JP2013108133A - Vacuum treatment method and method for manufacturing electrophotographic photoreceptor - Google Patents

Vacuum treatment method and method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2013108133A
JP2013108133A JP2011253963A JP2011253963A JP2013108133A JP 2013108133 A JP2013108133 A JP 2013108133A JP 2011253963 A JP2011253963 A JP 2011253963A JP 2011253963 A JP2011253963 A JP 2011253963A JP 2013108133 A JP2013108133 A JP 2013108133A
Authority
JP
Japan
Prior art keywords
cylindrical
base
ring
shaped member
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011253963A
Other languages
Japanese (ja)
Inventor
Kazuto Hosoi
一人 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011253963A priority Critical patent/JP2013108133A/en
Publication of JP2013108133A publication Critical patent/JP2013108133A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum treatment method which can prevent a dust remaining on a surface of a ring-like member from flying out from a minute gap in a contact region between an end surface of a cylindrical substrate and an end surface of a cylindrical auxiliary substrate during evacuating a conveying container, and to provide a method for manufacturing an electrophotographic photoreceptor using the vacuum treatment method.SOLUTION: A through-hole is formed in a tubular part of a substrate holder to which the ring-like member and the cylindrical substrate are mounted. The conveying container is evacuated while at least part of a through-hole of the ring-like member and at least part of the through-hole of the substrate holder are superposed each other.

Description

本発明は、円筒状基体上に堆積膜を形成する真空処理方法、および、真空処理方法を用いた電子写真感光体の製造方法に関する。   The present invention relates to a vacuum processing method for forming a deposited film on a cylindrical substrate, and a method for manufacturing an electrophotographic photosensitive member using the vacuum processing method.

従来、真空処理方法には、プラズマCVD法、イオンプレーティング法、プラズマエッチング法など、高周波電力により生成されるプラズマを用いた処理方法が知られている。これら真空処理方法は、電子写真感光体、半導体デバイス、画像入力ラインセンサー、撮影デバイス、光起電力デバイスなどを製造するために用いられている。   Conventionally, as a vacuum processing method, a processing method using plasma generated by high-frequency power, such as a plasma CVD method, an ion plating method, and a plasma etching method, is known. These vacuum processing methods are used to manufacture electrophotographic photosensitive members, semiconductor devices, image input line sensors, photographing devices, photovoltaic devices, and the like.

真空処理方法の中でも、グロー放電により原料ガスのプラズマを生成し、原料ガスの分解種を基体上に堆積させて堆積膜を形成するプラズマCVD法は、原料ガスにシランガスを用いることで、アモルファスシリコンの堆積膜を容易に形成できることが知られている。   Among the vacuum processing methods, the plasma CVD method in which a plasma of a raw material gas is generated by glow discharge and a decomposition film of the raw material gas is deposited on a substrate to form a deposited film is formed by using amorphous silicon by using a silane gas as a raw material gas. It is known that the deposited film can be easily formed.

このような真空処理方法により、高品質な堆積膜の形成が行われているが、近年、堆積膜のさらなる品質向上が検討されている。   Although a high quality deposited film is formed by such a vacuum processing method, in recent years, further improvement in the quality of the deposited film has been studied.

特許文献1には、円筒状基体の端部の内周面と円筒状補助基体の端部の内周面に、円筒状基体と円筒状補助基体とを略同軸に配置するためのリング状部材を取り付け、円筒状基体と円筒状補助基体の同軸性を高めることで、堆積膜の特性の均一化を図る技術が開示されている。   Patent Document 1 discloses a ring-shaped member for arranging a cylindrical base and a cylindrical auxiliary base substantially coaxially on an inner peripheral face of an end of a cylindrical base and an inner peripheral face of an end of a cylindrical auxiliary base. And a technique for making the characteristics of the deposited film uniform by increasing the coaxiality of the cylindrical substrate and the cylindrical auxiliary substrate is disclosed.

また、基体が設置された基体ホルダーを搬送容器内に搬入し、それをチャッキング部材でチャックした状態で搬送容器内を大気状態から真空状態に排気する工程に関しても改良が進められている。大気状態とは、大気圧の状態のことであり、真空状態とは、大気圧よりも圧力が低く、所定の真空度の状態のことである。   Improvements are also being made with respect to the step of carrying the substrate holder on which the substrate is installed into the transfer container, and evacuating the transfer container from the atmospheric state to the vacuum state with the chuck held by the chucking member. An atmospheric state is a state of atmospheric pressure, and a vacuum state is a state of a predetermined vacuum degree whose pressure is lower than atmospheric pressure.

特許文献2には、基体ホルダーの凹状のチャッキング部位に残留した、液体ホーニング用研磨材などのダストが円筒状基体の表面に付着しないように、基体ホルダーの凹状のチャッキング部位の一部に貫通孔を形成する技術が開示されている。   In Patent Document 2, there is a part of the concave chucking portion of the base holder so that dust such as abrasive for liquid honing remaining on the concave chucking portion of the base holder does not adhere to the surface of the cylindrical base. A technique for forming a through hole is disclosed.

特開2002−285339号公報JP 2002-285339 A 特開2009−7654号公報JP 2009-7654 A

上記従来技術により、堆積膜の品質向上が図られてきた。
ところが、近年、例えば、堆積膜が用いられる電子写真感光体の画像特性の向上のため、堆積膜には従来以上の特性の均一性が求められるようになっている。
The quality of the deposited film has been improved by the above prior art.
However, in recent years, for example, in order to improve the image characteristics of an electrophotographic photosensitive member in which a deposited film is used, the deposited film is required to have more uniform characteristics than ever before.

特許文献1の技術によれば、リング状部材を用いることで円筒状基体と円筒状補助基体との同軸性が高まり、堆積膜の特性の周方向の均一性の向上が可能となる。しかしながら、リング状部材の外周寸法と円筒状基体および円筒状補助基体の内周寸法との差が小さくなるに従い、円筒状基体の端部の内周面および円筒状補助基体の端部の内周面にリング状部材を取り付ける際に、リング状部材と円筒状基体および円筒状補助基体との間で摺擦が生じやすくなる。そして、摺擦により発生したダストがリング状部材の表面に残留してしまう場合がある。   According to the technique of Patent Document 1, the use of a ring-shaped member increases the coaxiality between the cylindrical base and the cylindrical auxiliary base, and improves the uniformity of the characteristics of the deposited film in the circumferential direction. However, as the difference between the outer peripheral dimension of the ring-shaped member and the inner peripheral dimension of the cylindrical base and the cylindrical auxiliary base becomes smaller, the inner peripheral surface of the end of the cylindrical base and the inner peripheral of the end of the cylindrical auxiliary base When the ring-shaped member is attached to the surface, rubbing easily occurs between the ring-shaped member, the cylindrical base body, and the cylindrical auxiliary base body. And dust generated by rubbing may remain on the surface of the ring-shaped member.

リング状部材の表面に残留したダストは、周囲環境を大気状態から真空状態にした際、円筒状基体の端面と円筒状補助基体の端面との接触部分の微小な隙間から飛散してしまう場合がある。飛散したダストが円筒状基体の表面に付着すると、堆積膜の表面には堆積膜の異常成長で生じる球状突起が発生しやすくなる。電子写真感光体の堆積膜の表面に球状突起が発生すると、その電子写真感光体を用いて出力された画像には、画像不良が生じる場合がある。   Dust remaining on the surface of the ring-shaped member may be scattered from a minute gap at the contact portion between the end surface of the cylindrical base and the end surface of the cylindrical auxiliary base when the ambient environment is changed from the atmospheric state to a vacuum state. is there. When the scattered dust adheres to the surface of the cylindrical substrate, spherical protrusions generated by abnormal growth of the deposited film are likely to occur on the surface of the deposited film. When spherical protrusions are generated on the surface of the deposited film of the electrophotographic photosensitive member, an image defect may occur in an image output using the electrophotographic photosensitive member.

本発明の目的は、リング状部材の表面に残留したダストが円筒状基体の端面と円筒状補助基体の端面との接触部分の微小な隙間から飛散することを抑えることができる真空処理方法、および、該真空処理方法を用いた電子写真感光体の製造方法を提供することにある。   An object of the present invention is to provide a vacuum processing method capable of suppressing dust remaining on the surface of a ring-shaped member from being scattered from a minute gap at a contact portion between an end surface of a cylindrical substrate and an end surface of a cylindrical auxiliary substrate, and Another object of the present invention is to provide a method for producing an electrophotographic photosensitive member using the vacuum processing method.

本発明は、円筒状基体の端部の内周面と円筒状補助基体の端部の内周面にリング状部材を取り付け、筒状部を有する基体ホルダーに該円筒状基体および該円筒状補助基体を設置し、該基体ホルダーをチャッキング部材によりチャックして真空排気可能な搬送容器内に搬入し、搬入した状態で該搬送容器内を真空排気し、該円筒状基体および該円筒状補助基体を真空状態で搬送する工程を有する真空処理方法において、
該リング状部材および該基体ホルダーの筒状部に貫通孔を設け、該搬送容器内を真空排気する際、該リング状部材の該貫通孔の少なくとも一部と該基体ホルダーの貫通孔の少なくとも一部とが重なる状態で該搬送容器内を真空排気することを特徴とする真空処理方法である。
The present invention attaches a ring-shaped member to the inner peripheral surface of the end of the cylindrical base and the inner peripheral surface of the end of the cylindrical auxiliary base, and the cylindrical base and the cylindrical auxiliary are attached to the base holder having the cylindrical portion. A base is installed, the base holder is chucked by a chucking member, and is carried into a transport container that can be evacuated, and the transport container is evacuated and evacuated to the cylindrical base and the cylindrical auxiliary base. In a vacuum processing method having a step of conveying in a vacuum state,
A through-hole is provided in the cylindrical part of the ring-shaped member and the base holder, and when the inside of the transport container is evacuated, at least a part of the through-hole of the ring-shaped member and at least one of the through-hole of the base holder are provided. The vacuum processing method is characterized in that the inside of the transfer container is evacuated while being overlapped with the part.

また、本発明は、上記真空処理方法を用いて円筒状基体上に堆積膜を形成する工程を有する電子写真感光体の製造方法である。   In addition, the present invention is a method for producing an electrophotographic photosensitive member having a step of forming a deposited film on a cylindrical substrate using the vacuum processing method.

本発明によれば、リング状部材の表面に残留したダストが円筒状基体の端面と円筒状補助基体の端面との接触部分の微小な隙間から飛散することを抑えることができる真空処理方法、および、該真空処理方法を用いた電子写真感光体の製造方法を提供することができる。   According to the present invention, a vacuum processing method capable of suppressing dust remaining on the surface of the ring-shaped member from being scattered from a minute gap at a contact portion between the end face of the cylindrical base and the end face of the cylindrical auxiliary base, and A method for producing an electrophotographic photoreceptor using the vacuum processing method can be provided.

リング状部材および基体ホルダーの例を示す図である。It is a figure which shows the example of a ring-shaped member and a base | substrate holder. 電子写真感光体の連続製造装置の例を示す図である。It is a figure which shows the example of the continuous manufacturing apparatus of an electrophotographic photoreceptor. 電子写真感光体の堆積膜を形成するための真空処理装置の例を示す図である。It is a figure which shows the example of the vacuum processing apparatus for forming the deposited film of an electrophotographic photoreceptor. 円筒状基体および円筒状補助基体にリング状部材を取り付ける方法の例を説明するための図である。It is a figure for demonstrating the example of the method of attaching a ring-shaped member to a cylindrical base body and a cylindrical auxiliary base body. リング状部材を取り付けた円筒状基体および円筒状補助基体を設置した基体ホルダーをチャッキング部材でチャックした状態の例を示す図である。It is a figure which shows the example of the state which chucked the base body holder which installed the cylindrical base | substrate which attached the ring-shaped member, and the cylindrical auxiliary base | substrate with the chucking member. リング状部材を取り付けた円筒状基体および円筒状補助基体を設置した基体ホルダーをチャッキング部材でチャックした状態の従来例を示す図である。It is a figure which shows the prior art example of the state which chuck | zucked with the chucking member the base body holder which installed the cylindrical base | substrate with which the ring-shaped member was attached, and the cylindrical auxiliary | assistant base | substrate. アモルファスシリコン電子写真感光体の層構成の例を示す図である。It is a figure which shows the example of a layer structure of an amorphous silicon electrophotographic photoreceptor.

本発明者らは、円筒状基体の外周面にダストが付着する原因に関して検討した。
図6は、円筒状基体と円筒状補助基体とを略同軸に配置するためのリング状部材を取り付けた円筒状基体および円筒状補助基体を設置した基体ホルダーをチャッキング部材でチャックした状態の従来例を示す図である。
The present inventors examined the cause of dust adhering to the outer peripheral surface of a cylindrical base.
FIG. 6 shows a state in which a cylindrical substrate and a substrate holder on which a cylindrical auxiliary substrate is installed are chucked by a chucking member, with a ring-shaped member for arranging the cylindrical substrate and the cylindrical auxiliary substrate substantially coaxially. It is a figure which shows an example.

図6に示す従来の構成では、基体ホルダー631は、チャッキング部材603によりチャックされて、真空排気可能な搬送容器(不図示)内に搬入される。真空排気とは、所定の真空度になるまで排気することである。その後、搬入した状態で搬送容器内を真空排気する工程において、円筒状基体601の端面と円筒状補助基体604の端面との接触部分の微小な隙間からダストが飛散することが判明した。チャッキング部材603が基体ホルダー631をチャックした状態では、基体ホルダー631と円筒状基体601および円筒状補助基体604との間の空間が、チャッキング部材603により閉じられた空間になる。そのため、閉じられた空間内に存在する空気が、円筒状基体601の端面と円筒状補助基体604の端面との接触部分の微小な隙間から真空排気される。その結果、リング状部材621の表面に残留したダストが気流に乗って円筒状基体601の外周面まで流れていき、円筒状基体601の外周面に付着することが判った。リング状部材621の表面に残留するダスト608は、リング状部材621を円筒状基体601の端部の内周面と円筒状補助基体604の端部の内周面に取り付ける際、リング状部材621と円筒状基体601および円筒状補助基体604との間の摺擦により発生する。図6に示す従来の構成では、リング状部材621の表面に残留したダストが、真空排気中、例えば、矢印614の向きに、円筒状基体601の上端部601aの端面と円筒状補助基体604の下端部604bの端面との接触部分の微小な隙間から飛散するのを抑えられなかった。   In the conventional configuration shown in FIG. 6, the substrate holder 631 is chucked by a chucking member 603 and is carried into a transport container (not shown) that can be evacuated. The evacuation is evacuation until a predetermined degree of vacuum is reached. Thereafter, in the process of evacuating the inside of the transport container in the loaded state, it has been found that dust scatters from a minute gap at the contact portion between the end surface of the cylindrical base 601 and the end surface of the cylindrical auxiliary base 604. In a state where the chucking member 603 chucks the substrate holder 631, the space between the substrate holder 631, the cylindrical substrate 601, and the cylindrical auxiliary substrate 604 is a space closed by the chucking member 603. Therefore, the air existing in the closed space is evacuated from a minute gap at the contact portion between the end surface of the cylindrical base 601 and the end surface of the cylindrical auxiliary base 604. As a result, it was found that the dust remaining on the surface of the ring-shaped member 621 rides on the air current and flows to the outer peripheral surface of the cylindrical base 601 and adheres to the outer peripheral surface of the cylindrical base 601. The dust 608 remaining on the surface of the ring-shaped member 621 is attached to the ring-shaped member 621 when the ring-shaped member 621 is attached to the inner peripheral surface of the end of the cylindrical base 601 and the inner peripheral surface of the end of the cylindrical auxiliary base 604. And sliding between the cylindrical base 601 and the cylindrical auxiliary base 604. In the conventional configuration shown in FIG. 6, dust remaining on the surface of the ring-shaped member 621 is evacuated, for example, in the direction of the arrow 614, the end surface of the upper end portion 601 a of the cylindrical base 601 and the cylindrical auxiliary base 604. It was not possible to suppress scattering from a minute gap at the contact portion with the end face of the lower end 604b.

そこで、本発明者らは、リング状部材および基体ホルダーの筒状部(円筒状基体および円筒状補助基体と面する筒状の部分)に貫通孔を設け、リング状部材の貫通孔の少なくとも一部と基体ホルダーの貫通孔の少なくとも一部とが重なる状態で搬送容器内を真空排気することにした。その結果、基体ホルダーの内側への排気の経路が十分に確保され、ダストの飛散が抑制されることを見出し、本発明に至った。   Therefore, the present inventors provide a through hole in the cylindrical portion of the ring-shaped member and the base holder (cylindrical portion facing the cylindrical base and the cylindrical auxiliary base), and at least one of the through-holes of the ring-shaped member. The inside of the transport container was evacuated in a state where the part and at least a part of the through hole of the substrate holder overlapped. As a result, the inventors have found that a sufficient exhaust path to the inside of the base holder is secured and dust scattering is suppressed, and the present invention has been achieved.

図1は、リング状部材および基体ホルダーの例を示す図である。
図1において、120はリング状部材であり、130は円筒状基体および円筒状補助基体と面する筒状の部分(筒状部)を有する基体ホルダーである。図1の(a)は、リング状部材120の上面図であり、(b)および(c)は、リング状部材120を矢印Aから見た図(2つの例)である。
FIG. 1 is a diagram illustrating an example of a ring-shaped member and a substrate holder.
In FIG. 1, 120 is a ring-shaped member, and 130 is a substrate holder having a cylindrical portion (cylindrical portion) facing the cylindrical substrate and the cylindrical auxiliary substrate. (A) of FIG. 1 is a top view of the ring-shaped member 120, and (b) and (c) are views (two examples) of the ring-shaped member 120 viewed from the arrow A.

リング状部材120は、貫通孔122が設けられた円筒状(リング状)の本体121を有している。
リング状部材120の材質としては、例えば、アルミニウム、ステンレス鋼などが挙げられる。これらの中でも、変形のしにくさや耐久性の観点から、ステンレス鋼が好ましい。
The ring-shaped member 120 has a cylindrical (ring-shaped) main body 121 provided with a through hole 122.
Examples of the material of the ring-shaped member 120 include aluminum and stainless steel. Among these, stainless steel is preferable from the viewpoint of resistance to deformation and durability.

貫通孔122の形状、大きさおよび数に関しては、基体ホルダー130の貫通孔132と重なる状態にすることを考慮する必要がある。例えば、図1(b)に示す例は、長方形の貫通孔122が、リング状部材121の周方向に等間隔で設けられている例である。さらに、リング状部材120の貫通孔122が、基体ホルダー130の貫通孔132と重なる状態になるよう、千鳥状に4段設けられている。また、図1(c)に示す例は、長方形の貫通孔122が、45°傾いた状態でリング状部材121の周方向に等間隔で並列に設けられている例である。   Regarding the shape, size, and number of the through-holes 122, it is necessary to consider making them overlap with the through-holes 132 of the base holder 130. For example, the example illustrated in FIG. 1B is an example in which rectangular through holes 122 are provided at equal intervals in the circumferential direction of the ring-shaped member 121. Further, four stages are provided in a staggered manner so that the through holes 122 of the ring-shaped member 120 overlap the through holes 132 of the base holder 130. In addition, the example shown in FIG. 1C is an example in which rectangular through holes 122 are provided in parallel at equal intervals in the circumferential direction of the ring-shaped member 121 in a state of being inclined by 45 °.

基体ホルダー130は、例えば、図1(d)や(e)に示すように筒状部に貫通孔132が設けられた本体131を有し、貫通孔132は、リング状部材120の貫通孔122に対応する位置に設けられている。   The base holder 130 has a main body 131 in which a through hole 132 is provided in a cylindrical portion as shown in FIGS. 1D and 1E, for example, and the through hole 132 is a through hole 122 of the ring-shaped member 120. Is provided at a position corresponding to.

基体ホルダー130の材質としては、例えば、銅、アルミニウム、ニッケル、コバルト、鉄、クロム、モリブデン、チタンなどが挙げられ、また、これらの合金も挙げられる。これらの中でも、加工性や製造コストの観点から、アルミニウムの合金が好ましい。アルミニウムの合金の中でも、Al−Mg系合金、Al−Mn系合金が好ましい。   Examples of the material of the substrate holder 130 include copper, aluminum, nickel, cobalt, iron, chromium, molybdenum, titanium, and alloys thereof. Among these, an aluminum alloy is preferable from the viewpoint of workability and manufacturing cost. Among aluminum alloys, Al—Mg alloys and Al—Mn alloys are preferable.

貫通孔132の形状、大きさおよび数に関しては、リング状部材120の貫通孔122と重なる状態にすることを考慮する必要がある。例えば、図1(d)に示す例は、長方形の貫通孔132が、基体ホルダー131の周方向に等間隔で4箇所設けられている例である。さらに、リング状部材120の貫通孔122と重なる状態になるように基体ホルダー131の貫通孔132の縦の長さを調整することが好ましい。また、図1(e)に示す例は、丸形の貫通孔132が基体ホルダー131に設けられている例である。   Regarding the shape, size, and number of the through-holes 132, it is necessary to consider making it overlap with the through-holes 122 of the ring-shaped member 120. For example, the example shown in FIG. 1D is an example in which four rectangular through holes 132 are provided at equal intervals in the circumferential direction of the substrate holder 131. Furthermore, it is preferable to adjust the vertical length of the through hole 132 of the base holder 131 so as to overlap with the through hole 122 of the ring-shaped member 120. Further, the example shown in FIG. 1E is an example in which a round through hole 132 is provided in the base holder 131.

次に、リング状部材120および基体ホルダー130を用いて行われる電子写真感光体の製造方法の例について説明する。
図4は、円筒状基体および円筒状補助基体にリング状部材を取り付ける方法の例を説明するための図である。
Next, an example of a method for manufacturing an electrophotographic photoreceptor performed using the ring-shaped member 120 and the substrate holder 130 will be described.
FIG. 4 is a diagram for explaining an example of a method of attaching a ring-shaped member to a cylindrical base body and a cylindrical auxiliary base body.

リング状部材としては、図1の(b)と同一形状のリング状部材421を使用している。
基体ホルダーとしては、図1の(d)と同一形状の基体ホルダー431を使用している。
As the ring-shaped member, a ring-shaped member 421 having the same shape as that shown in FIG.
As the substrate holder, a substrate holder 431 having the same shape as that shown in FIG.

図4(a)に示すように、円筒状基体401の端部の内周面には、内径が大きくなっているインロー部415が設けられている。インロー部415は、電子写真感光体にフランジを取り付ける際にフランジを嵌める部分として利用することができる。   As shown in FIG. 4A, an inlay portion 415 having an increased inner diameter is provided on the inner peripheral surface of the end portion of the cylindrical base body 401. The inlay portion 415 can be used as a portion for fitting the flange when the flange is attached to the electrophotographic photosensitive member.

円筒状補助基体404の端部の内周面にも、内径が大きくなっているインロー部416が設けられており、円筒状基体401のインロー部415と同一の内径となっている。   The inner peripheral surface of the end portion of the cylindrical auxiliary base 404 is also provided with an inlay portion 416 having an increased inner diameter, and has the same inner diameter as the inlay portion 415 of the cylindrical base body 401.

まず、図4(b)に示すように、リング状部材421を、円筒状基体401の上端部の内周面に取り付ける。ここで、複数本の円筒状基体401を積み重ねる場合は、複数のリング状部材421を用いる。   First, as shown in FIG. 4B, the ring-shaped member 421 is attached to the inner peripheral surface of the upper end portion of the cylindrical base body 401. Here, when a plurality of cylindrical base bodies 401 are stacked, a plurality of ring-shaped members 421 are used.

次に、図4(c)に示すように、円筒状補助基体404をリング状部材421に載せるようにして設置する。   Next, as shown in FIG. 4C, the cylindrical auxiliary base body 404 is installed so as to be placed on the ring-shaped member 421.

このように、円筒状基体401の端部の内周面と円筒状補助基体404の端部の内周面にリング状部材421を取り付けた後、これらを基体ホルダー431に設置する。例えば、このとき、基体ホルダー431の貫通孔432の少なくとも一部とリング状部材421の貫通孔422の少なくとも一部とが重なる状態にしておく。その状態を図4(d)に示す。   As described above, after attaching the ring-shaped member 421 to the inner peripheral surface of the end portion of the cylindrical base body 401 and the inner peripheral surface of the end portion of the cylindrical auxiliary base body 404, they are installed in the base body holder 431. For example, at this time, at least part of the through hole 432 of the base holder 431 and at least part of the through hole 422 of the ring-shaped member 421 are overlapped. The state is shown in FIG.

図5は、リング状部材を取り付けた円筒状基体および円筒状補助基体を設置した基体ホルダーをチャッキング部材でチャックした状態の例を示す図である。   FIG. 5 is a diagram showing an example of a state in which a base holder on which a cylindrical base with a ring-shaped member and a cylindrical auxiliary base are installed is chucked with a chucking member.

円筒状基体501が設置された基体ホルダー531は、チャッキング部材503によりチャックされ、真空排気可能な大気状態の搬送容器(不図示)内に搬入される。その後、搬送容器内は、搬入した状態、すなわち、基体ホルダー531がチャッキング部材503にチャックされたままの状態で真空排気される(所定の圧力になるまで減圧される)。   The substrate holder 531 on which the cylindrical substrate 501 is installed is chucked by the chucking member 503, and is carried into an atmospheric transfer container (not shown) that can be evacuated. Thereafter, the inside of the transport container is evacuated (depressurized until a predetermined pressure is reached) in a state of being carried in, that is, in a state where the substrate holder 531 is chucked by the chucking member 503.

図6に示す従来の構成では、チャッキング部材603が基体ホルダー631をチャックした状態になると、基体ホルダー631と円筒状基体601および円筒状補助基体604との間の空間が、チャッキング部材603により閉じられた空間になる。真空排気の際、その閉じられた空間622の空気が、円筒状基体601の端面と円筒状補助基体604の端面との接触部分の微小な隙間から抜けてしまう。その結果、リング状部材621の表面に残留したダストが、気流に乗って円筒状基体601の外周面へ飛散する場合があった。   In the conventional configuration shown in FIG. 6, when the chucking member 603 chucks the base holder 631, the space between the base holder 631, the cylindrical base 601 and the cylindrical auxiliary base 604 is formed by the chucking member 603. It becomes a closed space. During evacuation, the air in the closed space 622 escapes from a minute gap at the contact portion between the end surface of the cylindrical base 601 and the end surface of the cylindrical auxiliary base 604. As a result, the dust remaining on the surface of the ring-shaped member 621 may be scattered on the outer peripheral surface of the cylindrical base body 601 on the airflow.

図5に示す本発明に係る構成では、基体ホルダー531に貫通孔532を設け、リング状部材521に貫通孔522を設けている。さらに、基体ホルダー531の貫通孔532の少なくとも一部とリング状部材521の貫通孔522の少なくとも一部が重なる状態となっている。これにより、基体ホルダー531の内側への排気の経路を十分に確保され、リング状部材521の表面に残留したダスト514が矢印の向きへ抜けることとなる。この結果、真空排気の際、円筒状基体501の上端部501aの端面と円筒状補助基体504の下端部504bの端面との接触部分の微小な隙間から円筒状基体501の外周面へ飛散するのを抑えることが可能となる。   In the configuration according to the present invention shown in FIG. 5, the base holder 531 is provided with a through hole 532, and the ring-shaped member 521 is provided with a through hole 522. Further, at least a part of the through hole 532 of the base holder 531 and at least a part of the through hole 522 of the ring-shaped member 521 are overlapped. As a result, a sufficient exhaust path to the inside of the base holder 531 is ensured, and the dust 514 remaining on the surface of the ring-shaped member 521 escapes in the direction of the arrow. As a result, at the time of evacuation, the cylindrical base body 501 scatters to the outer peripheral surface of the cylindrical base body 501 from a minute gap at the contact portion between the end face of the upper end portion 501a and the end face of the lower end portion 504b of the cylindrical auxiliary base body 504. Can be suppressed.

リング状部材521の表面に残留したダストが円筒状基体501の外周面へ飛散するのを抑えるには、基体ホルダー531とリング状部材521の両方ともに貫通孔を設ける必要がある。例えば、基体ホルダー531のみに貫通孔がある場合では、リング状部材521の周辺の空気を基体ホルダー531の内側へ抜けさせるには十分でない場合があった。   In order to suppress the dust remaining on the surface of the ring-shaped member 521 from scattering to the outer peripheral surface of the cylindrical substrate 501, it is necessary to provide a through hole in both the substrate holder 531 and the ring-shaped member 521. For example, in the case where only the base holder 531 has a through hole, it may not be sufficient to allow air around the ring-shaped member 521 to escape to the inside of the base holder 531.

次に、チャッキング部材503の構成について説明する。
チャッキング部材503は、圧縮ばね512、爪部507およびシャフト506を有している。また、チャッキング部材503は、下部にフランジ部、上部に筒状部を備えたケース510をさらに有している。そして、円盤505がケース510の下部のフランジ部に取り付けられている。シャフト506は、ケース510の筒状部内に挿通されており、リンク機構511を介して先端には2つの爪部507が設けられている。2本の爪部507は、シャフト506を上下に移動することにより、リンク機構511によって矢印507aの向きに移動して、2本の爪部507同士は近づいたり離れたりすることができる。図5に示すように、チャッキング部材503が基体ホルダー502をチャックした状態は、2本の爪部507同士が離れた状態である。
Next, the configuration of the chucking member 503 will be described.
The chucking member 503 includes a compression spring 512, a claw portion 507, and a shaft 506. The chucking member 503 further includes a case 510 having a flange portion at the bottom and a cylindrical portion at the top. A disk 505 is attached to the lower flange portion of the case 510. The shaft 506 is inserted into the cylindrical portion of the case 510, and two claw portions 507 are provided at the tip via a link mechanism 511. The two claw portions 507 are moved in the direction of the arrow 507a by the link mechanism 511 by moving the shaft 506 up and down, so that the two claw portions 507 can approach and separate from each other. As shown in FIG. 5, the state where the chucking member 503 chucks the substrate holder 502 is a state where the two claw portions 507 are separated from each other.

次に、チャッキング部材503による基体ホルダー531のチャック工程について説明する。
まず、2本の爪部507同士が近づいた状態で、円筒状基体501が設置された基体ホルダー531の上端の頭部をクランプ可能な位置までチャッキング部材503を下降させる。その後、2本の爪部507同士をリンク機構511によって離した状態にし、2本の爪部507を基体ホルダー531上端の頭部にクランプさせる。これにより、基体ホルダー531の上端の頭部が2つの爪部507とチャッキング部材503の円盤505との間に固定され、チャッキング部材503による基体ホルダー531のチャック工程が完了する。
Next, the chucking process of the substrate holder 531 by the chucking member 503 will be described.
First, in a state where the two claw portions 507 are close to each other, the chucking member 503 is lowered to a position where the head at the upper end of the base holder 531 on which the cylindrical base 501 is installed can be clamped. Thereafter, the two claw portions 507 are separated from each other by the link mechanism 511, and the two claw portions 507 are clamped to the top of the base holder 531. As a result, the top head of the base holder 531 is fixed between the two claws 507 and the disk 505 of the chucking member 503, and the chucking process of the base holder 531 by the chucking member 503 is completed.

チャッキング部材503を構成する種々の部材の材質としては、基体ホルダー531などの重量物を繰り返し搬送可能な強度を持つものであることが好ましく、具体的には、ステンレス、鉄が好ましく、その表面にニッケルまたはクロムによるメッキ被膜処理したものがより好ましい。   The material of the various members constituting the chucking member 503 is preferably one having a strength capable of repeatedly transporting heavy objects such as the base holder 531, and specifically, stainless steel and iron are preferable. More preferably, the coating film is treated with nickel or chromium.

円筒状基体501や円筒状補助基体504の材質としては、例えば、銅、アルミニウム、ニッケル、コバルト、鉄、クロム、モリブデン、チタンなどが挙げられ、また、これらの合金も挙げられる。これらの中でも、加工性や製造コストの観点から、アルミニウムの合金が好ましい。アルミニウムの合金の中でも、Al−Mg系合金、Al−Mn系合金が好ましい。   Examples of the material of the cylindrical base 501 and the cylindrical auxiliary base 504 include copper, aluminum, nickel, cobalt, iron, chromium, molybdenum, titanium, and alloys thereof. Among these, an aluminum alloy is preferable from the viewpoint of workability and manufacturing cost. Among aluminum alloys, Al—Mg alloys and Al—Mn alloys are preferable.

また、基体ホルダー531の形状に関しては、円筒状基体501を搬送容器や反応容器の中に運搬し、それらの中で保持することができるような形状であることが好ましく、円筒状基体501の設置のしやすさの観点から、図5に示すように、円筒状基体501の下端を保持する形状がより好ましい。   Further, regarding the shape of the substrate holder 531, it is preferable that the cylindrical substrate 501 can be transported into a transport container or a reaction container and held therein, and the cylindrical substrate 501 is installed. From the viewpoint of ease of handling, a shape that holds the lower end of the cylindrical substrate 501 is more preferable as shown in FIG.

図2は、電子写真感光体の連続製造装置の例を示す図である。
図2に示す連続製造装置は、大別すると、投入装置2100、加熱装置2200、反応装置2300、冷却および排出装置2400、および、これらの装置間で移動可能な搬送装置2500を備えている。
FIG. 2 is a diagram showing an example of a continuous production apparatus for an electrophotographic photosensitive member.
The continuous production apparatus shown in FIG. 2 is roughly provided with a charging apparatus 2100, a heating apparatus 2200, a reaction apparatus 2300, a cooling and discharging apparatus 2400, and a transfer apparatus 2500 that can be moved between these apparatuses.

搬送装置2500の搬送容器2502内には、円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510を掴むための爪、ならびに、固定用の円盤、上下移動用のシャフトおよび圧縮ばねなどを備えたチャッキング部材2507が設けられている。   In the transfer container 2502 of the transfer device 2500, a claw for gripping the substrate holder 2510 on which a cylindrical substrate 2508 and a cylindrical auxiliary substrate (not shown) are installed, a fixing disk, a shaft for moving up and down, A chucking member 2507 provided with a compression spring or the like is provided.

上記各装置の加熱容器2202、反応容器2302、冷却および排出容器2402、搬送容器2502は、真空排気可能な円筒状の縦型容器である。それら容器の各々には、容器内を真空排気するための排気ポンプ2205、2305、2405、2505が設けられている。さらに、それらの容器の各々には、排気バルブ2203、2303、2403、2503、2509が設けられている。さらに、それらの容器の各々には、開閉ゲート2201、2301、2401、2501が設けられている。搬送装置2500の開閉ゲート2501は、それらの容器の各々の開閉ゲート2201、2301、2401に接続可能になっている。   The heating container 2202, the reaction container 2302, the cooling and discharging container 2402, and the transport container 2502 of each of the above devices are cylindrical vertical containers that can be evacuated. Each of these containers is provided with exhaust pumps 2205, 2305, 2405, and 2505 for evacuating the interior of the container. Further, exhaust valves 2203, 2303, 2403, 2503, and 2509 are provided in each of these containers. Furthermore, open / close gates 2201, 2301, 241, and 2501 are provided in each of these containers. The open / close gate 2501 of the transfer device 2500 can be connected to the open / close gates 2201, 2301, and 2401 of the containers.

投入容器2102には、開閉ゲート2101が設けられている。投入容器2102内には、その内部を大気状態としたまま、円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510が搬入される。加熱容器2202には、加熱時に使用するガスを流入させる補助バルブ2204が設けられている。冷却および排出容器2402には、加熱容器2202内を大気圧に戻すためのリークバルブ2404が設けられている。反応容器2302には、反応ガスを流入させる補助バルブ2304、2306が設けられており、高周波マッチングボックス(不図示)および高周波電源(不図示)が接続されている。   The charging container 2102 is provided with an open / close gate 2101. A substrate holder 2510 in which a cylindrical substrate 2508 and a cylindrical auxiliary substrate (not shown) are installed is carried into the charging container 2102 while the inside thereof is in an atmospheric state. The heating container 2202 is provided with an auxiliary valve 2204 through which a gas used during heating flows. The cooling and discharge container 2402 is provided with a leak valve 2404 for returning the inside of the heating container 2202 to atmospheric pressure. The reaction vessel 2302 is provided with auxiliary valves 2304 and 2306 through which reaction gas flows, and a high-frequency matching box (not shown) and a high-frequency power source (not shown) are connected.

搬送容器2502には、容器内を減圧し、所定の真空度にするための排気バルブ2503、ゲート間を減圧し、所定の真空度にするための排気バルブ2509、ゲート間を大気圧に戻すためのリークバルブ2504が設けられており、内部空間を真空排気可能である。さらに、搬送容器2502には、円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510を移動させるためのチャッキング部材2507が設けられている。チャッキング部材2507は、基体ホルダー2510をチャックして、搬送容器2502内への搬入および搬送容器2502内からの搬出を行う。搬送装置2500は、シャフトにより上下に移動可能であり、移動用レール2506の上を移動可能である。   The transfer container 2502 has an exhaust valve 2503 for reducing the pressure inside the container to obtain a predetermined degree of vacuum, a pressure between the gates and an exhaust valve 2509 for obtaining a predetermined degree of vacuum, and returning between the gates to atmospheric pressure. The leak valve 2504 is provided, and the internal space can be evacuated. Further, the transport container 2502 is provided with a chucking member 2507 for moving a substrate holder 2510 provided with a cylindrical substrate 2508 and a cylindrical auxiliary substrate (not shown). The chucking member 2507 chucks the substrate holder 2510 and carries it in and out of the transfer container 2502. The transfer device 2500 can be moved up and down by a shaft, and can move on a moving rail 2506.

投入容器2102、加熱容器2202、反応容器2302、冷却および取り出し容器2402の数は、それぞれの処理時間に応じて選択される。また、搬送容器2502は、同時に複数の基体を移送できるように複数設けることも可能である。   The number of input containers 2102, heating containers 2202, reaction containers 2302, cooling and extraction containers 2402 is selected according to the respective processing times. A plurality of transfer containers 2502 may be provided so that a plurality of substrates can be transferred simultaneously.

図2に示す連続製造装置を用いた電子写真感光体の連続製造は、例えば、以下のように行われる。   For example, the continuous production of the electrophotographic photosensitive member using the continuous production apparatus shown in FIG. 2 is performed as follows.

円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510を投入容器2102内に設置した後、搬送容器2502を投入容器2102上に移動・下降させて、開閉ゲート2501を開閉ゲート2101に接続させる。   After a base holder 2510 having a cylindrical base 2508 and a cylindrical auxiliary base (not shown) is installed in the input container 2102, the transfer container 2502 is moved and lowered onto the input container 2102 to open and close the open / close gate 2501. Connected to the gate 2101.

開閉ゲート2501、2101を開き、円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510をチャッキング部材2507により搬送容器2502内に移動させた後、開閉ゲート2501、2101を閉じ、搬送容器2502を所定の位置まで上昇させる。この状態で、搬送容器2502の下部側から排気ポンプ2505および排気バルブ2503によって搬送容器2502内を排気し、搬送容器2502内を大気圧から所定の真空度になるまで減圧する。搬送容器2502内が所定の真空度に到達した時点で、排気バルブ2203および排気ポンプ2205によって搬送容器2502を所定の真空度に保持した加熱容器2202上に移動させる。その後、開閉ゲート2501を開閉ゲート2201に接続させ、排気バルブ2509を開け、排気ポンプ2505によって開閉ゲート2501、2201間を所定の真空度にする。なお、搬送容器2502内が所定の真空度でない場合は、排気バルブ2503を開け、排気ポンプ2505によって減圧を行う。   After opening the open / close gates 2501 and 2101 and moving the base holder 2510 on which the cylindrical base 2508 and the cylindrical auxiliary base (not shown) are installed into the transfer container 2502 by the chucking member 2507, the open / close gates 2501 and 2101 are moved. Close and raise the transfer container 2502 to a predetermined position. In this state, the inside of the transfer container 2502 is evacuated from the lower side of the transfer container 2502 by the exhaust pump 2505 and the exhaust valve 2503, and the pressure in the transfer container 2502 is reduced from atmospheric pressure to a predetermined vacuum level. When the inside of the transport container 2502 reaches a predetermined degree of vacuum, the transport valve 2502 and the exhaust pump 2205 are moved onto the heating container 2202 that holds the predetermined degree of vacuum. After that, the open / close gate 2501 is connected to the open / close gate 2201, the exhaust valve 2509 is opened, and the exhaust pump 2505 makes a predetermined degree of vacuum between the open / close gates 2501 and 2012. Note that if the inside of the transport container 2502 is not at a predetermined degree of vacuum, the exhaust valve 2503 is opened and the pressure is reduced by the exhaust pump 2505.

開閉ゲート2501、2201間が所定の真空度に到達した段階で、双方の開閉ゲートを開き、チャッキング部材2507によって円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510を加熱容器2202内に移動させる。円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510を加熱容器2202内に設置し、チャッキング部材2507を搬送容器2502内に引き上げさせた後、開閉ゲート2501、2201を閉じ、リーク用ガスを開閉ゲート間リークバルブ2504から開閉ゲート2501、2201間に供給し、開閉ゲート2501、2201間を大気圧にする。その後、搬送容器2502の開閉ゲート2501を開閉ゲート2201から切り離す。   At a stage where a predetermined degree of vacuum is reached between the open / close gates 2501 and 2011, both open / close gates are opened, and a base holder 2510 in which a cylindrical base 2508 and a cylindrical auxiliary base (not shown) are installed by a chucking member 2507 is installed. Move into heating container 2202. A base holder 2510 on which a cylindrical base 2508 and a cylindrical auxiliary base (not shown) are installed is placed in the heating container 2202 and the chucking member 2507 is pulled up into the transport container 2502, and then the open / close gates 2501, 2201 are opened. Then, the leakage gas is supplied between the open / close gates 2501 and 2201 from the open / close gate leak valve 2504 to bring the open / close gates 2501 and 2011 to atmospheric pressure. Thereafter, the open / close gate 2501 of the transfer container 2502 is separated from the open / close gate 2201.

加熱容器2202内が所定の圧力になるまで加熱用ガスを補助バルブ2204から加熱容器2202内に供給し、加熱容器2202内に設置されている円筒状基体加熱用のヒーター(不図示)を用いて基体ホルダー2510に設置された円筒状基体2508を所定の温度に加熱する。   A heating gas is supplied from the auxiliary valve 2204 into the heating container 2202 until the inside of the heating container 2202 reaches a predetermined pressure, and a cylindrical substrate heating heater (not shown) installed in the heating container 2202 is used. The cylindrical substrate 2508 installed on the substrate holder 2510 is heated to a predetermined temperature.

搬送容器2502の開閉ゲート2501を再び開閉ゲート2201に接続させ、排気バルブ2509を開けて排気ポンプ2505にて開閉ゲート2501、2201間を所定の真空度にする。開閉ゲート2501、2201間が所定の真空度に到達した段階で、開閉ゲート2501、2201を開き、チャッキング部材2507によって円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510を搬送容器2502内に移動させる。移動後、開閉ゲート2501、2201を閉じ、リーク用ガスを開閉ゲート間リークバルブ2504から開閉ゲート2501、2201間に供給し、開閉ゲート2501、2201間を大気圧にする。その後、搬送容器2502の開閉ゲート2501は、開閉ゲート2201から切り離され、後工程へ移る。   The open / close gate 2501 of the transfer container 2502 is connected to the open / close gate 2201 again, the exhaust valve 2509 is opened, and the exhaust pump 2505 makes a predetermined degree of vacuum between the open / close gates 2501 and 2201. At a stage where the opening / closing gates 2501 and 2012 reach a predetermined degree of vacuum, the opening / closing gates 2501 and 2201 are opened, and a base holder 2510 in which a cylindrical base 2508 and a cylindrical auxiliary base (not shown) are installed by a chucking member 2507. Is moved into the transport container 2502. After the movement, the open / close gates 2501 and 2201 are closed, and a leakage gas is supplied from the open / close gate leak valve 2504 between the open / close gates 2501 and 2011, and the open / close gates 2501 and 2011 are brought to atmospheric pressure. Thereafter, the open / close gate 2501 of the transfer container 2502 is disconnected from the open / close gate 2201 and proceeds to a subsequent process.

後工程においては、上記と同様の操作によって、反応容器2302ならびに冷却および排出容器2402と搬送容器2502との間で、円筒状基体2508および円筒状補助基体(不図示)が設置された基体ホルダー2510の受け渡しが行われる。   In the post-process, a substrate holder 2510 in which a cylindrical substrate 2508 and a cylindrical auxiliary substrate (not shown) are installed between the reaction vessel 2302 and the cooling and discharge vessel 2402 and the transfer vessel 2502 by the same operation as described above. Is delivered.

反応容器2302内では、基体ホルダー2510に設置された円筒状基体2508上に堆積膜が形成される。冷却および排出容器2402内では、基体ホルダー2510に設置された円筒状基体2508が所定の温度になるまで冷却される。そして、冷却および排出容器2402内が大気圧になるまでリーク用ガスをリークバルブ2404から排出容器2402内に供給した後、冷却および排出容器2402内から円筒状基体2508を搬出する。   In the reaction vessel 2302, a deposited film is formed on the cylindrical substrate 2508 installed in the substrate holder 2510. In the cooling and discharging container 2402, the cylindrical substrate 2508 installed in the substrate holder 2510 is cooled to a predetermined temperature. Then, after supplying the leakage gas into the discharge container 2402 from the leak valve 2404 until the inside of the cooling and discharge container 2402 reaches atmospheric pressure, the cylindrical base body 2508 is carried out of the cooling and discharge container 2402.

次に、図3に示す真空処理装置を使った堆積膜の形成方法について説明する。
まず、あらかじめ脱脂洗浄した円筒状基体3112を、円筒状補助基体3125およびリング状部材3126とともに基体ホルダー3123に設置し、図2に示す連続製造装置の搬送装置(図2の2500)を用いて、反応容器3100(図2の2302)内に設置する。反応容器3100内は、排気ポンプ(不図示)によりあらかじめ真空保持されている。また、円筒状基体加熱用のヒーター3113には、あらかじめ電力を供給しておき、加熱容器で加熱された円筒状基体3112が所定の温度(例えば、50〜350℃)に保たれるよう、基体ホルダー3123に設置された円筒状基体3112を加熱する。このとき、ガス供給装置3200より、Ar、Heなどの不活性ガスを反応容器3100内に供給して、不活性ガス雰囲気中で加熱を行うこともできる。
Next, a method for forming a deposited film using the vacuum processing apparatus shown in FIG. 3 will be described.
First, a cylindrical substrate 3112 that has been degreased and washed in advance is placed on the substrate holder 3123 together with the cylindrical auxiliary substrate 3125 and the ring-shaped member 3126, and using the transfer device (2500 in FIG. 2) of the continuous manufacturing apparatus shown in FIG. It installs in reaction container 3100 (2302 of FIG. 2). The inside of the reaction vessel 3100 is vacuum-held in advance by an exhaust pump (not shown). In addition, power is supplied in advance to the heater 3113 for heating the cylindrical substrate, and the cylindrical substrate 3112 heated by the heating container is maintained at a predetermined temperature (for example, 50 to 350 ° C.). The cylindrical base 3112 placed on the holder 3123 is heated. At this time, an inert gas such as Ar or He can be supplied from the gas supply device 3200 into the reaction vessel 3100 and heated in an inert gas atmosphere.

次に、ガス供給装置3200より堆積膜形成用の原料ガスを反応容器3100内に供給する。すなわち、補助バルブ3210を開けて、必要に応じてバルブ3231〜3236、3241〜3246、3251〜3256を開き、マスフローコントローラー3211〜3216の流量設定を行う。マスフローコントローラー3211〜3216の各々の流量が安定したところで、真空計3119の表示を見ながら反応容器3100内の圧力が所定の圧力になるように調整する。反応容器3100内の圧力を調整する方法としては、例えば、メカニカルブースターポンプの回転数を操作する方法などが挙げられる。   Next, a source gas for forming a deposited film is supplied from the gas supply device 3200 into the reaction vessel 3100. That is, the auxiliary valve 3210 is opened, and the valves 3231 to 3236, 3241 to 3246, and 3251 to 3256 are opened as necessary to set the flow rate of the mass flow controllers 3211 to 2216. When the flow rates of the mass flow controllers 3211 to 3216 are stabilized, the pressure in the reaction vessel 3100 is adjusted to a predetermined pressure while viewing the display of the vacuum gauge 3119. Examples of a method for adjusting the pressure in the reaction vessel 3100 include a method of operating the rotational speed of a mechanical booster pump.

所定の圧力が得られたところで、高周波電源3120より高周波電力を反応容器3100内に供給するとともに、高周波マッチングボックス3115を操作し、反応容器3100内にプラズマ放電を生起させる。その後、速やかに高周波電力を所定の電力に調整し、堆積膜の形成を行う。   When a predetermined pressure is obtained, high-frequency power is supplied from the high-frequency power source 3120 into the reaction vessel 3100 and the high-frequency matching box 3115 is operated to cause plasma discharge in the reaction vessel 3100. Thereafter, the high-frequency power is quickly adjusted to a predetermined power to form a deposited film.

堆積膜の形成が終わったところで、高周波電力の供給を停止し、バルブ3231〜3236、3241〜3246、3251〜3256、および、補助バルブ3210を閉じ、原料ガスの供給を終える。それとともに、メインバルブ3118を全開にし、反応容器3100内の圧力が所定の圧力(例えば、1Pa以下)になるまで反応容器3100内を排気する。   When the formation of the deposited film is finished, the supply of high-frequency power is stopped, the valves 3231 to 3236, 3241 to 3246, 3251 to 3256, and the auxiliary valve 3210 are closed, and the supply of the source gas is finished. At the same time, the main valve 3118 is fully opened, and the reaction container 3100 is evacuated until the pressure in the reaction container 3100 reaches a predetermined pressure (for example, 1 Pa or less).

複数の堆積層を形成する場合、再び上記の手順を繰り返して、それぞれの層の堆積膜を形成すればよい。   In the case of forming a plurality of deposited layers, the above procedure may be repeated again to form a deposited film of each layer.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples.

[実施例1]
図2に示す連続製造装置および図3に示す真空処理装置を用い、表1に示す条件で、円筒状基体上に図7に示す層構成の電子写真感光体(アモルファスシリコン感光体)を5本製造した。図7中、701は円筒状基体であり、702は下部電荷注入阻止層であり、703は光導電層であり、704は表面層である。
[Example 1]
Using the continuous manufacturing apparatus shown in FIG. 2 and the vacuum processing apparatus shown in FIG. 3, five electrophotographic photosensitive members (amorphous silicon photosensitive members) having the layer structure shown in FIG. 7 are formed on the cylindrical substrate under the conditions shown in Table 1. Manufactured. In FIG. 7, 701 is a cylindrical substrate, 702 is a lower charge injection blocking layer, 703 is a photoconductive layer, and 704 is a surface layer.

本実施例では、基体ホルダーをチャックするためのチャッキング部材として、図5のチャッキング部材503を使用した。   In this embodiment, the chucking member 503 shown in FIG. 5 is used as a chucking member for chucking the substrate holder.

図4を用いて説明した方法により、円筒状基体401の端部の内周面と円筒状補助基体404の端部の内周面にリング状部材421を取り付け、これらを基体ホルダー431に設置した。   A ring-shaped member 421 is attached to the inner peripheral surface of the end of the cylindrical base 401 and the inner peripheral surface of the end of the cylindrical auxiliary base 404 by the method described with reference to FIG. .

本実施例において使用した円筒状基体は、内径が78mm、外径が84mm、長さが381mm、肉厚が3mmのアルミニウム製の円筒状基体である。また、この円筒状基体の両端部の内周面には、内径が大きくなっているインロー部が設けられており、インロー部の深さ(円筒状基体の軸方向の長さ)は13mmであり、内径は79.7mmである。   The cylindrical substrate used in this example is an aluminum cylindrical substrate having an inner diameter of 78 mm, an outer diameter of 84 mm, a length of 381 mm, and a wall thickness of 3 mm. Moreover, the inner peripheral surface of both ends of the cylindrical base is provided with an inlay portion having a large inner diameter, and the depth of the inlay portion (the axial length of the cylindrical base) is 13 mm. The inner diameter is 79.7 mm.

また、本実施例において使用した円筒状補助基体は、外径が84mm、長さが100mm、肉厚が3mmのアルミニウム製の円筒状補助基体である。また、この円筒状補助基体の端部(円筒状基体と接する側の端部)の内周面には、上記円筒状基体のインロー部と深さおよび内径が同一のインロー部が設けられている。   The cylindrical auxiliary substrate used in this example is an aluminum cylindrical auxiliary substrate having an outer diameter of 84 mm, a length of 100 mm, and a wall thickness of 3 mm. Further, on the inner peripheral surface of the end of the cylindrical auxiliary base (the end on the side in contact with the cylindrical base), an inlay having the same depth and inner diameter as the spigot of the cylindrical base is provided. .

また、本実施例において使用したリング状部材は、図1(b)に示す形状の、内径が77.8mm、外径が79.4mm、高さが25.8mmのステンレス鋼製のリング状部材である。また、このリング状部材に設けられている長方形の貫通孔の長さはl20mmであり、幅wは2.5mmであり、リング状部材の周方向に10mm等間隔に千鳥状に4段設けられている。   Further, the ring-shaped member used in this example is a ring-shaped member made of stainless steel having an inner diameter of 77.8 mm, an outer diameter of 79.4 mm, and a height of 25.8 mm, as shown in FIG. It is. Further, the length of the rectangular through hole provided in the ring-shaped member is 120 mm, the width w is 2.5 mm, and four stages are provided in a staggered manner at equal intervals of 10 mm in the circumferential direction of the ring-shaped member. ing.

また、本実施例において使用した基体ホルダーは、図1(d)に示す形状の、円筒状基体および円筒状補助基体と面する筒状の部分(筒状部)の外径が76mm、内径が68mmであるアルミニウム製の基体ホルダーである。また、この基体ホルダーの筒状部に設けられている長方形の貫通孔の長さlは20mm、幅wは8mmであり、基体ホルダーの周方向に4箇所等間隔に、リング状部材の貫通孔と対向する位置に設けられている。   The base holder used in this example has an outer diameter of 76 mm and an inner diameter of a cylindrical portion (cylindrical portion) facing the cylindrical base body and the cylindrical auxiliary base body in the shape shown in FIG. It is a base holder made of aluminum which is 68 mm. The length 1 of the rectangular through hole provided in the cylindrical portion of the base holder is 20 mm, the width w is 8 mm, and the through holes of the ring-shaped member are equally spaced at four locations in the circumferential direction of the base holder. It is provided in the position which opposes.

本実施例では、リング状部材421を取り付けた円筒状基体401および円筒状補助基体404を基体ホルダー431に装着した状態で、リング状部材421の貫通孔422の一部と基体ホルダー431の貫通孔432の一部が重なる状態となる。   In the present embodiment, a part of the through-hole 422 of the ring-shaped member 421 and the through-hole of the base holder 431 are mounted in a state where the cylindrical base 401 and the cylindrical auxiliary base 404 to which the ring-shaped member 421 is attached are mounted on the base holder 431. A part of 432 overlaps.

また、本実施例における搬送容器内を大気状態から真空状態に排気する工程は、搬送容器2502内に円筒状基体2508が設置された基体ホルダー2510を搬入し、これをチャッキング部材2507でチャック(クランプ固定)した状態で実施した。より具体的には、大気状態から排気バルブ2509および排気ポンプ2505によって搬送容器内の排気を行い、15分後に2.67kPaに達する排気速度で真空排気を行った。   Further, in the process of exhausting the inside of the transfer container from the atmospheric state to the vacuum state in this embodiment, the substrate holder 2510 in which the cylindrical substrate 2508 is installed is carried into the transfer container 2502 and is chucked by the chucking member 2507 ( The test was carried out in a clamped state. More specifically, the inside of the transfer container was evacuated from the atmospheric state by the exhaust valve 2509 and the exhaust pump 2505, and evacuation was performed at an exhaust rate reaching 2.67 kPa after 15 minutes.

Figure 2013108133
Figure 2013108133

[比較例1]
リング状部材および基体ホルダーをどちらも貫通孔がないものに変更した以外は、実施例1と同様にして電子写真感光体を5本製造した。
[Comparative Example 1]
Five electrophotographic photosensitive members were produced in the same manner as in Example 1 except that both the ring-shaped member and the substrate holder were changed to those having no through holes.

[比較例2]
リング状部材を貫通孔がないものに変更した以外は、実施例1と同様にして電子写真感光体を5本製造した。
[Comparative Example 2]
Five electrophotographic photosensitive members were produced in the same manner as in Example 1 except that the ring-shaped member was changed to one having no through hole.

[比較例3]
基体ホルダーを貫通孔がないものに変更した以外は、実施例1と同様にして電子写真感光体を5本製造した。
[Comparative Example 3]
Five electrophotographic photosensitive members were produced in the same manner as in Example 1 except that the substrate holder was changed to one having no through hole.

[実施例2]
リング状部材および基体ホルダーを以下のものに変更した以外は、実施例1と同様にして電子写真感光体を5本製造した。
[Example 2]
Five electrophotographic photosensitive members were produced in the same manner as in Example 1 except that the ring-shaped member and the substrate holder were changed to the following.

本実施例において使用したリング状部材は、図1(c)に示す形状の、内径が77.8mm、外径が79.4mm、高さが25.8mmのステンレス鋼製のリング状部材である。また、このリング状部材に設けられている長方形の貫通孔の長さlは26mmであり、幅wは2mmであり、傾きは45°であり、リング状部材の周方向にd=8mmの等間隔に並列に設けられている。   The ring-shaped member used in this example is a stainless steel ring-shaped member having an inner diameter of 77.8 mm, an outer diameter of 79.4 mm, and a height of 25.8 mm, as shown in FIG. . The length 1 of the rectangular through-hole provided in the ring-shaped member is 26 mm, the width w is 2 mm, the inclination is 45 °, and d = 8 mm in the circumferential direction of the ring-shaped member, etc. It is provided in parallel with the interval.

本実施例において使用した基体ホルダーは、図1(e)に示す形状の、円筒状基体および円筒状補助基体と面する筒状の部分(筒状部)の外径が76mm、内径が68mmであるアルミニウム製の基体ホルダーである。また、この基体ホルダーの筒状部に設けられている丸形の貫通孔の直径は10mmであり、基体ホルダーの周方向に4箇所等間隔に、リング状部材の貫通孔と対向する位置に設けられている。   The base holder used in this example has an outer diameter of 76 mm and an inner diameter of 68 mm in the cylindrical part (cylindrical part) facing the cylindrical base and the cylindrical auxiliary base in the shape shown in FIG. An aluminum substrate holder. Further, the diameter of the round through hole provided in the cylindrical portion of the base holder is 10 mm, and is provided at four positions at equal intervals in the circumferential direction of the base holder at positions facing the through holes of the ring-shaped member. It has been.

[評価]
実施例1〜2および比較例1〜3で製造した電子写真感光体に対して、堆積膜の異常成長で生じる球状突起の評価を以下の方法で行った。
[Evaluation]
For the electrophotographic photoreceptors produced in Examples 1 and 2 and Comparative Examples 1 to 3, spherical projections caused by abnormal growth of the deposited film were evaluated by the following method.

製造した電子写真感光体に対して、電子写真感光体の軸方向の中心から±170mmの領域を光学顕微鏡で観察し、電子写真感光体の表面(=堆積膜の表面)に存在する直径10μm以上の球状突起の個数を数えた。   A region of ± 170 mm from the axial center of the electrophotographic photosensitive member is observed with an optical microscope with respect to the manufactured electrophotographic photosensitive member, and a diameter of 10 μm or more existing on the surface of the electrophotographic photosensitive member (= the surface of the deposited film). The number of spherical protrusions was counted.

各例ごとに5本の電子写真感光体の球状突起の個数の平均値を算出し、比較例1で製造した電子写真感光体の当該平均値を100として、各例の相対比較を行った。その値が小さいほど、球状突起の個数が少ないことを示す。結果を表2に示す。   For each example, the average value of the number of spherical protrusions of the five electrophotographic photosensitive members was calculated, and the average value of the electrophotographic photosensitive member manufactured in Comparative Example 1 was set to 100, and each example was subjected to relative comparison. A smaller value indicates a smaller number of spherical protrusions. The results are shown in Table 2.

Figure 2013108133
Figure 2013108133

121、421 リング状部材
122、132、422、432 貫通孔
131、431 基体ホルダー
401 円筒状基体
404 円筒状補助基体
503 チャッキング部材
121, 421 Ring-shaped member 122, 132, 422, 432 Through hole 131, 431 Base holder 401 Cylindrical base 404 Cylindrical auxiliary base 503 Chucking member

Claims (2)

円筒状基体の端部の内周面と円筒状補助基体の端部の内周面にリング状部材を取り付け、筒状部を有する基体ホルダーに該円筒状基体および該円筒状補助基体を設置し、該基体ホルダーをチャッキング部材によりチャックして真空排気可能な搬送容器内に搬入し、搬入した状態で該搬送容器内を真空排気し、該円筒状基体および該円筒状補助基体を真空状態で搬送する工程を有する真空処理方法において、
該リング状部材および該基体ホルダーの筒状部に貫通孔を設け、該搬送容器内を真空排気する際、該リング状部材の該貫通孔の少なくとも一部と該基体ホルダーの貫通孔の少なくとも一部とが重なる状態で該搬送容器内を真空排気することを特徴とする真空処理方法。
A ring-shaped member is attached to the inner peripheral surface of the end of the cylindrical base and the inner peripheral surface of the end of the cylindrical auxiliary base, and the cylindrical base and the cylindrical auxiliary base are installed in a base holder having a cylindrical portion. The base holder is chucked by a chucking member and is carried into a transport container that can be evacuated, and the transport container is evacuated in a state of being transported, and the cylindrical base body and the cylindrical auxiliary base body are evacuated. In the vacuum processing method having the step of conveying,
A through-hole is provided in the cylindrical part of the ring-shaped member and the base holder, and when the inside of the transport container is evacuated, at least a part of the through-hole of the ring-shaped member and at least one of the through-hole of the base holder are provided. A vacuum processing method, wherein the inside of the transfer container is evacuated while being overlapped with a part.
請求項1に記載の真空処理方法を用いて円筒状基体上に堆積膜を形成する工程を有する電子写真感光体の製造方法。   A method for producing an electrophotographic photosensitive member comprising a step of forming a deposited film on a cylindrical substrate using the vacuum processing method according to claim 1.
JP2011253963A 2011-11-21 2011-11-21 Vacuum treatment method and method for manufacturing electrophotographic photoreceptor Pending JP2013108133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253963A JP2013108133A (en) 2011-11-21 2011-11-21 Vacuum treatment method and method for manufacturing electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253963A JP2013108133A (en) 2011-11-21 2011-11-21 Vacuum treatment method and method for manufacturing electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2013108133A true JP2013108133A (en) 2013-06-06

Family

ID=48705194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253963A Pending JP2013108133A (en) 2011-11-21 2011-11-21 Vacuum treatment method and method for manufacturing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2013108133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559028B1 (en) * 2014-12-18 2015-10-12 (주)앤피에스 Substrate supporting apparatus and substrate processing apparatus having the same and processing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559028B1 (en) * 2014-12-18 2015-10-12 (주)앤피에스 Substrate supporting apparatus and substrate processing apparatus having the same and processing method using the same

Similar Documents

Publication Publication Date Title
JP7297440B2 (en) Moveable and detachable process kit
TWI673389B (en) Wafer rotation in a semiconductor chamber
CN110062818A (en) Wafer orientation pedestal for semiconductor processes
JP6384414B2 (en) Substrate heating apparatus, substrate heating method, storage medium
TW201618217A (en) Spring-loaded pins for susceptor assembly and processing methods using same
KR20150038129A (en) Two piece shutter disk assembly for a substrate process chamber
JP2018107313A (en) Gas supply device, plasma processing device, and manufacturing method of gas supply device
JP2013108133A (en) Vacuum treatment method and method for manufacturing electrophotographic photoreceptor
JP4060941B2 (en) Plasma processing method
JP5322847B2 (en) Heat treatment apparatus and heat treatment apparatus
JP2010024494A (en) Vacuum treatment apparatus
JP2012241278A (en) Vacuum treatment method
TW202129693A (en) Physical vapor deposition chamber cleaning processes
JP5546395B2 (en) Deposited film forming method and deposited film forming apparatus
JP2016111226A (en) Manufacturing method of epitaxial silicon wafer, and vapor growth device
JP2009249726A (en) Carrying vessel, and method carrying for substrate holder
JPS60249329A (en) Spatter etching mechanism in vacuum treatment unit
JP7259646B2 (en) Particle coating equipment
JP2010043322A (en) Vacuum vessel and method for forming deposited film
JP2009007654A (en) Substrate holder and vacuum vessel
JP5555077B2 (en) How to install the processing container
JP2714576B2 (en) Heat treatment equipment
JP2010161276A (en) Device for forming film on semiconductor wafer
KR100605097B1 (en) A susceptor of semiconductor fabricating apparatus
JP5936481B2 (en) Deposited film forming apparatus and method