×高さ5mmの錠剤状に1t/cmでプレス
成形した後、大気中、電気炉で1200℃、30分間保
持し焼結を行った。
Experimental Example Zinc oxide powder (manufactured by Soekawa Rikagaku Co., purity 99.99%, particle size 1 μm) and aluminum oxide powder (manufactured by Rare Metal Co., purity 99.99) so that the compounding ratios shown in Table 1 were obtained.
%, Particle size 1 μm) were weighed, ethanol was added thereto, and wet-mixed with a ball mill. The mixture was sufficiently dried and press-molded into a tablet having a diameter of 20 mm and a height of 5 mm at 1 t / cm 2 , and then sintered by holding in an electric furnace at 1200 ° C. for 30 minutes in the air.

【0006】[0006]

【表1】 [Table 1]

【0007】得られた焼結体を市販の電子レンジ(50
0W、2450MHz)中で15〜90秒間マイクロ波
を照射後ただちに取りだし、焼結体の表面温度をE型熱
電対で測定した。測定結果を図1に示す。図2にマイク
ロ波を30秒間照射したときの焼結体の表面温度を示
す。図3に最高表面温度を呈した配合No.6(酸化亜
鉛95重量%−酸化アルミニウム5重量%)の焼結体の
粉末X線回折パターンを示した。なお、図1中の数字
は、表1の配合No.を示す。
The obtained sintered body was converted into a commercially available microwave oven (50
After microwave irradiation for 15 to 90 seconds in 0 W, 2450 MHz), it was immediately taken out, and the surface temperature of the sintered body was measured with an E-type thermocouple. The measurement results are shown in FIG. FIG. 2 shows the surface temperature of the sintered body when irradiated with microwaves for 30 seconds. The compound No. which showed the highest surface temperature in FIG. 6 shows a powder X-ray diffraction pattern of a sintered body of No. 6 (95% by weight of zinc oxide-5% by weight of aluminum oxide). The numbers in FIG. 1 are the compound numbers of Table 1. Indicates.

【0008】図1及び図2から、酸化アルミニウムの配
合量が2重量%以下の場合や8重量%を超える場合は、
酸化亜鉛のみに比べ発熱特性が同等以下であること、ま
た図2から、30秒間という短時間で被調理物に焦げ目
を付けることができる200℃以上の温度にするには酸
化アルミニウムが3.5〜7重量%含まれなければなら
ず、さらに、最高温度を得るには、酸化亜鉛95重量%
−酸化アルミニウム5重量%の焼結体とするのが良いこ
とが分かる。また、図3から本発明焼結体は、酸化亜鉛
とアルミン酸亜鉛とからなるものであることが分かる。
From FIGS. 1 and 2, when the content of aluminum oxide is 2% by weight or less or exceeds 8% by weight,
As compared with zinc oxide alone, the exothermic properties are equivalent or less, and from FIG. 2, aluminum oxide is 3.5 or higher in order to reach a temperature of 200 ° C. or higher at which the food can be browned in a short time of 30 seconds. ~ 7% by weight, and 95% by weight zinc oxide to obtain maximum temperature
-It turns out that a sintered body of 5% by weight of aluminum oxide is preferable. Further, it can be seen from FIG. 3 that the sintered body of the present invention comprises zinc oxide and zinc aluminate.

【0009】[0009]

【作用】本発明のマイクロ波吸収発熱体は、酸化亜鉛の
マイクロ波吸収発熱特性を大幅に改善することができ
る。また炭化珪素に比し素材が安価であり、かつ成形、
焼結しやすく、雰囲気制御することなく大気中で焼結す
ることができる。また、1000〜1700℃の高温で
焼結するため自己発熱による化学変化がなく、長期使用
においても発熱効果の低下はない。
The microwave absorbing heat generating element of the present invention can greatly improve the microwave absorbing heat generating characteristics of zinc oxide. In addition, the material is cheaper than silicon carbide, and molding,
It is easy to sinter and can be sintered in the air without controlling the atmosphere. Further, since it is sintered at a high temperature of 1000 to 1700 ° C., there is no chemical change due to self-heating, and the exothermic effect does not decrease even after long-term use.

【0010】[0010]

【実施例】実験例と同じ酸化亜鉛と酸化アルミニウムと
を、それぞれ95重量%、5重量%となるように秤り取
り、これに蒸留水を加えボールミルで湿式混合しスラリ
ー状態とした。得られたスラリーを加圧鋳込み法によ
り、図4に示す電子レンジ調理用容器と、該容器に用い
る蓋の形状に成形した。容器底部にはリブ状の凹凸を設
け、加熱時に被調理物からでる水分や脂肪分を溜めるこ
とのできるように工夫した。成形体を風通しの良い日陰
で一昼夜乾燥した後、大気中、電気炉で1200℃で9
0分間保持して焼結を行った。このようにして作った容
器にサンマ一匹を載せ蓋をした。電子レンジのターンテ
ーブルの上には容器が直接触れないようにガラス繊維製
の断熱材を敷き、その上にサンマを入れた容器を載せ
た。電子レンジを5分間運転した後、容器を取り出し蓋
をはずして観察したところ、被調理物のサンマ表面に焦
げ目が付いていた。特に、リブ状凹凸に接した部分は網
で焼いたような焦げ目がついていた。
Example The same zinc oxide and aluminum oxide as in the experimental example were weighed so as to be 95% by weight and 5% by weight, respectively, and distilled water was added thereto to wet-mix with a ball mill to obtain a slurry state. The obtained slurry was molded into the shape of the container for microwave oven cooking shown in FIG. 4 and the lid used for the container by a pressure casting method. The bottom of the container was provided with rib-shaped irregularities so that water and fat from the food to be cooked could be collected during heating. After drying the molded body for a whole day and night in a well-ventilated shade, in an air furnace at 1200 ° C for 9 days
It hold | maintained for 0 minute and sintered. One saury was placed on the container thus prepared and the lid was closed. A glass fiber insulating material was laid on the turntable of the microwave oven so that the container did not come into direct contact, and the container containing the saury was placed on it. After operating the microwave oven for 5 minutes, the container was taken out and the lid was removed for observation. As a result, the surface of the saury of the food to be cooked had a brown mark. In particular, the portion in contact with the rib-shaped irregularities had a brown mark like a net.

【0011】[0011]

【発明の効果】本発明のマイクロ波吸収発熱体は、マイ
クロ波を吸収し自己発熱する際、高い発熱温度を得るこ
とができる。したがって、本発明マイクロ波吸収発熱体
を用いれば被加熱物は直接照射された電磁波による発熱
と併せて容器の発熱によって加熱されることから、加熱
時間を短縮することができ加熱効率が高い。その上耐
酸、耐アルカリにも優れているので、電子レンジの調理
用容器用として特に優れたものである。
The microwave absorbing heat generating element of the present invention can obtain a high heat generation temperature when absorbing microwaves and generating heat by itself. Therefore, when the microwave absorption heating element of the present invention is used, the object to be heated is heated by the heat generated by the container in addition to the heat generated by the electromagnetic waves that are directly irradiated, so that the heating time can be shortened and the heating efficiency is high. In addition, it is also excellent in acid resistance and alkali resistance, so that it is particularly excellent as a container for cooking a microwave oven.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化亜鉛と酸化アルミニウムとの焼結体に50
0W、2450MHzのマイクロ波を照射したときの、
マイクロ波照射時間と焼結体の表面温度との関係を示す
線図。
FIG. 1 shows a sintered body of zinc oxide and aluminum oxide.
When irradiated with 0 W, 2450 MHz microwave,
FIG. 4 is a diagram showing the relationship between the microwave irradiation time and the surface temperature of the sintered body.

【図2】酸化亜鉛と酸化アルミニウムとの焼結体資料に
500W、2450MHzのマイクロ波を30秒間照射
したときの、酸化亜鉛と酸化アルミニウムとの配合割合
と焼結体の表面温度との関係を示す線図。
FIG. 2 shows the relationship between the compounding ratio of zinc oxide and aluminum oxide and the surface temperature of the sintered body when a material of the sintered body of zinc oxide and aluminum oxide is irradiated with a microwave of 500 W and 2450 MHz for 30 seconds. The diagram shown.

【図3】配合No.6(酸化亜鉛95重量%−酸化アル
ミニウム5重量%)の焼結体の粉末X線回折パターン。
[Figure 3] Recipe No. 6 is a powder X-ray diffraction pattern of a sintered body of 6 (95% by weight of zinc oxide-5% by weight of aluminum oxide).

【図4】実施例で用いた電子レンジ調理用容器と、該容
器に用いた蓋の形状を示す図。
FIG. 4 is a view showing a microwave cooking container used in Examples and a shape of a lid used for the container.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛92〜97重量%と酸化アルミ
ニウム8〜3重量%との焼結体よりなるマイクロ波吸収
発熱体。
1. A microwave absorbing heating element comprising a sintered body of 92 to 97% by weight of zinc oxide and 8 to 3% by weight of aluminum oxide.
【請求項2】 酸化亜鉛92〜97重量%と酸化アルミ
ニウム8〜3重量%との混合物を成形し、1000〜1
700℃の温度で焼結することを特徴とするマイクロ波
吸収発熱体の製造方法。
2. A mixture of 92 to 97% by weight of zinc oxide and 8 to 3% by weight of aluminum oxide is molded to obtain 1000 to 1
A method for producing a microwave absorption heating element, which comprises sintering at a temperature of 700 ° C.
【請求項3】 酸化亜鉛92〜97重量%と酸化アルミ
ニウム8〜3重量%との焼結体で形成された電子レンジ
調理用容器。
3. A container for microwave oven cooking, which is formed of a sintered body of 92 to 97% by weight of zinc oxide and 8 to 3% by weight of aluminum oxide.
JP6078251A 1994-03-09 1994-03-09 Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven Pending JPH07249487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078251A JPH07249487A (en) 1994-03-09 1994-03-09 Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078251A JPH07249487A (en) 1994-03-09 1994-03-09 Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven

Publications (1)

Publication Number Publication Date
JPH07249487A true JPH07249487A (en) 1995-09-26

Family

ID=13656786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078251A Pending JPH07249487A (en) 1994-03-09 1994-03-09 Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven

Country Status (1)

Country Link
JP (1) JPH07249487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054460A1 (en) * 2000-01-21 2001-07-26 Idemitsu Petrochemical Co., Ltd. High frequency induction heating-purpose inorganic material, composite material, mold, and method of producing high frequency fusion processed articles
JP2013040075A (en) * 2011-08-17 2013-02-28 Saga Prefecture Pottery and porcelain, and manufacturing method therefor
KR20160118106A (en) 2015-04-01 2016-10-11 전수걸 Manufacturing method of pottery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054460A1 (en) * 2000-01-21 2001-07-26 Idemitsu Petrochemical Co., Ltd. High frequency induction heating-purpose inorganic material, composite material, mold, and method of producing high frequency fusion processed articles
JP2013040075A (en) * 2011-08-17 2013-02-28 Saga Prefecture Pottery and porcelain, and manufacturing method therefor
KR20160118106A (en) 2015-04-01 2016-10-11 전수걸 Manufacturing method of pottery

Similar Documents

Publication Publication Date Title
Fang et al. Microwave sintering of hydroxyapatite ceramics
CN105627760B (en) A kind of microwave material placing device of high temperature sintering
JP2009532827A (en) Composite materials and equipment comprising single crystal silicon carbide heated by electromagnetic radiation
Subasri et al. Microwave processing of sodium beta alumina
JPH07249487A (en) Microwave absorptive heat emitting body and its manufacture and cooking vessel of microwave oven
KR101428945B1 (en) Cookware and Cookware manufacturing method for microwave oven
JP5850821B2 (en) Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof
JP5017438B2 (en) Cooking device for electromagnetic wave absorption heating element and microwave oven
JPS6138139B2 (en)
KR101885955B1 (en) Ceramic heating cooker using microwave
JP2011009016A (en) Electromagnetic wave absorbing heating element, and cooking utensil for microwave oven
KR20160023509A (en) Exothermic glaze and vessel sped it on the surface
JP5713931B2 (en) NiMgCuZn ferrite powder for microwave absorption heating element and microwave absorption heating element using the powder
KR101602574B1 (en) Cookware and Cookware manufacturing method for microwave oven
JPS5849665A (en) Ceramic body for dielectric heating
JP2013239459A (en) Electromagnetic wave absorption heating element and cooking appliance for microwave oven
JP5824411B2 (en) Method for producing powder for microwave-absorbing heating element and method for producing microwave-absorbing heating element using the powder
KR20030033196A (en) Ceramic pyrogen composition absorbing microwave and method for manufacturing the same
KR930009893B1 (en) Process for the production ceramic
KR830002534Y1 (en) Cooking container
JP5828812B2 (en) Method for producing powder for microwave absorption heating element, powder for microwave absorption heating element, and microwave absorption heating element using the powder
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JPH03210787A (en) Microwave absorbing heating body
KR20010085151A (en) The far infra red ray emissive heater and method for its preparation
JP2004299913A (en) Ceramic heating element and method of manufacturing the same