JP2013108673A - Heat pump - Google Patents

Heat pump Download PDF

Info

Publication number
JP2013108673A
JP2013108673A JP2011253869A JP2011253869A JP2013108673A JP 2013108673 A JP2013108673 A JP 2013108673A JP 2011253869 A JP2011253869 A JP 2011253869A JP 2011253869 A JP2011253869 A JP 2011253869A JP 2013108673 A JP2013108673 A JP 2013108673A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
evaporator
heat medium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011253869A
Other languages
Japanese (ja)
Inventor
Masasuke Nakajima
雅祐 中島
Kazuo Miyoshi
一雄 三好
Hisakazu Onizuka
久和 鬼塚
Atsushi Hirata
淳 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011253869A priority Critical patent/JP2013108673A/en
Publication of JP2013108673A publication Critical patent/JP2013108673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump in which flow rate distribution to a heat transfer tube by an evaporator can be made uniform.SOLUTION: The heat pump includes a gas-liquid separator 13 provided to a heating medium circulation line 6 between an expansion valve 5 and an evaporator 2 so as to separate a heating medium passed through the expansion valve 5 into a gas phase and a liquid phase and supply only the heating medium in the liquid phase to the evaporator 2, a gas bypass line 14 configured with one end connected to the gas-liquid separator 13 and the other end connected to the heating medium circulation line 6 between the evaporator 2 and a compressor 3 so as to bypass the heating medium in the gas phase separated by the gas-liquid separator 13 to an exit side of the evaporator 2, and an expansion mechanism 15 provided in an entrance heat transfer header 10 of the evaporator 2 so as to expand the heating medium just before each entrance of a plurality of heat transfer tubes 9.

Description

本発明は、ヒートポンプに関するものである。   The present invention relates to a heat pump.

熱媒体を高温熱源と熱交換させ、熱媒体を蒸発させる蒸発器と、蒸発器で蒸発させた熱媒体を圧縮する圧縮機と、圧縮機で圧縮された熱媒体を低温熱源と熱交換させ、熱媒体を凝縮させる凝縮器と、凝縮器で凝縮させた熱媒体を膨張させて蒸発器に供給する膨張弁と、を備えたヒートポンプが知られている。   Heat exchange of the heat medium with a high-temperature heat source, an evaporator for evaporating the heat medium, a compressor for compressing the heat medium evaporated by the evaporator, and heat exchange of the heat medium compressed by the compressor with a low-temperature heat source, There is known a heat pump including a condenser that condenses a heat medium, and an expansion valve that expands the heat medium condensed by the condenser and supplies the heat medium to an evaporator.

このヒートポンプに用いる蒸発器として、管内蒸発タイプのシェルアンドチューブ式熱交換器がある。この蒸発器は、シェル内に複数の伝熱管を収容し、複数の伝熱管の両端をそれぞれ入口伝熱管ヘッダと出口伝熱管ヘッダに接続して構成されており、複数の伝熱管を流れる熱媒体を、シェル内を流れる高温熱源により加熱して蒸発させるように構成されている。   As an evaporator used for this heat pump, there is an in-pipe evaporation type shell and tube heat exchanger. This evaporator accommodates a plurality of heat transfer tubes in a shell, and is configured by connecting both ends of the plurality of heat transfer tubes to an inlet heat transfer tube header and an outlet heat transfer tube header, respectively, and a heat medium flowing through the plurality of heat transfer tubes Is heated and evaporated by a high-temperature heat source flowing in the shell.

ところで、この蒸発器では、蒸発器に気相成分の多い熱媒体が供給されると、各伝熱管への流量配分(流配)が不均一となり、蒸発器の効率が著しく悪化してしまうという問題がある。   By the way, in this evaporator, when a heat medium with a large amount of gas phase components is supplied to the evaporator, the flow rate distribution (flow distribution) to each heat transfer tube becomes non-uniform, and the efficiency of the evaporator is significantly deteriorated. There's a problem.

具体的には、例えば、伝熱管の管軸方向を水平とした横型の蒸発器においては、下方に配置された伝熱管では、液相成分が多い(液リッチとなる)ので蒸発による伝熱特性がよく、伝熱管内部で完全に蒸発できるだけの熱量を授受できないので、伝熱管入口付近でのクオリティ(乾き度、ボイド率)はさほど大きくならず、従って体積膨張が小さくなり比較的安定な挙動を示す。これに対して、上方に配置された伝熱管では気相成分が多い(ガスリッチとなる)ので蒸発による伝熱特性が悪く、また体積流量が大きくなるので圧損が大きくなり流量は低下する。   Specifically, for example, in a horizontal evaporator in which the tube axis direction of the heat transfer tube is horizontal, the heat transfer tube disposed below has a large liquid phase component (becomes liquid rich), so heat transfer characteristics by evaporation Because the heat quantity that can evaporate completely inside the heat transfer tube cannot be exchanged, the quality (dryness, void ratio) near the heat transfer tube inlet does not increase so much, so the volume expansion becomes smaller and the behavior is relatively stable. Show. On the other hand, the heat transfer tube disposed above has a large amount of gas phase components (becomes rich in gas), so the heat transfer characteristics due to evaporation are poor, and the volumetric flow rate increases, so the pressure loss increases and the flow rate decreases.

このように、横型の蒸発器では、気相成分の多い熱媒体が供給されると、伝熱管の上下配置位置で熱媒体に比重差が生じてしまい、伝熱管入口での流量配分が不均一となってしまう。なお、上下の伝熱管での流量配分の不均一は、一旦発生すると均一になる安定点がないので、いつまでも不安定のままである。   As described above, in a horizontal evaporator, when a heat medium having a large amount of gas phase components is supplied, a difference in specific gravity occurs in the heat medium at the position where the heat transfer tube is arranged vertically, and the flow distribution at the heat transfer tube inlet is uneven. End up. In addition, since the non-uniformity of the flow distribution in the upper and lower heat transfer tubes does not have a stable point that once becomes uniform, it remains unstable forever.

伝熱管の管軸方向を鉛直とした縦型の蒸発器においても、同様の問題が発生する。縦型の蒸発器に気相成分の多い熱媒体が供給されると、気泡により見かけの液位が揺動し、伝熱管入口が熱媒体への浸漬と開放を繰り返すような状態となり、圧損と流量のバランスが崩れ、各伝熱管への流量配分が不均一となってしまう。   The same problem occurs in a vertical evaporator in which the tube axis direction of the heat transfer tube is vertical. When a heat medium with a large amount of gas phase components is supplied to the vertical evaporator, the apparent liquid level fluctuates due to bubbles, and the heat transfer tube inlet is repeatedly immersed and released in the heat medium, causing pressure loss. The balance of the flow rate is lost, and the flow rate distribution to each heat transfer tube becomes uneven.

特許文献1では、膨張弁を出た気液二相の熱媒体に対して、多孔質でできた微細気泡製造装置によって気泡を微細化し、各伝熱管への流量配分を均一化する方法が提案されている。   Patent Document 1 proposes a method of making bubbles finer by a porous fine bubble production device for the gas-liquid two-phase heat medium exiting the expansion valve and making the flow distribution to each heat transfer tube uniform. Has been.

特許文献2では、膨張機の下流側に気液分離器を設け、気液分離器で分離した液相の熱媒体を膨張弁で膨張した後に蒸発器に供給する方法が提案されている。   Patent Document 2 proposes a method in which a gas-liquid separator is provided on the downstream side of the expander, and the liquid-phase heat medium separated by the gas-liquid separator is expanded by an expansion valve and then supplied to the evaporator.

特開2008−286488号公報JP 2008-286488 A 特開2011−85284号公報JP 2011-85284 A

しかしながら、特許文献1の方法では、熱媒体の気液密度差や気泡径が適切でないと、流量配分が著しく不均一となってしまうという問題がある。   However, the method of Patent Document 1 has a problem that the flow rate distribution becomes extremely non-uniform unless the gas-liquid density difference and the bubble diameter of the heat medium are appropriate.

特許文献2の方法は、蒸発器に供給される気相の成分が少なくなるため、蒸発器の各伝熱管での流量配分を改善することは可能である。しかし、特許文献2の方法では、蒸発器の前段に膨張弁を設けて圧力調整を行っており、気液分離後の液相の熱媒体を膨張弁で膨張してから蒸発器に導入しているため、膨張時に気相成分が混入してしまい、蒸発器に供給される熱媒体が完全な液密(液単相、クオリティ=0)にはならない。よって、流量配分の均一化の観点からは、さらなる改善が望まれる。   The method of Patent Document 2 can improve the flow rate distribution in each heat transfer tube of the evaporator because the vapor phase component supplied to the evaporator is reduced. However, in the method of Patent Document 2, an expansion valve is provided in front of the evaporator to adjust the pressure, and the liquid phase heat medium after gas-liquid separation is expanded by the expansion valve and then introduced into the evaporator. Therefore, gas phase components are mixed during expansion, and the heat medium supplied to the evaporator is not completely liquid-tight (liquid single phase, quality = 0). Therefore, further improvement is desired from the viewpoint of uniform flow distribution.

本発明は上記事情に鑑み為されたものであり、蒸発器での伝熱管への流量配分を均一にすることが可能なヒートポンプを提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the heat pump which can make uniform the flow distribution to the heat exchanger tube in an evaporator.

本発明は上記目的を達成するために創案されたものであり、シェル内に複数の伝熱管を収容し、前記複数の伝熱管の両端をそれぞれ入口伝熱管ヘッダと出口伝熱管ヘッダに接続して構成され、前記複数の伝熱管を流れる熱媒体を、前記シェル内を流れる高温熱源により加熱して蒸発させる蒸発器と、該蒸発器で蒸発させた熱媒体を圧縮する圧縮機と、該圧縮機で圧縮された熱媒体を低温熱源と熱交換させ、熱媒体を凝縮させる凝縮器と、該凝縮器で凝縮させた熱媒体を膨張させて前記蒸発器に供給する膨張弁と、前記蒸発器と前記圧縮機と前記凝縮器と前記膨張弁とを順次ループ状に接続する熱媒体循環ラインと、を備えたヒートポンプにおいて、前記膨張弁と前記蒸発器間の前記熱媒体循環ラインに設けられ、前記膨張弁を通過した熱媒体を気相と液相に分離して、液相の熱媒体のみを前記蒸発器に供給する気液分離器と、該気液分離器に一端が接続されると共に、前記蒸発器と前記圧縮機間の前記熱媒体循環ラインに他端が接続され、前記気液分離器にて分離した気相の熱媒体を前記蒸発器の出口側にバイパスさせるガスバイパスラインと、前記蒸発器の前記入口伝熱管ヘッダ内に設けられ、前記複数の伝熱管の入口直前で熱媒体を膨張させる膨張機構と、を備えたヒートポンプである。   The present invention was devised to achieve the above object, and a plurality of heat transfer tubes are accommodated in a shell, and both ends of the plurality of heat transfer tubes are respectively connected to an inlet heat transfer tube header and an outlet heat transfer tube header. An evaporator configured to heat and evaporate a heat medium flowing through the plurality of heat transfer tubes by a high-temperature heat source flowing in the shell, a compressor that compresses the heat medium evaporated by the evaporator, and the compressor A heat exchanger that exchanges heat with the low temperature heat source to condense the heat medium, an expansion valve that expands the heat medium condensed by the condenser and supplies the heat medium to the evaporator, and the evaporator In a heat pump comprising a heat medium circulation line that sequentially connects the compressor, the condenser, and the expansion valve in a loop shape, the heat pump is provided in the heat medium circulation line between the expansion valve and the evaporator, Heat medium that has passed through the expansion valve A gas-liquid separator that separates into a gas phase and a liquid phase and supplies only the liquid-phase heat medium to the evaporator, and one end connected to the gas-liquid separator, and between the evaporator and the compressor A gas bypass line that has the other end connected to the heat medium circulation line and bypasses the vapor phase heat medium separated by the gas-liquid separator to the outlet side of the evaporator, and the inlet heat transfer tube of the evaporator An expansion mechanism that is provided in the header and expands the heat medium immediately before the inlets of the plurality of heat transfer tubes.

前記ガスバイパスラインに、前記ガスバイパスラインを通過する気相の熱媒体に、前記膨張機構で付与する圧損と同等の圧損を付与するための圧損調整弁を設けてもよい。   The gas bypass line may be provided with a pressure loss adjusting valve for applying a pressure loss equivalent to the pressure loss applied by the expansion mechanism to the gas phase heat medium passing through the gas bypass line.

前記入口伝熱管ヘッダは、管板を隔てて前記シェルと隣接するように設けられ、前記膨張機構は、前記管板の前記入口伝熱管ヘッダ側の内壁に、前記各伝熱管の開口部を一括して覆うように固定され、前記各伝熱管の開口部に対応する位置に、前記熱媒体を通すオリフィス孔が形成されたオリフィス板を備えてもよい。   The inlet heat transfer tube header is provided so as to be adjacent to the shell with a tube plate interposed therebetween, and the expansion mechanism collectively places openings of the heat transfer tubes on the inner wall of the tube plate on the inlet heat transfer tube header side. And an orifice plate in which orifice holes through which the heat medium passes are formed at positions corresponding to the openings of the heat transfer tubes.

前記各伝熱管は、その端部が前記管板を貫通して前記入口伝熱管ヘッダ内に突出するように固定されており、前記膨張機構は、前記管板と前記オリフィス板との間に挟持され、前記伝熱管の突出部の長さよりも厚く形成され、前記各伝熱管の開口部に対応する位置に前記伝熱管の外径より大きい径の貫通孔が形成されたスペーサ板をさらに備えてもよい。   Each of the heat transfer tubes is fixed so that an end thereof penetrates the tube plate and protrudes into the inlet heat transfer tube header, and the expansion mechanism is sandwiched between the tube plate and the orifice plate. A spacer plate formed thicker than the length of the projecting portion of the heat transfer tube and having a through-hole having a diameter larger than the outer diameter of the heat transfer tube at a position corresponding to the opening of each heat transfer tube. Also good.

前記入口伝熱管ヘッダは、管板を隔てて前記シェルと隣接するように設けられ、前記管板の前記シェル側または前記入口伝熱管ヘッダ側に、前記シェル内を流れる高温熱源により前記入口伝熱管ヘッダ内の熱媒体が加熱されることを抑制する断熱部材を設けてもよい。   The inlet heat transfer tube header is provided so as to be adjacent to the shell across a tube plate, and the inlet heat transfer tube is provided on the shell side of the tube plate or on the inlet heat transfer tube header side by a high-temperature heat source flowing in the shell. You may provide the heat insulation member which suppresses that the heat medium in a header is heated.

前記気液分離器は、前記蒸発器よりも鉛直方向上方に配置されてもよい。   The gas-liquid separator may be disposed vertically above the evaporator.

本発明によれば、蒸発器での伝熱管への流量配分を均一にすることができる。   According to the present invention, the flow distribution to the heat transfer tubes in the evaporator can be made uniform.

本発明の一実施の形態に係るヒートポンプの概略構成図である。It is a schematic block diagram of the heat pump which concerns on one embodiment of this invention. 図1のヒートポンプのPh線図である。FIG. 2 is a Ph diagram of the heat pump of FIG. 1. 図1のヒートポンプに用いる膨張機構を示す図であり、(a)は入口伝熱管ヘッダ側から見た正面図、(b)は拡大縦断面図である。It is a figure which shows the expansion mechanism used for the heat pump of FIG. 1, (a) is the front view seen from the inlet heat exchanger tube header side, (b) is an expanded longitudinal cross-sectional view. (a),(b)は、本発明で用いる蒸発器の変形例を示す断面図である。(A), (b) is sectional drawing which shows the modification of the evaporator used by this invention.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本実施の形態に係るヒートポンプの概略構成図である。   FIG. 1 is a schematic configuration diagram of a heat pump according to the present embodiment.

図1に示すように、ヒートポンプ1は、熱媒体を高温熱源と熱交換させ、熱媒体を蒸発させる蒸発器2と、蒸発器2で蒸発させた熱媒体を圧縮する圧縮機3と、圧縮機3で圧縮された熱媒体を低温熱源と熱交換させ、熱媒体を凝縮させる凝縮器4と、凝縮器4で凝縮させた熱媒体を膨張させて蒸発器2に供給する膨張弁5と、蒸発器2と圧縮機3と凝縮器4と膨張弁5とを順次ループ状に接続する熱媒体循環ライン6と、を備えている。   As shown in FIG. 1, a heat pump 1 includes a heat exchanger that exchanges heat with a high-temperature heat source, an evaporator 2 that evaporates the heat medium, a compressor 3 that compresses the heat medium evaporated by the evaporator 2, and a compressor The heat medium compressed in 3 is heat-exchanged with a low-temperature heat source, the condenser 4 that condenses the heat medium, the expansion valve 5 that expands the heat medium condensed in the condenser 4 and supplies the heat medium to the evaporator 2, and evaporation And a heat medium circulation line 6 that sequentially connects the compressor 2, the compressor 3, the condenser 4, and the expansion valve 5 in a loop shape.

蒸発器2としては、シェル8内に複数の伝熱管9を収容し、複数の伝熱管9の両端をそれぞれ入口伝熱管ヘッダ10と出口伝熱管ヘッダ11に接続して構成され、複数の伝熱管9を流れる熱媒体を、シェル8内を流れる高温熱源により加熱して蒸発させるもの、すなわち、管内蒸発タイプのシェルアンドチューブ式熱交換器を用いる。入口伝熱管ヘッダ10と出口伝熱管ヘッダ11は、それぞれ管板12を隔ててシェル8と隣接するように設けられ、両ヘッダ10,11でシェル8を挟み込むように設けられている。   The evaporator 2 is configured by housing a plurality of heat transfer tubes 9 in a shell 8 and connecting both ends of the plurality of heat transfer tubes 9 to an inlet heat transfer tube header 10 and an outlet heat transfer tube header 11, respectively. A heat medium flowing through 9 is heated and evaporated by a high-temperature heat source flowing in the shell 8, that is, an in-pipe evaporation type shell-and-tube heat exchanger is used. The inlet heat transfer tube header 10 and the outlet heat transfer tube header 11 are provided so as to be adjacent to the shell 8 with the tube plate 12 interposed therebetween, and the header 8 is sandwiched between the headers 10 and 11.

本実施の形態では、伝熱管9の管軸方向が水平となるように配置した横型の蒸発器2を用いる場合を説明するが、伝熱管9の管軸方向が鉛直となるように配置した縦型のもの、あるいは、伝熱管9の管軸方向が水平方向(あるいは鉛直方向)に対して傾斜するように配置した斜め型のものを用いてもよい。   In the present embodiment, the case of using the horizontal evaporator 2 that is arranged so that the tube axis direction of the heat transfer tube 9 is horizontal will be described. However, the vertical direction that the tube axis direction of the heat transfer tube 9 is arranged vertically is described. A slanted type or a slanted type arranged such that the tube axis direction of the heat transfer tube 9 is inclined with respect to the horizontal direction (or the vertical direction) may be used.

凝縮器4と膨張弁5間の熱媒体循環ライン6には、凝縮器4で凝縮された液相の熱媒体を一時貯留する中間液溜め7が設けられる。   The heat medium circulation line 6 between the condenser 4 and the expansion valve 5 is provided with an intermediate liquid reservoir 7 for temporarily storing the liquid phase heat medium condensed by the condenser 4.

膨張弁5と蒸発器2間の熱媒体循環ライン6には、気液分離器13が設けられる。この気液分離器13は、膨張弁5を通過した熱媒体を気相と液相に分離して、液相の熱媒体のみを蒸発器2に供給するためのものである。   A gas-liquid separator 13 is provided in the heat medium circulation line 6 between the expansion valve 5 and the evaporator 2. The gas-liquid separator 13 separates the heat medium that has passed through the expansion valve 5 into a gas phase and a liquid phase, and supplies only the liquid phase heat medium to the evaporator 2.

気液分離器13は、膨張弁5の下流側に直結して設けることが好ましい。通常、膨張弁5の下流側の配管には他の配管よりも大径のものを用いるが、膨張弁5の下流側に気液分離器13を直結することにより、上述のような大径の配管が不要となり、構成を簡易とし、部品数を削減してコストを低減することが可能になる。また、膨張後の気液混合状態の熱媒体をスムーズに気液分離器13に導入できるように、気液分離器13の入口側の配管は立上管(管軸方向が鉛直となるように設けられた配管)とし、その立上管に膨張弁5を設けることが好ましい。   The gas-liquid separator 13 is preferably provided directly connected to the downstream side of the expansion valve 5. Normally, the pipe downstream of the expansion valve 5 has a larger diameter than the other pipes, but by connecting the gas-liquid separator 13 directly to the downstream side of the expansion valve 5, the pipe having a large diameter as described above is used. Piping is unnecessary, the configuration is simplified, the number of parts can be reduced, and the cost can be reduced. In addition, the pipe on the inlet side of the gas-liquid separator 13 is a stand-up pipe (so that the tube axis direction is vertical) so that the expanded heat-medium mixed gas medium can be smoothly introduced into the gas-liquid separator 13. It is preferable to provide the expansion valve 5 in the riser pipe.

気液分離器13としては、下方に設けられた液相抜き出しノズル13aから分離後の液相の熱媒体を抜き出し、分離後の気相の熱媒体を上方の気相抜き出し口13bから抜き出す一般的な縦型の気液分離器を用いるとよい。   As the gas-liquid separator 13, a separated liquid phase heat medium is extracted from a liquid phase extraction nozzle 13a provided below, and a separated gas phase heat medium is extracted from an upper gas phase extraction port 13b. A vertical gas-liquid separator may be used.

気液分離器13の気相抜き出し口13bは、ガスバイパスライン14を介して、蒸発器2と圧縮機3間の熱媒体循環ライン6に接続され、気液分離器13にて分離した気相の熱媒体を蒸発器2の出口側にバイパスさせるように構成される。   The gas phase outlet 13 b of the gas-liquid separator 13 is connected to the heat medium circulation line 6 between the evaporator 2 and the compressor 3 via the gas bypass line 14 and separated by the gas-liquid separator 13. The heat medium is configured to be bypassed to the outlet side of the evaporator 2.

さて、本実施の形態に係るヒートポンプ1では、蒸発器2の入口伝熱管ヘッダ10内に設けられ、複数の伝熱管9の入口直前で熱媒体を膨張させる膨張機構15を備えている。   The heat pump 1 according to the present embodiment includes an expansion mechanism 15 that is provided in the inlet heat transfer tube header 10 of the evaporator 2 and expands the heat medium immediately before the plurality of heat transfer tubes 9.

この膨張機構15は、熱媒体の圧力調整を行うと共に、伝熱管9の上下配置位置での液ヘッド差による流量配分の不均一を解消すべく、液ヘッド以上の圧損を付与する役割を果たす。なお、液ヘッドとは熱媒体の水頭圧をいう。膨張機構15の詳細については後述する。   The expansion mechanism 15 functions to adjust the pressure of the heat medium and to impart a pressure loss higher than that of the liquid head in order to eliminate uneven flow distribution due to the liquid head difference between the upper and lower positions of the heat transfer tube 9. The liquid head refers to the water head pressure of the heat medium. Details of the expansion mechanism 15 will be described later.

膨張機構15を伝熱管9の入口直前に設けることにより、伝熱管9の直前、すなわち熱媒体が配分される直前まで熱媒体を液単相に保ち、さらに伝熱管9の上下配置位置の液ヘッド差を解消して、各伝熱管9への流量配分を均一にすることが可能になる。   By providing the expansion mechanism 15 immediately before the inlet of the heat transfer tube 9, the heat medium is kept in a liquid single phase immediately before the heat transfer tube 9, that is, immediately before the heat medium is distributed. It is possible to eliminate the difference and make the flow distribution to each heat transfer tube 9 uniform.

ただし、膨張機構15により圧損が付与されるために、蒸発器2の出口での熱媒体の圧力は、気液分離器13の気相抜き出し口13bでの熱媒体の圧力よりも小さくなり、その結果、蒸発器2側から圧縮機3には熱媒体が殆ど流れない状態となってしまう。そこで、本実施の形態では、ガスバイパスライン14に、ガスバイパスライン14を通過する気相の熱媒体に、膨張機構15で付与する圧損と同等の圧損を付与するための圧損調整弁16を設けている。図1では、圧損調整弁16を気液分離器13の気相抜き出し口13bに直結して設けた場合を示しているが、直結しなくてもよい。   However, since pressure loss is imparted by the expansion mechanism 15, the pressure of the heat medium at the outlet of the evaporator 2 becomes smaller than the pressure of the heat medium at the gas phase outlet 13b of the gas-liquid separator 13, As a result, the heat medium hardly flows from the evaporator 2 side to the compressor 3. Therefore, in the present embodiment, the gas bypass line 14 is provided with a pressure loss adjusting valve 16 for applying a pressure loss equivalent to the pressure loss applied by the expansion mechanism 15 to the gas phase heat medium passing through the gas bypass line 14. ing. Although FIG. 1 shows the case where the pressure loss adjusting valve 16 is directly connected to the gas phase extraction port 13b of the gas-liquid separator 13, it may not be directly connected.

さらに、本実施の形態では、気液分離器13を、蒸発器2よりも鉛直方向上方(縦型の蒸発器2を用いる場合、少なくとも入口伝熱管ヘッダ10より上方)に配置している。これにより、蒸発器2に供給される液相の熱媒体の液ヘッドを大きく(つまり圧力を高く)して過冷却度を大きくし、入口伝熱管ヘッダ10内の熱媒体を液単相の状態に保ちやすくすることができる。   Further, in the present embodiment, the gas-liquid separator 13 is arranged vertically above the evaporator 2 (at least above the inlet heat transfer tube header 10 when the vertical evaporator 2 is used). Thereby, the liquid head of the liquid phase heat medium supplied to the evaporator 2 is enlarged (that is, the pressure is increased) to increase the degree of supercooling, and the heat medium in the inlet heat transfer tube header 10 is in a liquid single phase state. Can be easily maintained.

ここで、このヒートポンプ1のPh線図(モリエル線図)を図2により説明する。なお、図2におけるa〜hの各点は、図1に囲い文字で示したa〜hの各部位での熱媒体の圧力P、比エンタルピhに対応している。   Here, a Ph diagram (Mollier diagram) of the heat pump 1 will be described with reference to FIG. In addition, each point of ah in FIG. 2 respond | corresponds to the pressure P and specific enthalpy h of the heat medium in each site | part of ah shown by the enclosing character in FIG.

図1,2に示すように、凝縮器4で凝縮され液相となった熱媒体(a点)は、膨張弁5で減圧され気液分離器13に導入される。熱媒体は、膨張弁5で膨張されると、気液混合の状態となる(b点)。   As shown in FIGS. 1 and 2, the heat medium (point a) condensed in the condenser 4 to become a liquid phase is decompressed by the expansion valve 5 and introduced into the gas-liquid separator 13. When the heat medium is expanded by the expansion valve 5, it enters a gas-liquid mixed state (point b).

気液分離器13で分離された液相の熱媒体は、液単相(クオリティ=0)の状態で入口伝熱管ヘッダ10に導入され(c点)、その後、膨張機構15でさらに減圧されて伝熱管9に導入される(d点)。伝熱管9に導入された熱媒体は、伝熱管9内で蒸発して出口伝熱管ヘッダ11に導入される(e点)。   The liquid phase heat medium separated by the gas-liquid separator 13 is introduced into the inlet heat transfer tube header 10 in a liquid single phase (quality = 0) state (point c), and then further depressurized by the expansion mechanism 15. It is introduced into the heat transfer tube 9 (point d). The heat medium introduced into the heat transfer tube 9 is evaporated in the heat transfer tube 9 and introduced into the outlet heat transfer tube header 11 (point e).

気液分離器13で分離された気相の熱媒体(f点)は、圧損調整弁16にて減圧され出口伝熱管ヘッダ11と略同じ圧力に調整された後、出口伝熱管ヘッダ11からの熱媒体と合流する(g点)。合流した熱媒体は、圧縮機3にて圧縮され(h点)、その後、凝縮器4で凝縮されて、再び液相となる(a点)。   The gas phase heat medium (point f) separated by the gas-liquid separator 13 is depressurized by the pressure loss adjusting valve 16 and adjusted to substantially the same pressure as the outlet heat transfer pipe header 11, and then from the outlet heat transfer pipe header 11. Merge with heat medium (g point). The combined heat medium is compressed by the compressor 3 (point h), and then condensed by the condenser 4 to become a liquid phase again (point a).

次に、膨張機構15について説明する。   Next, the expansion mechanism 15 will be described.

膨張機構15としては、例えばオリフィスを用いることができる。この場合、オリフィス径は、熱媒体の流量、液ヘッド等を考慮して、伝熱管9の上下配置位置での液ヘッド差を解消可能な圧損を付与するように適宜決定すればよい。   For example, an orifice can be used as the expansion mechanism 15. In this case, the orifice diameter may be appropriately determined in consideration of the flow rate of the heat medium, the liquid head, and the like so as to give a pressure loss that can eliminate the liquid head difference at the upper and lower positions of the heat transfer tube 9.

膨張機構15としてオリフィスを用いる場合、伝熱管9のそれぞれに対応するように個別にオリフィスを設けることになるが、これでは非常に手間がかかり製造コストが高くなってしまう。そこで、本実施の形態では、膨張機構15を、共通のオリフィス板21で構成した。   When an orifice is used as the expansion mechanism 15, the orifice is individually provided so as to correspond to each of the heat transfer tubes 9, but this is very troublesome and increases the manufacturing cost. Therefore, in the present embodiment, the expansion mechanism 15 is configured by the common orifice plate 21.

図3(a),(b)に示すように、オリフィス板21は、管板12の入口伝熱管ヘッダ10側の内壁に、各伝熱管9の開口部を一括して覆うように固定され、各伝熱管9の開口部に対応する位置(開口の中心の位置)に、熱媒体を通すオリフィス孔22が形成されたものである。なお、図3(a)では、入口伝熱管ヘッダ10を覆う筐体を省略して示している。   As shown in FIGS. 3A and 3B, the orifice plate 21 is fixed to the inner wall of the tube plate 12 on the inlet heat transfer tube header 10 side so as to cover the openings of the heat transfer tubes 9 together. An orifice hole 22 through which the heat medium passes is formed at a position corresponding to the opening of each heat transfer tube 9 (position at the center of the opening). In FIG. 3A, the casing that covers the inlet heat transfer tube header 10 is omitted.

本実施の形態では、各伝熱管9を、その端部が管板12を貫通して入口伝熱管ヘッダ10内に突出するように固定しているため、伝熱管9の突出部が干渉してオリフィス板21をそのまま固定することができない。そこで、伝熱管9の突出部の干渉を避けるために、スペーサ板23を備えるようにしている。   In the present embodiment, each heat transfer tube 9 is fixed so that the end portion thereof penetrates the tube plate 12 and protrudes into the inlet heat transfer tube header 10, so that the protrusion of the heat transfer tube 9 interferes. The orifice plate 21 cannot be fixed as it is. Therefore, in order to avoid the interference of the protruding portion of the heat transfer tube 9, a spacer plate 23 is provided.

スペーサ板23は、管板12とオリフィス板21との間に挟持され、伝熱管9の突出部の長さよりも厚く形成され、各伝熱管9の開口部に対応する位置に伝熱管9の外径より大きい径の貫通孔24が形成されたものである。管板12とオリフィス板21との間にスペーサ板23を配置すると、スペーサ板23の貫通孔24に伝熱管9の突出部が収容され、伝熱管9の突出部がオリフィス板12に干渉することを回避できる。スペーサ板23は、伝熱管9の突出部の干渉を避ける役割と、オリフィス板21と管板12間のシールの役割と、伝熱管9ごとの仕切りの役割を兼ねている。   The spacer plate 23 is sandwiched between the tube plate 12 and the orifice plate 21 and is formed to be thicker than the length of the protruding portion of the heat transfer tube 9, and the spacer plate 23 is positioned outside the heat transfer tube 9 at a position corresponding to the opening of each heat transfer tube 9. A through hole 24 having a diameter larger than the diameter is formed. When the spacer plate 23 is disposed between the tube plate 12 and the orifice plate 21, the protruding portion of the heat transfer tube 9 is accommodated in the through hole 24 of the spacer plate 23, and the protruding portion of the heat transfer tube 9 interferes with the orifice plate 12. Can be avoided. The spacer plate 23 has a role of avoiding the interference of the protruding portion of the heat transfer tube 9, a role of a seal between the orifice plate 21 and the tube plate 12, and a role of a partition for each heat transfer tube 9.

本実施の形態では、伝熱管9の突出部を管板12に溶接しており、伝熱管9の突出部の周囲には山型に盛り上がった溶接痕(溶接跡、溶接しろ)9aが形成されるため、この溶接痕9aを避けるために、スペーサ板23の貫通孔24は、その管板12側の端部が、管板12側に向かって徐々に拡径するテーパ状に形成されている。   In the present embodiment, the projecting portion of the heat transfer tube 9 is welded to the tube plate 12, and a welding mark (welding mark, welding margin) 9 a swelled in a mountain shape is formed around the projecting portion of the heat transfer tube 9. Therefore, in order to avoid this welding mark 9a, the through hole 24 of the spacer plate 23 is formed in a tapered shape whose end on the tube plate 12 side gradually increases in diameter toward the tube plate 12 side. .

また、本実施の形態では、オリフィス板21とスペーサ板23を、管板12にボルト(スタッドボルト)25で固定するようにしており、管板12に対して着脱可能としている。これにより、例えば、オリフィス板21のオリフィス径を変更する際などに容易に対応が可能になる。なお、オリフィス板21を変更する際にも、スペーサ板23は共通として用いることができるので、無駄が少ない。   Further, in the present embodiment, the orifice plate 21 and the spacer plate 23 are fixed to the tube plate 12 with bolts (stud bolts) 25 so that they can be attached to and detached from the tube plate 12. Thereby, for example, it is possible to easily cope with changing the orifice diameter of the orifice plate 21. In addition, when changing the orifice plate 21, since the spacer plate 23 can be used in common, there is little waste.

オリフィス板21とスペーサ板23には、管板12への固定時にボルト25を通すためのボルト穴26が複数形成されている。本実施の形態では、オリフィス板21とスペーサ板23の周縁部にそれぞれ適宜な間隔でボルト穴26を形成している。   The orifice plate 21 and the spacer plate 23 are formed with a plurality of bolt holes 26 through which the bolts 25 are passed when being fixed to the tube plate 12. In the present embodiment, bolt holes 26 are formed at appropriate intervals in the peripheral portions of the orifice plate 21 and the spacer plate 23.

ただし、オリフィス板21とスペーサ板23の周縁部のみをボルト固定した場合、オリフィス板21とスペーサ板23の中央部に浮きが発生する可能性がある。そこで、本実施の形態では、管板12の中央部に伝熱管9が存在しない固定用スペース27を数箇所(図3(a)では6箇所)設けると共に、オリフィス板21とスペーサ板23の固定用スペース27に対応する位置にボルト穴26を形成し、オリフィス板21とスペーサ板23の周縁部と中央部を管板12に対してボルト固定して、管板12、スペーサ板23、オリフィス板21が全体的に密着するようにした。   However, when only the peripheral portions of the orifice plate 21 and the spacer plate 23 are bolted, there is a possibility that the center portion of the orifice plate 21 and the spacer plate 23 may float. Therefore, in the present embodiment, several fixing spaces 27 (six locations in FIG. 3A) in which the heat transfer tubes 9 do not exist are provided in the central portion of the tube plate 12, and the orifice plate 21 and the spacer plate 23 are fixed. A bolt hole 26 is formed at a position corresponding to the working space 27, and the peripheral edge portion and the central portion of the orifice plate 21 and the spacer plate 23 are bolted to the tube plate 12, and the tube plate 12, the spacer plate 23, the orifice plate 21 was adhered closely.

図3(a)では、オリフィス板21とスペーサ板23を、円盤状の部材の上下の一部を平行に切り落とした略長円形状(2本の平行な直線の端部同士をそれぞれ円弧で接続した形状)とし、その切り落とす部分の大きさをオリフィス板21よりもスペーサ板23の方が小さくなるようにした場合(つまり、オリフィス板21の外形をスペーサ板23の外形より小さく形成した場合)を示しているが、これは、管板12、スペーサ板23、オリフィス板21の重なり順で徐々に小さくした方が安定し、取り付けが容易であるという便宜上のものであり、オリフィス板21とスペーサ板23の形状はこれに限定されるものではない。例えば、オリフィス板21とスペーサ板23を同じ形状としてもよい。オリフィス板21とスペーサ板23の材質についても、特に限定するものではないが、例えば、一般的な炭素鋼であるSS400を用いることができる。   In FIG. 3 (a), the orifice plate 21 and the spacer plate 23 are formed in a substantially oval shape in which upper and lower parts of a disk-shaped member are cut in parallel (two parallel straight line ends are connected by arcs, respectively. And the spacer plate 23 is smaller than the orifice plate 21 (ie, the outer shape of the orifice plate 21 is smaller than the outer shape of the spacer plate 23). Although shown, this is for the sake of convenience that the tube plate 12, the spacer plate 23, and the orifice plate 21 are gradually made smaller in the overlapping order, which is more stable and easier to install. The orifice plate 21 and the spacer plate The shape of 23 is not limited to this. For example, the orifice plate 21 and the spacer plate 23 may have the same shape. The material of the orifice plate 21 and the spacer plate 23 is not particularly limited. For example, SS400, which is a general carbon steel, can be used.

オリフィス板21とスペーサ板23を用いることにより、伝熱管9の本数が非常に多い場合でも、容易に膨張機構15を実現でき、作業性も向上できる。また、伝熱管9の外径が異なる場合であっても、その外径がスペーサ板23の貫通孔24の径よりも小さく、伝熱管9の配置が同じであれば、共通のオリフィス板21、スペーサ板23を用いることが可能である。   By using the orifice plate 21 and the spacer plate 23, the expansion mechanism 15 can be easily realized and the workability can be improved even when the number of the heat transfer tubes 9 is very large. Further, even when the outer diameters of the heat transfer tubes 9 are different, if the outer diameter is smaller than the diameter of the through hole 24 of the spacer plate 23 and the arrangement of the heat transfer tubes 9 is the same, the common orifice plate 21, A spacer plate 23 can be used.

なお、本実施の形態では、オリフィス板21とスペーサ板23を別体としたが、オリフィス板21とスペーサ板23を一体に形成することも可能である。ただし、この場合、1枚の板材に途中まで穴を開けるという技術的に困難な加工が必要となり、製造コストが高くなってしまう。本実施の形態のようにオリフィス板21とスペーサ板23を別体で形成し、これらを重ね合わせて管板12に固定するように構成することで、容易かつ低コストに膨張機構15を実現することが可能である。   In the present embodiment, the orifice plate 21 and the spacer plate 23 are separated from each other, but the orifice plate 21 and the spacer plate 23 may be integrally formed. However, in this case, it is necessary to perform a technically difficult process of making a hole in one plate material halfway, resulting in an increase in manufacturing cost. As in the present embodiment, the orifice plate 21 and the spacer plate 23 are formed as separate bodies, and these are stacked and fixed to the tube plate 12, thereby realizing the expansion mechanism 15 easily and at low cost. It is possible.

本実施の形態の作用を説明する。   The operation of the present embodiment will be described.

本実施の形態に係るヒートポンプ1では、膨張弁5と蒸発器2間の熱媒体循環ライン6に設けられ、膨張弁5を通過した熱媒体を気相と液相に分離して、液相の熱媒体のみを蒸発器2に供給する気液分離器13と、気液分離器13に一端が接続されると共に、蒸発器2と圧縮機3間の熱媒体循環ライン6に他端が接続され、気液分離器13にて分離した気相の熱媒体を蒸発器2の出口側にバイパスさせるガスバイパスライン14と、蒸発器2の入口伝熱管ヘッダ10内に設けられ、複数の伝熱管9の入口直前で熱媒体を膨張させる膨張機構15と、を備えている。   In the heat pump 1 according to the present embodiment, the heat medium that is provided in the heat medium circulation line 6 between the expansion valve 5 and the evaporator 2, separates the heat medium that has passed through the expansion valve 5 into a gas phase and a liquid phase. One end is connected to the gas-liquid separator 13 for supplying only the heat medium to the evaporator 2 and the gas-liquid separator 13, and the other end is connected to the heat medium circulation line 6 between the evaporator 2 and the compressor 3. A gas bypass line 14 for bypassing the gas phase heat medium separated by the gas-liquid separator 13 to the outlet side of the evaporator 2, and an inlet heat transfer pipe header 10 of the evaporator 2, and a plurality of heat transfer pipes 9. And an expansion mechanism 15 that expands the heat medium immediately before the entrance of.

換言すれば、本実施の形態に係るヒートポンプ1では、膨張弁5と蒸発器2の間に気液分離器13を設けて、気液分離器13から液単相の熱媒体のみを蒸発器2に導入するようにし、かつ、蒸発器2内の伝熱管9の直前に膨張機構15を設けている。   In other words, in the heat pump 1 according to the present embodiment, the gas-liquid separator 13 is provided between the expansion valve 5 and the evaporator 2, and only the liquid single-phase heat medium is removed from the gas-liquid separator 13. The expansion mechanism 15 is provided immediately before the heat transfer tube 9 in the evaporator 2.

上述の特許文献2では、熱媒体を気液分離した後に膨張弁で膨張してから蒸発器に導入するため、蒸発器に気相混じりの熱媒体が導入されてしまい、蒸発器での各伝熱管への流量配分を十分に均一とすることができなかった。特許文献2のように、蒸発器の外部に膨張機構を設けた場合、蒸発器には必ず気相混じりの熱媒体が供給されることとなり、蒸発器での各伝熱管への流量配分は少なからず不均一となる。   In the above-mentioned Patent Document 2, since the heat medium is gas-liquid separated and then expanded by an expansion valve and then introduced into the evaporator, a heat medium mixed with a gas phase is introduced into the evaporator, and each transfer in the evaporator is performed. The flow distribution to the heat pipes could not be made sufficiently uniform. When an expansion mechanism is provided outside the evaporator as in Patent Document 2, a heat medium mixed with a gas phase is always supplied to the evaporator, and the flow rate distribution to each heat transfer tube in the evaporator is small. It becomes non-uniform.

これに対して本発明のヒートポンプ1では、蒸発器2の内部に膨張機構15を設け、かつ、伝熱管9の入口直前で熱媒体を膨張するように構成したため、伝熱管9の直前、すなわち熱媒体が配分される直前までは必ず液単相の熱媒体が供給されることとなり、その結果、蒸発器2での各伝熱管9への流量配分を均一化することが可能になる。   On the other hand, in the heat pump 1 of the present invention, the expansion mechanism 15 is provided inside the evaporator 2 and the heat medium is expanded immediately before the inlet of the heat transfer tube 9. The liquid single-phase heat medium is always supplied until immediately before the medium is distributed, and as a result, the flow distribution to the heat transfer tubes 9 in the evaporator 2 can be made uniform.

また、伝熱管9の入口直前に設けた膨張機構15は、圧損を付与して伝熱管9の上下配置位置のヘッダ差を解消する役割を果たすので、特に横型の蒸発器2においては、流量配分の均一化の効果が大きい。   In addition, the expansion mechanism 15 provided immediately before the inlet of the heat transfer tube 9 serves to eliminate the header difference between the upper and lower positions of the heat transfer tube 9 by applying pressure loss. The effect of uniformizing is great.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施の形態では、膨張機構15としてオリフィス(オリフィス板21)を用いたが、膨張機構15はこれに限定されるものではなく、例えば、伝熱管9自体の管径を細くすることでも、同様の効果を得ることが可能である。   For example, in the above embodiment, an orifice (orifice plate 21) is used as the expansion mechanism 15. However, the expansion mechanism 15 is not limited to this, and for example, the diameter of the heat transfer tube 9 itself can be reduced. It is possible to obtain the same effect.

また、上記実施の形態では、蒸発器2として管内蒸発タイプのシェルアンドチューブ式熱交換器を用いたが、これに限らず、例えば多管ラジエータ式の蒸発器にも本発明は適用可能である。   Moreover, in the said embodiment, although the pipe | tube evaporation type shell and tube type heat exchanger was used as the evaporator 2, it is not restricted to this, For example, this invention is applicable also to a multi-tube radiator type evaporator. .

また、上記実施の形態では言及しなかったが、シェル8内を流れる高温熱源により管板12が加熱され、入口伝熱管ヘッダ10内の管板12近傍の熱媒体が蒸発して気相となってしまい、この気相の熱媒体の影響により各伝熱管9への流量配分が不均一となってしまう場合も考えられる。このような高温熱源による入口伝熱管ヘッダ10内の熱媒体の加熱が問題となる場合は、図4(a),(b)に示すように、管板12のシェル8側または入口伝熱管ヘッダ10側に、シェル8内を流れる高温熱源により入口伝熱管ヘッダ10内の熱媒体が加熱されることを抑制する断熱部材41を設けるとよい。なお、図4(a),(b)では、膨張機構15を省略して示している。また、図4(a),(b)では、縦型の蒸発器2を示しているが、横型あるいは斜め型のものにも適用可能である。   Although not mentioned in the above embodiment, the tube plate 12 is heated by a high-temperature heat source flowing in the shell 8, and the heat medium in the vicinity of the tube plate 12 in the inlet heat transfer tube header 10 evaporates into a gas phase. Therefore, there may be a case where the flow rate distribution to each heat transfer tube 9 becomes non-uniform due to the influence of the gas phase heat medium. When heating of the heat medium in the inlet heat transfer tube header 10 by such a high-temperature heat source becomes a problem, as shown in FIGS. 4A and 4B, the shell 8 side of the tube plate 12 or the inlet heat transfer tube header. A heat insulating member 41 that suppresses heating of the heat medium in the inlet heat transfer tube header 10 by a high-temperature heat source flowing in the shell 8 may be provided on the side 10. In FIGS. 4A and 4B, the expansion mechanism 15 is omitted. 4 (a) and 4 (b) show the vertical evaporator 2, it can be applied to a horizontal type or an oblique type.

さらに、伝熱管9の入口付近が過度に高温になると、伝熱管9に流入した途端に蒸発した熱媒体の影響により流量配分が不均一となる場合があるので、このような場合は、伝熱管9の入口伝熱管ヘッダ10側の端部を所定の長さ覆うように断熱部材41を設け、伝熱管9の端部での伝熱が過剰になることを抑制することが望ましい。   Furthermore, if the vicinity of the inlet of the heat transfer tube 9 becomes excessively high, the flow distribution may be uneven due to the influence of the heat medium that has evaporated immediately after flowing into the heat transfer tube 9. It is desirable to provide a heat insulating member 41 so as to cover the end of the heat pipe 9 on the inlet heat transfer pipe header 10 side for a predetermined length, and to suppress excessive heat transfer at the end of the heat transfer pipe 9.

断熱部材41を入口伝熱管ヘッダ10側に設ける場合には、図4(b)に示すように、管板12から突出する伝熱管9の突出長を長くし、その長くした伝熱管9の突出部を覆うように断熱部材41を設けるようにすればよい。例えば、縦型の蒸発器2においては、通常、入口伝熱管ヘッダ10および伝熱管9内部の見かけの液面は管板12よりもやや低い位置が想定されるが、管板12の入口伝熱管ヘッダ10側に断熱部材41を設けることで液面が伝熱管9の内部まで持ち上げられ、伝熱管9入口における熱媒体を液単相として、流量配分の均一化を行うことができる。   When the heat insulating member 41 is provided on the inlet heat transfer tube header 10 side, as shown in FIG. 4B, the heat transfer tube 9 protruding from the tube plate 12 has a longer protrusion length, and the longer heat transfer tube 9 protrudes. What is necessary is just to provide the heat insulation member 41 so that a part may be covered. For example, in the vertical evaporator 2, the apparent liquid level inside the inlet heat transfer tube header 10 and the heat transfer tube 9 is normally assumed to be slightly lower than the tube plate 12. By providing the heat insulating member 41 on the header 10 side, the liquid level is raised to the inside of the heat transfer tube 9, and the heat medium at the inlet of the heat transfer tube 9 is made into a liquid single phase, and the flow distribution can be made uniform.

断熱部材41の材質は特に限定するものではないが、例えばテフロン樹脂(テフロンは登録商標)を用いることができる。断熱部材41の肉厚は、大きくても30mm程度とし、伝熱管9の有効長さに影響を与えない程度の長さとすることが望ましい。   The material of the heat insulating member 41 is not particularly limited. For example, Teflon resin (Teflon is a registered trademark) can be used. It is desirable that the thickness of the heat insulating member 41 is about 30 mm at most, and the length does not affect the effective length of the heat transfer tube 9.

なお、上述のオリフィス板21とスペーサ板23の一方または両方を断熱性の材質で構成し、断熱部材41としての機能を兼ね備えるようにすることも勿論可能である。   Of course, one or both of the orifice plate 21 and the spacer plate 23 may be made of a heat insulating material so as to have a function as the heat insulating member 41.

1 ヒートポンプ
2 蒸発器
3 圧縮機
4 凝縮器
5 膨張弁
6 熱媒体循環ライン
8 シェル
9 伝熱管
10 入口伝熱管ヘッダ
11 出口伝熱管ヘッダ
12 管板
13 気液分離器
14 ガスバイパスライン
15 膨張機構
16 圧損調整弁
1 Heat Pump 2 Evaporator 3 Compressor 4 Condenser 5 Expansion Valve 6 Heat Medium Circulation Line 8 Shell 9 Heat Transfer Tube 10 Inlet Heat Transfer Tube Header 11 Outlet Heat Transfer Tube Header 12 Tube Plate 13 Gas-Liquid Separator 14 Gas Bypass Line 15 Expansion Mechanism 16 Pressure loss adjustment valve

Claims (6)

シェル内に複数の伝熱管を収容し、前記複数の伝熱管の両端をそれぞれ入口伝熱管ヘッダと出口伝熱管ヘッダに接続して構成され、前記複数の伝熱管を流れる熱媒体を、前記シェル内を流れる高温熱源により加熱して蒸発させる蒸発器と、該蒸発器で蒸発させた熱媒体を圧縮する圧縮機と、該圧縮機で圧縮された熱媒体を低温熱源と熱交換させ、熱媒体を凝縮させる凝縮器と、該凝縮器で凝縮させた熱媒体を膨張させて前記蒸発器に供給する膨張弁と、前記蒸発器と前記圧縮機と前記凝縮器と前記膨張弁とを順次ループ状に接続する熱媒体循環ラインと、を備えたヒートポンプにおいて、
前記膨張弁と前記蒸発器間の前記熱媒体循環ラインに設けられ、前記膨張弁を通過した熱媒体を気相と液相に分離して、液相の熱媒体のみを前記蒸発器に供給する気液分離器と、
該気液分離器に一端が接続されると共に、前記蒸発器と前記圧縮機間の前記熱媒体循環ラインに他端が接続され、前記気液分離器にて分離した気相の熱媒体を前記蒸発器の出口側にバイパスさせるガスバイパスラインと、
前記蒸発器の前記入口伝熱管ヘッダ内に設けられ、前記複数の伝熱管の入口直前で熱媒体を膨張させる膨張機構と、
を備えたことを特徴とするヒートポンプ。
A plurality of heat transfer tubes are housed in a shell, and both ends of the plurality of heat transfer tubes are connected to an inlet heat transfer tube header and an outlet heat transfer tube header, respectively, and a heat medium flowing through the plurality of heat transfer tubes is formed in the shell. An evaporator that heats and evaporates by a high-temperature heat source flowing through the compressor, a compressor that compresses the heat medium evaporated by the evaporator, heat-exchanges the heat medium compressed by the compressor with a low-temperature heat source, and A condenser for condensing, an expansion valve for expanding the heat medium condensed in the condenser and supplying it to the evaporator, the evaporator, the compressor, the condenser, and the expansion valve are sequentially looped. In a heat pump having a heat medium circulation line to be connected,
Provided in the heat medium circulation line between the expansion valve and the evaporator, the heat medium that has passed through the expansion valve is separated into a gas phase and a liquid phase, and only the liquid phase heat medium is supplied to the evaporator A gas-liquid separator;
One end is connected to the gas-liquid separator, the other end is connected to the heat medium circulation line between the evaporator and the compressor, and the gas phase heat medium separated by the gas-liquid separator is A gas bypass line to bypass to the outlet side of the evaporator;
An expansion mechanism that is provided in the inlet heat transfer tube header of the evaporator and expands a heat medium immediately before the inlets of the plurality of heat transfer tubes;
A heat pump comprising:
前記ガスバイパスラインに、前記ガスバイパスラインを通過する気相の熱媒体に、前記膨張機構で付与する圧損と同等の圧損を付与するための圧損調整弁を設けた
請求項1記載のヒートポンプ。
The heat pump according to claim 1, wherein the gas bypass line is provided with a pressure loss adjusting valve for applying a pressure loss equivalent to the pressure loss applied by the expansion mechanism to a gas phase heat medium passing through the gas bypass line.
前記入口伝熱管ヘッダは、管板を隔てて前記シェルと隣接するように設けられ、
前記膨張機構は、前記管板の前記入口伝熱管ヘッダ側の内壁に、前記各伝熱管の開口部を一括して覆うように固定され、前記各伝熱管の開口部に対応する位置に、前記熱媒体を通すオリフィス孔が形成されたオリフィス板を備える
請求項1または2記載のヒートポンプ。
The inlet heat transfer tube header is provided adjacent to the shell across a tube sheet,
The expansion mechanism is fixed to the inner wall of the tube plate on the inlet heat transfer tube header side so as to collectively cover the openings of the heat transfer tubes, and the expansion mechanism is located at positions corresponding to the openings of the heat transfer tubes. The heat pump according to claim 1, further comprising an orifice plate having an orifice hole through which a heat medium passes.
前記各伝熱管は、その端部が前記管板を貫通して前記入口伝熱管ヘッダ内に突出するように固定されており、
前記膨張機構は、前記管板と前記オリフィス板との間に挟持され、前記伝熱管の突出部の長さよりも厚く形成され、前記各伝熱管の開口部に対応する位置に前記伝熱管の外径より大きい径の貫通孔が形成されたスペーサ板をさらに備える
請求項3記載のヒートポンプ。
Each of the heat transfer tubes is fixed so that an end thereof penetrates the tube plate and protrudes into the inlet heat transfer tube header,
The expansion mechanism is sandwiched between the tube plate and the orifice plate, is formed to be thicker than the length of the projecting portion of the heat transfer tube, and is located outside the heat transfer tube at a position corresponding to the opening of each heat transfer tube. The heat pump according to claim 3, further comprising a spacer plate in which a through hole having a diameter larger than the diameter is formed.
前記入口伝熱管ヘッダは、管板を隔てて前記シェルと隣接するように設けられ、
前記管板の前記シェル側または前記入口伝熱管ヘッダ側に、前記シェル内を流れる高温熱源により前記入口伝熱管ヘッダ内の熱媒体が加熱されることを抑制する断熱部材を設けた
請求項1〜4いずれかに記載のヒートポンプ。
The inlet heat transfer tube header is provided adjacent to the shell across a tube sheet,
The heat insulating member which suppresses that the heat medium in the said inlet heat exchanger tube header is heated by the high temperature heat source which flows in the said shell in the said shell side or the said inlet heat exchanger tube header side of the said tube sheet was provided. 4. The heat pump according to any one of 4.
前記気液分離器は、前記蒸発器よりも鉛直方向上方に配置される
請求項1〜5いずれかに記載のヒートポンプ。
The heat pump according to any one of claims 1 to 5, wherein the gas-liquid separator is disposed vertically above the evaporator.
JP2011253869A 2011-11-21 2011-11-21 Heat pump Pending JP2013108673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253869A JP2013108673A (en) 2011-11-21 2011-11-21 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253869A JP2013108673A (en) 2011-11-21 2011-11-21 Heat pump

Publications (1)

Publication Number Publication Date
JP2013108673A true JP2013108673A (en) 2013-06-06

Family

ID=48705607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253869A Pending JP2013108673A (en) 2011-11-21 2011-11-21 Heat pump

Country Status (1)

Country Link
JP (1) JP2013108673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324512A (en) * 2014-11-07 2015-02-04 徐建涛 Heat pump evaporating unit
CN107388638A (en) * 2017-08-24 2017-11-24 天津商业大学 A kind of overall inflation bilateral reducer pipe cross flow heat exchanger
CN107588579A (en) * 2017-09-18 2018-01-16 珠海格力电器股份有限公司 Evaporator and air-conditioning system
CN112594978A (en) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 Vertical evaporator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324512A (en) * 2014-11-07 2015-02-04 徐建涛 Heat pump evaporating unit
CN104324512B (en) * 2014-11-07 2016-02-17 徐建涛 Thermo-compression evaporation unit
CN107388638A (en) * 2017-08-24 2017-11-24 天津商业大学 A kind of overall inflation bilateral reducer pipe cross flow heat exchanger
CN107388638B (en) * 2017-08-24 2023-07-21 天津商业大学 Whole inflation two side reducing pipe cross flow heat exchanger
CN107588579A (en) * 2017-09-18 2018-01-16 珠海格力电器股份有限公司 Evaporator and air-conditioning system
CN112594978A (en) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 Vertical evaporator
CN112594978B (en) * 2020-12-29 2024-03-15 深圳市海吉源科技有限公司 Vertical evaporator and refrigerating unit

Similar Documents

Publication Publication Date Title
JP6701372B2 (en) Heat exchanger
CN110662936B (en) Heat exchanger
US10914525B2 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
JP2013108673A (en) Heat pump
EP2932162B1 (en) Low pressure chiller
KR20150004793A (en) An apparatus for vapourising a medium and separating droplets as well as for condensing the medium
JP2007309604A (en) Evaporator for refrigeration system, and refrigeration system
JP2008088892A (en) Non-azeotropic mixture medium cycle system
CA2666392C (en) Apparatus and method for separating droplets from vaporized refrigerant
JP4669964B2 (en) Steam power cycle system
JP2012172918A (en) Refrigerant liquid forced circulation type refrigeration system
JP2006336992A (en) Air conditioner
JP6896968B2 (en) Absorption heat exchange system
CN109269156A (en) A kind of evaporative condenser integrating device and refrigeration system
JP6798666B2 (en) How to manufacture heat exchangers and heat exchangers
JP2017141999A (en) Header distributor, outdoor machine mounted with header distributor, and air conditioner
CN209013525U (en) A kind of evaporative condenser integrating device and refrigeration system
JP2013148284A (en) Throttle device and air conditioning device provided with the same
WO2018051611A1 (en) Heat exchanger and heat pump system using same
JP2013185757A (en) Refrigerant distributor, and heat pump device
JP4003613B2 (en) Refrigeration cycle equipment
JP2017161088A (en) Refrigeration cycle device
KR102132742B1 (en) Heat exchanger
JP3889925B2 (en) Pure steam generator
KR20120124711A (en) Air conditioning system