JP2013107208A - Microwave resin welded body and welding method by the same - Google Patents

Microwave resin welded body and welding method by the same Download PDF

Info

Publication number
JP2013107208A
JP2013107208A JP2011251410A JP2011251410A JP2013107208A JP 2013107208 A JP2013107208 A JP 2013107208A JP 2011251410 A JP2011251410 A JP 2011251410A JP 2011251410 A JP2011251410 A JP 2011251410A JP 2013107208 A JP2013107208 A JP 2013107208A
Authority
JP
Japan
Prior art keywords
resin
microwave
welded body
synthetic resin
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011251410A
Other languages
Japanese (ja)
Other versions
JP5709731B2 (en
Inventor
Takayuki Ohira
隆行 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2011251410A priority Critical patent/JP5709731B2/en
Publication of JP2013107208A publication Critical patent/JP2013107208A/en
Application granted granted Critical
Publication of JP5709731B2 publication Critical patent/JP5709731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To uniformly weld resin molded bodies to each other with high precision even when heat capacities of the resin molded bodies are not uniform.SOLUTION: Iron powder F formed of powder bodies of 0.1-500 μm is glass-coated with a glass film of 0.01-10 μm, the glass-coated iron powder F is dispersed by putting resin binder of 0.1-50 wt.% with respect to a total amount, and is compression-molded to obtain a resistance value 1-10Ωcm and specific gravity 6-8, and is arranged between a plurality of synthetic resin molded bodies mutually. The plurality of synthetic resin molded bodies are molten and welded to each other by induction heating with a microwave. Therefore, as the iron powder F is glass-coated, heat generation efficiency of the iron powder F is improved, and electric discharge generation conditions between the iron powder F are limited because of insulation of the iron powder F by the glass coating to reduce a discharge frequency. In addition, the glass coating improves a heat insulation condition of the iron powder F to enable welding with less energy loss.

Description

本発明は、樹脂製成型体相互間を溶着可能なマイクロ波発熱体に関するものであり、特に、複数箇所の樹脂製成型体相互間を溶着するのに使用可能なマイクロ波樹脂溶着体及びマイクロ波発熱体による溶着方法に関するものである。   The present invention relates to a microwave heating element capable of welding between resin molded bodies, and in particular, a microwave resin welded body that can be used to weld between a plurality of resin molded bodies, and The present invention relates to a welding method using a microwave heating element.

2つの樹脂成形品を溶着させることは公知の技術であり、その加熱手段として、例えば、レーザ、超音波等の熱源による溶着面の加熱による方法が採用されてきた。
しかし、このような方法は2つの樹脂成形品を溶着させる手段として採用することができても、3つ以上の樹脂成形品を一度に溶着することはできない。
したがって、従来のAT車のバルブボディ等については、合成樹脂の溶着によって製造することは困難であった。
It is a known technique to weld two resin molded products, and as a heating means, for example, a method by heating the welding surface with a heat source such as a laser or an ultrasonic wave has been adopted.
However, even if such a method can be adopted as a means for welding two resin molded products, it is not possible to weld three or more resin molded products at a time.
Therefore, it has been difficult to manufacture a valve body of a conventional AT vehicle by welding a synthetic resin.

合成樹脂の溶着方法には熱風溶着、振動溶着等が知られ、原理的には接合面を加熱することで樹脂を溶融させて接着させる技術である。ここで接合面の加熱手段としてマイクロ波の照射を行うことにより、特許文献1、特許文献2の樹脂成形品を溶着する方法がある。   Known methods for welding synthetic resins include hot air welding, vibration welding, and the like. In principle, the resin is melted and bonded by heating the bonding surfaces. Here, there is a method of welding the resin molded products of Patent Document 1 and Patent Document 2 by performing microwave irradiation as a heating means for the joint surface.

まず、特許文献1に記載の方法は、熱可塑性樹脂中にマイクロ波発熱体を分散してなる成形物にマイクロ波を照射することによって熱可塑性樹脂を融着する方法において、マイクロ波発熱体として耐熱性樹脂でコーティングしたものを用いることを特徴とする熱可塑性樹脂の融着方法である。   First, the method described in Patent Document 1 is a method in which a thermoplastic resin is fused by irradiating microwaves on a molded product in which a microwave heating element is dispersed in a thermoplastic resin. A thermoplastic resin fusion method characterized by using a material coated with a heat resistant resin.

また、特許文献2に記載の方法は、樹脂性ケースの溶着面の形状をほぼ等分化した複数の線条の抵抗発熱体をケース本体とカバー間の溶着面全体に挟み込んで閉じ、次にケース本体或いはカバーのいずれか一方に、お互いの抵抗発熱体の端部が隣接する位置に形成したガイド孔を介して給電装置に接続した電圧印加端子を挿入して隣接する抵抗発熱体に同時に電圧を印加し、抵抗発熱体はその電気抵抗により発熱して、周囲の樹脂を溶融し、溶着面全周の樹脂を溶融する。十分に溶融したところで電圧印加を止め、電圧印加端子を抜き、冷却すると、溶融した樹脂が硬化してケース本体とカバーは全周溶着できる。その後、貫通孔の周辺に突出した段部を溶着チップで押し潰すと貫通孔が封鎖され、密封効果の高い一体化したケースが完成するというものである。   Further, the method described in Patent Document 2 is to close a resistance heating element of a plurality of filaments, in which the shape of the welded surface of the resin case is approximately equalized, by sandwiching the entire welded surface between the case main body and the cover and then closing the case. A voltage application terminal connected to the power feeding device is inserted into either the main body or the cover through a guide hole formed at a position where the ends of the resistance heating elements are adjacent to each other, and a voltage is simultaneously applied to the adjacent resistance heating elements. When applied, the resistance heating element generates heat due to its electric resistance, melts the surrounding resin, and melts the resin all around the weld surface. When the application of the voltage is stopped when it is sufficiently melted, the voltage application terminal is removed and cooled, the molten resin is cured and the case body and the cover can be welded all around. After that, when the stepped portion protruding around the through hole is crushed with a welding tip, the through hole is sealed and an integrated case with a high sealing effect is completed.

特開平9−136353号公報JP-A-9-136353 特開10−323903号公報JP 10-323903 A

特許文献1の方法は、熱可塑性樹脂中に耐熱性樹脂でコーティングしたマイクロ波発熱体を分散してできた成形物に、マイクロ波を照射して融着する熱可塑性樹脂の融着方法であり、中空部を有し、二重、三重に形成された樹脂成形体の周囲を溶着する形状では、均一に溶着し、強度及び気密性を確保することは難しい。
また、溶着する一方の構造体に特許文献1の発熱体を分散させる必要があり、射出成形を前提とした溶着体には適用することは困難である。
The method of Patent Document 1 is a method of fusing a thermoplastic resin in which a microwave product is dispersed by being irradiated with microwaves on a molded product formed by dispersing a microwave heating element coated with a heat resistant resin in a thermoplastic resin. In the shape of having a hollow portion and welding around the resin molded body formed in double or triple, it is difficult to weld uniformly and ensure strength and airtightness.
Moreover, it is necessary to disperse the heating element of Patent Document 1 in one structure to be welded, and it is difficult to apply to a welded body on the premise of injection molding.

特許文献2は、密封された合成樹脂製ケースの熱溶着方法及びその方法に用いる熱可塑性樹脂で成形された成形品の技術を開示するものであり、具体的には、抵抗発熱体をリング状に2等分されるように作成し、それを接合しようとする合成樹脂製ケースの上下にセットし、電圧を印可して抵抗発熱体を発熱させ、接合面全周を溶着させる溶着方法であるから、電圧を印可する電極を当てる部分に予め孔を穿設しておくか、或いは抵抗発熱体の電圧を印可する部分を外に出しておく必要があり、特許文献1と同様、複雑な樹脂成形体においては、溶着後の気密性を確保できない可能性がある。勿論、予め孔を穿設しておいて、その後、電極を当てる孔を合成樹脂で埋める方法もあるが、それだけでは十分な気密性が得られない。   Patent Document 2 discloses a method of heat-sealing a sealed synthetic resin case and a technology of a molded product formed of a thermoplastic resin used in the method. Specifically, a resistance heating element is formed in a ring shape. This is a welding method in which it is created so that it is divided into two equal parts, set on the top and bottom of a synthetic resin case to be joined, and a resistance heating element is heated by applying voltage to weld the entire circumference of the joint surface. Therefore, it is necessary to make a hole in advance in the portion where the electrode to which the voltage is applied is applied, or to expose the portion to which the voltage of the resistance heating element is applied. In the molded body, there is a possibility that the airtightness after welding cannot be secured. Of course, there is a method in which a hole is formed in advance, and then the hole to which the electrode is applied is filled with a synthetic resin. However, sufficient airtightness cannot be obtained by that method.

そこで、本発明は、上記問題点を解消すべく、樹脂製の成型体の熱容量が均一でなくても、また、樹脂製の成型体相互間の溶着を均一に高精度で行い、気密性の確保が容易にできるマイクロ波樹脂溶着体及びそれによる溶着方法の提供を課題とするものである。   Therefore, in order to solve the above-mentioned problems, the present invention uniformly and precisely welds the resin moldings even if the heat capacity of the resin moldings is not uniform. An object of the present invention is to provide a microwave resin welded body that can be easily secured and a welding method using the same.

請求項1の発明にかかるマイクロ波樹脂溶着体においては、0.01〜10μmのガラス膜によって表面コーティング処理された中位径0.1〜500μmの粉体のガラスコーティング鉄粉を圧縮成形自在なように、総量に対して0.1〜50重量%の熱硬化性樹脂または熱可塑性樹脂の樹脂バインダーを前記ガラスコーティング鉄粉の粉体中に入れて分散させて圧縮成形し、抵抗値1〜103Ωcmの特性とし、それを複数の合成樹脂成型体相互間に配置し、マイクロ波によって誘電加熱し、前記複数の合成樹脂成型体相互間を溶融、溶着するものである。 In the microwave resin welded body according to the invention of claim 1, glass-coated iron powder having a median diameter of 0.1 to 500 μm and surface-coated with a 0.01 to 10 μm glass film can be compression-molded. Thus, 0.1 to 50% by weight of the thermosetting resin or thermoplastic resin binder with respect to the total amount is put into the powder of the glass coating iron powder and dispersed and compression-molded. It has a characteristic of 10 3 Ωcm, and is disposed between a plurality of synthetic resin molded bodies, dielectrically heated by microwaves, and melted and welded between the plurality of synthetic resin molded bodies.

ここで、上記中位径0.1〜500μmの粉体とは、レーザ回折・散乱法によって測定した鉄粉の粒径分布において、ある粒子径より大きい個数または質量が全粉体の50%をしめるときの粒子径を中位径といい、その中位径が0.1〜500μmであることを意味する。中位径0.1μm以下であると発熱が弱く、中位径500μm以上であると粒子の電荷量が大きくなり、放電が発生する可能性が出てくる。
また、上記0.01〜10μmのガラス膜とは、コーティングしたガラスの膜厚が0.01〜10μmであることを意味する。ガラス膜の0.01〜10μmは、10μm以上になると、誘電加熱の効率が低くなり、また、機械的強度がガラス膜に左右されることになる。ガラス膜の0.01μm以下では、鉄粉間の間隔が狭くなり、放電の可能性が高くなる。
そして、上記樹脂バインダーは、熱硬化性樹脂または熱可塑性樹脂の何れかで、総量に対して0.1〜50重量%の混合したものであればよい。0.1〜50重量%の混合比は、発熱体の厚み、発熱体の配置箇所及び配置数、発熱体の面積等によって決定される。
更に、ガラスコーティング鉄粉中に上記樹脂バインダーを混合した複合粉体材料を圧縮成形し、抵抗値1〜103Ωcm、特に好ましくは、比重6〜8としたものであり、抵抗値が1〜103Ωcmの範囲であることから、溶着条件によって任意の値のものを使用できる。
Here, the powder having a median diameter of 0.1 to 500 μm means that the number or mass larger than a certain particle diameter is 50% of the total powder in the particle size distribution of the iron powder measured by the laser diffraction / scattering method. The particle diameter at the time of crimping is referred to as the median diameter, which means that the median diameter is 0.1 to 500 μm. When the median diameter is 0.1 μm or less, heat generation is weak, and when the median diameter is 500 μm or more, the charge amount of the particles becomes large, which may cause discharge.
Moreover, the said 0.01-10 micrometers glass film means that the film thickness of the coated glass is 0.01-10 micrometers. When 0.01 to 10 μm of the glass film is 10 μm or more, the efficiency of the dielectric heating becomes low, and the mechanical strength depends on the glass film. If it is 0.01 μm or less of the glass film, the interval between the iron powders becomes narrow, and the possibility of discharge increases.
The resin binder may be either a thermosetting resin or a thermoplastic resin mixed in an amount of 0.1 to 50% by weight based on the total amount. The mixing ratio of 0.1 to 50% by weight is determined by the thickness of the heating element, the location and number of heating elements, the area of the heating element, and the like.
Further, a composite powder material in which the above resin binder is mixed in glass-coated iron powder is compression-molded to have a resistance value of 1 to 10 3 Ωcm, particularly preferably a specific gravity of 6 to 8, and a resistance value of 1 to 1 Since it is in the range of 10 3 Ωcm, an arbitrary value can be used depending on the welding conditions.

請求項2の発明にかかるマイクロ波樹脂溶着体は、更に、前記樹脂バインダーが熱硬化性樹脂であり、圧縮成形した後にアニール処理をしたものである。   In the microwave resin welded body according to the second aspect of the present invention, the resin binder is a thermosetting resin, and is annealed after compression molding.

請求項3の発明にかかるマイクロ波樹脂溶着体は、マイクロ波樹脂溶着体の前記複数の合成樹脂成型体相互間の接合面は、凹凸状の噛み合わせとしたものである。
このように噛み合わせの位置に前記マイクロ波樹脂溶着体を載置して誘電加熱を行えば、接合面積が広くなり、完全な封止が可能となる。
In the microwave resin welded body according to a third aspect of the present invention, the joining surface between the plurality of synthetic resin molded bodies of the microwave resin welded body is formed in an uneven engagement.
When the microwave resin welded body is placed at the meshing position and dielectric heating is performed as described above, the bonding area is increased and complete sealing is possible.

請求項4の発明にかかるマイクロ波樹脂溶着体は、前記合成樹脂成型体相互間の接合面の凹凸状の噛み合わせは、一面が凹状の環状で他面が凸状の環状となる環状凹部と環状凸部とを有し、前記合成樹脂成型体相互間に配置されるマイクロ波樹脂溶着体が前記環状凹部の内部の環状内方向に配置されるものである。ここで環状内方向とは環によって規定される閉鎖域または内部域の方向を意味する。   In the microwave resin welded body according to the invention of claim 4, the concave-convex engagement of the joint surfaces between the synthetic resin moldings includes an annular concave portion having a concave ring shape on one surface and a convex ring shape on the other surface. The microwave resin welding body which has an annular convex part and is arrange | positioned between the said synthetic resin moldings is arrange | positioned in the cyclic | annular inner direction inside the said annular recessed part. Here, the annular inner direction means the direction of the closed region or the inner region defined by the ring.

請求項5の発明にかかるマイクロ波樹脂溶着体は、0.01〜10μmのガラスコーティング層となるように表面コーティングされた0.1〜500μmの粉体からなるガラスコーティング鉄粉が圧縮成形自在なように、総量に対して0.1〜50重量%の熱硬化性樹脂または熱可塑性樹脂の樹脂バインダーを入れて分散し、抵抗値1〜103Ωcmの特性とし、それを複数の合成樹脂成型体相互間に配置し、マイクロ波によって誘電加熱自在とし、前記複数の合成樹脂成型体相互間を溶融、溶着する。 The microwave resin welded body according to the invention of claim 5 is capable of compression-molding glass-coated iron powder made of 0.1-500 μm powder surface-coated so as to form a 0.01-10 μm glass coating layer. Thus, 0.1 to 50% by weight of thermosetting resin or thermoplastic resin binder is added to the total amount and dispersed to obtain a resistance value of 1 to 10 3 Ωcm. It arrange | positions between bodies and makes dielectric heating freely with a microwave, and fuse | melts and welds between these synthetic resin moldings.

請求項1の発明のマイクロ波樹脂溶着体は、0.1〜500μmの粉体の鉄粉が0.01〜10μmのガラス膜によって表面コーティング処理されており、そして、総量に対して0.1〜50重量%の樹脂バインダーを前記表面コーティングされたガラスコーティング鉄粉の粉体中に入れて分散し、圧縮成形して抵抗値1〜103Ωcmの特性とし、それを複数の合成樹脂成型体相互間に配置し、マイクロ波による誘電加熱で前記複数の合成樹脂成型体相互間を溶融、溶着するものである。
したがって、0.1〜500μmの粉体の鉄粉が0.01〜10μmの膜によってガラスコーティングされているから、ガラスコーティングすることで鉄粉の発熱効率が向上し、また、その粉体からなる鉄粉がガラスコーティングの絶縁のため、鉄粉間の放電の発生条件が限定され、その放電頻度を低下させることができる。また、鉄粉が0.1〜500μmと小粒子であるから、そこに誘導される電気量が小さく放電の発生が抑制される。そして、ガラスコーティングすることで鉄粉の保温条件が良くなり、エネルギ損失の少ない溶着ができる。
更に、本発明のマイクロ波樹脂溶着体の抵抗値を1〜103Ωcmの範囲の何れかの値を選択することによって、溶着層が2層以上の合成樹脂成型体であっても、同時に合成樹脂成型体相互間が均質化した溶着とすることができる。また、比重が6〜8の範囲内のものであるから、完成品の総重量を大きく左右することがないが、作業の際に対抗する合成樹脂成型体間においても、容易に移動することがなく、作業性がよい。
The microwave resin welded body of the invention of claim 1 is obtained by subjecting iron powder of 0.1 to 500 μm to a surface coating treatment with a glass film of 0.01 to 10 μm, and 0.1 wt. A resin binder of ˜50% by weight is placed in the surface-coated glass-coated iron powder powder, dispersed, and compression-molded to obtain a characteristic having a resistance value of 1 to 10 3 Ωcm. It arrange | positions between each other and fuse | melts and welds between these synthetic resin moldings by the dielectric heating by a microwave.
Accordingly, since the iron powder of 0.1 to 500 μm powder is glass-coated with a film of 0.01 to 10 μm, the heating efficiency of the iron powder is improved by the glass coating, and the powder consists of the powder. Since the iron powder is insulated from the glass coating, the conditions for the discharge between the iron powders are limited, and the frequency of discharge can be reduced. Moreover, since iron powder is 0.1-500 micrometers and small particles, the electric quantity induced | guided | derived there is small and generation | occurrence | production of discharge is suppressed. And by glass coating, the heat-retaining condition of iron powder improves, and welding with little energy loss can be performed.
Furthermore, by selecting any value within the range of 1 to 10 3 Ωcm for the resistance value of the microwave resin welded body of the present invention, even if the welded layer is a synthetic resin molded body having two or more layers, it is synthesized simultaneously. It can be set as the welding which homogenized between resin moldings. In addition, since the specific gravity is within the range of 6 to 8, the total weight of the finished product is not greatly affected, but it can be easily moved between the synthetic resin moldings that oppose the work. There is no workability.

請求項2の発明のマイクロ波樹脂溶着体は、前記樹脂バインダーが熱硬化性樹脂であり、圧縮成形した後にアニール処理をしたものであることから、マイクロ波樹脂溶着体の形状保持が優れ安定した発熱が得られることから、所望の位置の溶着が容易に行うことができる。   In the microwave resin welded body of the invention of claim 2, since the resin binder is a thermosetting resin and is annealed after compression molding, the shape retention of the microwave resin welded body is excellent and stable. Since heat generation is obtained, welding at a desired position can be easily performed.

請求項3の発明のマイクロ波樹脂溶着体は、マイクロ波樹脂溶着体の前記複数の合成樹脂成型体相互間の接合面は、凹凸状の噛み合わせとしたものであるから、請求項1または請求項2に記載の効果に加えて、噛み合わせの位置に前記発熱体を載置して誘電加熱を行えば、接合面積が広くなり、完全な封止が可能となる。   The microwave resin welded body according to the invention of claim 3 is such that the joining surface between the plurality of synthetic resin molded bodies of the microwave resin welded body is formed in a concave-convex shape. In addition to the effect described in Item 2, when the heating element is placed at the meshing position and dielectric heating is performed, the bonding area becomes large and complete sealing becomes possible.

請求項4の発明のマイクロ波樹脂溶着体は、前記合成樹脂成型体相互間の接合面の凹凸状の噛み合わせは、一面が凹状の環状で他面が凸状の環状となる環状凹部と環状凸部とを有し、前記合成樹脂成型体相互間に配置されるマイクロ波樹脂溶着体が前記環状凹部の内部の環状内方向に配置されるものであるから、請求項3の効果に加えて、マイクロ波樹脂溶着体を気密性が要求される樹脂成型体の内部に近い環状凹部の環状内方向に配置することで確実な封止が可能となる。   In the microwave resin welded body according to the invention of claim 4, the concave and convex meshing of the joint surfaces between the synthetic resin moldings is performed by an annular recess and an annular surface in which one surface is a concave ring and the other surface is a convex ring. In addition to the effect of Claim 3, since the microwave resin welded body which has a convex part and is arrange | positioned between the said synthetic resin moldings is arrange | positioned in the cyclic | annular inner direction inside the said annular recessed part. By placing the microwave resin welded body in the annular inward direction of the annular recess close to the inside of the resin molded body requiring airtightness, reliable sealing becomes possible.

請求項5の発明のマイクロ波樹脂溶着体による溶着方法は、0.01〜10μmのガラス膜となるように表面コーティングされた0.1〜500μmの粉体のガラスコーティング鉄粉が圧縮成形自在なように、総量に対して0.1〜50重量%の熱硬化性樹脂または熱可塑性樹脂の樹脂バインダーを入れて分散し、抵抗値1〜103Ωcmの特性とし、それを複数の合成樹脂成型体相互間に配置し、マイクロ波によって誘電加熱自在とし、前記複数の合成樹脂成型体相互間を溶融、溶着するものである。
したがって、0.1〜500μmの粉体の鉄粉が0.01〜10μmの膜によって表面がガラスコーティングされているから、表面のガラスコーティングによって鉄粉の発熱効率が向上し、また、その鉄粉の表面がガラスコーティングによって絶縁されているため、鉄粉間の放電の発生条件が限定され、その放電頻度を低下させることができる。更に、鉄分の表面をガラスコーティングすることで鉄粉の保温条件が良くなり、エネルギ損失の少ない溶着ができる。
また、鉄粉が0.1〜500μmの粉体であって小粒子であるから、そこに誘導される電気量が小さく放電の発生が抑制される。
加えて、本発明のマイクロ波樹脂溶着体の抵抗値を1〜103Ωcmの範囲の何れかの値を選択することによって、溶着層が2層以上の合成樹脂成型体であっても、同時に合成樹脂成型体相互間が均質化した溶着とすることができる。
According to the welding method using the microwave resin welded body according to the fifth aspect of the present invention, a glass-coated iron powder of 0.1 to 500 μm powder, which is surface-coated so as to form a glass film of 0.01 to 10 μm, can be compression-molded. Thus, 0.1 to 50% by weight of thermosetting resin or thermoplastic resin binder is added to the total amount and dispersed to obtain a resistance value of 1 to 10 3 Ωcm. It arrange | positions between bodies and makes it possible to carry out dielectric heating with a microwave, and fuse | melts and welds between these synthetic resin moldings.
Therefore, since the surface of the iron powder of 0.1 to 500 μm is coated with a glass film of 0.01 to 10 μm, the heat generation efficiency of the iron powder is improved by the surface glass coating, and the iron powder Since the surface of is insulated by the glass coating, the conditions for generating the discharge between the iron powders are limited, and the frequency of the discharge can be reduced. Further, by coating the iron surface with glass, the heat-retaining condition of the iron powder is improved and welding with less energy loss can be achieved.
Further, since the iron powder is a powder of 0.1 to 500 μm and is small particles, the amount of electricity induced therein is small and the occurrence of discharge is suppressed.
In addition, the resistance value of the microwave resin welded body of the present invention is selected by selecting any value in the range of 1 to 10 3 Ωcm, so that even if the welded layer is a synthetic resin molded body having two or more layers, It can be set as the welding which homogenized between synthetic resin moldings.

図1は本発明の実施の形態にかかるマイクロ波樹脂溶着体の概念図で、図1(a)は全体の平面図、図1(b)はその切断線X−Xによる断面図、図1(c)は組成概念を示す拡大説明図である。FIG. 1 is a conceptual diagram of a microwave resin welded body according to an embodiment of the present invention, FIG. 1 (a) is a plan view of the whole, FIG. 1 (b) is a cross-sectional view taken along the cutting line XX, FIG. (C) is an enlarged explanatory view showing the composition concept. 図2は本発明の実施の形態にかかるマイクロ波樹脂溶着体と合成樹脂成型体の溶着面との断面幅関係を説明する説明図で、(a)は溶着面が狭い場合、(b)は溶着面が広い場合である。FIG. 2 is an explanatory diagram for explaining the cross-sectional width relationship between the microwave resin welded body and the synthetic resin molded body according to the embodiment of the present invention. FIG. 2A is a case where the welded surface is narrow, and FIG. This is a case where the welding surface is wide. 図3は本発明の実施の形態にかかるマイクロ波樹脂溶着体の平面図で、基本形状の平面図(a)、穿孔形状の平面図(b)、長円形状の平面図(c)、メッシュ形状の平面図(d)を示すものである。FIG. 3 is a plan view of the microwave resin welded body according to the embodiment of the present invention, including a basic plan view (a), a perforated shape plan view (b), an oval plan view (c), and a mesh. The top view (d) of a shape is shown. 図4は本発明の実施の形態にかかるマイクロ波樹脂溶着体と合成樹脂成型体の環状凹部と環状凸部との溶着面の形状を説明する説明図である。FIG. 4 is an explanatory view for explaining the shapes of the weld surfaces of the annular recesses and the annular projections of the microwave resin welded body and the synthetic resin molded body according to the embodiment of the present invention. 図5は本発明の実施の形態にかかるマイクロ波樹脂溶着体と合成樹脂成型体の溶着面との関係を説明する説明図で、(a)は凹凸面におけるマイクロ波樹脂溶着体が広い場合、(b)は凹凸面におけるマイクロ波樹脂溶着体が狭い場合である。FIG. 5 is an explanatory diagram for explaining the relationship between the microwave resin welded body according to the embodiment of the present invention and the welded surface of the synthetic resin molded body, (a) when the microwave resin welded body on the uneven surface is wide, (B) is a case where the microwave resin welding body in an uneven surface is narrow. 図6は本発明の実施の形態にかかるマイクロ波樹脂溶着体と合成樹脂成型体の溶着面との関係を説明する説明図で、(a)は凹凸面における壁側シール用断面の説明図、(b)は凹凸面における溶着面の溶着前及び溶着後の説明図である。FIG. 6 is an explanatory view for explaining the relationship between the microwave resin welded body and the weld surface of the synthetic resin molded body according to the embodiment of the present invention, (a) is an explanatory view of a cross section for wall-side sealing on the uneven surface, (B) is explanatory drawing before and after welding of the welding surface in an uneven surface. 図7(a)〜(c)は本発明の実施の形態にかかるマイクロ波樹脂溶着体を溶かし易い3種類の断面形状の説明図である。FIGS. 7A to 7C are explanatory views of three types of cross-sectional shapes in which the microwave resin welded body according to the embodiment of the present invention can be easily melted. 図8(a)〜(c)は本発明の実施の形態にかかるマイクロ波樹脂溶着体の接合強度を挙げる3種類の断面形状の説明図である。FIGS. 8A to 8C are explanatory views of three kinds of cross-sectional shapes that list the bonding strength of the microwave resin welded body according to the embodiment of the present invention. 図9は本発明の実施の形態にかかるマイクロ波発熱体にマイクロ波を照射するマイクロ波の出力パターンを示す説明図である。FIG. 9 is an explanatory diagram showing a microwave output pattern for irradiating the microwave heating element according to the embodiment of the present invention with microwaves. 図10は本発明の実施の形態にかかるマイクロ波発熱体の時間−温度特性図である。FIG. 10 is a time-temperature characteristic diagram of the microwave heating element according to the embodiment of the present invention. 図11は本発明の実施の形態にかかるマイクロ波発熱体のガラスコーティングの有無による実施例と比較例とのマイクロ波加熱実験結果を示す説明図である。FIG. 11 is an explanatory diagram showing the results of microwave heating experiments in Examples and Comparative Examples with and without glass coating on the microwave heating element according to the embodiment of the present invention. 図12は本発明の実施の形態にかかるマイクロ波発熱体のガラスコーティングの有無と抵抗値と加熱温度との関係を示す説明図である。FIG. 12 is an explanatory diagram showing the relationship between the presence / absence of glass coating of the microwave heating element according to the embodiment of the present invention, the resistance value, and the heating temperature.

[実施の形態]
以下、本発明の実施の形態について、図面に基づいて説明する。なお、図中、本実施の形態における同一記号及び同一符号は、同一または相当する機能部分であるから、ここでは重複する説明を省略する。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same symbols and the same reference numerals in the present embodiment are the same or corresponding functional parts, and therefore, duplicate description is omitted here.

図1は本発明の実施の形態によるマイクロ波樹脂溶着体20の概念図で、図1(a)は全体の平面図であり、図1(b)はその切断線X−Xによる拡大断面図であり、図1(c)は組成概念を示す拡大説明図である。図2は同じく合成樹脂成型体の溶着面との関係を説明する説明図で、図3は同じくマイクロ波樹脂溶着体の平面図である。
図1(c)に示すように、ガラスコーティング鉄粉Fは、鉄粉の外表面にガラスコーティング層Gを有している。ガラスコーティング層Gでコーティングされたガラスコーティング鉄粉Fが圧縮成形自在なように、総量に対して0.1〜50重量%の熱硬化性樹脂または熱可塑性樹脂の樹脂バインダーPを具備するマイクロ波樹脂溶着体は、上記ガラスコーティング鉄粉Fの粉体中に樹脂バインダーPを入れて分散し、このガラスコーティング鉄粉Fの粉体中に樹脂バインダーPが分散混合した複合粉体材料を圧縮成形して、抵抗値1〜103Ωcm、比重6〜8の特性を持たせたものである。なお、この比重が6〜8の範囲内にするものでは、完成品の総重量を大きく左右することがなく、作業の際に対抗する合成樹脂成型体間においても、重心位置等が容易に移動することがなく、作業性がよいことから選択している。
FIG. 1 is a conceptual diagram of a microwave resin welded body 20 according to an embodiment of the present invention, FIG. 1 (a) is a plan view of the whole, and FIG. 1 (b) is an enlarged sectional view taken along the cutting line XX. FIG. 1C is an enlarged explanatory view showing the composition concept. FIG. 2 is an explanatory view for explaining the relationship with the weld surface of the synthetic resin molding, and FIG. 3 is a plan view of the microwave resin weld body.
As shown in FIG.1 (c), the glass coating iron powder F has the glass coating layer G on the outer surface of iron powder. Microwave provided with 0.1-50 wt% of thermosetting resin or thermoplastic resin binder P so that glass coated iron powder F coated with glass coating layer G can be compression-molded The resin welded body is obtained by compressing and molding a composite powder material in which the resin binder P is dispersed in the glass-coated iron powder F powder and the resin binder P is dispersed and mixed in the glass-coated iron powder F powder. Thus, it has characteristics of a resistance value of 1 to 10 3 Ωcm and a specific gravity of 6 to 8. If the specific gravity is in the range of 6-8, the total weight of the finished product will not be significantly affected, and the center of gravity will move easily between the synthetic resin moldings that oppose the work. It is selected because it has good workability.

マイクロ波樹脂溶着体20は、図2に示すように、合成樹脂成型体10の相互間、即ち、合成樹脂成型体11,12に挟まれ、マイクロ波を照射することによってマイクロ波樹脂溶着体20が発熱し、溶融し、合成樹脂成型体11,12を部分的に溶着するものである。マイクロ波樹脂溶着体20の全体は均一の厚みの板状であり、被溶着物である合成樹脂成型体11,12の接合面11A,12Aの間に挟んだ状態で、押圧力を加え、マイクロ波を照射して加熱するものである。マイクロ波樹脂溶着体20は厚すぎると、合成樹脂成型体10間に空隙を生じる恐れ、バリが発生する恐れがあるので、導電性の板状合成樹脂からなるマイクロ波樹脂溶着体20は厚さが2mm以下、好ましくは1mm以下とすることが好ましい。勿論、全体が均一の厚みでなくても、その接合面積及び機械的強度等を考慮し、厚みの変化を持たせることもできる。   As shown in FIG. 2, the microwave resin welded body 20 is sandwiched between the synthetic resin molded bodies 10, i.e., between the synthetic resin molded bodies 11 and 12, and is irradiated with microwaves to thereby irradiate the microwave resin welded body 20. Generates heat, melts, and partially welds the synthetic resin moldings 11 and 12. The entirety of the microwave resin welded body 20 is a plate having a uniform thickness, and a pressing force is applied in a state of being sandwiched between the joint surfaces 11A and 12A of the synthetic resin molded bodies 11 and 12 that are to be welded. It is heated by irradiation with waves. If the microwave resin welded body 20 is too thick, there is a risk that voids may be generated between the synthetic resin molded bodies 10 and burrs may be generated. Therefore, the microwave resin welded body 20 made of a conductive plate-shaped synthetic resin is thick. Is 2 mm or less, preferably 1 mm or less. Of course, even if the entire thickness is not uniform, the thickness can be changed in consideration of the bonding area, mechanical strength, and the like.

マイクロ波樹脂溶着体20の厚さが0.1〜2.0mmの範囲、好ましくは0.3〜1.0mmの範囲とすることで、マイクロ波樹脂溶着体20を挟み込んだ際の合成樹脂成型体10相互間の隙間が2mm以下、より好ましくは1mm以下にできる。そして、マイクロ波樹脂溶着体20の発熱によってマイクロ波樹脂溶着体20に接する合成樹脂成型体11,12の接合面11A,12A内の接触面及びその接触面近傍が溶融、軟化するとともに合成樹脂成型体10に加えられた押圧力によって合成樹脂成型体10中にマイクロ波樹脂溶着体20が埋没することから合成樹脂成型体10相互間の隙間が減少し密接する。このことから、マイクロ波樹脂溶着体20の厚みは薄いほど好ましいが、発熱との関係によって厚みが決定され0.1mm以上、好ましくは0.3mm以上が適する。   Synthetic resin molding when the microwave resin welded body 20 is sandwiched by setting the thickness of the microwave resin welded body 20 in the range of 0.1 to 2.0 mm, preferably in the range of 0.3 to 1.0 mm. The gap between the bodies 10 can be 2 mm or less, more preferably 1 mm or less. Then, the contact surfaces in the joint surfaces 11A and 12A of the synthetic resin molded bodies 11 and 12 that contact the microwave resin welded body 20 and the vicinity of the contact surfaces are melted and softened by the heat generated by the microwave resin welded body 20, and the synthetic resin molded Since the microwave resin welded body 20 is buried in the synthetic resin molded body 10 by the pressing force applied to the body 10, the gap between the synthetic resin molded bodies 10 is reduced and brought into close contact. From this, the thickness of the microwave resin welded body 20 is preferably as thin as possible, but the thickness is determined by the relationship with heat generation, and 0.1 mm or more, preferably 0.3 mm or more is suitable.

なお、このときの溶着する際の押圧力は、合成樹脂成型体11,12相互間に挟まれたマイクロ波樹脂溶着体20の厚みを少なくする方向に押圧力を加えるものである。ここで、マイクロ波樹脂溶着体20の厚みが2mmを超えるとマイクロ発熱体を合成樹脂成型体間に配置したときの間隙が大きく、押圧を加えて溶着した後に合成樹脂成型体間に間隙が残りやすい。誘電加熱のばらつきも大きくなる。   The pressing force at the time of welding is such that the pressing force is applied in the direction of reducing the thickness of the microwave resin welded body 20 sandwiched between the synthetic resin molded bodies 11 and 12. Here, when the thickness of the microwave resin welded body 20 exceeds 2 mm, the gap when the micro heating element is disposed between the synthetic resin molded bodies is large, and the gap remains between the synthetic resin molded bodies after welding by applying pressure. Cheap. Variations in dielectric heating also increase.

また、本実施の形態で使用するマイクロ波樹脂溶着体20は、例えば、図3(a)〜(d)に示されているように、マイクロ波樹脂溶着体20として、その平面の角は面取りとしてのR(アール)が形成されている。この面取りRにより、照射するマイクロ波エネルギの集中が生じないので、スパークの発生、合成樹脂成型体10の焼け等が防止される。面取りRは大きいほうが好ましく、溶着する製品の幅とマイクロ波樹脂溶着体20の幅から設定される。通常、本実施の形態で使用するマイクロ波樹脂溶着体20は、肉厚を0.1〜2.0mmの範囲とし、かつ、角部をR0.5mm以上とするのが望ましい。また、面取りRは曲面形状以外にもスパークの発生が生じないのであれば平面の90度の隅の角度を45度程度の斜めの直線状に面取りしてもよい。そして、合成樹脂成型体10の接合面11A,12Aに沿ってマイクロ波樹脂溶着体20の長さ及び形状を調節して配置する。またマイクロ波樹脂溶着体20の幅は、図2(a)または図2(b)に示したように合成樹脂成型体10の接合面11A,12Aの幅より狭い幅に設定されている。このようにマイクロ波樹脂溶着体20の幅を合成樹脂成型体10の接合面11A,12Aの幅より小さくすることで溶着時に接合面から溶融した樹脂が食み出すことを防止できる。   In addition, the microwave resin welded body 20 used in the present embodiment is, for example, as shown in FIGS. 3A to 3D, the planar corner of the microwave resin welded body 20 is chamfered. R (R) is formed. This chamfering R does not cause concentration of the microwave energy to be irradiated, so that generation of sparks, burning of the synthetic resin molding 10 and the like are prevented. The chamfer R is preferably larger, and is set from the width of the product to be welded and the width of the microwave resin welded body 20. Usually, it is desirable that the microwave resin welded body 20 used in the present embodiment has a thickness in the range of 0.1 to 2.0 mm and corners of R0.5 mm or more. In addition, the chamfer R may be chamfered into an oblique straight line with a 90-degree corner angle of about 45 degrees as long as no spark is generated other than the curved surface shape. Then, the length and shape of the microwave resin welded body 20 are adjusted and disposed along the joint surfaces 11A and 12A of the synthetic resin molded body 10. Further, the width of the microwave resin welded body 20 is set to be narrower than the width of the joint surfaces 11A and 12A of the synthetic resin molded body 10 as shown in FIG. 2 (a) or 2 (b). Thus, by making the width | variety of the microwave resin welding body 20 smaller than the width | variety of the joint surfaces 11A and 12A of the synthetic resin molding 10, it can prevent that the resin fuse | melted from the joint surface at the time of welding.

勿論、本発明の実施の形態のマイクロ波樹脂溶着体20の大きさや形状は、合成樹脂成型体10としての形状や構造などによって決定されるが、形状や構造が複雑化する程、溶着部の溶着面も複雑な形状となり、より高精度な溶着が必要とされることになる。このような場合には、図3(b)〜(d)に示されるように、マイクロ波樹脂溶着体20に貫通孔としての穿設孔20aを設けたり、特定方向に貫通孔が長い長円穿設形状20bを設けたり、または、マイクロ波発熱体20自体を網状に貫通孔を形成したメッシュ形状20cで形成することができる。網状に貫通孔を形成したメッシュ形状20cは、図3(d)においては、長方形の開口としているが、円形または三角形、平行四辺形等の開口とすることができる。   Of course, the size and shape of the microwave resin welded body 20 according to the embodiment of the present invention are determined by the shape and structure of the synthetic resin molded body 10, but the more complicated the shape and structure, The welding surface also has a complicated shape, and more accurate welding is required. In such a case, as shown in FIGS. 3B to 3D, the microwave resin welded body 20 is provided with a drilling hole 20a as a through hole, or an ellipse having a long through hole in a specific direction. The drilling shape 20b can be provided, or the microwave heating element 20 itself can be formed in a mesh shape 20c in which through holes are formed in a net shape. The mesh shape 20c in which the through-holes are formed in a net shape is a rectangular opening in FIG. 3D, but may be a circular, triangular, parallelogram or the like opening.

殊に、マイクロ波樹脂溶着体20の図3(d)のメッシュ形状20cは、全体に孔の行及び列を複数とし、そのマトリックスで接合するものである。接合面積が広い場合に使用すると好適である。特に、図3(b)及び(c)のマイクロ波樹脂溶着体20の穿設孔20a、長円穿設形状20bは、その空間にマイクロ波エネルギを使用しないので、周囲の温度上昇が高い効率的な制御となりマイクロ波樹脂溶着体20の溶着作業速度を早めることができる。また、このようにマイクロ波樹脂溶着体20に穿設孔20a、長円穿設形状20bを設け、メッシュ形状20cとすることによって、予め接合面に形成される図示しない微小な突起等の位置決め突部に、穿設孔20a、長円穿設形状20b、メッシュ形状20cの目を挿入することによって、接合面の所定の位置にマイクロ波樹脂溶着体20を正確に位置決めしながら溶着することが可能となる。特に、マイクロ波樹脂溶着体20として特定の複雑形状のシートを挟む場合等に好適である。なお、微小な位置決め突部は、マイクロ波樹脂溶着体20の厚みの1/3〜2/3程度の高さが、溶着に影響を与え難く、かつ、取り付け作業性を良くしている。   In particular, the mesh shape 20c of FIG. 3D of the microwave resin welded body 20 has a plurality of hole rows and columns as a whole, and is joined by a matrix thereof. It is suitable for use when the bonding area is large. In particular, the perforation hole 20a and the ellipse perforation shape 20b of the microwave resin welded body 20 of FIGS. 3B and 3C do not use microwave energy in the space, so that the temperature rise in the surroundings is high. Therefore, the welding operation speed of the microwave resin welded body 20 can be increased. Further, by providing the microwave resin welded body 20 with the perforated hole 20a and the oval perforated shape 20b and forming the mesh shape 20c, a positioning protrusion such as a minute protrusion (not shown) formed on the joint surface in advance is provided. It is possible to weld the microwave resin welded body 20 while accurately positioning it at a predetermined position on the joint surface by inserting the eye of the drilling hole 20a, the oval drilling shape 20b, and the mesh shape 20c into the portion. It becomes. In particular, it is suitable when sandwiching a sheet having a specific complicated shape as the microwave resin welded body 20. In addition, the minute positioning protrusion has a height of about 1/3 to 2/3 of the thickness of the microwave resin welded body 20 so that the welding is hardly affected, and the mounting workability is improved.

また、このような穿設孔20a、長円穿設形状20b、メッシュ形状20cの貫通孔を利用し、合成樹脂成型体10に形成した図示しない微小な突起を挿入させて、合成樹脂成型体10とマイクロ波樹脂溶着体20の平面形状の位置合わせを行い、その後に溶着させることによって、精度が高い組み付け溶着を行うことができる。
本実施の形態のマイクロ波樹脂溶着体20に設けた穿設孔20a、長円穿設形状20b、メッシュ形状20c等の貫通孔等は、対応する合成樹脂成型体10の接合面、即ち、各層の溶着部の表面に貫通孔等に対応する突起を設けることによって、接合面にマイクロ波樹脂溶着体20を正確に位置決めする精度の向上や、マイクロ波樹脂溶着体20のセットに要する時間を短縮させることができる。
Further, by using the through-holes of the perforated hole 20a, the oval perforated shape 20b, and the mesh shape 20c, a minute protrusion (not shown) formed on the synthetic resin molded body 10 is inserted, and the synthetic resin molded body 10 is inserted. By aligning the planar shape of the microwave resin welded body 20 and then welding, it is possible to perform highly accurate assembly welding.
The through holes 20a, the oval drilled shape 20b, the mesh shape 20c, etc. provided in the microwave resin welded body 20 of the present embodiment are the joint surfaces of the corresponding synthetic resin molded body 10, that is, each layer. By providing a projection corresponding to a through-hole or the like on the surface of the welded portion, the accuracy of accurately positioning the microwave resin welded body 20 on the joint surface and the time required for setting the microwave resin welded body 20 are shortened. Can be made.

ここで、図3に示したマイクロ波樹脂溶着体20の形状は本発明の実施の形態に使用するマイクロ波樹脂溶着体20の一部分に適用するものとして説明のために記載したものであり、この形状のままで使用することも可能であるが、使用条件によって形状が定められる。
つまり、図3(a)〜図3(d)に示されるマイクロ波樹脂溶着体20は、直線状に形成されたものであり、これら直線状のマイクロ波樹脂溶着体20を合成樹脂成型体10の長さを調節することで接合面11A,12Aに合わせて配置することができる。このとき、火花放電等が発生しにくくするには、マイクロ波樹脂溶着体20を直線状から環状とするのが望ましく、この実施の形態のマイクロ波樹脂溶着体20は使用状態では図5に記載のように、全体を環状として形成して使用されるのが好ましい。全体を環状とすると、電界が大きくなる先端部をなくし、誘電加熱中に放電が生ずるのを激減させることができる。また、環状にすることで合成樹脂成型体10の接合面に合わせ易くなり、確実な接合が得られ気密性確保の信頼性が向上する。
なお、前述したマイクロ波樹脂溶着体20内の穿設孔20a、長円穿設形状20b、メッシュ形状20cの貫通孔は環状にしたマイクロ波樹脂溶着体20に設けたときでも同様な効果を有する。
Here, the shape of the microwave resin welded body 20 shown in FIG. 3 is described for explanation as being applied to a part of the microwave resin welded body 20 used in the embodiment of the present invention. The shape can be used as it is, but the shape is determined by the use conditions.
That is, the microwave resin welded body 20 shown in FIGS. 3A to 3D is formed in a straight line, and the linear microwave resin welded body 20 is formed from the synthetic resin molded body 10. By adjusting the length of each, it can arrange | position according to joining surface 11A, 12A. At this time, in order to make it difficult for spark discharge or the like to occur, it is desirable that the microwave resin welded body 20 be formed from a linear shape to an annular shape, and the microwave resin welded body 20 of this embodiment is described in FIG. As described above, it is preferable that the whole is formed in a ring shape. If the whole is annular, the tip portion where the electric field becomes large can be eliminated, and the occurrence of discharge during dielectric heating can be drastically reduced. Moreover, it becomes easy to match | combine with the joint surface of the synthetic resin molding 10 by making it cyclic | annular, reliable joining is obtained and the reliability of ensuring airtightness improves.
It should be noted that the above-described perforation hole 20a, oval perforation shape 20b, and mesh shape 20c in the microwave resin welded body 20 have the same effect even when provided in the annular microwave resin welded body 20. .

次に、合成樹脂成型体10の接合面11A,12Aについて説明する。
図4に示すように、合成樹脂成型体11と合成樹脂成型体12の接合面11A,12Aには、一方の面、例えば、図中上側の合成樹脂成型体12の接合面12Aに環状凸部12bを形成し、他方の面、つまり図中下側の合成樹脂成型体11の接合面11Aに環状凹部11bを形成し、その環状凹部11bにマイクロ波樹脂溶着体20を挿入し、両者間に押圧力を加え、誘電加熱しながら、合成樹脂成型体11と合成樹脂成型体12の両面を接合するものである。図5(a)のように、環状凹部11bの底のマイクロ波樹脂溶着体20の断面幅を広くして接合することも、図5(b)のように、環状凹部11bの底のマイクロ波樹脂溶着体20の断面幅を狭くして接合することもできる。また、環状凹部11bの底の深さを深くしたり、浅くしたりすることもできる。また、合成樹脂成型体11と合成樹脂成型体12の対向面は鋸歯状とすることもできる。
Next, the joint surfaces 11A and 12A of the synthetic resin molded body 10 will be described.
As shown in FIG. 4, on the joint surfaces 11A and 12A of the synthetic resin molded body 11 and the synthetic resin molded body 12, one surface, for example, an annular convex portion is formed on the joint surface 12A of the upper synthetic resin molded body 12 in the figure. 12b is formed, an annular recess 11b is formed on the other surface, that is, the joint surface 11A of the synthetic resin molded body 11 on the lower side in the figure, and the microwave resin welded body 20 is inserted into the annular recess 11b. The synthetic resin molded body 11 and the synthetic resin molded body 12 are bonded to each other while applying pressing force and dielectric heating. As shown in FIG. 5 (a), the microwave resin welded body 20 at the bottom of the annular recess 11b may be joined with a wider cross-sectional width, or the microwave at the bottom of the annular recess 11b as shown in FIG. 5 (b). The resin welded body 20 can be joined with a reduced cross-sectional width. Further, the depth of the bottom of the annular recess 11b can be increased or decreased. Moreover, the opposing surface of the synthetic resin molding 11 and the synthetic resin molding 12 can also be made into a sawtooth shape.

そして、図4(a)に示すように、合成樹脂成型体11と合成樹脂成型体12の接合面11A,12Aには、例えば、上側を環状凸部12bと下側を環状凹部11bに形成し、その幅Bの環状凹部11bに、幅Bより幅狭の幅Aからなるマイクロ波樹脂溶着体20を載置し、そこに合成樹脂成型体12の環状凸部12bを挿入する。環状凸部12bの幅は、環状凹部1bに嵌め合い寸法差、例えば、1/100〜1/10程度の差に設定される。また、合成樹脂成型体11の深さC11は、合成樹脂成型体12の環状凸部12bの高さC12と同一または若干小さい程度である。マイクロ波樹脂溶着体20が溶融、軟化したとき、それが、合成樹脂成型体11の環状凹部11bの幅Bと深さC11で吸収され、合成樹脂成型体12側の外周幅、即ち、環状凹部11bの両側の壁の幅Dから外へ食み出さないように、幅Bが全幅の1/3乃至2/3に設定される。 Then, as shown in FIG. 4A, on the joint surfaces 11A and 12A of the synthetic resin molded body 11 and the synthetic resin molded body 12, for example, the upper side is formed with an annular convex part 12b and the lower side is formed with an annular concave part 11b. The microwave resin welded body 20 having a width A narrower than the width B is placed in the annular recess 11b having the width B, and the annular convex portion 12b of the synthetic resin molded body 12 is inserted therein. The width of the annular convex portion 12b is set to a difference in size by fitting into the annular concave portion 1b, for example, about 1/100 to 1/10. The depth C 11 of the synthetic resin molded body 11 is the same as or slightly smaller than the height C 12 of the annular convex portion 12 b of the synthetic resin molded body 12. Microwave resin welding body 20 melt, when softened, it is absorbed by the width B and depth C 11 of the annular recess 11b of the synthetic resin molded body 11, the synthetic resin molded body 12 side of the outer peripheral width, i.e., cyclic The width B is set to 1/3 to 2/3 of the entire width so as not to protrude outward from the width D of the walls on both sides of the recess 11b.

ここで、図6に示すように、マイクロ波樹脂溶着体20の合成樹脂成型体11における環状凹部11bへ配する位置を、環状凹部11bの中央から環状凹部11bの環状内方向にずらして配することができる。ここで環状内方向とは、図6(a)に示したように合成樹脂成型体11及び合成樹脂成型体12を溶着してできた内部空間13の方向を指し、詳しくは、環状凹部11bの内部空間13に接する側の壁面に接してマイクロ波樹脂溶着体20を配置する。ここで内部空間13には油等の流体が内包され、このように溶着された合成樹脂成型体内部に流体が内包されている内部空間13の方向の壁面に接してマイクロ波樹脂溶着体20を配置し、内部空間13の方向の壁面側を溶着することで、環状凹部11bの流体に近い側の壁面がマイクロ波樹脂溶着体20によって溶着されることになるから、合成樹脂成型体の内部に内包した流体が合成樹脂成型体の外部へ漏れ難くなり気密性の信頼性が増すことになる。   Here, as shown in FIG. 6, the position where the microwave resin welded body 20 is disposed in the annular recess 11 b in the synthetic resin molding 11 is shifted from the center of the annular recess 11 b in the annular inward direction of the annular recess 11 b. be able to. Here, the annular inner direction refers to the direction of the internal space 13 formed by welding the synthetic resin molded body 11 and the synthetic resin molded body 12 as shown in FIG. 6 (a). The microwave resin welded body 20 is disposed in contact with the wall surface on the side in contact with the internal space 13. Here, a fluid such as oil is contained in the internal space 13, and the microwave resin welded body 20 is in contact with the wall surface in the direction of the internal space 13 in which the fluid is contained in the synthetic resin molded body thus welded. By arranging and welding the wall surface side in the direction of the internal space 13, the wall surface on the side close to the fluid of the annular recess 11 b is welded by the microwave resin welded body 20. The encapsulated fluid is difficult to leak out of the synthetic resin molding, and the reliability of airtightness is increased.

図7及び図8はマイクロ波樹脂溶着体20のその他の実施例を示すもので、合成樹脂成型体12に環状凸部12bを、合成樹脂成型体11に環状凹部11bを形成し、その接合を行う場合の特徴を説明する説明図である。
図7(a)は環状凸部12bの先端に凹欠条12dを形成し、また、環状凹部11bの底の中央にも凹欠条11dを形成し、その凹欠条12dと凹欠条11dとの間にマイクロ波樹脂溶着体20を配置したものである。この実施例では、誘電加熱してもマイクロ波樹脂溶着体20の温度が閉じられた空間にあるので逃げにくく、マイクロ波樹脂溶着体20及び合成樹脂成型体10が溶融しやすくなる。このとき、マイクロ波樹脂溶着体20の溶融は嵌合する環状凸部12bと環状凹部11bの立ち上がりとすることができ、その深さの設定は凹欠条12dの体積とマイクロ波樹脂溶着体20の体積によって決定できる。
7 and 8 show another embodiment of the microwave resin welded body 20. An annular convex portion 12b is formed on the synthetic resin molded body 12, and an annular concave portion 11b is formed on the synthetic resin molded body 11, and the bonding is performed. It is explanatory drawing explaining the characteristic in the case of performing.
In FIG. 7A, a concave notch 12d is formed at the tip of the annular convex part 12b, and a concave notch 11d is also formed at the center of the bottom of the annular concave part 11b, and between the concave notch 12d and the concave notch 11d. A microwave resin welded body 20 is disposed. In this embodiment, even if dielectric heating is performed, the microwave resin welded body 20 is in a closed space, so that it is difficult to escape, and the microwave resin welded body 20 and the synthetic resin molded body 10 are easily melted. At this time, the microwave resin welded body 20 can be melted by rising of the annular convex part 12b and the annular concave part 11b to be fitted, and the depth is set by the volume of the concave notch 12d and the microwave resin welded body 20 Can be determined by volume.

図7(b)は環状凸部12bの先端に突起条12eを形成し、また、環状凹部11bの底の中央にも突起条11eを形成し、その突起条12eと突起条11eとの間にマイクロ波樹脂溶着体20を配置したものである。この実施例では、マイクロ波樹脂溶着体20が突起条12eと突起条11eで支持されているから温度が熱伝導で逃げにくく、熱伝導が少ない状態で誘電加熱できるから、マイクロ波樹脂溶着体20が溶融しやすくなる。このとき、マイクロ波樹脂溶着体20の溶融は嵌合する環状凸部12bと環状凹部11bの立ち上がりとすることができ、その深さの設定は突起条12eと突起条11eとマイクロ波樹脂溶着体20の体積によって決定できる。   In FIG. 7B, a protrusion 12e is formed at the tip of the annular protrusion 12b, and a protrusion 11e is also formed at the center of the bottom of the annular recess 11b, and between the protrusion 12e and the protrusion 11e. A microwave resin welded body 20 is disposed. In this embodiment, since the microwave resin welded body 20 is supported by the protrusions 12e and the protrusions 11e, the temperature is difficult to escape due to heat conduction, and dielectric heating can be performed with little heat conduction. Becomes easier to melt. At this time, melting of the microwave resin welded body 20 can be caused by rising of the annular convex portion 12b and the annular concave portion 11b to be fitted, and the depth is set by the protrusion 12e, the protrusion 11e, and the microwave resin welded body. It can be determined by a volume of 20.

図7(c)は環状凸部12bの先端に2条の突起条12fを形成し、また、環状凹部11bの底の中央にも2条の突起条11fを形成し、その2条の突起条12fと突起条11fとの相互間にマイクロ波樹脂溶着体20を配置したものである。この実施例では、マイクロ波樹脂溶着体20が2条の突起条12fと突起条11fで支持されているから温度が熱伝導で逃げにくく、効率よく誘電加熱できるからマイクロ波樹脂溶着体20が溶融しやすくなる。このとき、マイクロ波樹脂溶着体20の溶融は嵌合する環状凸部12bと環状凹部11bの立ち上がりとすることができ、その深さの設定は2条の突起条12fと突起条11fとの間の体積とマイクロ波樹脂溶着体20の体積によって決定できる。   In FIG. 7 (c), two protrusions 12f are formed at the tip of the annular protrusion 12b, and two protrusions 11f are formed at the center of the bottom of the annular recess 11b. A microwave resin welded body 20 is disposed between 12f and the protrusion 11f. In this embodiment, the microwave resin welded body 20 is melted because the microwave resin welded body 20 is supported by the two projecting strips 12f and the projecting strips 11f, so that the temperature is difficult to escape due to heat conduction and efficient dielectric heating is possible. It becomes easy to do. At this time, the microwave resin welded body 20 can be melted by rising of the annular convex portion 12b and the annular concave portion 11b to be fitted, and the depth is set between the two protruding strips 12f and the protruding strip 11f. And the volume of the microwave resin welded body 20 can be determined.

図8(a)は環状凸部12bの先端に凹欠条12gを形成し、また、環状凹部11bの底の両側にも凹欠条11gを形成し、その凹欠条11gの中に溶融したマイクロ波樹脂溶着体20を導くものである。この実施例では、マイクロ波樹脂溶着体20の接合面積が広くなり、かつ、誘電加熱でマイクロ波樹脂溶着体20が溶融して環状凹部11bの底の両側の凹欠条11gにも入り込むから、マイクロ波樹脂溶着体20によって環状凸部12bと環状凹部11bが一体的な結合となる。このとき、環状凸部12bと環状凹部11bの立ち上がり接合深さは、凹欠条12g及び凹欠条11gの体積とマイクロ波樹脂溶着体20の体積によって決定できる。   In FIG. 8A, a concave notch 12g is formed at the tip of the annular convex part 12b, and a concave notch 11g is formed on both sides of the bottom of the annular concave part 11b, and the microwave resin melted in the concave notch 11g. The welded body 20 is guided. In this embodiment, the bonding area of the microwave resin welded body 20 is widened, and the microwave resin welded body 20 is melted by dielectric heating and enters into the recesses 11g on both sides of the bottom of the annular recess 11b. By the wave resin welded body 20, the annular convex portion 12b and the annular concave portion 11b are integrally coupled. At this time, the rising joining depth of the annular convex portion 12b and the annular concave portion 11b can be determined by the volume of the concave notched strip 12g and the concave notched strip 11g and the volume of the microwave resin welded body 20.

図8(b)は環状凸部12bの先端側の両側に切欠条12hを形成し、その切欠条12hの中に溶融したマイクロ波樹脂溶着体20を導くものである。この実施例では、マイクロ波樹脂溶着体20の接合面積が切欠条12hによって広くなり、かつ、誘電加熱でマイクロ波樹脂溶着体20が溶融して環状凸部12bの両側の切欠条12hにも入り込むから、マイクロ波樹脂溶着体20によって環状凸部12bと環状凹部11bが一体的な結合となる。このとき、環状凸部12bと環状凹部11bの立ち上がり接合深さは、切欠条12hの体積とマイクロ波樹脂溶着体20の体積によって決定できる。   In FIG. 8B, notch strips 12h are formed on both sides on the tip side of the annular convex portion 12b, and the molten microwave resin welded body 20 is guided into the notch strips 12h. In this embodiment, the joining area of the microwave resin welded body 20 is widened by the notch strip 12h, and the microwave resin welded body 20 is melted by dielectric heating and enters the notched strip 12h on both sides of the annular convex portion 12b. Therefore, the annular convex portion 12b and the annular concave portion 11b are integrally coupled by the microwave resin welded body 20. At this time, the rising joining depth of the annular convex portion 12b and the annular concave portion 11b can be determined by the volume of the notch strip 12h and the volume of the microwave resin welded body 20.

図8(c)は環状凹部11bの底の中央に上部開口溝条11jを形成し、その上部開口溝条11jの中に溶融したマイクロ波樹脂溶着体20を導くものである。この実施例では、マイクロ波樹脂溶着体20の接合面積が広くなり、かつ、誘電加熱でマイクロ波樹脂溶着体20が溶融して環状凹部11bの底の中央の上部開口溝条11jに入り込むから、マイクロ波樹脂溶着体20によって環状凸部12bと環状凹部11bが一体的な強靭な結合となる。このとき、環状凸部12bと環状凹部11bの立ち上がり接合深さは、上部開口溝条11jの体積とマイクロ波樹脂溶着体20の体積によって決定できる。   FIG. 8C shows an upper opening groove 11j formed in the center of the bottom of the annular recess 11b, and the molten microwave resin welded body 20 is guided into the upper opening groove 11j. In this embodiment, the bonding area of the microwave resin welded body 20 is widened, and the microwave resin welded body 20 is melted by dielectric heating and enters the upper opening groove 11j at the center of the bottom of the annular recess 11b. By the microwave resin welded body 20, the annular convex portion 12b and the annular concave portion 11b become an integral and strong bond. At this time, the rising joining depth of the annular convex portion 12b and the annular concave portion 11b can be determined by the volume of the upper opening groove 11j and the volume of the microwave resin welded body 20.

次に、マイクロ波樹脂溶着体20について説明する。
マイクロ波樹脂溶着体20は、基本的にはガラスコーティング鉄粉Fの粉末を樹脂バインダーPで固めた構造となっている。
樹脂バインダーPとしては、熱硬化性樹脂や熱可塑性樹脂が使用できる。熱硬化性樹脂としては、フェノール樹脂(PF)、エポキシ樹脂(EP)、メラミン樹脂(MF)、尿素樹脂(ユリア樹脂、UF)、不飽和ポリエステル樹脂(UP)、アルキド樹脂、ポリウレタン(PUR)、熱硬化性ポリイミド(PI)、ジリアルフタレート樹脂(PDAP)等があり、本発明の実施の形態ではフェノール樹脂を使用した。
Next, the microwave resin welded body 20 will be described.
The microwave resin welded body 20 basically has a structure in which glass-coated iron powder F powder is hardened with a resin binder P.
As the resin binder P, a thermosetting resin or a thermoplastic resin can be used. Thermosetting resins include phenolic resin (PF), epoxy resin (EP), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester resin (UP), alkyd resin, polyurethane (PUR), There are thermosetting polyimide (PI), direal phthalate resin (PDAP), and the like, and phenol resin is used in the embodiment of the present invention.

また、熱可塑性樹脂として、例えば、エンジニアリング・プラスチック、スーパー・エンジニアリング・プラスチックを用いることができる。具体的には、ポリアミド(ナイロン、芳香族ポリアミド等)、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ガラス繊維強化ポリエチレンテレフタレート、環状ポリオレフィン等がある。そして、スーパーエンプラとしては、ポリフェニレンスルフィド(PPS)、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアレート、液晶ポリマー、ポリアミドイミド等がある。  As the thermoplastic resin, for example, engineering plastics and super engineering plastics can be used. Specific examples include polyamide (nylon, aromatic polyamide, etc.), polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), glass fiber reinforced polyethylene terephthalate, and cyclic polyolefin. Examples of super engineering plastics include polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone, polyether sulfone, amorphous polyarate, liquid crystal polymer, and polyamideimide.

本発明の実施の形態にかかるマイクロ波樹脂溶着体20に、どのような熱可塑性樹脂、熱硬化性樹脂を使用するかは、合成樹脂成型体10との相溶性や接着性を考慮して決定される。
例えば、熱可塑性樹脂の場合、合成樹脂成型体10の材料がポリエチレンであれば、マイクロ波樹脂溶着体20に使用する樹脂もポリエチレンとし、合成樹脂成型体10の材料がPPS樹脂であれば、マイクロ波樹脂溶着体20に使用する樹脂材料も同様にPPS樹脂を使用する等、合成樹脂成型体10を構成する樹脂と同じ樹脂を用いて成形して得たマイクロ波樹脂溶着体20を使用することが合成樹脂成型体10とマイクロ波樹脂溶着体20との樹脂の相溶性が最適となり好ましい。合成樹脂成型体10の材料とマイクロ波樹脂溶着体20に使用する樹脂材料が異なっていても溶着時の接着性に影響を与えない限り使用可能である。
What kind of thermoplastic resin or thermosetting resin is used for the microwave resin welded body 20 according to the embodiment of the present invention is determined in consideration of compatibility with the synthetic resin molding 10 and adhesiveness. Is done.
For example, in the case of a thermoplastic resin, if the material of the synthetic resin molding 10 is polyethylene, the resin used for the microwave resin welded body 20 is also polyethylene, and if the material of the synthetic resin molding 10 is a PPS resin, The microwave resin welded body 20 obtained by molding using the same resin as that constituting the synthetic resin molded body 10 such as using a PPS resin in the same manner as the resin material used for the wave resin welded body 20. However, the compatibility of the resin between the synthetic resin molded body 10 and the microwave resin welded body 20 is optimal and preferable. Even if the material of the synthetic resin molded body 10 and the resin material used for the microwave resin welded body 20 are different, they can be used as long as they do not affect the adhesion at the time of welding.

熱硬化性樹脂の場合は熱可塑性樹脂の場合とは異なってくる。マイクロ波樹脂溶着体20に熱可塑性樹脂を使用する場合は、マイクロ波の照射による発熱による溶融によってマイクロ波樹脂溶着体20は流動化し、形状の維持が出来にくくなる。その結果、発熱効率に変化が生じ所望の溶着が得にくくなることがある。これに対し熱硬化性樹脂を使用した場合は、マイクロ波の照射による発熱によってマイクロ波樹脂溶着体20は軟化・溶融が起こるが、加熱による硬化の進行によって熱可塑性樹脂を使用する場合に比べて形状の保持が容易となるため発熱効率に変化が生じ難い。したがって、所望の溶着状態が得やすくなる。特に、マイクロ波樹脂溶着体20を形成した後アニール処理を施すことによって硬化を中間状態(Bステージ)にまで進めることで更に形状は保ちやすくなる。アニールの条件が弱いと硬化の進行が少なく形状の保持が弱く、条件が強くなりすぎると形状の保持は十分となるが合成樹脂成型体10との接着性が悪くなる。したがって、アニール条件としては温度200℃〜230℃、時間10分〜60分が適している。   In the case of a thermosetting resin, it differs from the case of a thermoplastic resin. When a thermoplastic resin is used for the microwave resin welded body 20, the microwave resin welded body 20 is fluidized by melting due to heat generated by microwave irradiation, and it becomes difficult to maintain the shape. As a result, the heat generation efficiency may change, making it difficult to obtain a desired weld. On the other hand, when the thermosetting resin is used, the microwave resin welded body 20 is softened and melted by the heat generated by the microwave irradiation, but compared with the case where the thermoplastic resin is used by the progress of curing by heating. Since the shape can be easily maintained, the heat generation efficiency hardly changes. Therefore, it becomes easy to obtain a desired welding state. In particular, by forming the microwave resin welded body 20 and then performing an annealing process, the shape can be maintained more easily by proceeding to the intermediate state (B stage). If the annealing conditions are weak, the progress of curing is small and the shape is not easily held. If the conditions are too strong, the shape is sufficiently held, but the adhesion to the synthetic resin molding 10 is deteriorated. Therefore, a temperature of 200 ° C. to 230 ° C. and a time of 10 minutes to 60 minutes are suitable as annealing conditions.

本実施の形態のマイクロ波樹脂溶着体20に使用される金属粉末となる鉄粉としては、中位径0.1〜500μmの粉体を用いたものである。ここで、中位径とは、レーザ回折・散乱法によって測定した鉄粉の粒径分布において、ある粒子径より大きい個数または質量が全粉体の50%をしめるときの粒子径をいい、その中位径が0.1〜500μmであることを意味する。中位径0.1μm以下であると発熱が弱く、中位径500μm以上であると粒子の電荷量が大きくなり、放電が発生する可能性が出てくる。   As iron powder used as the metal powder used in the microwave resin welded body 20 of the present embodiment, a powder having a median diameter of 0.1 to 500 μm is used. Here, the median diameter refers to the particle diameter when the number or mass larger than a certain particle diameter accounts for 50% of the total powder in the particle size distribution of the iron powder measured by the laser diffraction / scattering method. It means that the median diameter is 0.1 to 500 μm. When the median diameter is 0.1 μm or less, heat generation is weak, and when the median diameter is 500 μm or more, the charge amount of the particles becomes large, which may cause discharge.

これらの金属粉末はレーザ回折・散乱法によって測定した中位径が、0.1〜500μmの粉体の鉄粉であり、更には、中位径が1〜200μmのものの使用が好ましい。当然ながら、ふるい分け試験で測定した粒子径の値が1〜200μmの範囲内とすることもできる。   These metal powders are iron powders having a median diameter of 0.1 to 500 μm measured by a laser diffraction / scattering method, and those having a median diameter of 1 to 200 μm are preferred. Of course, the value of the particle diameter measured by the screening test can be in the range of 1 to 200 μm.

ここで、「ふるい分け試験」とは、JIS−Z−8801によって規定された目開きをもつ標準ふるいを用いて、測定対象となる粉末をふるい分けることによって粒度分布を測定する試験方法をいうものである。標準ふるいなどを用いて行う粒径,粒径分布を測定する方法のことである。粒径と、粒径分布の表現は、使用したふるいの目開き(μm )とふるい上残量(オーバサイズ)またはふるい下通過量(アンダーサイズ)の全体に対する比率で表される。   Here, the “sieving test” refers to a test method for measuring the particle size distribution by sieving the powder to be measured using a standard sieve having an opening defined by JIS-Z-8801. is there. It is a method of measuring particle size and particle size distribution using a standard sieve. The expression of the particle size and the particle size distribution is expressed as a ratio of the used sieve opening (μm) and the remaining amount on the sieve (oversize) or the total amount passing under the sieve (undersize).

ガラスコーティング鉄粉Fは、上記中位径0.1〜500μmの粉体の鉄粉の表面に、0.01〜10μmのガラス膜によってガラスコーティング層Gが形成されたものである。ガラス膜の厚み0.01〜10μmは、厚みが10μm以上になると、誘電加熱の効率が低くなり、また、機械的強度がガラス膜に左右されることになる。ガラス膜の厚みが0.01μm以下では、鉄粉F間の間隔が狭くなり、放電の可能性が高くなる。
特に、本実施の形態では、ガラス膜の厚み0.01〜10μmで中位径0.1〜500μmの鉄粉を包み込むと、そのガラスコーティング層Gの断熱効果で鉄粉の温度が急上昇し、マイクロ波樹脂溶着体の温度特性を良好にすることができる。
The glass coating iron powder F is obtained by forming a glass coating layer G on the surface of the iron powder of a powder having a median diameter of 0.1 to 500 μm with a glass film of 0.01 to 10 μm. When the thickness of the glass film is 0.01 to 10 [mu] m, when the thickness is 10 [mu] m or more, the efficiency of dielectric heating becomes low, and the mechanical strength depends on the glass film. When the thickness of the glass film is 0.01 μm or less, the interval between the iron powders F becomes narrow, and the possibility of discharge increases.
In particular, in the present embodiment, when the iron powder having a median diameter of 0.1 to 500 μm is wrapped with a glass film thickness of 0.01 to 10 μm, the temperature of the iron powder rapidly rises due to the heat insulating effect of the glass coating layer G, The temperature characteristics of the microwave resin welded body can be improved.

このような粉体状のガラスコーティング鉄粉Fに対して、粉末状の樹脂バインダーPを総量に対して0.1〜50重量%となるように粉体状のガラスコーティング鉄粉Fに入れて分散混合した複合粉体材料を、圧縮成型用金型に充填し加熱・加圧することでマイクロ波樹脂溶着体20を形成する。マイクロ波樹脂溶着体20の厚みは、発熱状態及び溶着後の溶着面間の隙間の発生状況から決定され、0.1〜2.0mmが好ましい。0.1mmより薄いと発熱が十分でなく、取り扱いが難しくなる。また、2.0mmを越えると発熱量が大きくなりすぎ溶着の制御が難しくなる。   With respect to such a powdery glass-coated iron powder F, a powdery resin binder P is put into the powdery glass-coated iron powder F so as to be 0.1 to 50% by weight with respect to the total amount. The composite powder material that has been dispersed and mixed is filled into a compression molding die and heated and pressurized to form a microwave resin welded body 20. The thickness of the microwave resin welded body 20 is determined from the heat generation state and the state of occurrence of a gap between the weld surfaces after welding, and is preferably 0.1 to 2.0 mm. If it is thinner than 0.1 mm, heat generation is not sufficient and handling becomes difficult. On the other hand, if it exceeds 2.0 mm, the amount of heat generation becomes too large and it becomes difficult to control welding.

本実施の形態のマイクロ波樹脂溶着体20に含有されるガラスコーティング鉄粉Fは、その全体の比重、内部抵抗によって決定され、総量に対し50重量%を超えて使用されることから樹脂バインダーPの使用量が少なくなるために、ガラスコーティング鉄粉Fによる発熱を効率よく合成樹脂成型体10に与えることで強力な溶着強度を発揮することができる。
このようなガラスコーティング鉄粉Fを多く含有するマイクロ波樹脂溶着体20は、ガラスコーティング鉄粉Fと粉末の樹脂バインダイーPを混合した複合粉体材料を所望の金型内で圧縮成型することで所望の形状に作製される。
The glass coating iron powder F contained in the microwave resin welded body 20 of the present embodiment is determined by the overall specific gravity and internal resistance, and is used in excess of 50% by weight with respect to the total amount. Therefore, a strong welding strength can be exhibited by efficiently giving heat generated by the glass coating iron powder F to the synthetic resin molding 10.
The microwave resin welded body 20 containing a large amount of such glass-coated iron powder F is obtained by compression-molding a composite powder material in which glass-coated iron powder F and powdered resin binder E P are mixed in a desired mold. To produce the desired shape.

このように作製したマイクロ波樹脂溶着体20を、被溶着物である合成樹脂成型体としての合成樹脂成型体11と、合成樹脂成型体12の間に設置させて、マイクロ波樹脂溶着体20を介して合成樹脂成型体11と合成樹脂成型体12を積層させ、マイクロ波をこの積層してなるマイクロ波樹脂溶着体20に照射するものである。その際、合成樹脂成型体11と合成樹脂成型体12の間で十分に溶着することができるよう合成樹脂成型体11と合成樹脂成型体12の間が0.1〜5.0MPaの加圧力で加圧されることが好ましい。このような加圧された状態にてマイクロ波を0.5〜10KWの出力で照射すると、マイクロ波樹脂溶着体20が発熱されて合成樹脂成型体11と合成樹脂成型体12のマイクロ波樹脂溶着体20との接触面である溶着表面が溶融を始めるから、加圧力を弱くする等の調整を行うことによって、バリの発生防止や溶着後の製品の寸法精度を良好にすることができる。ここで、樹脂バインダーPに熱硬化性樹脂を使用したマイクロ波樹脂溶着体20は、加熱によっても熱可塑性樹脂を使用したときに比べて形状の保持に優れることから、厚みの変化が少なくなり発熱効率を高い状態に保持しやすくなる。そしてこの効果は熱硬化性樹脂を使用して作製したマイクロ波樹脂溶着体20にアニールを施すことで更に高めることができる。   The microwave resin welded body 20 produced in this way is placed between the synthetic resin molded body 11 as a synthetic resin molded body that is the object to be welded and the synthetic resin molded body 12, and the microwave resin welded body 20 is attached. Then, the synthetic resin molded body 11 and the synthetic resin molded body 12 are laminated, and the microwave resin welded body 20 formed by laminating the microwave is irradiated. At that time, the pressure between the synthetic resin molded body 11 and the synthetic resin molded body 12 is 0.1 to 5.0 MPa so that the synthetic resin molded body 11 and the synthetic resin molded body 12 can be sufficiently welded. It is preferable to apply pressure. When microwaves are irradiated at an output of 0.5 to 10 KW in such a pressurized state, the microwave resin welded body 20 is heated and the microwave resin welded of the synthetic resin molded body 11 and the synthetic resin molded body 12 is performed. Since the welding surface, which is the contact surface with the body 20, starts to melt, adjustments such as reducing the applied pressure can prevent the generation of burrs and improve the dimensional accuracy of the product after welding. Here, the microwave resin welded body 20 using the thermosetting resin as the resin binder P is superior in maintaining the shape as compared with the case where the thermoplastic resin is used even by heating. It becomes easy to keep efficiency high. This effect can be further enhanced by annealing the microwave resin welded body 20 produced using a thermosetting resin.

ここで、マイクロ波発生装置の出力は、図9に示すように、急激に出力を上げ、その出力でマイクロ波樹脂溶着体20の軟化及び溶融状態に変化させ、その溶融状態を出力の調整によって制御し、マイクロ波樹脂溶着体20を均一温度とするものである。このとき、マイクロ波樹脂溶着体20の温度特性は、速やかに溶融温度に上昇し、所定の融着温度となり、通常、30秒以内に融着温度となる。但し、図10に示すようにマイクロ波樹脂溶着体20の立ち上げの温度特性は、白抜き矢印に示すように、出力を大きくすると早期に立ち上がることになる。マイクロ波樹脂溶着体20が融着温度となると、その接着方向に対する押圧力によって合成樹脂成型体10相互が密に融着される。   Here, as shown in FIG. 9, the output of the microwave generator is rapidly increased, and the output is changed to the softened and molten state of the microwave resin welded body 20, and the molten state is adjusted by adjusting the output. The microwave resin welded body 20 is controlled to have a uniform temperature. At this time, the temperature characteristic of the microwave resin welded body 20 quickly rises to the melting temperature, reaches a predetermined fusing temperature, and usually reaches the fusing temperature within 30 seconds. However, as shown in FIG. 10, the temperature characteristics of the start-up of the microwave resin welded body 20 rises earlier as the output is increased, as indicated by the white arrow. When the microwave resin welded body 20 reaches the fusion temperature, the synthetic resin molded bodies 10 are closely fused together by the pressing force in the bonding direction.

このようなマイクロ波発生装置により合成樹脂成型体10を加熱して溶着を行った後、合成樹脂成型体10をマイクロ波発生装置から取り出し放冷することによって、溶着工程を終了させる。或いは、加熱工程を2回以上行う必要がある場合には、放冷前後のいずれかにおいて、2回目以降のマイクロ波照射を行うことになる。
また、図9に示すように、マイクロ波照射後、一定時間を経過(例えば、30秒)した後に、出力を上下させる等の制御を行ってもよい。
After the synthetic resin molded body 10 is heated and welded by such a microwave generator, the synthetic resin molded body 10 is taken out of the microwave generator and allowed to cool, thereby completing the welding process. Or when it is necessary to perform a heating process twice or more, the microwave irradiation after the 2nd time will be performed either before and after standing_to_cool.
Further, as shown in FIG. 9, control may be performed such as raising or lowering the output after a certain time has elapsed (for example, 30 seconds) after microwave irradiation.

発明者らは、図11に示すように、鉄粉にガラスコーティング層Gを形成したもの(ガラスコーティング鉄粉F)と、ガラスコーティングしてないものを対象とし、750Wのマイクロ波発生装置で発熱状態を確認した。ガラスコーティング層Gを形成してないものとして、比較例1として鉄粉を幅10mm、厚さ1mm、比較例2として鉄粉を幅10mm、厚さ0.5mm、比較例3として鉄粉を幅5mm、厚さ0.5mmの長さがそれぞれ60mmの圧縮成型体とし、参考例として鉄粉のみ(圧縮成型体とせず)を含めて所定加熱時間に対する加熱温度を測定した。   As shown in FIG. 11, the inventors have used a 750 W microwave generator for heat generation in which the glass coating layer G is formed on the iron powder (glass coated iron powder F) and the glass coating layer G is not glass coated. Checked the condition. The glass coating layer G is not formed, the iron powder is 10 mm wide and 1 mm thick as the comparative example 1, the iron powder is 10 mm wide and the thickness is 0.5 mm as the comparative example 2, and the iron powder is wide as the comparative example 3. A compression molded body having a length of 5 mm and a thickness of 0.5 mm was each formed as 60 mm. As a reference example, only the iron powder (not a compression molded body) was included, and the heating temperature for a predetermined heating time was measured.

また、ガラスコーティング層Gを形成したガラスコーティング鉄粉Fを実施例1として幅10mm、厚さ1mm、実施例2として幅10mm、厚さ0.5mm、実施例3として幅5mm、厚さ0.5mmの長さがそれぞれ60mmの圧縮成型体とし、参考例としてガラスコーティング鉄粉Fのみ(圧縮成型体とせず)を含めて所定加熱時間に対する加熱温度を測定した。なお、実施例1乃至実施例3、比較例1乃至比較例3ともバインダー樹脂としてフェノール樹脂を0.5重量%混合した複合粉体材料とし、この複合粉体材料を金型内に充填し、室温で800MPaの圧力で圧縮することで圧縮成型体を形成し、その後圧縮成型体にアニール処理(230℃、10分)を実施したものを使用した。
結果、鉄粉にガラスコーティングを施すことで放電火花(スパーク)の発生も少なく発熱効率が高くなることが証明でき、また幅より厚みが厚いものの方が発熱効率の良いことが分かった。
Moreover, the glass coating iron powder F in which the glass coating layer G was formed was 10 mm wide and 1 mm thick as Example 1, 10 mm wide and 0.5 mm thick as Example 2, 5 mm wide as Example 3, and 0. A compression molded body having a length of 5 mm and a thickness of 60 mm each was used. As a reference example, only the glass-coated iron powder F (not a compression molded body) was included, and the heating temperature for a predetermined heating time was measured. Each of Examples 1 to 3 and Comparative Examples 1 to 3 is a composite powder material in which 0.5% by weight of a phenol resin is mixed as a binder resin, and the composite powder material is filled in a mold. A compression molded body was formed by compressing at a pressure of 800 MPa at room temperature, and then the compression molded body was annealed (230 ° C., 10 minutes).
As a result, it was proved that by applying a glass coating to the iron powder, the generation of sparks (sparks) was small and the heat generation efficiency was improved, and the heat generation efficiency was better when the thickness was greater than the width.

また、同様に、図12に示すように、鉄粉にガラスコーティング層Gを形成したものとしてないものを対象とし、750Wのマイクロ波発生装置で30秒間加熱し、抵抗値と加熱温度の関係を確認した。測定品は、図11の所定加熱時間に対する加熱温度の測定に使用したものと同じ条件で作製したものを使用した。   Similarly, as shown in FIG. 12, the object is not formed with a glass coating layer G formed on iron powder, and is heated for 30 seconds with a 750 W microwave generator, and the relationship between the resistance value and the heating temperature is determined. confirmed. The measurement product used what was produced on the same conditions as what was used for the measurement of the heating temperature with respect to the predetermined heating time of FIG.

結果、鉄粉にガラスコーティング層Gを形成したガラスコーティング鉄粉Fを用いることでガラスコーティング層Gを形成しないものに比べて抵抗値が大きくなり、その結果発熱効率が高くなっていることが判明した。これらのことから、鉄粉にガラスコーティング層Gを形成したものが有利であることが明確になった。そして成型体とした厚みを変化させることで抵抗値が大きく変化させることが可能であることもこの結果から明確となった。また、ガラスコーティング層Gの有り無しにかかわらず粉末のままより、成型体に形成したほうが大きな抵抗値が得られて発熱効率が高くなることも判明した。   As a result, it was found that the use of glass-coated iron powder F in which glass coating layer G was formed on the iron powder resulted in a higher resistance value than that in which glass coating layer G was not formed, resulting in higher heat generation efficiency. did. From these things, it became clear that what formed the glass coating layer G in the iron powder was advantageous. It was also clear from this result that the resistance value can be greatly changed by changing the thickness of the molded body. It has also been found that, regardless of the presence or absence of the glass coating layer G, a larger resistance value is obtained and the heat generation efficiency is higher when the molded body is formed as a powder than when it is formed as a powder.

このように、本発明の実施の形態にかかるマイクロ波によって誘電加熱自在なマイクロ波樹脂溶着体20は、導電体である鉄粉にガラスコーティング層Gを形成したガラスコーティング鉄粉Fを、熱可塑性樹脂若しくは熱硬化性樹脂によって成型体としたものである。   As described above, the microwave resin welded body 20 that can be dielectrically heated by the microwave according to the embodiment of the present invention is obtained by converting the glass-coated iron powder F in which the glass coating layer G is formed on the iron powder, which is a conductor, to thermoplasticity. The molded body is made of resin or thermosetting resin.

本実施の形態のマイクロ波樹脂溶着体20によって溶着される合成樹脂成型体10としては、基本的には熱可塑性樹脂からなる成形体であれば良い。熱可塑性樹脂としては、公知の熱可塑性樹脂を使用することが可能であるが、どのような熱可塑性樹脂を使用するかは、熱可塑性樹脂成形体の用途や形状等、従来の考え方によって決定される。   The synthetic resin molded body 10 to be welded by the microwave resin welded body 20 of the present embodiment may basically be a molded body made of a thermoplastic resin. As the thermoplastic resin, a known thermoplastic resin can be used, but what kind of thermoplastic resin is used is determined by the conventional concept such as the use and shape of the thermoplastic resin molded body. The

本実施の形態のマイクロ波樹脂溶着体20はその発熱温度を高温とすることができるので、PPS等の高融点の樹脂にも対応することが可能である。
また、合成樹脂成型体10は、熱可塑性樹脂に対して、公知の樹脂用添加剤を配合されたものでよい。着色材、可塑剤、酸化防止剤、充填材等を含有させることができる。
Since the microwave resin welded body 20 of the present embodiment can have a high heat generation temperature, it can be applied to a resin having a high melting point such as PPS.
Moreover, the synthetic resin molding 10 may be a mixture of a known resin additive with a thermoplastic resin. Coloring agents, plasticizers, antioxidants, fillers, and the like can be included.

即ち、マイクロ波樹脂溶着体20としては、熱可塑性樹脂をバインダーとして採用する場合には、その熱可塑性樹脂としては、合成樹脂成型体10を構成する熱可塑性樹脂と同じ樹脂が好ましい。同じ樹脂であれば、マイクロ波樹脂溶着体20を構成する樹脂との相溶性に優れるので、溶着後の溶着強度に優れた製品とすることができる。また熱硬化性樹脂をバインダーとして採用する場合には、接着性に優れるフェノール樹脂やエポキシ樹脂が推奨される。   That is, when the thermoplastic resin is used as the binder as the microwave resin welded body 20, the same resin as the thermoplastic resin constituting the synthetic resin molded body 10 is preferable as the thermoplastic resin. If it is the same resin, since it is excellent in compatibility with the resin which comprises the microwave resin welded body 20, it can be set as the product excellent in the welding strength after welding. When a thermosetting resin is used as a binder, a phenol resin or an epoxy resin excellent in adhesiveness is recommended.

以上、本発明の実施の形態の合成樹脂成型体10は合成樹脂成型体11、及び合成樹脂成型体12の2層として説明してきたが、本発明の実施の形態の合成樹脂成型体10は2層に限らず、任意の積層とすることができる。この場合、各層の両面には、図5に示すように、凹部と凸部が設けられ、これらを係合させて溶着することで各層の積み重ねが出来、内部に複雑な内部空間の形状を有した成形体であっても各層に分割した後積層することで作製することが可能となる。この際各層によって形状が異なることがあるが積層時の溶着に使用するマイクロ波樹脂溶着体20は各層に合わせた形状とすることができ、さらに抵抗値を各層の形状に合わせて制御することで形状に適した発熱が可能となり、各層が異なった形状であっても容易に積層形状を溶着で作り出すことができる。   As described above, the synthetic resin molded body 10 according to the embodiment of the present invention has been described as two layers of the synthetic resin molded body 11 and the synthetic resin molded body 12, but the synthetic resin molded body 10 according to the embodiment of the present invention has 2 layers. It is not limited to a layer, and any layer can be used. In this case, as shown in FIG. 5, a concave portion and a convex portion are provided on both surfaces of each layer, and the layers can be stacked by being engaged and welded, and have a complicated internal space shape inside. Even if it is a molded body, it can be manufactured by dividing into layers and then laminating. At this time, the shape may be different depending on each layer, but the microwave resin welded body 20 used for welding at the time of lamination can be made to a shape matched to each layer, and further, the resistance value can be controlled according to the shape of each layer. Heat generation suitable for the shape is possible, and even if each layer has a different shape, a laminated shape can be easily created by welding.

本実施の形態で使用するマイクロ波樹脂溶着体20を加熱するマイクロ波発生装置としては、マイクロ波を照射することができる形態であればよく、市販の産業用マイクロ波発生装置が使用できる。また、均一にマイクロ波を照射するために、内部に載置した合成樹脂成型体10に対して、収容装置の壁面構造、マイクロを拡販するための構造、合成樹脂成型体10を載置するターンテーブルの構造、形状、回転条件等を最適化させるのが望ましい。   The microwave generator for heating the microwave resin welded body 20 used in the present embodiment may be any form that can irradiate microwaves, and a commercially available industrial microwave generator can be used. Further, in order to uniformly irradiate the microwave, the wall surface structure of the housing device, the structure for expanding the sales of the micro, the turn for placing the synthetic resin molding 10 on the synthetic resin molding 10 placed inside. It is desirable to optimize the structure, shape, rotation conditions, etc. of the table.

以上説明してきたように、本発明のマイクロ波樹脂溶着体による溶着方法は複数の合成樹脂成型体10の溶着に、特に、3以上の合成樹脂成型体10を同時に溶着するのに有効である。
そして、図3(a)〜図3(d)に示したようにマイクロ波樹脂溶着体20の基本形状は、肉厚を0.1〜2.0mmの範囲とし、かつ、角部をR0.5mm以上で面取りしたものであるから、マイクロ波の角部への集中が起き難い形状となっていてスパーク等による不具合の発生を抑制している。
As described above, the welding method using the microwave resin welded body of the present invention is effective for welding a plurality of synthetic resin molded bodies 10, particularly for simultaneously welding three or more synthetic resin molded bodies 10.
As shown in FIGS. 3A to 3D, the basic shape of the microwave resin welded body 20 has a thickness in the range of 0.1 to 2.0 mm and corners of R0. Since it is chamfered at 5 mm or more, it has a shape in which the concentration of microwaves at the corners is difficult to occur, and the occurrence of problems due to sparks or the like is suppressed.

更に、本発明のマイクロ波樹脂溶着体20の平面内部には孔やメッシュ形状の切り欠きを設けることで、これらの切り欠きを使用して合成樹脂成型体の接合面の溶着部位にマイクロ波樹脂溶着体20を正確に配置することが可能となる。更に、これら切り欠き部を通してマイクロ波樹脂溶着体20に接して対面する合成樹脂成型体相互の樹脂が溶融接着し接合強度を上げることも期待できる。   Furthermore, a microwave resin welded body 20 according to the present invention is provided with a hole or a mesh-shaped notch inside the plane, and the microwave resin is formed on the welded portion of the joint surface of the synthetic resin molded body using these notches. It becomes possible to arrange | position the welding body 20 correctly. Furthermore, it can be expected that the resin between the synthetic resin moldings facing each other in contact with the microwave resin welded body 20 through these notches is melted and bonded to increase the bonding strength.

また、本発明のマイクロ波樹脂溶着体20は図3(a)〜図3(d)に示したような長方形等の規定の形状を用いて溶着させることができるが、合成樹脂成型体の接合面の形状に沿った特定の形状に形成して使うことができる。このように接合面の形状に沿った特定形状にすることで合成樹脂成型体の接合面にマイクロ波樹脂溶着体20を短時間で設置することが可能となる。更にマイクロ波樹脂溶着体20を合成樹脂成型体の内部空間に近い方に配置することで、積層した接合面の気密性をより高めた接合が得られる。   Further, the microwave resin welded body 20 of the present invention can be welded using a prescribed shape such as a rectangle as shown in FIGS. 3 (a) to 3 (d). It can be used by forming in a specific shape along the shape of the surface. Thus, it becomes possible to install the microwave resin welded body 20 on the joint surface of the synthetic resin molded body in a short time by setting the specific shape along the shape of the joint surface. Furthermore, by arranging the microwave resin welded body 20 closer to the internal space of the synthetic resin molded body, it is possible to obtain a joint with further improved airtightness of the laminated joint surfaces.

このような本発明の実施の形態にかかるマイクロ波樹脂溶着体20による溶着方法の適用にはオートマッチックトランスミッション用樹脂製バルブボディ、自動車用としてCVT、HV等用のバルブボディや溶着を複数回繰り返して製品化していたインテークマニホールド、リザーバタンク等が例示される。また、自動車用以外では、油圧制御が必要な装置用の樹脂製バルブボディ、燃料電池のセパレータ等の多層の樹脂部品を固定してなるものにも適用可能である。勿論、これらに限定されるものではなく、2つ以上の熱可塑性樹脂からなる部材を一体化させてなる部材等の製造に使用することも可能である。   The application of the welding method using the microwave resin welded body 20 according to the embodiment of the present invention involves applying a resin valve body for an auto-matching transmission, a valve body for CVT, HV and the like for automobiles and welding a plurality of times. Examples include intake manifolds, reservoir tanks, and the like that have been repeatedly commercialized. In addition to those for automobiles, the present invention can also be applied to a structure in which multilayer resin parts such as a resin valve body for a device requiring hydraulic control and a separator of a fuel cell are fixed. Of course, it is not limited to these, It can also be used for manufacture of the member etc. which integrated the member which consists of two or more thermoplastic resins.

10、11,12 合成樹脂成型体
20 マイクロ波樹脂溶着体
F ガラスコーティング鉄粉
G ガラスコーティング層
P 樹脂バインダー
11A,12A 接合面
11b 環状凹部
12b 環状凸部
10, 11, 12 Synthetic resin molded body 20 Microwave resin welded body F Glass coating iron powder G Glass coating layer P Resin binder 11A, 12A Joint surface 11b Annular recess 12b Annular convex

Claims (5)

0.01〜10μmのガラス膜によって表面コーティング処理がなされた中位径が0.1〜500μmの粉体のガラスコーティング鉄粉と、
前記ガラスコーティング鉄粉を分散させて圧縮成形自在なように、総量に対して0.1〜50重量%の熱硬化性樹脂または熱可塑性樹脂の樹脂バインダーとを具備し、
上記ガラスコーティング鉄粉の粉体中に前記樹脂バインダーを分散させて圧縮成形して、抵抗値1〜103Ωcmの特性を持たせ、複数の合成樹脂成型体相互間に配置され、マイクロ波による誘電加熱で前記複数の合成樹脂成型体相互間を溶融、溶着により一体化することを特徴とするマイクロ波樹脂溶着体。
A glass-coated iron powder having a median diameter of 0.1 to 500 μm, which has been surface-coated by a 0.01 to 10 μm glass film,
In order to disperse the glass-coated iron powder and be freely compression-molded, it comprises 0.1 to 50% by weight of a thermosetting resin or a thermoplastic resin binder with respect to the total amount,
The resin binder is dispersed in the glass-coated iron powder powder and compression-molded so as to have a resistance value of 1 to 10 3 Ωcm, and is disposed between a plurality of synthetic resin moldings. A microwave resin welded body, wherein the synthetic resin molded bodies are fused together by dielectric heating and integrated by welding.
更に、前記樹脂バインダーが熱硬化性樹脂であり、圧縮成形した後にアニール処理をしたことを特徴とする請求項1に記載のマイクロ波樹脂溶着体。   The microwave resin welded body according to claim 1, wherein the resin binder is a thermosetting resin and is annealed after compression molding. 前記複数の合成樹脂成型体相互間の接合面は、凹凸状の噛み合わせとしたことを特徴とする請求項1または請求項2に記載のマイクロ波樹脂溶着体。   The microwave resin welded body according to claim 1 or 2, wherein the joint surfaces between the plurality of synthetic resin molded bodies are concave and convex meshing. 前記合成樹脂成型体相互間の接合面の凹凸状の噛み合わせは、一面が凹状の環状で他面が凸状の環状となる環状凹部と環状凸部とを有し、前記合成樹脂成型体相互間に配置されるマイクロ波樹脂溶着体が前記環状凹部の内部の環状内方向に配置されることを特徴とする請求項3に記載のマイクロ波樹脂溶着体。  The concave-convex meshing of the joint surfaces between the synthetic resin moldings has an annular concave portion and an annular convex portion, each of which has a concave annular shape on one side and a convex annular shape on the other surface. 4. The microwave resin welded body according to claim 3, wherein the microwave resin welded body disposed therebetween is disposed in an annular inward direction inside the annular recess. 0.01〜10μmのガラスコーティング層となるように表面コーティングされた0.1〜500μmの粉体からなるガラスコーティング鉄粉が圧縮成形自在なように、総量に対して0.1〜50重量%の熱硬化性樹脂または熱可塑性樹脂の樹脂バインダーを入れて分散し、抵抗値1Ωcm〜103Ωcmの特性とし、
それを複数の合成樹脂成型体相互間に配置し、マイクロ波によって誘電加熱自在とし、前記複数の合成樹脂成型体相互間を溶融、溶着することを特徴とするマイクロ波樹脂溶着体による溶着方法。
0.1 to 50% by weight based on the total amount so that the glass coated iron powder composed of 0.1 to 500 μm powder surface-coated so as to become a 0.01 to 10 μm glass coating layer can be compression molded. A thermosetting resin or a thermoplastic resin binder is dispersed and dispersed to obtain a resistance value of 1 Ωcm to 10 3 Ωcm.
A welding method using a microwave resin welded body, characterized in that it is placed between a plurality of synthetic resin molded bodies, made dielectrically heatable by microwaves, and melted and welded between the plurality of synthetic resin molded bodies.
JP2011251410A 2011-11-17 2011-11-17 Microwave resin welded body and welding method using the same Expired - Fee Related JP5709731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011251410A JP5709731B2 (en) 2011-11-17 2011-11-17 Microwave resin welded body and welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011251410A JP5709731B2 (en) 2011-11-17 2011-11-17 Microwave resin welded body and welding method using the same

Publications (2)

Publication Number Publication Date
JP2013107208A true JP2013107208A (en) 2013-06-06
JP5709731B2 JP5709731B2 (en) 2015-04-30

Family

ID=48704521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011251410A Expired - Fee Related JP5709731B2 (en) 2011-11-17 2011-11-17 Microwave resin welded body and welding method using the same

Country Status (1)

Country Link
JP (1) JP5709731B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054035A (en) * 2013-09-11 2015-03-23 テルモ株式会社 Medical needle assembly
JP2015110287A (en) * 2013-12-06 2015-06-18 アイシン化工株式会社 Microwave dielectric heating joint body
JP2015164833A (en) * 2014-02-05 2015-09-17 株式会社マルイ Bicycle saddle and manufacturing method thereof
CN109572068A (en) * 2018-12-29 2019-04-05 苏州工业园区明扬彩色包装印刷有限公司 A kind of positioning device for high-cycle welding

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529856A (en) * 1983-10-04 1985-07-16 The United States Of America As Represented By The United States Department Of Energy Ceramic-glass-metal seal by microwave heating
JPS61158427A (en) * 1984-12-29 1986-07-18 Idemitsu Petrochem Co Ltd Adhesion method of non-conductive material
JPH0370626A (en) * 1989-08-10 1991-03-26 Asahi Glass Co Ltd Method for mounting molding and gasket to glass plate
JPH03210787A (en) * 1990-01-12 1991-09-13 Koransha Co Ltd Microwave absorbing heating body
US5155319A (en) * 1991-01-17 1992-10-13 Chiu Sou Kuein Heat-conducting film for absorbing electromagnetic wave and microwave energy
JPH05140530A (en) * 1991-03-13 1993-06-08 Minnesota Mining & Mfg Co <3M> Composition which can be heated by high frequency induction
EP0593826A1 (en) * 1991-04-09 1994-04-27 Swintex Limited Retro-reflective assembly
JPH08503263A (en) * 1993-04-26 1996-04-09 ホーガニーズ コーポレイション Method and apparatus for heating metal powder
US5519196A (en) * 1995-06-01 1996-05-21 Xu; Liming Material for converting microwave energy into thermal energy, and a cooking receptacle fabricated from that material
JPH08236332A (en) * 1995-02-22 1996-09-13 Kobe Steel Ltd High-frequency dust core and its manufacture
JPH09129028A (en) * 1995-11-01 1997-05-16 Daiken Kagaku Kogyo Kk Manufacture of metal powder having inorganic film, and metal powder
JPH09136357A (en) * 1995-11-15 1997-05-27 Mitsui Toatsu Chem Inc Method for fusion of thermoplastic resin
JPH10330802A (en) * 1997-06-02 1998-12-15 Shoei Chem Ind Co Metallic powder, and its manufacture
JP2006289076A (en) * 2005-03-28 2006-10-26 Silberline Manufacturing Co Inc Microwave susceptor for cooking and baking brown
JP2009066924A (en) * 2007-09-13 2009-04-02 Inax Corp Composite material, and its manufacturing method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529856A (en) * 1983-10-04 1985-07-16 The United States Of America As Represented By The United States Department Of Energy Ceramic-glass-metal seal by microwave heating
JPS61158427A (en) * 1984-12-29 1986-07-18 Idemitsu Petrochem Co Ltd Adhesion method of non-conductive material
JPH0370626A (en) * 1989-08-10 1991-03-26 Asahi Glass Co Ltd Method for mounting molding and gasket to glass plate
JPH03210787A (en) * 1990-01-12 1991-09-13 Koransha Co Ltd Microwave absorbing heating body
US5155319A (en) * 1991-01-17 1992-10-13 Chiu Sou Kuein Heat-conducting film for absorbing electromagnetic wave and microwave energy
JPH05140530A (en) * 1991-03-13 1993-06-08 Minnesota Mining & Mfg Co <3M> Composition which can be heated by high frequency induction
EP0593826A1 (en) * 1991-04-09 1994-04-27 Swintex Limited Retro-reflective assembly
JPH08503263A (en) * 1993-04-26 1996-04-09 ホーガニーズ コーポレイション Method and apparatus for heating metal powder
JPH08236332A (en) * 1995-02-22 1996-09-13 Kobe Steel Ltd High-frequency dust core and its manufacture
US5519196A (en) * 1995-06-01 1996-05-21 Xu; Liming Material for converting microwave energy into thermal energy, and a cooking receptacle fabricated from that material
JPH09129028A (en) * 1995-11-01 1997-05-16 Daiken Kagaku Kogyo Kk Manufacture of metal powder having inorganic film, and metal powder
JPH09136357A (en) * 1995-11-15 1997-05-27 Mitsui Toatsu Chem Inc Method for fusion of thermoplastic resin
JPH10330802A (en) * 1997-06-02 1998-12-15 Shoei Chem Ind Co Metallic powder, and its manufacture
JP2006289076A (en) * 2005-03-28 2006-10-26 Silberline Manufacturing Co Inc Microwave susceptor for cooking and baking brown
JP2009066924A (en) * 2007-09-13 2009-04-02 Inax Corp Composite material, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054035A (en) * 2013-09-11 2015-03-23 テルモ株式会社 Medical needle assembly
JP2015110287A (en) * 2013-12-06 2015-06-18 アイシン化工株式会社 Microwave dielectric heating joint body
JP2015164833A (en) * 2014-02-05 2015-09-17 株式会社マルイ Bicycle saddle and manufacturing method thereof
CN109572068A (en) * 2018-12-29 2019-04-05 苏州工业园区明扬彩色包装印刷有限公司 A kind of positioning device for high-cycle welding

Also Published As

Publication number Publication date
JP5709731B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5709731B2 (en) Microwave resin welded body and welding method using the same
CN100475003C (en) Printing circuit board embedding electronic device and manufacture method thereof
JP6358565B2 (en) Reactor and manufacturing method of reactor
JP6065923B2 (en) Method for producing coated coil molded body and coated coil molded body
KR20140139493A (en) Carbon fiber preform, carbon fiber reinforced plastic, and method for producing carbon fiber preform
JP5586410B2 (en) Microwave heating element and welding method using the same
JP5988902B2 (en) Microwave dielectric welded body and welding method using microwave dielectric welded body
US10298729B2 (en) Connector and method of manufacturing the same
CN105917145A (en) Method for producing an electronic module having an interlockingly connected housing part element
JP5615124B2 (en) Resin valve body and manufacturing method thereof
JP2011240685A (en) Seal structure for metallic composite joint body and method of manufacturing the same
JP2009522720A (en) Ultrasonic welded integrated electrode assembly for fuel cells
CN110402474B (en) Coil molded body and reactor
US10600557B2 (en) Reactor having air discharge paths
JP2013517132A (en) Conductive filter element and filter device having filter element
JP2008262893A (en) Manufacturing method of membrane electrode conjugant, and membrane electrode conjugant and its manufacturing device
JP5958972B2 (en) Microwave dielectric heating assembly
JP4618211B2 (en) Method for producing molded body
JP6153505B2 (en) Microwave dielectric heating element and welding method using the same
ES2946239T3 (en) Joining method for thermoplastic elements
JP6501702B2 (en) Microwave dielectric heating weldment and welding method thereby
JP2006286972A (en) Capacitor and its manufacturing process
JP2010092733A (en) Membrane-electrode assembly, and method and apparatus for manufacturing the same
JP6733447B2 (en) Coil parts and coil device
CN101370360B (en) Printed wiring board with embedded electric device and method for manufacturing printed wiring board with embedded electric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees