JP2011240685A - Seal structure for metallic composite joint body and method of manufacturing the same - Google Patents

Seal structure for metallic composite joint body and method of manufacturing the same Download PDF

Info

Publication number
JP2011240685A
JP2011240685A JP2010117165A JP2010117165A JP2011240685A JP 2011240685 A JP2011240685 A JP 2011240685A JP 2010117165 A JP2010117165 A JP 2010117165A JP 2010117165 A JP2010117165 A JP 2010117165A JP 2011240685 A JP2011240685 A JP 2011240685A
Authority
JP
Japan
Prior art keywords
metal
airtightness
dissimilar
joined body
airtight holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010117165A
Other languages
Japanese (ja)
Inventor
Makoto Arafuka
眞 荒深
Shigeru Yamaguchi
茂 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2010117165A priority Critical patent/JP2011240685A/en
Publication of JP2011240685A publication Critical patent/JP2011240685A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent leakage of gas and liquid and secure high airtightness and liquid-tightness between a metallic material and a different type material such as a synthetic resin material in a seal structure of a metallic composite joint body and a method of manufacturing the same.SOLUTION: In a range of a joint interfacial boundary 4 in which a metallic member 2 comes into contact with a different type member 3, 10 to 100 airtightness holding grooves 5 having 5 μm to 15 μm of depth are formed at 100 μm of pitches. The metallic member 2 is set within an injection molding die so as to perform injection molding of the different type member 3. Thus, the different type member 3 in the molten state is made to enter the airtightness holding grooves 5 and the metallic member 2 and the different type member 3 are jointed to each other without clearances, so as to obtain the metallic composite joint body 1 and secure the airtightness on the joint interfacial boundary 4.

Description

本発明は、高い気密性及び液密性を有する金属材料と非金属性の合成樹脂材料等の異種材料との金属複合接合体のシール構造及びその製造方法に関するものであり、特に、金属材料の表面処理をすることで気密性を確保した金属複合接合体のシール構造及びその製造方法に関するものである。   The present invention relates to a sealing structure of a metal composite joined body of a metal material having high airtightness and liquid tightness and a dissimilar material such as a nonmetallic synthetic resin material and a manufacturing method thereof, The present invention relates to a seal structure of a metal composite joined body that has been air-tightened by surface treatment and a method for producing the same.

近年、携帯電話、ノート型パソコン、電子手帳、ビデオカメラ等に代表される携帯用電子機器の普及は目覚ましく、これらの電子機器の筺体(ハウジング)には、電子機器内部への湿気や雨水の侵入を防止するための気密性及び液密性が要求される。
また、自動車等の車両にも、エンジン制御系、操舵系、駆動系、空調系等の電子制御ユニット(ECU)や、各種センサ、アクチュエータ等の電子機器が多数搭載されるようになっており、これらの車載用電子機器の筺体についても、同様に気密性及び液密性が必要とされる。
In recent years, portable electronic devices represented by mobile phones, notebook computers, electronic notebooks, video cameras, etc. have been widely used, and the housing of these electronic devices has intruded moisture and rainwater. Airtightness and liquid tightness are required to prevent this.
Also, vehicles such as automobiles are equipped with a large number of electronic control units (ECU) such as engine control system, steering system, drive system, air conditioning system, various sensors, actuators, etc. Airtightness and liquid tightness are similarly required for the casings of these on-vehicle electronic devices.

このような携帯用電子機器や車載用電子機器の筺体については、小型化・軽量化・低コスト化及び形状設計の自由度等の要請があることから、従来から合成樹脂を主体とした製品が用いられていたが、最近は、更なる筺体の薄型化の要請によって、アルミニウム合金等の軽金属が筺体の材料として使われている。
ここで、筺体内部に収納される電子基板等を筺体に固定するための保持部材、ねじボス等の合成樹脂製の部材を筺体内に設置するために、金属製の筺体と合成樹脂部品との高い気密性及び液密性を有する接合方法が必要となっていた。
With regard to such portable electronic equipment and in-vehicle electronic equipment housings, there are demands for downsizing, weight reduction, cost reduction, freedom of shape design, etc. Recently, light metals such as aluminum alloys have been used as the material of the housing in response to the demand for further thinning of the housing.
Here, in order to install a synthetic resin member such as a holding member for fixing an electronic board or the like housed in the housing to the housing, a screw boss, etc., between the metal housing and the synthetic resin component A joining method having high air tightness and liquid tightness has been required.

そこで、特許文献1においては、アルミニウム合金と合成樹脂の強固な金属複合組付体を得ることを目的として、アルミニウム合金の表面粗さが1μm〜10μmで、1μm四方当たり0.03μm〜0.1μm径の第1凹部が10個〜50個あり、0.01μm〜0.03μm径の第2凹部が50個〜500個あり、その表面は厚さが1μm〜2μmの酸化アルミニウム化合物層で覆われ、樹脂組成物が前記第1凹部及び前記第2凹部まで侵入した状態で硬化して強固に結合しているアルミニウム合金と樹脂組成物の複合体の発明について開示している。
しかし、上記特許文献1に記載の技術においては、アルミニウム合金をアルカリエッチングした後に、更にpH10.0〜pH11.5に調整した一水和ヒドラジン水溶液で微細エッチングする必要があるため、生産性が悪くコスト高となるとともに、有害なヒドラジンを使用するため廃液処理工程が必須となるという問題があった。
Therefore, in Patent Document 1, for the purpose of obtaining a strong metal composite assembly of an aluminum alloy and a synthetic resin, the surface roughness of the aluminum alloy is 1 μm to 10 μm, and 0.03 μm to 0.1 μm per 1 μm square. There are 10 to 50 first concave portions having a diameter, 50 to 500 second concave portions having a diameter of 0.01 to 0.03 μm, and the surface is covered with an aluminum oxide compound layer having a thickness of 1 to 2 μm. An invention of a composite of an aluminum alloy and a resin composition that is cured and firmly bonded in a state where the resin composition has penetrated to the first recess and the second recess is disclosed.
However, in the technique described in Patent Document 1, it is necessary to perform fine etching with an aqueous monohydric hydrazine solution adjusted to pH 10.0 to pH 11.5 after alkaline etching of the aluminum alloy, resulting in poor productivity. In addition to high costs, there is a problem that a waste liquid treatment process is essential because of the use of harmful hydrazine.

また、特許文献2においては、処理工程が少なく自動化が容易で生産性が高いレーザ加工技術を利用して、金属材料と合成樹脂材料等の異種材料とを極めて高い接着性をもって接合することを目的として、ある走査方向について金属表面をレーザスキャニング加工する工程と、その走査方向とクロスする別の走査方向について金属表面をレーザスキャニング加工する工程とを含む金属表面のレーザ加工方法の発明について開示している。   In addition, Patent Document 2 aims to join a metal material and a dissimilar material such as a synthetic resin material with extremely high adhesiveness by using a laser processing technique that has few processing steps, is easy to automate, and has high productivity. The invention discloses a laser processing method for a metal surface that includes a step of laser scanning a metal surface in a certain scanning direction and a step of laser scanning the metal surface in another scanning direction that intersects the scanning direction. Yes.

特許第4292514号公報Japanese Patent No. 4292514 特許第4020957号公報Japanese Patent No. 4020957

しかしながら、上記特許文献2に記載の技術においては、接合剥離強度の向上については明らかにされているが、金属材料と非金属からなる合成樹脂材料等からなる異種材料との気密性については一切検討されておらず、金属材料と合成樹脂材料を始めとする異種材料との気密性を確保した金属複合接合体のシール構造を得ることができないという問題点があった。   However, in the technique described in Patent Document 2, it has been clarified that the bonding peel strength is improved, but no consideration is given to the airtightness between the metal material and the dissimilar material made of a synthetic resin material made of nonmetal. However, there is a problem that it is not possible to obtain a seal structure of a metal composite joined body that ensures airtightness between a metal material and a different material such as a synthetic resin material.

そこで、本発明は、かかる課題を解決するためになされたものであって、金属材料と、この金属材料と物性が異なる異種材料との接合境界面における気体、液体が非常に漏れ難くなって高い気密性及び液密性を確保することができる金属複合接合体のシール構造及びその製造方法を提供することを課題とする。   Therefore, the present invention has been made to solve such a problem, and it is very difficult to leak gas and liquid at the joint interface between a metal material and a dissimilar material having different physical properties from the metal material. It is an object of the present invention to provide a seal structure of a metal composite joined body capable of ensuring airtightness and liquid tightness and a method for producing the same.

請求項1の発明に係る金属複合接合体のシール構造は、金属材料の金属部材と、前記金属材料と物性が異なる異種材料の異種部材とを接合した金属複合接合体の前記金属部材と前記異種部材との接合境界面において、該接合境界面の気密性を必要とする方向と交差する方向に沿って前記金属部材の表面に一周する気密保持溝を、前記接合境界面の気密性を必要とする方向に複数形成し、前記金属部材と前記異種部材とを溶融接合することによって気密性を確保するものである。   The seal structure of the metal composite joined body according to the invention of claim 1 includes the metal member of the metal composite and the dissimilar metal member of the metal composite joined body joined with the dissimilar member of a dissimilar material having different physical properties from the metal material. An airtight holding groove that circulates around the surface of the metal member along a direction intersecting a direction that requires airtightness of the joint interface at the joint interface with the member requires airtightness of the joint interface. A plurality of them are formed in the direction to be sealed, and the metal member and the dissimilar member are melt-bonded to ensure airtightness.

ここで、金属材料としては、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、鉄、鋼、ステンレス、銅、銅合金、ベリリウム、ベリリウム合金、ニッケル、ニッケル合金、チタン、チタン合金等がある。
また、異種材料としては、合成樹脂、天然ゴム及び合成ゴムを含むエラストマー等の非金属材料や、金属材料ではあるが、金属部材に使用した金属材料と種類は同じだが溶融時の粘度等の物性が異なるものや、金属部材に使用した金属材料とは種類が異なる金属材料がある。
更に、接合境界面の気密性を必要とする方向と交差する方向とは、直角方向が望ましいが、直角方向に限定されるものではなく、接合境界面の気密性を必要とする方向に対して角度を有していればよく、好ましくは45度から90度の範囲であればよい。また、接合境界面の気密性を必要とする方向とは、気体、液体の存在が許容できる空間(気密構造外)と、気体、液体の存在が許容できない空間(気密構造内)が接合境界面にて繋がっていて、この接合境界面における気密構造の内外方向を意味する。
Here, examples of the metal material include aluminum, aluminum alloy, magnesium, magnesium alloy, iron, steel, stainless steel, copper, copper alloy, beryllium, beryllium alloy, nickel, nickel alloy, titanium, and titanium alloy.
In addition, non-metallic materials such as synthetic resins, natural rubber and elastomers containing synthetic rubber, and metallic materials are the same as the different materials, but the same kind as the metallic material used for the metal member, but physical properties such as viscosity at the time of melting. There are metal materials that are different in type and metal materials that are different from the metal materials used for the metal members.
Further, the direction intersecting with the direction requiring airtightness of the joint interface is preferably a right angle direction, but is not limited to the right angle direction. It is only necessary to have an angle, and it may be in the range of 45 degrees to 90 degrees. The directions that require airtightness at the joint interface are the space where gas and liquid can be allowed (outside the airtight structure) and the space where gas and liquid cannot be allowed (inside the airtight structure). It means that the inside and outside directions of the airtight structure at the joint interface.

請求項2の発明に係る金属複合接合体のシール構造は、前記異種材料は合成樹脂材料であり、前記金属部材に前記異種部材を射出成形することで溶融接合したものである。
ここで、本発明を実施する際の合成樹脂材料としては、熱可塑性樹脂及び熱硬化性樹脂があり、熱可塑性樹脂には更に汎用樹脂、エンジニアリング・プラスチック(以下、「エンプラ」ともいう)、スーパー・エンジニアリング・プラスチック(以下、「スーパーエンプラ」ともいう)がある。また、前記異種材料としては、部品の一部であっても、全体であってもよい。
In the seal structure of the metal composite joined body according to the invention of claim 2, the dissimilar material is a synthetic resin material, and the dissimilar member is melt-bonded to the metal member by injection molding.
Here, the synthetic resin material for carrying out the present invention includes a thermoplastic resin and a thermosetting resin. The thermoplastic resin further includes a general-purpose resin, an engineering plastic (hereinafter also referred to as “engineer plastic”), a super resin.・ There are engineering plastics (hereinafter also referred to as “super engineering plastics”). The dissimilar material may be a part or the whole of a part.

請求項3の発明に係る金属複合接合体のシール構造は、前記気密性保持溝の形成をレーザ加工としたものである。
ここで、レーザ加工法を実施するためのレーザ光発振装置としては、YAG(Nd:YAG)レーザ、YVO4(Nd:YVO4 )レーザ、CO2 レーザ、エキシマレーザ、アルゴンレーザ等である。
In the seal structure of the metal composite joined body according to the invention of claim 3, the formation of the airtight holding groove is laser processing.
Here, as a laser oscillator for performing laser machining method, YAG (Nd: YAG) laser, YVO4 (Nd: YVO 4) laser, CO 2 laser, excimer laser, argon laser or the like.

請求項4の発明に係る金属複合接合体のシール構造は、前記気密性保持溝は、2μm〜30μmの範囲内、より好ましくは5μm〜20μmの深さであり、前記気密性保持溝同士の間隔は20μm〜200μmの範囲内、より好ましくは50μm〜1500μm範囲内のピッチである。   The seal structure of the metal composite joined body according to the invention of claim 4 is characterized in that the airtight holding groove has a depth in the range of 2 μm to 30 μm, more preferably 5 μm to 20 μm, and the interval between the airtight holding grooves. Is a pitch within a range of 20 μm to 200 μm, more preferably within a range of 50 μm to 1500 μm.

請求項5の発明に係る金属複合接合体のシール構造の製造方法は、金属材料の金属部材と前記金属材料とは物性が異なる異種材料の異種部材とを接合し、前記金属材料と前記異種材料との対向する接合境界面を有する金属複合接合体のシール構造の製造方法であって、前記金属部材の表面に前記接合境界面の気密性を必要とする方向と交差する方向に沿って一周する気密性保持溝を、前記接合境界面の気密性を必要とする方向に複数形成し、前記金属部材と前記異種部材とを溶融接合することにより、前記接合境界面に気密性を持たせるものである。   According to a fifth aspect of the present invention, there is provided a method of manufacturing a seal structure for a metal composite joined body, wherein a metal member of a metal material and a dissimilar member of different materials having different physical properties are joined, and the metal material and the dissimilar material A metal composite joined body seal structure manufacturing method having a joint boundary surface opposite to the metal member, wherein the surface of the metal member makes a round along a direction intersecting a direction that requires airtightness of the joint boundary surface. A plurality of airtight holding grooves are formed in a direction that requires airtightness of the joint boundary surface, and the metal member and the dissimilar member are melt-bonded to give the joint boundary surface airtightness. is there.

請求項6の発明に係る金属複合接合体のシール構造の製造方法の前記異種材料は、合成樹脂材料とし、前記接合工程は前記合成樹脂材料の射出成形工程としたものである。   In the method for manufacturing a seal structure of a metal composite joined body according to the invention of claim 6, the dissimilar material is a synthetic resin material, and the joining step is an injection molding step of the synthetic resin material.

請求項7の発明に係る金属複合接合体のシール構造の製造方法の前記気密性保持溝形成工程は、前記金属材料のレーザ加工工程としたものである。   The airtight holding groove forming step of the manufacturing method of the seal structure of the metal composite joined body according to the invention of claim 7 is a laser processing step of the metal material.

請求項8の発明に係る金属複合接合体のシール構造の製造方法の前記気密性保持溝は、前記所定ピッチが20μm〜200μmの範囲内、より好ましくは50μm〜150μmの範囲内であり、前記所定深さが2μm〜30μmの範囲内、より好ましくは5μm〜20μmの範囲内としたものである。   The airtight holding groove of the method for producing a seal structure for a metal composite joined body according to the invention of claim 8 has the predetermined pitch in the range of 20 μm to 200 μm, more preferably in the range of 50 μm to 150 μm. The depth is in the range of 2 μm to 30 μm, more preferably in the range of 5 μm to 20 μm.

請求項1の発明に係る金属複合接合体のシール構造は、金属材料の金属部材と、前記金属材料と物性が異なる異種材料の異種部材とを接合したときの前記金属部材と前記異種部材との対向する接合境界面におけるシール構造である。その構造とは、前記接合境界面の気密性を必要とする方向と交差する方向に沿って前記金属部材の表面に一周する気密保持溝を、前記接合境界面の気密性を必要とする方向に複数形成した後、異種部材と溶融接合した構造になっている。   The seal structure of the metal composite joined body according to the invention of claim 1 includes: a metal member of a metal material; and a dissimilar member of a dissimilar material having physical properties different from that of the metal material. It is the seal structure in the joining interface surface which opposes. The structure refers to an airtight holding groove that goes around the surface of the metal member along a direction intersecting a direction that requires airtightness of the joint interface in a direction that requires airtightness of the joint interface. After the formation, a structure in which the different members are melt-bonded is formed.

このように前記接合境界面の気密性を必要とする方向と交差する方向に沿って前記金属部材の表面に一周する気密保持溝を設け、この気密保持溝に異種部材を溶融させて入り込ませることで気体または液体等の流体が前記接合境界面の気密性を必要とする方向に流動することを妨げることができる。さらに気密保持溝は気密性を必要とする方向に複数形成されているため、より確実に流体の流動を阻止し気密性を確保することができる。
特に、金属材料と異種材料との組み付けの際に形成される面が接合境界面の気密性を必要とする方向に沿って凹凸が連続する面となり、接合面積が広くなるから気密性保持溝が形成されないものと比較して接合境界面における気体、液体が侵入するための経路が形成されなくなるから、気体、液体が流動し難くなって気密性及び液密性が大幅に向上する。
In this way, an airtight holding groove is formed around the surface of the metal member along a direction intersecting with the direction that requires airtightness of the joint boundary surface, and the dissimilar member is melted and inserted into the airtight holding groove. Therefore, it is possible to prevent a fluid such as a gas or a liquid from flowing in a direction that requires the airtightness of the joint interface. Furthermore, since a plurality of airtight holding grooves are formed in a direction that requires airtightness, the flow of fluid can be more reliably prevented and airtightness can be ensured.
In particular, the surface formed when the metal material and the dissimilar material are assembled is a surface where irregularities continue along the direction that requires airtightness of the joint boundary surface, and since the joint area is widened, the airtight holding groove is formed. Compared with those not formed, a path through which gas and liquid enter at the joint interface is not formed, so that the gas and liquid hardly flow and the airtightness and liquid tightness are greatly improved.

このようにして、接合境界面における気体、液体が流動するための経路を断つことによって、気体、液体等の流体が非常に流れなくなって、金属材料と合成樹脂材料等の異種材料との高い気密性及び液密性を確保することができる金属複合接合体となる。   In this way, by cutting the path for the flow of gas and liquid at the joint interface, fluid such as gas and liquid does not flow very much, and high airtightness between metal material and dissimilar material such as synthetic resin material. It becomes a metal composite joined body which can ensure property and liquid-tightness.

請求項2の発明に係る金属複合接合体のシール構造においては、異種材料は合成樹脂材料であり、異種部材の接合は合成樹脂材料の射出成形であることから、請求項1に係る発明の効果に加えて、流動性が高い合成樹脂材料によって気密性保持溝内に合成樹脂材料が容易に入り込むため、より簡便に前記接合境界面の気密性を確保することができる。   In the seal structure of the metal composite joined body according to the invention of claim 2, since the dissimilar material is a synthetic resin material and the joining of the dissimilar member is injection molding of the synthetic resin material, the effect of the invention according to claim 1 In addition, since the synthetic resin material easily enters the airtight holding groove by the synthetic resin material having high fluidity, the airtightness of the joint boundary surface can be secured more easily.

請求項3の発明に係る金属複合接合体のシール構造においては、気密性保持溝の形成がレーザ加工であることから、請求項1または請求項2に係る発明の効果に加えて、処理工程が少なく自動化が容易で生産性が高くなり、より低コストで金属複合接合体を量産することができる。   In the seal structure of the metal composite joined body according to the invention of claim 3, since the formation of the airtight holding groove is laser processing, in addition to the effect of the invention of claim 1 or claim 2, Less automation, higher productivity, and mass production of metal composite joints at lower cost.

請求項4の発明に係る金属複合接合体のシール構造にける気密性保持溝は、所定ピッチが20μm〜200μmの範囲内であり、所定深さが2μm〜30μmの範囲内であることから、請求項1乃至請求項3に係る発明の効果に加えて、より優れた気密性を低コストで得ることができる。   The airtight holding groove in the seal structure of the metal composite joined body according to the invention of claim 4 has a predetermined pitch in the range of 20 μm to 200 μm and a predetermined depth in the range of 2 μm to 30 μm. In addition to the effects of the inventions according to Items 1 to 3, it is possible to obtain better airtightness at a low cost.

本発明者は、より優れた気密性を得ることができる気密性保持溝のピッチ及び深さについて、鋭意実験研究を重ねた結果、所定ピッチを20μm〜200μmの範囲内とし、所定深さを2μm〜30μmの範囲内とすることによって、金属材料と異種材料との接合境界面においてより優れた気密性が得られることを見出したものである。   The inventor has conducted extensive experimental research on the pitch and depth of the airtight holding grooves capable of obtaining better airtightness. As a result, the predetermined pitch is set within a range of 20 μm to 200 μm, and the predetermined depth is set to 2 μm. It has been found that by setting the thickness within the range of ˜30 μm, better airtightness can be obtained at the joint interface between the metal material and the different material.

即ち、気密性保持溝の所定ピッチが20μm未満であると気密性保持溝の形成が困難になってコスト高となり、一方、気密性保持溝の所定ピッチが200μmを超えるとピッチが大きすぎて気密性保持溝の本数が限られるため優れた気密性を得ることが困難となる。
また、気密性保持溝の所定深さが2μm未満であると深さが小さすぎて異種部材との接合状態によっては接合境界面に隙が生じる可能性が残るため優れた気密性を得ることが困難となる。一方、気密性保持溝の所定深さが30μmを超えると気密性保持溝の形成が困難になってコスト高となる。
したがって、気密性保持溝のピッチは20μm〜200μmの範囲内、深さは2μm〜30μmの範囲内とすることが好ましい。
That is, if the predetermined pitch of the airtight holding grooves is less than 20 μm, it becomes difficult to form the airtight holding grooves, resulting in high cost. On the other hand, if the predetermined pitch of the airtight holding grooves exceeds 200 μm, the pitch is too large and the airtightness is increased. It is difficult to obtain excellent airtightness due to the limited number of the retaining grooves.
In addition, if the predetermined depth of the airtight holding groove is less than 2 μm, the depth is too small, and there is a possibility that a gap is generated at the joint boundary surface depending on the joint state with the dissimilar member, so that excellent airtightness can be obtained. It becomes difficult. On the other hand, if the predetermined depth of the airtight holding groove exceeds 30 μm, it becomes difficult to form the airtight holding groove and the cost is increased.
Therefore, the pitch of the airtight holding grooves is preferably in the range of 20 μm to 200 μm and the depth is preferably in the range of 2 μm to 30 μm.

なお、所定ピッチが50μm〜150μmの範囲内であり、所定深さが5μm〜20μmの範囲内であることによって、より確実にかつ低コストで優れた気密性が得られるため、より好ましい。   In addition, since the predetermined pitch is in the range of 50 μm to 150 μm and the predetermined depth is in the range of 5 μm to 20 μm, it is more preferable because excellent airtightness can be obtained more reliably and at low cost.

請求項5の発明に係る金属複合接合体のシール構造の製造方法においては、まず気密性保持溝形成工程で金属材料と異種材料との接合境界面において金属材料の表面に、接合境界面の気密性を必要とする方向と交差する方向に沿って所定ピッチで所定数の環状の気密性保持溝が形成され、続いて接合工程で気密性保持溝が形成された金属材料の表面に異種材料が接合される。
これによって、金属材料と異種材料との接合面が接合境界面の気密性を必要とする方向に沿って凹凸が連続する面となり、気密性保持溝が形成される前と比較して接合境界面における気体、液体が侵入するための経路が飛躍的に長くなるため、気密性及び液密性が大幅に向上する。
In the manufacturing method of the seal structure of the metal composite joined body according to the invention of claim 5, first, in the airtight holding groove forming step, the airtightness of the joint interface is formed on the surface of the metal material at the joint interface between the metal material and the different material. A predetermined number of annular airtight holding grooves are formed at a predetermined pitch along a direction intersecting the direction that requires the property, and then a different material is formed on the surface of the metal material on which the airtight holding grooves are formed in the joining process. Be joined.
As a result, the joint surface between the metal material and the dissimilar material becomes a surface where irregularities continue along the direction that requires airtightness of the joint boundary surface, and the joint boundary surface compared to before the airtight holding groove is formed. Since the path through which the gas and liquid intrude significantly increases, the air tightness and liquid tightness are greatly improved.

このようにして、接合境界面における気体、液体が侵入するための経路を閉ざすことによって、気体、液体が非常に流れ難くなって、金属材料と合成樹脂材料等の異種材料との高い気密性及び液密性を確保することができる。   In this way, by closing the path for the gas and liquid to enter at the joint interface, the gas and liquid are very difficult to flow, and the high airtightness between the metal material and the dissimilar material such as the synthetic resin material and Liquid tightness can be secured.

請求項6の発明に係る金属複合接合体のシール構造の製造方法においては、異種材料は合成樹脂材料であり、接合工程は合成樹脂材料の射出成形工程であることから、請求項5に係る発明の効果に加えて、流動性が高い合成樹脂材料の特長によって気密性保持溝内に合成樹脂材料が入り、金属材料と異種材料とがより緻密に接合されるとともに、射出成形によって接合されることから、金属複合体を量産することが可能となる。   In the manufacturing method of the seal structure of the metal composite joined body according to the invention of claim 6, the dissimilar material is a synthetic resin material, and the joining process is an injection molding process of the synthetic resin material. In addition to the effects of the above, the synthetic resin material enters the airtight holding groove due to the characteristics of the synthetic resin material with high fluidity, and the metal material and the dissimilar material are more closely joined together, and are joined by injection molding. Therefore, the metal composite can be mass-produced.

請求項7の発明に係る金属複合接合体のシール構造の製造方法においては、気密性保持溝形成工程が金属材料のレーザ加工工程であることから、請求項5または請求項6に係る発明の効果に加えて、処理工程が少なく自動化が容易で生産性が高い金属複合接合体のシール構造の製造方法となり、より低コストで金属複合接合体を量産することができる。   In the manufacturing method of the seal structure of the metal composite joined body according to the invention of claim 7, since the airtight holding groove forming step is a laser processing step of the metal material, the effect of the invention according to claim 5 or claim 6 is achieved. In addition, the manufacturing method of the seal structure of the metal composite joined body that has few processing steps, is easy to automate, and has high productivity can be mass-produced at a lower cost.

請求項8の発明に係る金属複合接合体のシール構造の製造方法においては、気密性保持溝は、所定ピッチが20μm〜200μmの範囲内であり、所定深さが2μm〜30μmの範囲内であることから、請求項5乃至請求項7に係る発明の効果に加えて、より優れた気密性を低コストで得ることができる金属複合接合体のシール構造の製造方法となる。   In the manufacturing method of the metal composite joined body seal structure according to the invention of claim 8, the airtight holding grooves have a predetermined pitch in the range of 20 μm to 200 μm and a predetermined depth in the range of 2 μm to 30 μm. Therefore, in addition to the effects of the inventions according to claims 5 to 7, it is a method for producing a seal structure of a metal composite joined body that can obtain better airtightness at low cost.

本発明者は、より優れた気密性を得ることができる気密性保持溝のピッチ及び深さについて、鋭意実験研究を重ねた結果、所定ピッチを20μm〜200μmの範囲内とし、所定深さを2μm〜30μmの範囲内とすることによって、金属材料と異種材料との接合境界面においてより優れた気密性が得られることを見出したものである。   The inventor has conducted extensive experimental research on the pitch and depth of the airtight holding grooves capable of obtaining better airtightness. As a result, the predetermined pitch is set within a range of 20 μm to 200 μm, and the predetermined depth is set to 2 μm. It has been found that by setting the thickness within the range of ˜30 μm, better airtightness can be obtained at the joint interface between the metal material and the different material.

即ち、気密性保持溝の所定ピッチが20μm未満であると気密性保持溝の形成が困難になってコスト高となり、一方、気密性保持溝の所定ピッチが200μmを超えるとピッチが大き過ぎて優れた気密性を得ることが困難となる。
また、気密性保持溝の所定深さが2μm未満であると深さが小さ過ぎて優れた気密性を得ることが困難となり、一方、気密性保持溝の所定深さが30μmを超えると気密性保持溝の形成が困難になってコスト高となる。
したがって、気密性保持溝のピッチは20μm〜200μmの範囲内、深さは2μm〜30μmの範囲内とすることが好ましい。
That is, if the predetermined pitch of the airtight holding grooves is less than 20 μm, it becomes difficult to form the airtight holding grooves, resulting in high cost. On the other hand, if the predetermined pitch of the airtight holding grooves exceeds 200 μm, the pitch is too large and excellent. It becomes difficult to obtain the airtightness.
Further, if the predetermined depth of the airtight holding groove is less than 2 μm, it is difficult to obtain excellent airtightness because the depth is too small, while if the predetermined depth of the airtight holding groove exceeds 30 μm, the airtightness The formation of the holding groove becomes difficult and the cost is increased.
Therefore, the pitch of the airtight holding grooves is preferably in the range of 20 μm to 200 μm and the depth is preferably in the range of 2 μm to 30 μm.

なお、所定ピッチが50μm〜150μmの範囲内であり、所定深さが5μm〜20μmの範囲内であることによって、より確実にかつ低コストで優れた気密性が得られるため、より好ましい。   In addition, since the predetermined pitch is in the range of 50 μm to 150 μm and the predetermined depth is in the range of 5 μm to 20 μm, it is more preferable because excellent airtightness can be obtained more reliably and at low cost.

図1(a)は本発明の実施例1に係る金属複合接合体のシール構造を金属材料と異種材料とに分けて示す試料の模式的な斜視図、(b)は金属複合体の内部構造を示す縦断面図である。FIG. 1A is a schematic perspective view of a sample showing a sealing structure of a metal composite joined body according to Example 1 of the present invention divided into a metal material and a different material, and FIG. 1B is an internal structure of the metal composite. FIG. 図2は本発明の実施例1に係る金属複合接合体のシール構造の製造方法を示すフローチャートである。FIG. 2 is a flowchart showing a method for manufacturing a seal structure of a metal composite joined body according to Embodiment 1 of the present invention. 図3(a)は本発明の実施例1に係る金属複合接合体のシール構造を構成する金属材料のレーザ加工前の表面粗さを示す測定データ、(b)はレーザ加工後の表面粗さを示す測定データである。FIG. 3A shows measurement data indicating the surface roughness before laser processing of the metal material constituting the seal structure of the metal composite joined body according to Example 1 of the present invention, and FIG. 3B shows the surface roughness after laser processing. It is the measurement data which shows. 図4は本発明の実施例1に係る金属複合接合体のシール構造の気密性試験の方法を示す模式図である。FIG. 4 is a schematic view showing a method of an airtightness test of a seal structure of a metal composite joined body according to Example 1 of the present invention. 図5(a)は本発明の実施例2に係る金属複合接合体のシール構造を示す縦断面図、(b)は本発明の実施例3に係る金属複合接合体のシール構造を示す縦断面図である。FIG. 5A is a longitudinal sectional view showing a seal structure of a metal composite joined body according to Embodiment 2 of the present invention, and FIG. 5B is a longitudinal sectional view showing a seal structure of a metal composite joined body according to Embodiment 3 of the present invention. FIG. 図6(a)は本発明の実施例4に係る金属複合接合体のシール構造を示す縦断面図、(b)は本発明の実施例5に係る金属複合接合体のシール構造を示す縦断面図、(c)は本発明の実施例6に係る金属複合接合体のシール構造を示す縦断面図である。6A is a longitudinal sectional view showing a seal structure of a metal composite joined body according to Example 4 of the present invention, and FIG. 6B is a longitudinal sectional view showing a seal structure of a metal composite joined body according to Example 5 of the present invention. FIG. 6C is a longitudinal sectional view showing a seal structure of a metal composite joined body according to Example 6 of the present invention.

本発明に係る金属複合接合体のシール構造及びその製造方法を実施するためには、金属材料と、合成樹脂等の異種材料と、金属材料の表面に気密性保持溝を形成する方法とが必要となる。   In order to carry out the sealing structure of the metal composite joined body and the manufacturing method thereof according to the present invention, a metal material, a dissimilar material such as a synthetic resin, and a method of forming an airtight holding groove on the surface of the metal material are required. It becomes.

ここで、金属材料としては、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、鉄、鋼、ステンレス、銅、銅合金、ベリリウム、ベリリウム合金、ニッケル、ニッケル合金、チタン、チタン合金等を用いることができるが、軽量化を目的とする用途には、アルミニウム、マグネシウム、ベリリウム、チタン等の軽金属及びそれらの合金が好ましい。   Here, aluminum, aluminum alloy, magnesium, magnesium alloy, iron, steel, stainless steel, copper, copper alloy, beryllium, beryllium alloy, nickel, nickel alloy, titanium, titanium alloy, etc. can be used as the metal material. For light-weight applications, light metals such as aluminum, magnesium, beryllium, titanium, and alloys thereof are preferable.

また、異種材料としては、合成樹脂、天然ゴム及び合成ゴムを含むエラストマー等があるが、成形性とコストと軽量性の点からは合成樹脂材料が好ましい。
合成樹脂材料としては、汎用樹脂、エンプラ、スーパーエンプラ等の熱可塑性樹脂、及び熱硬化性樹脂を用いることができる。
In addition, examples of the different materials include synthetic resins, natural rubber, and elastomers including synthetic rubber, but synthetic resin materials are preferable from the viewpoint of moldability, cost, and lightness.
As the synthetic resin material, thermoplastic resins such as general-purpose resins, engineering plastics, and super engineering plastics, and thermosetting resins can be used.

汎用樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、ABS樹脂、AS樹脂等がある。
エンプラとしては、ポリアミド(ナイロン等)、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ガラス繊維強化ポリエチレンテレフタレート、環状ポリオレフィン等がある。
スーパーエンプラとしては、ポリフェニレンスルフィド(PPS)、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアレート、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド、ポリアミドイミド等がある。
そして、熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド等がある。
General-purpose resins include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene, polyvinyl acetate, acrylic resin, ABS resin, AS resin, and the like.
Engineering plastics include polyamide (such as nylon), polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), glass fiber reinforced polyethylene terephthalate, and cyclic polyolefin.
Super engineering plastics include polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone, polyether sulfone, amorphous polyarate, liquid crystal polymer, polyether ether ketone (PEEK), thermoplastic polyimide, polyamideimide, and the like. .
Examples of the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, and thermosetting polyimide.

更に、気密性保持溝を形成する方法としては、レーザ加工、放電加工、フライス等の切削加工等があるが、加工効率及び設計の自由度の点からはレーザ加工(レーザ表面処理)が好ましい。
レーザ加工に用いられるレーザ光発振装置としては、YAG(Nd:YAG)レーザ、YVO4(Nd:YVO4 )レーザ、CO2 レーザ、エキシマレーザ、アルゴンレーザ等があるが、金属材料を加工するものであることから、波長1.064μmのYVO4レーザ、波長1.064μmのYAGレーザ、波長10.6μmのCO2 レーザ等を用いることが好ましい。
Further, as a method of forming the airtight holding groove, there are laser processing, electric discharge processing, cutting processing such as milling and the like, but laser processing (laser surface treatment) is preferable from the viewpoint of processing efficiency and design freedom.
Laser light oscillators used for laser processing include YAG (Nd: YAG) laser, YVO4 (Nd: YVO 4 ) laser, CO 2 laser, excimer laser, argon laser, etc., which process metal materials. Therefore, it is preferable to use a YVO4 laser with a wavelength of 1.064 μm, a YAG laser with a wavelength of 1.064 μm, a CO 2 laser with a wavelength of 10.6 μm, or the like.

以下、本発明に係る金属複合接合体のシール構造及びその製造方法の具体的な構成について試料を用いた実施例について、図面を参照しつつ説明する。   Hereinafter, examples using a sample will be described with reference to the drawings with regard to the specific structure of the sealing structure of the metal composite joined body and the manufacturing method thereof according to the present invention.

[実施例1]
まず、本発明に係る金属複合接合体のシール構造及びその製造方法の実施例1について、図1乃至図4を参照して説明する。
[Example 1]
First, Embodiment 1 of the metal composite joined body sealing structure and the manufacturing method thereof according to the present invention will be described with reference to FIGS.

最初に、本実施例1に係る金属複合接合体のシール構造の構成について、図1を参照して説明する。
図1(a)及び図1(b)に示されるように、本実施例1に係る金属複合接合体1の試料は、金属部材2としてアルミニウム合金2aと、異種部材3としての合成樹脂材料3aからなる複合体である。本実施例1においては、金属部材2としてアルミニウム合金2aを使用し、合成樹脂材料3aとして具体的には、スーパーエンプラである融点280℃のポリフェニレンスルフィド(以下、「PPS」とも略する。)を用いた。
First, the structure of the seal structure of the metal composite joined body according to the first embodiment will be described with reference to FIG.
As shown in FIG. 1A and FIG. 1B, a sample of the metal composite joined body 1 according to the first embodiment includes an aluminum alloy 2 a as the metal member 2 and a synthetic resin material 3 a as the dissimilar member 3. It is a complex consisting of In Example 1, an aluminum alloy 2a is used as the metal member 2, and specifically, the synthetic resin material 3a is a super engineering plastic having a melting point of 280 ° C. (hereinafter also abbreviated as “PPS”). Using.

図1(a)に示されるように、金属部材2としてのアルミニウム合金材2aは、長さ35mm×幅15mm×厚さ3mmの直方体の試料とした。合成樹脂材としてのPPS(ポリフェニレンスルフィド)材からなる異種部材3との接合境界面4において、接合境界面4の気密性を必要とする方向Lと垂直に交差する方向Sに沿って1周する気密性保持溝5が気密性を必要とする方向Lに複数本形成されている。
図1(b)に示されるように、かかるアルミニウム合金材2aがPPS材の異種部材3が溶融接合(本実施例1では金属部材2をインサートし射出成形によって異種部材3と一体化している。)することで、本実施例1に係る金属複合接合体1が構成される。
As shown in FIG. 1A, the aluminum alloy material 2a as the metal member 2 was a rectangular parallelepiped sample having a length of 35 mm, a width of 15 mm, and a thickness of 3 mm. In the joint boundary surface 4 with the dissimilar member 3 made of PPS (polyphenylene sulfide) material as a synthetic resin material, it makes one round along the direction S perpendicular to the direction L that requires airtightness of the joint boundary surface 4. A plurality of airtight holding grooves 5 are formed in the direction L that requires airtightness.
As shown in FIG. 1 (b), the dissimilar member 3 made of the PPS material of the aluminum alloy material 2a is melt-bonded (in the first embodiment, the metal member 2 is inserted and integrated with the dissimilar member 3 by injection molding. ), The metal composite joined body 1 according to the first embodiment is configured.

この実施例の試料は、電子機器の筺体(ハウジング)を構成する一部としての判断するものであるが、本発明を実施する場合には、この実施例の試料の形態に拘束されるものではなく、また、電子機器の筺体に限定されるものではなく、コネクター或いは開閉蓋、プリント基板等の部品とすることもできる。
本発明の金属複合接合体のシール構造は、接合させた金属部材2と異種部材3との対向する接合境界面4の接合に有効である。
The sample of this example is determined as a part of the housing (housing) of the electronic device. However, when the present invention is implemented, the sample is not limited to the form of the sample of this example. In addition, the present invention is not limited to the housing of the electronic device, and may be a connector, a component such as an opening / closing lid, or a printed board.
The seal structure of the metal composite joined body of the present invention is effective for joining the joining boundary surface 4 between the joined metal member 2 and the dissimilar member 3.

次に、本実施例1に係る金属複合接合体のシール構造の製造方法について、図2の製造フローチャートを参照して説明する。   Next, the manufacturing method of the seal structure of the metal composite joined body according to the first embodiment will be described with reference to the manufacturing flowchart of FIG.

図2に示されるように、まず、金属部材2としてのアルミニウム合金2aが、図1(a)に示される形状及び大きさを有するアルミニウム合金材2aに切削加工される切削加工工程が実施され(ステップS1)、次に表面に付着した切削油等が洗浄されて(ステップS2)、乾燥される(ステップS3)。
続いて、長さ35mm×幅15mm×厚さ3mmの直方体の試料の四面の全周に連続して一周するレーザ加工による表面処理が施されるレーザ加工工程が実施される(ステップS4)。このステップS4のレーザ加工工程は、気密性保持溝形成工程に相当する。
なお、試料の四面のレーザ加工による表面処理は、連続して一周することが好ましいが、一部が切れていてもよい。しかし、気密性を必要とする方向に対して、気密性保持溝5の当該切れ目が一直線状にならないようにする必要がある。また、螺旋状とするのも好ましくない。
念のため付言すると、本実施の形態のアルミニウム合金材2aは、気密性が必要とされる方向Lの中心軸に沿って回転するようにチャックで保持し、アルミニウム合金材2aの4面に対して連続してレーザを一周毎に照射し、計50回の気密性保持溝5を形成したもので、100μmピッチで深さ10μmの50本の気密性保持溝5となっている。
As shown in FIG. 2, first, a cutting process is performed in which the aluminum alloy 2a as the metal member 2 is cut into the aluminum alloy material 2a having the shape and size shown in FIG. Next, the cutting oil or the like adhering to the surface is washed (step S2) and dried (step S3).
Subsequently, a laser processing step is performed in which surface processing is performed by laser processing that makes one round continuously around the entire circumference of the four surfaces of a rectangular parallelepiped sample having a length of 35 mm, a width of 15 mm, and a thickness of 3 mm (step S4). The laser processing step in step S4 corresponds to an airtight holding groove forming step.
In addition, although it is preferable that the surface treatment by the laser processing of the four surfaces of the sample makes one round continuously, a part may be cut off. However, it is necessary to prevent the cut of the airtight holding groove 5 from being straight with respect to the direction that requires airtightness. Moreover, it is not preferable to use a spiral shape.
As a precaution, the aluminum alloy material 2a of the present embodiment is held by a chuck so as to rotate along the central axis in the direction L where airtightness is required. The laser is continuously irradiated every round to form 50 times of the airtight holding grooves 5 in total, and 50 airtight holding grooves 5 having a pitch of 100 μm and a depth of 10 μm are formed.

即ち、アルミニウム合金材2aがPPS材からなる合成樹脂材料3aに対向する部分である接合境界面4の範囲において、一面ごとに50回のレーザスキャンが行われて、100μmピッチで深さ5μm〜15μmの50本の気密性保持溝5が形成される。なお、4面に行う50回のレーザスキャンは、50本の環状の気密性保持溝5となる。
本実施例の試料の作成においては、レーザ光発振装置としては、キーエンス製のYVO4レーザ・MD−V9900A型(波長1.064μm・出力13W)を用いて、レーザパワー80%、スキャンスピード80mm/s、四面加工時間36.2秒の加工条件で実施した。
That is, in the range of the joint boundary surface 4 where the aluminum alloy material 2a is opposed to the synthetic resin material 3a made of PPS material, laser scanning is performed 50 times for each surface, and the depth is 5 μm to 15 μm at a pitch of 100 μm. The 50 airtight holding grooves 5 are formed. In addition, 50 laser scans performed on four surfaces result in 50 annular airtight holding grooves 5.
In the preparation of the sample of this example, as a laser beam oscillation device, a YVO4 laser / MD-V9900A type (wavelength 1.064 μm / output 13 W) manufactured by Keyence was used, laser power 80%, scan speed 80 mm / s. The four-side processing time was 36.2 seconds.

レーザ加工工程の前後のアルミニウム合金材2aの表面状態について、図3を参照して説明する。
図3(a)はレーザ加工前のアルミニウム合金材2aの表面粗さを示すデータである。レーザ加工前のアルミニウム合金材2aは、極めて平滑な表面を有していることが分かる。これに対して、レーザ加工後のアルミニウム合金材2aの表面粗さを示す図3(b)から明らかなように、レーザ加工によって、深さ15μm〜20μmの気密性保持溝5が形成されている。また、レーザ加工の場合には、切削した溝の金属が試料の上面で最大+20μmの変化があり、気密性保持溝5の材料が溶射されたかの如く、切削加工面の上に肉盛りされていることが分かる。したがって、気密性保持溝5の溝の深さが実質的に大きくなっているから、金属部材2を異種部材3に一体に射出成形する際には、当該表面積が大きいので接合性が良好であった。
The surface state of the aluminum alloy material 2a before and after the laser processing step will be described with reference to FIG.
FIG. 3A is data showing the surface roughness of the aluminum alloy material 2a before laser processing. It can be seen that the aluminum alloy material 2a before laser processing has a very smooth surface. On the other hand, as is apparent from FIG. 3B showing the surface roughness of the aluminum alloy material 2a after laser processing, the airtight holding groove 5 having a depth of 15 μm to 20 μm is formed by laser processing. . In the case of laser processing, the metal of the cut groove has a maximum change of +20 μm on the upper surface of the sample, and is piled on the cut surface as if the material of the airtight holding groove 5 was sprayed. I understand that. Therefore, since the depth of the airtight holding groove 5 is substantially increased, when the metal member 2 is integrally formed by injection molding with the dissimilar member 3, the surface area is large, so that the bonding property is good. It was.

更に、図2において、接合工程でレーザ加工された金属部材2としてのアルミニウム合金材2aが射出成形金型内にセットされ、合成樹脂材料3aが射出されて開口3bを含む異種部材3が形成される(ステップS5)。この射出成形によって合成樹脂材料3aの開口3bにアルミニウム合金材2aが接合され、気密性及び液密性が必要とされる方向(即ち、連続して一周する気密性保持溝5に垂直に交差する方向)に沿った接合面が細かい凹凸の連続する面となって、本実施例1に係る金属複合接合体1の接合境界面4が得られる。   Further, in FIG. 2, an aluminum alloy material 2a as a metal member 2 laser-processed in the joining process is set in an injection mold, and a synthetic resin material 3a is injected to form a heterogeneous member 3 including an opening 3b. (Step S5). By this injection molding, the aluminum alloy material 2a is joined to the opening 3b of the synthetic resin material 3a, and perpendicularly intersects the airtight holding groove 5 in a direction in which airtightness and liquid tightness are required (that is, the continuous airtight holding groove 5). The joining surface along the direction) becomes a continuous surface with fine irregularities, and the joining boundary surface 4 of the metal composite joined body 1 according to the first embodiment is obtained.

このように、接合境界面4を気密性が必要とされる方向Lにのみ連続して個々に一周する複数の凹凸とすることで気密性は良好になる。その理由を以下に述べる。
金属部材2に気密性保持溝5を一本形成すると気密性保持溝5の深さ方向である立面の2面と底面の1面の計3面が異種部材3との接合境界面4に新たな境界面として気密性が必要とされる方向に追加されることになる。そして立面の2面は底面及び気密性保持面5を形成する金属部材2の表面とは方向が異なっている。そして、気密性保持溝5は気密性が必要とされる方向Lに複数本形成されている。したがって、新たな境界面が6面以上、そのうち金属部材2の表面とは方向が異なる立面は4面以上が新たに接合境界面4に形成されていることになる。このように金属部材2と異種部材3との接合面を多く配することで、仮に接合面中1面の密着性が悪くなり流体の侵入が発生したときでも、他の多くの気密性保持溝5で形成される境界面が流体の侵入を阻止し、気密性の確保が可能となる。特に、本発明においては、接合境界面4の方向Lが立面の方向と底面及び金属部材2の表面方向が異なるようになっている。言い換えれば、連続した凹凸面になっている。このように接合境界面4の方向を繰り返し変えることにより、仮に、一方向に接合境界面4の密着性を悪化させる原因があったとしても他方向の接合境界面4の密着性は維持ができ、その結果、気密性を確保できるような構造になっている。また、気密性が必要とされる方向Lに対し接合境界面4を凹凸形状にすることで接合面積が増して接合力が向上することも気密性確保に役立っている。
Thus, airtightness becomes favorable by making the joining boundary surface 4 into a plurality of irregularities that continuously make a round in the direction L where airtightness is required. The reason is described below.
When one airtight holding groove 5 is formed in the metal member 2, a total of three surfaces, that is, a vertical surface and a bottom surface, which are the depth direction of the airtight holding groove 5, are the joint boundary surface 4 with the dissimilar member 3. As a new boundary surface, it is added in the direction where airtightness is required. The two surfaces of the upright surfaces are different in direction from the surface of the metal member 2 forming the bottom surface and the airtight holding surface 5. A plurality of airtight holding grooves 5 are formed in the direction L where airtightness is required. Therefore, six or more new boundary surfaces, of which four or more elevation surfaces having different directions from the surface of the metal member 2 are newly formed on the bonding boundary surface 4. In this way, by providing a large number of joint surfaces between the metal member 2 and the dissimilar member 3, even if the adhesion of one of the joint surfaces deteriorates and fluid intrusion occurs, many other airtight holding grooves are formed. The boundary surface formed by 5 prevents the intrusion of the fluid, and airtightness can be ensured. In particular, in the present invention, the direction L of the joint boundary surface 4 is different from the direction of the vertical surface and the surface direction of the bottom surface and the metal member 2. In other words, it is a continuous uneven surface. By repeatedly changing the direction of the bonding boundary surface 4 in this way, even if there is a cause of deteriorating the adhesion of the bonding boundary surface 4 in one direction, the adhesion of the bonding boundary surface 4 in the other direction can be maintained. As a result, the airtightness can be secured. In addition, it is also useful for securing airtightness that the joining area is increased and the joining force is improved by making the joining boundary surface 4 uneven in the direction L in which airtightness is required.

特に、レーザ加工の場合には、切削した気密性保持溝5の金属が厚さ方向の変化となって現れ、気密性保持溝5の材料が溶射されたかの如く切削加工面の上に肉盛りされているから、気密性保持溝5の溝の深さが実質的に大きくなり、接合される面積が広くなり、かつ、金属部材2と異種部材3との接合境界面4は接合されて、流体の移動が阻止とれるから、より良好なシール性が得られる。金属複合接合体1の気密性について、図4に示されるような気密性試験装置10を用いて試験を実施した。   In particular, in the case of laser processing, the cut metal of the airtight holding groove 5 appears as a change in the thickness direction, and is deposited on the cut surface as if the material of the airtight holding groove 5 is sprayed. Therefore, the depth of the airtight holding groove 5 is substantially increased, the area to be joined is increased, and the joining boundary surface 4 between the metal member 2 and the dissimilar member 3 is joined, so that the fluid Therefore, better sealing performance can be obtained. The airtightness of the metal composite joined body 1 was tested using an airtightness test apparatus 10 as shown in FIG.

即ち、気密容器本体11の上部開口部12に金属複合接合体1をセットして、その上から押圧板13を乗せ、金属複合接合体1の下にパッキン14及びOリング15をセットして複数本のボルト16で締め付けた。そして、下部開口部17から圧縮空気を注入することによって、金属複合接合体1の金属部材2と異種部材3との間からの空気洩れの有無を確認した。
結果は、0.5MPaの圧縮空気を30秒間注入しても空気洩れは全くなく、金属複合接合体1の金属部材2と異種部材3とは、極めて高い気密性及び液密性を保持して接合されていることが明らかである。
That is, the metal composite joined body 1 is set in the upper opening 12 of the airtight container body 11, the pressing plate 13 is placed thereon, and the packing 14 and the O-ring 15 are set under the metal composite joined body 1. The bolt 16 was tightened. Then, the presence or absence of air leakage from between the metal member 2 and the dissimilar member 3 of the metal composite joined body 1 was confirmed by injecting compressed air from the lower opening 17.
As a result, even when 0.5 MPa of compressed air was injected for 30 seconds, there was no air leakage, and the metal member 2 and the dissimilar member 3 of the metal composite joined body 1 maintained extremely high airtightness and liquid tightness. It is clear that they are joined.

このようにして、本実施例1に係る金属複合接合体のシール構造及びその製造方法においては、気密性保持溝5が形成される前と比較して接合境界面4における気密性の高い接合が得られるとともに、金属部材2と異種部材3との接合境界面4の気密性を必要とする方向と交差する方向に沿って金属部材2の表面全周に所定ピッチで所定数の環状の気密性保持溝5を形成し、その気密性保持溝5との組み合わせ数を多くしているから、仮に、一分の密着性が維持できなくなっていても、気密性を必要とする方向の気密性保持溝5が複数設けてあるから、複数の気密性保持溝5が幾段にも形成され、接合境界面4の高い気密性及び液密性を確保することができる。   Thus, in the metal composite joined body seal structure and the manufacturing method thereof according to the first embodiment, the joint interface 4 has higher airtightness compared to before the airtight holding groove 5 is formed. And a predetermined number of annular airtight properties at a predetermined pitch around the entire surface of the metal member 2 along a direction intersecting a direction that requires airtightness of the joint interface 4 between the metal member 2 and the dissimilar member 3. Since the holding grooves 5 are formed and the number of combinations with the airtight holding grooves 5 is increased, even if the adhesion for one minute cannot be maintained, the airtightness holding in the direction that requires airtightness is maintained. Since a plurality of grooves 5 are provided, a plurality of airtight holding grooves 5 are formed in stages, and high airtightness and liquid tightness of the joining interface 4 can be ensured.

[実施例2]
次に、本発明の実施例2に係る金属複合接合体のシール構造について、図5(a)を参照して説明する。図5(a)に示されるように、本実施例2に係る金属複合接合体1Aは、合成樹脂材料としての平板状のポリフェニレンスルフィド(PPS)材からなる異種部材3Aを、2枚の平板状の金属部材2Aとしてのアルミニウム合金材2aが貫通した構成を有している。
そして、2枚の平板状のアルミニウム合金材2aの四面には、それぞれ周囲に環状に、連続して気密性保持溝5Aがレーザ加工によって形成されている。
図5(a)に示されるように、アルミニウム合金材2aからなる金属部材2Aが射出成形されるPPS材からなる異種部材3Aと一体に接合されることによって、本実施例2に係る金属複合接合体1Aが構成される。
[Example 2]
Next, the seal structure of the metal composite joined body according to Example 2 of the present invention will be described with reference to FIG. As shown in FIG. 5 (a), the metal composite joined body 1A according to Example 2 includes two flat plate-like members 3A made of a flat polyphenylene sulfide (PPS) material as a synthetic resin material. The aluminum member 2a as the metal member 2A is penetrated.
Then, on the four surfaces of the two flat aluminum alloy materials 2a, an airtight holding groove 5A is continuously formed in an annular shape around each by laser processing.
As shown in FIG. 5 (a), a metal member 2A made of an aluminum alloy material 2a is joined integrally with a dissimilar member 3A made of a PPS material to be injection-molded, whereby a metal composite joint according to the second embodiment. A body 1A is constructed.

即ち、アルミニウム合金材からなる金属部材2Aが射出成形金型内にセットされてPPS材からなる異種部材3Aと接触する部分である接合境界面4Aの範囲において、接合境界面4Aの気密性を必要とする方向と交差する方向に沿ってレーザスキャンを行い、100μmピッチで深さ5μm〜15μmの気密性保持溝5Aが形成される。   That is, the airtightness of the joining boundary surface 4A is required in the range of the joining boundary surface 4A, which is a portion where the metal member 2A made of an aluminum alloy material is set in the injection mold and contacts the dissimilar member 3A made of the PPS material. A laser scan is performed along a direction intersecting the direction to form an airtight holding groove 5A having a depth of 5 μm to 15 μm at a pitch of 100 μm.

次に、レーザ加工されたアルミニウム合金材からなる金属部材2Aが射出成形金型内にセットされてPPS材が噴出されて異種部材3Aと一体に成形されて接合する接合工程が実施される。
これによって、金属部材2Aと異種部材3Aとの気密性を必要とする方向に沿って金属部材2Aの接合境界面における表面を一周する気密性保持溝5Aを、気密性を必要とする方向に所定のピッチで複数形成している。このように気密性保持溝5Aの数を多くしているから、仮に、少しの気体または液体の侵入に対しても、残りの他の気密性保持溝5A等によって気密性を必要とする方向に遮蔽するから、接合境界面4Aの気密性を確保できる本実施例2に係る金属複合接合体1Aが得られる。
Next, a joining step is performed in which the metal member 2A made of a laser-processed aluminum alloy material is set in an injection mold, the PPS material is ejected, and the member is molded integrally with the dissimilar member 3A.
Thus, the airtight holding groove 5A that goes around the surface at the joint boundary surface of the metal member 2A along the direction that requires airtightness between the metal member 2A and the dissimilar member 3A is predetermined in the direction that requires airtightness. A plurality of pitches are formed. Since the number of the airtight holding grooves 5A is increased in this way, even if a small amount of gas or liquid enters, the remaining airtight holding grooves 5A and the like are in a direction that requires airtightness. Since shielding is performed, the metal composite joined body 1A according to the second embodiment that can ensure the airtightness of the joining interface 4A is obtained.

このようにして、本発明の実施例2に係る金属複合接合体のシール構造及びその製造方法においては、気密性保持溝5Aが形成される前と比較して接合境界面4Aにおける気密性の高い接合が得られるとともに、気体、液体が侵入するための経路が遮断され、気体、液体が非常に洩れ難くなって、金属部材2Aと異種部材3Aとの高い気密性及び液密性を確保することができる。なお、実施例1及び実施例2ではアルミニウム合金の金属部材2、2Aを射出成形金型に予めインサートさせた後、異種部材3、3Aとして合成樹脂材のPPS材を射出成形して一体に接合させた金属複合接合体1、1Aであるが、この方法は、金属部材にステンレス等の溶融温度が高い材料を、異種部材に溶融温度が金属部材より低いアルミニウム等を用いて実施例1及び実施例2と同様に金属部材を金型にインサートさせた後異種材料を流し込むダイキャスティングにも適用できる。   Thus, in the metal composite joined body seal structure and the manufacturing method thereof according to Example 2 of the present invention, the airtightness at the joint interface 4A is higher than before the airtight holding groove 5A is formed. Bonding is obtained, and the path for gas and liquid to enter is blocked, making it difficult for gas and liquid to leak, and ensuring high air tightness and liquid tightness between the metal member 2A and the dissimilar member 3A. Can do. In Examples 1 and 2, the aluminum alloy metal members 2 and 2A are inserted into the injection mold in advance, and then the PPS material made of a synthetic resin material is injection-molded as the dissimilar members 3 and 3A. The metal composite joined body 1 and 1A, but this method was carried out in Example 1 and Example 1 using a material having a high melting temperature, such as stainless steel, for the metal member and aluminum having a melting temperature lower than that of the metal member for the dissimilar member. Similarly to Example 2, the present invention can also be applied to die casting in which a dissimilar material is poured after a metal member is inserted into a mold.

[実施例3]
次に、本発明の実施例3に係る金属複合接合体のシール構造について、図5(b)を参照して説明する。図5(b)に示されるように、本実施例3に係る金属複合接合体1Bは、円筒状のPPS材からなる異種部材3Bの内部に、円板状のアルミニウム合金材からなる金属部材2Bが接合された構成を有している。
そして、円板状のアルミニウム合金材からなる異種部材2Bの外周面には、気密性保持溝5Bがレーザ加工によって形成されている。
図5(b)に示されるように、かかるアルミニウム合金材からなる金属部材2Bが射出成形金型内にセットされ、PPS材からなる異種部材3Bを射出成形して一体に接合することによって、本実施例3に係る金属複合接合体1Bが構成される。
[Example 3]
Next, the seal structure of the metal composite joined body according to Example 3 of the present invention will be described with reference to FIG. As shown in FIG. 5 (b), the metal composite joined body 1B according to the third embodiment includes a metal member 2B made of a disk-shaped aluminum alloy material inside a dissimilar member 3B made of a cylindrical PPS material. Are joined together.
And the airtight holding groove | channel 5B is formed in the outer peripheral surface of the dissimilar member 2B which consists of a disk-shaped aluminum alloy material by laser processing.
As shown in FIG. 5 (b), the metal member 2B made of such an aluminum alloy material is set in an injection mold, and the dissimilar member 3B made of a PPS material is injection-molded and integrally joined. A metal composite joined body 1B according to Example 3 is configured.

即ち、金属部材2Bが異種部材3Bと接触する部分である接合境界面4Bの範囲において、接合境界面4Bの気密性を必要とする方向と交差する方向に沿ってレーザスキャンを行い、100μmピッチで深さ5μm〜15μmの気密性保持溝5Bが形成される。
次に、レーザ加工された金属部材2Bが異種部材3Bとされる接合工程が実施される。そして、レーザ加工された金属部材2Bが射出成形金型内にセットされて異種部材3Bが射出成形される、所謂インサート成形である樹脂成形工程が実施される。なお、レーザ加工条件及び射出成形条件は、上記実施例1と同様とした。
これによって、溶融状態の異種部材3Bが気密性保持溝5Bに入り込んで、金属部材2Bと異種部材3Bとが隙間なく接合され、本実施例3に係る金属複合接合体1Bが得られる。
That is, in the range of the joint boundary surface 4B where the metal member 2B is in contact with the dissimilar member 3B, laser scanning is performed along the direction intersecting the direction that requires airtightness of the joint boundary surface 4B, and the pitch is 100 μm. An airtight holding groove 5B having a depth of 5 μm to 15 μm is formed.
Next, a joining step is performed in which the laser-processed metal member 2B is made into the dissimilar member 3B. Then, a resin molding step, which is so-called insert molding, is performed in which the laser-processed metal member 2B is set in an injection mold and the dissimilar member 3B is injection molded. The laser processing conditions and injection molding conditions were the same as those in Example 1 above.
As a result, the dissimilar member 3B in the molten state enters the airtight holding groove 5B, and the metal member 2B and the dissimilar member 3B are joined without a gap, and the metal composite joined body 1B according to the third embodiment is obtained.

このようにして、本発明の実施例3に係る金属複合接合体のシール構造及びその製造方法においては、気密性保持溝5Bが形成される前と比較して接合境界面4Bにおける気密性の高い接合が得られるとともに、気体、液体が侵入するための経路がなくなるので、気体、液体が非常に洩れ難くなって、金属部材2Bと異種部材3Bとの高い気密性及び液密性を確保することができる。   Thus, in the metal composite joined body seal structure and the manufacturing method thereof according to Example 3 of the present invention, the airtightness at the joint interface 4B is higher than before the airtight holding groove 5B is formed. Since joining is obtained and there is no path for gas and liquid to enter, it is very difficult for gas and liquid to leak, ensuring high airtightness and liquid tightness between the metal member 2B and the dissimilar member 3B. Can do.

[実施例4]
次に、本発明の実施例4に係る金属複合接合体のシール構造について、図6(a)を参照して説明する。
図6(a)に示されるように、本実施例4に係る金属複合接合体1Cは、合成樹脂材料としての平板状のPPS材からなる異種部材3Cの2箇所の貫通穴6Cに、2枚の平板状のアルミニウム合金材からなる金属部材2Cが途中まで挿入された構成を有している。
そして、2枚の平板状のアルミニウム合金材からなる金属部材2Cの四面には、それぞれ気密性保持溝5Cがレーザ加工によって形成されている。
図6(a)に示されるように、かかるアルミニウム合金材からなる金属部材2CがPPS材からなる異種部材3Cと一体化することによって、本実施例4に係る金属複合接合体1Cが構成される。
[Example 4]
Next, the seal structure of the metal composite joined body according to Example 4 of the present invention will be described with reference to FIG.
As shown in FIG. 6A, the metal composite joined body 1C according to the fourth embodiment has two pieces in two through holes 6C of a dissimilar member 3C made of a flat PPS material as a synthetic resin material. The metal member 2C made of a flat aluminum alloy material is inserted halfway.
Airtight holding grooves 5C are respectively formed by laser processing on four surfaces of the two metal members 2C made of a flat aluminum alloy material.
As shown in FIG. 6A, the metal member 2C made of the aluminum alloy material is integrated with the dissimilar member 3C made of the PPS material, thereby forming the metal composite joined body 1C according to the fourth embodiment. .

即ち、アルミニウム合金材からなる金属部材2CがPPS材からなる異種部材3Cと接触する部分である接合境界面4Cの範囲において、接合境界面4Cの気密性を必要とする方向と交差する方向に沿ってレーザスキャンして、100μmピッチで深さ5μm〜15μmの気密性保持溝5Cが形成されおり、金属部材2Cが異種部材3Cと接触する部分である接合境界面4Cの範囲において、金属部材2Cの表裏を接合境界面4Cの気密性を必要とする方向と交差する方向に沿ってレーザスキャンして、100μmピッチで深さ5μm〜15μmの気密性保持溝5Cを形成している。   That is, in the range of the joint boundary surface 4C where the metal member 2C made of an aluminum alloy material is in contact with the dissimilar member 3C made of the PPS material, along the direction intersecting the direction that requires the airtightness of the joint boundary surface 4C. By laser scanning, an airtight holding groove 5C having a depth of 5 μm to 15 μm is formed at a pitch of 100 μm, and within the range of the joint boundary surface 4C where the metal member 2C is in contact with the dissimilar member 3C, The front and back surfaces are laser-scanned along a direction intersecting the direction that requires airtightness of the joint boundary surface 4C to form an airtight holding groove 5C having a depth of 5 μm to 15 μm at a pitch of 100 μm.

次に、レーザ加工されたアルミニウム合金材からなる金属部材2Cが射出成形金型内にセットされ、PPS材からなる異種部材3Cが射出成形され接合工程が実施される。
このようにして、本発明の実施例4に係る金属複合接合体のシール構造及びその製造方法においては、気密性保持溝5Cが形成される前と比較して接合境界面4Cにおける気密性の高い接合が得られ、気体、液体が侵入できなくなるから、気体、金属材料からなる金属部材2Cと異種部材3Cとの高い気密性及び液密性を確保することができる。
Next, the metal member 2C made of a laser-processed aluminum alloy material is set in an injection mold, and the dissimilar member 3C made of a PPS material is injection-molded to perform a joining process.
Thus, in the metal composite joined body seal structure and the manufacturing method thereof according to Example 4 of the present invention, the airtightness at the joint interface 4C is higher than before the airtight holding groove 5C is formed. Since bonding is obtained and gas and liquid cannot enter, high air tightness and liquid tightness between the metal member 2C made of gas or metal material and the dissimilar member 3C can be ensured.

[実施例5]
次に、本発明の実施例5に係る金属複合接合体のシール構造について、図6(b)を参照して説明する。
図6(b)に示されるように、本実施例5に係る金属複合接合体1Dは、円板状のアルミニウム合金材からなる金属部材2Dの中心に設けられた貫通穴6Dを塞ぐように、円板状の合成樹脂材料としてのPPS材からなる異種部材3Dが接合された構成を有している。
そして、円板状のアルミニウム合金材からなる金属部材2Dの中心に設けられた貫通穴6Dの周囲には、気密性保持溝5Dがレーザ加工によって同心円状に形成されている。
図6(b)に示されるように、かかるアルミニウム合金材からなる金属部材2DがPPS材からなる異種部材3Dと重ね合わせて超音波振動、マイクロ波等を付与して、金属部材2Dに異種部材3Dを溶融させて接合して一体化することによって、本実施例5に係る金属複合接合体1Dが構成される。
[Example 5]
Next, the seal structure of the metal composite joined body according to Example 5 of the present invention will be described with reference to FIG.
As shown in FIG. 6 (b), the metal composite joined body 1D according to the fifth embodiment is configured so as to block the through hole 6D provided at the center of the metal member 2D made of a disk-shaped aluminum alloy material. A dissimilar member 3D made of a PPS material as a disc-shaped synthetic resin material is joined.
An airtight holding groove 5D is concentrically formed by laser processing around a through hole 6D provided at the center of a metal member 2D made of a disk-shaped aluminum alloy material.
As shown in FIG. 6B, the metal member 2D made of the aluminum alloy material is superposed on the dissimilar member 3D made of the PPS material to impart ultrasonic vibration, microwaves, etc., and the dissimilar member is applied to the metal member 2D. By melting and joining 3D and integrating them, a metal composite joined body 1D according to the fifth embodiment is configured.

即ち、アルミニウム合金材からなる金属部材2DがPPS材からなる異種部材3Dと接触する部分である接合境界面4Dの範囲において、接合境界面4Dの気密性を必要とする方向と交差する方向に沿って同心円状にレーザスキャンして、100μmピッチで深さ5μm〜15μmの気密性保持溝5Dが形成されている。
次に、レーザ加工されたアルミニウム合金材からなる金属部材2DにPPS材からなる異種部材3Dを重ね合わせて、超音波振動によって機械的加熱またはマイクロ波を加えることにより金属部材2Dを加熱し、または金属部材2Dを直接ヒーター等の熱源によって加熱することで異種部材3Dの接合境界面が溶融し、金属部材2Dに異種部材3Dが接合されて接合工程が実施される。
これによって、金属部材2Dと異種部材3Dは隙間がなく接合され、金属複合接合体1Dが得られる。
That is, in the range of the joint boundary surface 4D where the metal member 2D made of an aluminum alloy material is in contact with the dissimilar member 3D made of the PPS material, along the direction intersecting the direction that requires airtightness of the joint boundary surface 4D. As a result of the laser scanning concentrically, an airtight holding groove 5D having a depth of 5 μm to 15 μm is formed at a pitch of 100 μm.
Next, the metal member 2D made of a PPS material is superimposed on the metal member 2D made of a laser-processed aluminum alloy material, and the metal member 2D is heated by applying mechanical heating or microwaves by ultrasonic vibration, or By heating the metal member 2D directly with a heat source such as a heater, the joining boundary surface of the dissimilar member 3D is melted, and the dissimilar member 3D is joined to the metal member 2D to perform the joining process.
As a result, the metal member 2D and the dissimilar member 3D are joined without a gap, and a metal composite joined body 1D is obtained.

このようにして、本発明の実施例5に係る金属複合接合体のシール構造及びその製造方法においては、気密性保持溝5Dが形成される前と比較して接合境界面4Dにおける気密性の高い接合が得られるとともに、気体、液体が侵入できなくなるから、金属部材2Dと異種部材3Dとの高い気密性及び液密性を確保することができる。   Thus, in the metal composite joined body seal structure and the manufacturing method thereof according to Example 5 of the present invention, the airtightness at the joint interface 4D is higher than before the airtight holding groove 5D is formed. While joining is obtained and gas and liquid cannot enter, high air tightness and liquid tightness between the metal member 2D and the dissimilar member 3D can be ensured.

[実施例6]
次に、本発明の実施例6に係る金属複合接合体のシール構造について、図6(c)を参照して説明する。
図6(c)に示されるように、本実施例6に係る金属複合接合体1Eは、合成樹脂材料としての円板状のPPS材からなる異種部材3Eの中心に設けられた貫通穴6Eを塞ぐように、円板状のアルミニウム合金材からなる金属部材2Eが接合された構成を有している。
そして、円板状のアルミニウム合金材からなる金属部材2Eの一面には、貫通孔6Eより大きな径を有する気密性保持溝5Eがレーザ加工によって同心円状に形成されている。
図6(c)に示されるように、かかるアルミニウム合金材からなる金属部材2EがPPS材からなる異種部材3Eと一体に接合されることによって、本実施例6に係る金属複合接合体1Eが構成される。この事例も、金属部材2Eと異種部材3Eとの接合は、異種部材3Eの上面に金属部材2Eを載置し、振動溶着によって異種部材3Eの金属部材2E に接する部分を溶融し、接合境界面4Eを隙間なく接着した事例である。
[Example 6]
Next, the seal structure of the metal composite joined body according to Example 6 of the present invention will be described with reference to FIG.
As shown in FIG. 6C, the metal composite joined body 1E according to the sixth embodiment has a through hole 6E provided at the center of a dissimilar member 3E made of a disk-like PPS material as a synthetic resin material. A metal member 2E made of a disk-shaped aluminum alloy material is joined so as to be closed.
An airtight holding groove 5E having a larger diameter than the through hole 6E is concentrically formed on one surface of the metal member 2E made of a disk-shaped aluminum alloy material by laser processing.
As shown in FIG. 6C, the metal member 2E made of the aluminum alloy material is integrally joined with the dissimilar member 3E made of the PPS material, thereby forming the metal composite joined body 1E according to the sixth embodiment. Is done. Also in this example, the metal member 2E and the dissimilar member 3E are joined by placing the metal member 2E on the upper surface of the dissimilar member 3E and melting the portion of the dissimilar member 3E that contacts the metal member 2E by vibration welding. This is an example of 4E bonded without gaps.

即ち、金属部材2Eが異種部材3Eと接触する部分である組付境界面4Eの範囲において、接合境界面4Eの気密性を必要とする方向と交差する円状の気密性保持溝5Eが、気密性を必要とする方向に同心円になるように100μmピッチで、5μm〜15μmの深さにレーザスキャンされて形成される。次に、レーザ加工された金属部材2Eが異種部材3Eの上に実施例6と同様に金属部材2Eが加熱されることで異種部材3Eの接合境界面が溶融し、気密性保持溝5Eに充填されることで接合が成される。
これによって、アルミニウム合金材からなる金属部材2EとPPS材3からなる異種部材Eとが隙間なく接合され、本実施例6に係る金属複合接合体1Eが得られる。
That is, in the range of the assembly boundary surface 4E where the metal member 2E is in contact with the dissimilar member 3E, the circular airtight holding groove 5E intersecting with the direction that requires airtightness of the joint boundary surface 4E It is formed by laser scanning at a pitch of 100 μm and a depth of 5 μm to 15 μm so as to be concentric in a direction that requires the property. Next, the laser-processed metal member 2E is heated on the dissimilar member 3E in the same manner as in the sixth embodiment, so that the joining boundary surface of the dissimilar member 3E is melted and filled into the airtight holding groove 5E. As a result, bonding is achieved.
As a result, the metal member 2E made of an aluminum alloy material and the dissimilar member E made of the PPS material 3 are joined without a gap, and the metal composite joined body 1E according to the sixth embodiment is obtained.

このとき、金属部材2Eと異種部材3Eとの、接合境界面4Eの気密性を必要とする方向に交差する方向に沿って、即ち流体が流動する方向に対し遮蔽する方向に沿って金属部材2Eの接合境界面の表面を一周する気密性保持溝5Eを気密性を必要とする方向、即ち、流体が流動する方向に所定の間隔で形成し、その配設数を多くしているから、複数の気密接保持溝5Eが幾段にも形成されることで流体の流動を阻止でき、仮に少しの気密性保持溝5Eに気体または液体の侵入が生じても、他の気密性保持溝5Eの接合面によって気密性を確保できる。
このようにして、本発明の実施例6に係る金属複合接合体のシール構造及びその製造方法においては、気密性保持溝5Eが形成される前と比較して接合境界面4Eにおける気密性の高い接合が得られるとともに、気体、液体が侵入する経路がなくなるから、金属部材2Eと異種部材3Eとの高い気密性及び液密性を確保することができる。
At this time, the metal member 2E and the dissimilar member 3E are along the direction that intersects the direction that requires airtightness of the joint boundary surface 4E, that is, along the direction that shields the fluid from flowing. Since the airtight holding grooves 5E that circulate around the surface of the joint boundary surface are formed at predetermined intervals in the direction that requires airtightness, that is, the direction in which the fluid flows, the number of the grooves is increased. Since the airtight holding grooves 5E are formed in a number of stages, the flow of fluid can be prevented. Even if a small amount of gas or liquid enters the airtight holding grooves 5E, the other airtight holding grooves 5E Airtightness can be secured by the joint surface.
Thus, in the metal composite joined body seal structure and the manufacturing method thereof according to Example 6 of the present invention, the airtightness at the joint interface 4E is higher than before the airtight holding groove 5E is formed. While joining is obtained and there is no path for gas and liquid to enter, high airtightness and liquid tightness between the metal member 2E and the dissimilar member 3E can be ensured.

本実施例に係る金属複合接合体のシール構造においては、金属部材2,2A,2B,2C,2D,2Eと非金属からなる異種部材3,3A,3B,3C,3D,3Eとを組み付けた金属複合接合体1,1A,1B,1C,1D,1Eのシール構造であって、金属部材2,2A,2B,2C,2D,2Eと異種部材3,3A,3B,3C,3D,3Eとの対向する接合境界面4,4A,4B,4C,4D,4Eにおいて、接合境界面4,4A,4B,4C,4D,4Eの気密性を必要とする方向と交差する方向に沿って金属部材2,2A,2B,2C,2D,2Eの表面に所定ピッチで所定深さの環状の気密性保持溝5,5A,5B,5C,5D,5Eを複数形成し、金属部材2,2A,2B,2C,2D,2Eと異種部材3,3A,3B,3C,3D,3Eを接合することによって、接合境界面4,4A,4B,4C,4D,4Eに気密性を持たせた。   In the seal structure of the metal composite joined body according to the present embodiment, the metal members 2, 2A, 2B, 2C, 2D, 2E and the dissimilar members 3, 3A, 3B, 3C, 3D, 3E made of nonmetal are assembled. The metal composite joined body 1, 1A, 1B, 1C, 1D, 1E has a seal structure, and includes metal members 2, 2A, 2B, 2C, 2D, 2E and dissimilar members 3, 3A, 3B, 3C, 3D, 3E In the joint boundary surfaces 4, 4A, 4B, 4C, 4D, and 4E that face each other, the metal member extends along a direction that intersects the direction that requires airtightness of the joint boundary surfaces 4, 4A, 4B, 4C, 4D, and 4E. A plurality of annular airtight holding grooves 5, 5A, 5B, 5C, 5D and 5E having a predetermined depth and a predetermined pitch are formed on the surfaces of 2, 2A, 2B, 2C, 2D and 2E, and metal members 2, 2A and 2B are formed. , 2C, 2D, 2E and different members 3, 3A, 3B, 3 , By joining 3D, the 3E, bonding interface 4, 4A, gave 4B, 4C, 4D, and airtightness to 4E.

本発明に係る金属複合接合体のシール構造の製造方法において、金属部材2,2A,2B,2C,2D,2Eと異種部材3,3A,3B,3C,3D,3Eとを接合した金属複合接合体1,1A,1B,1C,1D,1Eのシール構造の製造方法であって、金属部材2,2A,2B,2D,2Eと異種部材3,3A,3B,3C,3D,3Eとの対向する接合境界面4,4A,4B,4C,4D,4Eにおいて、接合境界面4,4A,4B,4C,4D,4Eの気密性を必要とする方向と交差する方向に沿って金属部材2,2A,2B,2C,2D,2Eの接合境界面に所定深さの気密性保持溝5,5A,5B,5C,5D,5Eを、気密性を必要とする方向に所定のピッチで形成する気密性保持工程と、気密性保持溝5,5A,5B,5C,5D,5Eが形成された金属部材2,2A,2B,2C,2D,2Eの表面に異種部材3,3A,3B,3C,3D,3Eを接合する接合工程からなるものである。   In the method for manufacturing a seal structure of a metal composite joined body according to the present invention, a metal composite joint obtained by joining metal members 2, 2A, 2B, 2C, 2D, 2E and dissimilar members 3, 3A, 3B, 3C, 3D, 3E. A method for manufacturing a seal structure of bodies 1, 1A, 1B, 1C, 1D, 1E, wherein metal members 2, 2A, 2B, 2D, 2E and opposite members 3, 3A, 3B, 3C, 3D, 3E are opposed to each other In the joining boundary surfaces 4, 4A, 4B, 4C, 4D, 4E, the metal members 2, along the direction intersecting the direction that requires airtightness of the joining boundary surfaces 4, 4A, 4B, 4C, 4D, 4E. An airtight structure in which airtight holding grooves 5, 5A, 5B, 5C, 5D, and 5E having a predetermined depth are formed at predetermined pitches in a direction that requires airtightness at joint boundaries of 2A, 2B, 2C, 2D, and 2E. Holding process and airtight holding grooves 5, 5A, 5B, 5C 5D, 5E are formed metal member 2,2A, 2B, 2C, 2D, different members 3,3A on the surface of the 2E, 3B, 3C, is made of a bonding step of bonding 3D, the 3E.

前述の密接させた金属部材2,2A,2B,2C,2D,2Eと異種部材3,3A,3B,3C,3D,3Eとの対向する接合境界面4,4A,4B,4C,4D,4Eの気密性を必要とする方向と交差する方向に沿って金属部材2,2A,2B,2C,2D,2Eの接合境界面に周状の気密性保持溝5,5A,5B,5C,5D,5Eを気密性を必要とする方向に沿って所定ピッチで複数形成し、気密性保持溝5,5A,5B,5C,5D,5Eに異種部材3,3A,3B,3C,3D,3Eを溶融させて侵入させることで接合するため、接合境界面4,4A,4B,4C,4D,4Eの気密性を確保できる。
特に、金属部材2,2A,2B,2C,2D,2Eと異種部材3,3A,3B,3C,3D,3Eとの接合の際に形成される面が接合境界面4,4A,4B,4C,4D,4Eの気密性を必要とする方向に沿って凹凸が連続する面となり、接合面積が大きくなり、気密性保持溝5,5A,5B,5C,5D,5Eが形成される前と比較して接合境界面4,4A,4B,4C,4D,4Eにおける気体、液体が侵入するための経路が形成されなくなるから、気体、液体が流動し難くなって気密性及び液密性が大幅に向上する。
Bonding interface surfaces 4, 4A, 4B, 4C, 4D, 4E facing the above-mentioned intimate metal members 2, 2A, 2B, 2C, 2D, 2E and the dissimilar members 3, 3A, 3B, 3C, 3D, 3E. The circumferential airtight holding grooves 5, 5A, 5B, 5C, 5D, and the joining boundary surfaces of the metal members 2, 2A, 2B, 2C, 2D, and 2E along the direction that intersects the direction that requires airtightness. A plurality of 5Es are formed at a predetermined pitch along a direction that requires airtightness, and different members 3, 3A, 3B, 3C, 3D, and 3E are melted in the airtight holding grooves 5, 5A, 5B, 5C, 5D, and 5E. Since it joins by making it penetrate | invade, it can ensure the airtightness of the joining interface 4,4A, 4B, 4C, 4D, 4E.
In particular, the surfaces formed when the metal members 2, 2A, 2B, 2C, 2D, 2E and the dissimilar members 3, 3A, 3B, 3C, 3D, 3E are joined are the joint boundary surfaces 4, 4A, 4B, 4C. , 4D, and 4E become uneven surfaces along the direction that requires airtightness, the bonding area is increased, and compared to before the airtight holding grooves 5, 5A, 5B, 5C, 5D, and 5E are formed. As a result, there is no path for the gas and liquid to enter at the joint interfaces 4, 4A, 4B, 4C, 4D, and 4E, so that the gas and liquid are difficult to flow, and the airtightness and liquid tightness are greatly increased. improves.

上記各実施例においては、金属材料としてアルミニウム合金を使用した場合のみについて説明したが、金属材料としてはこれに限られるものではなく、アルミニウム、マグネシウム、マグネシウム合金、鉄、鋼、ステンレス、銅、銅合金、ベリリウム、ベリリウム合金、ニッケル、ニッケル合金、チタン、チタン合金等を用いることができる。   In each of the above embodiments, only the case where an aluminum alloy is used as the metal material has been described. However, the metal material is not limited to this, and aluminum, magnesium, magnesium alloy, iron, steel, stainless steel, copper, copper An alloy, beryllium, beryllium alloy, nickel, nickel alloy, titanium, titanium alloy, or the like can be used.

また、上記各実施例においては、異種部材3,3A,3B,3C,3D,3Eとして合成樹脂材料であるポリフェニレンスルフィド(PPS)を使用した場合のみについて説明したが、異種部材3,3A,3B,3C,3D,3Eとしては合成樹脂材料に限られるものではなく、天然ゴム及び合成ゴムを含むエラストマー等や、金属部材に使用された金属材料以外の金属材料を用いることもできる。   In each of the above embodiments, only the case where polyphenylene sulfide (PPS), which is a synthetic resin material, is used as the dissimilar member 3, 3A, 3B, 3C, 3D, 3E has been described. , 3C, 3D, and 3E are not limited to the synthetic resin material, and an elastomer containing natural rubber and synthetic rubber, or a metal material other than the metal material used for the metal member can also be used.

更に、上記各実施例においては、合成樹脂材料としてポリフェニレンスルフィド(PPS)を使用した場合のみについて説明したが、合成樹脂材料としてはこれに限られるものではなく、PPS以外のスーパーエンプラを始めとする熱可塑性樹脂や、熱硬化性樹脂を用いることもできる。   Furthermore, in each of the above-described embodiments, only the case where polyphenylene sulfide (PPS) is used as the synthetic resin material has been described. However, the synthetic resin material is not limited to this and includes super engineering plastics other than PPS. Thermoplastic resins and thermosetting resins can also be used.

また、上記各実施例においては、金属部材2,2A,2B,2C,2D,2Eの表面に気密性保持溝5,5A,5B,5C,5D,5Eを形成する方法として波長1.064μmのYVO4レーザを用いたレーザ加工法による場合についてのみ説明したが、レーザ加工法に用いられるレーザ光発振装置としてはYVO4レーザに限られるものではなく、波長1.064μmのYAGレーザ、波長10.6μmのCO2 レーザを始めとして、エキシマレーザ、アルゴンレーザ等の各種のレーザ光発振装置を用いることができる。
更に、金属部材2,2A,2B,2C,2D,2Eの表面に気密性保持溝5,5A,5B,5C,5D,5Eを形成する方法についても、レーザ加工法に限られるものではない。
In each of the above embodiments, the method of forming the airtight holding grooves 5, 5A, 5B, 5C, 5D, 5E on the surfaces of the metal members 2, 2A, 2B, 2C, 2D, 2E has a wavelength of 1.064 μm. Although only the case of the laser processing method using the YVO4 laser has been described, the laser light oscillation device used for the laser processing method is not limited to the YVO4 laser, but a YAG laser having a wavelength of 1.064 μm, a wavelength of 10.6 μm Various laser light oscillators such as a CO 2 laser, an excimer laser, and an argon laser can be used.
Furthermore, the method of forming the airtight holding grooves 5, 5A, 5B, 5C, 5D, and 5E on the surfaces of the metal members 2, 2A, 2B, 2C, 2D, and 2E is not limited to the laser processing method.

本発明を実施するに際しては、金属複合接合体1,1A,1B,1C,1D,1Eのその他の部分の材質、構成、形状、数量、大きさ、接続関係、製造方法等についても、金属複合接合体のシール構造の製造方法のその他の工程についても、上記各実施例に限定されるものではない。   In carrying out the present invention, the metal composite joints 1, 1A, 1B, 1C, 1D, and 1E are made of metal composite materials, configurations, shapes, quantities, sizes, connection relationships, manufacturing methods, and the like. The other steps of the manufacturing method of the bonded structure sealing structure are not limited to the above embodiments.

本発明を実施する場合は、射出成形工程を接合工程とすることができる。例えば、図2において、レーザ加工されたアルミニウム合金材2aが射出成形金型内にセットされて合成樹脂材料3aが射出成形される、所謂、インサート成形である射出成形工程(接合工程)が実施される(ステップS5)。射出成形条件としては、樹脂温度300℃〜340℃、射出圧力200MPa、保圧力80MPaで実施できた。
なお、PPS(融点280℃)からなる合成樹脂材料3aの射出成形は、樹脂温度が300℃〜340℃の範囲内、射出圧力が100MPa〜250MPaの範囲内、保圧力が30MPa〜100MPaの範囲内で実施されることが好ましい。
When carrying out the present invention, the injection molding process can be a joining process. For example, in FIG. 2, a so-called insert molding injection molding process (joining process) is performed in which a laser-processed aluminum alloy material 2 a is set in an injection mold and a synthetic resin material 3 a is injection molded. (Step S5). As the injection molding conditions, the resin temperature was 300 ° C. to 340 ° C., the injection pressure was 200 MPa, and the holding pressure was 80 MPa.
In addition, the injection molding of the synthetic resin material 3a made of PPS (melting point: 280 ° C.) is performed within a resin temperature range of 300 ° C. to 340 ° C., an injection pressure range of 100 MPa to 250 MPa, and a holding pressure range of 30 MPa to 100 MPa. It is preferable to be implemented.

これによって、図1に示すように、溶融状態の合成樹脂材料3aが気密性保持溝5に入り込んで、アルミニウム合金材2aと合成樹脂材料3aとが接合され、気密性及び液密性が必要とされる方向(即ち、気密性保持溝5に垂直に交差する方向)に沿った接合面が細かい凹凸の連続する面となって、本実施例1に係る金属複合接合体1が得られる。
得られた金属複合接合体1の気密性について、図4に示されるような気密性試験装置1
0を用いて試験を実施したが、結果は、上記実施例と同様であった。
As a result, as shown in FIG. 1, the synthetic resin material 3a in a molten state enters the airtight holding groove 5, the aluminum alloy material 2a and the synthetic resin material 3a are joined, and airtightness and liquid tightness are required. The joined surface along the direction (that is, the direction perpendicular to the airtight holding groove 5) becomes a continuous surface with fine irregularities, and the metal composite joined body 1 according to the first embodiment is obtained.
About the airtightness of the obtained metal composite joined body 1, the airtightness test apparatus 1 as shown in FIG.
The test was conducted using 0, and the result was the same as the above example.

即ち、上記実施例では、接合について特定していないが、金属部材2,2A,2B,2C,2D,2Eと異種部材3,3A,3B,3C,3D,3Eの接合工程は、射出成形等の融着できる接合手段であればよい。   That is, in the said Example, although it does not specify about joining, the joining process of metal member 2,2A, 2B, 2C, 2D, 2E and dissimilar member 3,3A, 3B, 3C, 3D, 3E is injection molding etc. Any bonding means that can be fused is acceptable.

何れにせよ、合成樹脂等の異種部材3,3A,3B,3C,3D,3Eの特徴である軽量化、絶縁性、金属部材2,2A,2B,2C,2D,2Eの特性である高強度、導電性、電磁波のシールド性とを適切に組み合わせれば、効率的に自動車部品や、電子部品等の要求機能を満足させる金属複合接合体1,1A,1B,1C,1D,1Eを設計、製作することができる。しかし、通常、電子部品では、吸湿した外気、雨の浸入、自動車部品においては冷却用オイルの洩れ防止のために気密性、液密性を持った複合化技術が要求されている。従来方法では接着剤を用いていたが、マスキングー塗布一接着部位への圧接一加熱冷却等の工程が必要とされていたが、本発明では不要となり工程の短縮が図れる。   In any case, weight reduction, insulation, which is a characteristic of different members 3, 3A, 3B, 3C, 3D, 3E such as synthetic resin, and high strength which is a characteristic of metal members 2, 2A, 2B, 2C, 2D, 2E When combined with conductivity and electromagnetic shielding properties, the metal composite joints 1, 1A, 1B, 1C, 1D, and 1E that efficiently satisfy the required functions of automobile parts and electronic parts are designed. Can be produced. However, in general, electronic parts are required to have a combined technology having airtightness and liquid-tightness in order to prevent leakage of moisture from outside air and rain, and automobile parts to prevent leakage of cooling oil. In the conventional method, an adhesive is used. However, a process such as pressure welding, heating and cooling to one bonding part of masking application is required. However, in the present invention, it becomes unnecessary and the process can be shortened.

したがって、設計自由度が高く、流体に対して効率的に気密性、液密性を持たせる金属部材2,2A,2B,2C,2D,2Eと非金属からなる異種部材3,3A,3B,3C,3D,3Eとを組み付けた金属複合接合体1,1A,1B,1C,1D,1Eが得られ、幅広い応用及びその展開が可能となる。   Accordingly, the metal members 2, 2A, 2B, 2C, 2D, 2E and the non-metal dissimilar members 3, 3A, 3B, which have a high degree of freedom in design and are effective in providing air tightness and liquid tightness to the fluid. Metal composite joints 1, 1A, 1B, 1C, 1D, and 1E assembled with 3C, 3D, and 3E can be obtained, and a wide range of applications and development are possible.

なお、本発明の実施例で挙げている数値は、その全てが臨界値を示すものではなく、ある数値は実施に好適な適正値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。   Note that the numerical values given in the examples of the present invention are not all critical values, and certain numerical values indicate appropriate values suitable for implementation. It does not deny implementation.

1,1A,1B,1C,1D,1E 金属複合接合体
2,2A,2B,2C,2D,2E 金属部材
2a アルミニウム合金材料
3,3A,3B,3C,3D,3E 異種部材
3a 合成樹脂材料
4,4A,4B,4C,4D,4E 接合境界面
5,5A,5B,5C,5D,5E 気密性保持溝
1, 1A, 1B, 1C, 1D, 1E Metal composite joint 2, 2A, 2B, 2C, 2D, 2E Metal member 2a Aluminum alloy material 3, 3A, 3B, 3C, 3D, 3E Dissimilar member 3a Synthetic resin material 4 , 4A, 4B, 4C, 4D, 4E Joint interface 5, 5A, 5B, 5C, 5D, 5E Airtight holding groove

Claims (8)

金属材料の金属部材と前記金属材料とは物性が異なる異種材料の異種部材とを接合し、前記金属材料と前記異種材料との対向する接合境界面を有する金属複合接合体のシール構造であって、
前記金属部材の表面に前記接合境界面の気密性を必要とする方向と交差する方向に沿って一周する気密性保持溝を、前記接合境界面の気密性を必要とする方向に複数形成し、前記金属部材と前記異種部材とを溶融接合することにより、前記接合境界面に気密性を持たせたことを特徴とする金属複合接合体のシール構造。
A metal composite joined body having a joining interface between the metal member and the dissimilar material, wherein the metal member and the dissimilar member having different physical properties are joined to each other. ,
Forming a plurality of airtight holding grooves on the surface of the metal member in a direction that requires airtightness of the joint boundary surface, along a direction that intersects a direction that requires airtightness of the joint boundary surface; A sealing structure for a metal composite joined body, wherein the metal interface and the dissimilar member are melt-bonded to provide airtightness to the joint interface.
前記異種部材の前記異種材料は合成樹脂材料であり、前記金属部材に前記異種部材を射出成形することで溶融接合されていることを特徴とする請求項1に記載の金属複合接合体のシール構造。   2. The metal composite joint sealing structure according to claim 1, wherein the dissimilar material of the dissimilar member is a synthetic resin material, and is melt-bonded to the metal member by injection molding the dissimilar member. . 前記気密性保持溝は、レーザ加工法によって形成されたことを特徴とする請求項1または請求項2に記載の金属複合接合体のシール構造。   3. The seal structure for a metal composite joined body according to claim 1, wherein the airtight holding groove is formed by a laser processing method. 前記気密性保持溝は、2μm〜30μmの範囲内の深さであり、かつ20μm〜200μmの範囲内のピッチで複数形成されていることを特徴とする請求項1乃至請求項3の何れか1つに記載の金属複合接合体のシール構造。   4. The airtight holding groove according to claim 1, wherein a plurality of the airtight holding grooves are formed at a depth within a range of 2 μm to 30 μm and at a pitch within a range of 20 μm to 200 μm. Seal structure of the metal composite joined body described in 1. 金属材料の金属部材と前記金属材料とは物性が異なる異種材料の異種部材とを接合し、前記金属材料と前記異種材料との対向する接合境界面を有する金属複合接合体のシール構造の製造方法であって、
前記金属部材の表面に前記接合境界面の気密性を必要とする方向と交差する方向に沿って一周する気密性保持溝を、前記接合境界面の気密性を必要とする方向に複数形成する気密性保持溝形成工程と、
前記金属部材と前記異種部材とを溶融接合することにより、前記接合境界面に気密性を持たせる接合工程と
を具備することを特徴とする金属複合接合体のシール構造の製造方法。
Method of manufacturing a seal structure of a metal composite joined body in which a metal member of a metal material and a dissimilar member of a different material having different physical properties are joined to each other and a joining interface between the metal material and the dissimilar material is opposed to each other Because
A plurality of hermetic holding grooves that circulate around the surface of the metal member along a direction intersecting a direction that requires airtightness of the joint boundary surface in a direction that requires airtightness of the joint boundary surface. A process for forming a retaining groove,
A method for producing a seal structure of a metal composite joined body, comprising: a joining step of providing airtightness to the joining interface by melt-joining the metal member and the dissimilar member.
前記異種材料は合成樹脂材料であり、前記接合工程は前記合成樹脂材料の射出成形工程であることを特徴とする請求項5に記載の金属複合接合体のシール構造の製造方法。   6. The method for producing a seal structure of a metal composite joined body according to claim 5, wherein the dissimilar material is a synthetic resin material, and the joining step is an injection molding step of the synthetic resin material. 前記気密性保持溝形成工程は、前記金属材料のレーザ加工工程であることを特徴とする請求項5または請求項6に記載の金属複合接合体のシール構造の製造方法。   The method of manufacturing a seal structure of a metal composite joined body according to claim 5 or 6, wherein the airtight holding groove forming step is a laser processing step of the metal material. 前記気密性保持溝は、2μm〜30μmの範囲内の深さであり、かつ、20μm〜200μmの範囲内のピッチで複数形成されていることを特徴とする請求項5乃至請求項7の何れか1つに記載の金属複合接合体のシール構造の製造方法。   8. The airtight holding groove according to claim 5, wherein a plurality of the airtight holding grooves are formed at a depth within a range of 2 [mu] m to 30 [mu] m and at a pitch within a range of 20 [mu] m to 200 [mu] m. The manufacturing method of the sealing structure of the metal composite joined body as described in one.
JP2010117165A 2010-05-21 2010-05-21 Seal structure for metallic composite joint body and method of manufacturing the same Pending JP2011240685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117165A JP2011240685A (en) 2010-05-21 2010-05-21 Seal structure for metallic composite joint body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117165A JP2011240685A (en) 2010-05-21 2010-05-21 Seal structure for metallic composite joint body and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011240685A true JP2011240685A (en) 2011-12-01

Family

ID=45407818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117165A Pending JP2011240685A (en) 2010-05-21 2010-05-21 Seal structure for metallic composite joint body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011240685A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004802A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
JP2014004801A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
JP2014004800A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
WO2017195444A1 (en) 2016-05-09 2017-11-16 ポリプラスチックス株式会社 Insert molded body and electrical connector for fuel pump
JP2019025868A (en) * 2017-08-03 2019-02-21 三井化学株式会社 Metal/resin composite structure, manufacturing method of metal/resin composite structure and leak-resistant component
JP2020116806A (en) * 2019-01-23 2020-08-06 ポリプラスチックス株式会社 Metal plate, metal plate manufacturing method, metal-resin composite molded article and manufacturing method thereof
WO2020255994A1 (en) * 2019-06-17 2020-12-24 ダイセルポリマー株式会社 Method for roughening surface of metal formed body, and sealing method employing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014004802A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
JP2014004801A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
JP2014004800A (en) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd Resin molded product obtained by integrating metal member and method for manufacturing the same
WO2017195444A1 (en) 2016-05-09 2017-11-16 ポリプラスチックス株式会社 Insert molded body and electrical connector for fuel pump
JP2019025868A (en) * 2017-08-03 2019-02-21 三井化学株式会社 Metal/resin composite structure, manufacturing method of metal/resin composite structure and leak-resistant component
JP2020116806A (en) * 2019-01-23 2020-08-06 ポリプラスチックス株式会社 Metal plate, metal plate manufacturing method, metal-resin composite molded article and manufacturing method thereof
JP7282531B2 (en) 2019-01-23 2023-05-29 ポリプラスチックス株式会社 METAL PLATE, METHOD FOR MANUFACTURING METAL PLATE, METAL-RESIN COMPOSITE MOLDED PRODUCT AND METHOD FOR MANUFACTURING SAME
WO2020255994A1 (en) * 2019-06-17 2020-12-24 ダイセルポリマー株式会社 Method for roughening surface of metal formed body, and sealing method employing same

Similar Documents

Publication Publication Date Title
JP2011240685A (en) Seal structure for metallic composite joint body and method of manufacturing the same
US8049120B2 (en) Ultrasonic bonding of discrete plastic parts to metal
JP5816763B1 (en) Heterogeneous material bonded metal material with airtightness at the interface between different materials and metal material, Heterogeneous material bonded material with airtightness at the interface between different materials
KR100663711B1 (en) Sealed resin case for housing equipment and, method and apparatus for manufacturing the sealed resin case
JP5038412B2 (en) Metal resin composite
JP2013111881A (en) Method of manufacturing metal component, and composite molding
US20090265915A1 (en) Insert-molded cover and method for manufacturing same
JP2010167475A (en) Metallic material joined with different kind of material and having airtightness in boundary therebetween, and method of manufacturing the same
WO2016117711A1 (en) Composite of metal member and resin mold, and metal member for forming composite with resin mold
WO2007066477A1 (en) Method for manufacture of housing part provided with ventilation filter, and method for manufacture of housing provided with ventilation filter
JP6543278B2 (en) CFRTP-metal complex
CN111093932B (en) Metal resin composite molded article and method for producing same
JP6326782B2 (en) Metal resin joint molding
CN105493642A (en) Electronic module having circuit boards and a plastic sealing ring that can be molded on by injection molding, in particular for a motor vehicle transmission control unit, and method for producing said electronic module
TWI515103B (en) A metal resin composite molding metal member, and a metal resin composite molded article
US9068860B2 (en) Method for manufacture of an inductive sensor
EP3034277A1 (en) Bonded body and bonding method
Heininger 3D LDS Components for New Production Opportunities.
US20050046081A1 (en) Resin case in which gas-permeability and waterproof quality are compatible, and die for manufacturing such case
CN103386735A (en) Method for forming integrated assembly and integrated assembly formed by same
JP5709731B2 (en) Microwave resin welded body and welding method using the same
JP2016150507A (en) Method for manufacturing joint structure, and joint structure
US20200307043A1 (en) Resin injection molding method
JP2024106296A (en) Metal-resin composite
JP2001155814A (en) Resin case having ventilation and waterproof ability and mold for manufacturing the same