JP2014004802A - Resin molded product obtained by integrating metal member and method for manufacturing the same - Google Patents
Resin molded product obtained by integrating metal member and method for manufacturing the same Download PDFInfo
- Publication number
- JP2014004802A JP2014004802A JP2012143858A JP2012143858A JP2014004802A JP 2014004802 A JP2014004802 A JP 2014004802A JP 2012143858 A JP2012143858 A JP 2012143858A JP 2012143858 A JP2012143858 A JP 2012143858A JP 2014004802 A JP2014004802 A JP 2014004802A
- Authority
- JP
- Japan
- Prior art keywords
- metal member
- groove
- grooves
- laser beam
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、金属部材をインサートした樹脂成形品、殊に、前記金属部材の一部が、樹脂成形品を構成する樹脂部材の端面から露出している樹脂成形品に関する。また、その製造法に関する。 The present invention relates to a resin molded product in which a metal member is inserted, and particularly to a resin molded product in which a part of the metal member is exposed from an end surface of a resin member constituting the resin molded product. Moreover, it is related with the manufacturing method.
樹脂部材と金属部材とが一体化された樹脂成形品が、自動車部品や電気機器部品として種々採用されている。前記樹脂成形品が、例えば、射出成形により製造されている場合、金属部材と樹脂部材の界面の接合強度を確保するために、樹脂部材と一体化させる金属部材の表面にレーザ光照射による微細な凹凸付与がなされている。 Various resin molded products in which a resin member and a metal member are integrated are employed as automobile parts and electrical equipment parts. When the resin molded product is manufactured by, for example, injection molding, in order to secure the bonding strength at the interface between the metal member and the resin member, the surface of the metal member integrated with the resin member is finely irradiated by laser light irradiation. Concavity and convexity are imparted.
特許文献1(特許第4020957号公報)と特許文献2(特開2010−167475号公報)には、具体的に、以下の構成が開示されている。
すなわち、金属部材の表面を一つの走査方向にレーザスキャニング加工し、さらに、同一面内で前記走査方向と交差する別の走査方向にもレーザスキャニング加工して(クロススキャニング加工して)、微細な凹凸を金属表面に付与する技術が開示されている。クロススキャニング加工は、複数回重畳的に実施され、付与された微細な凹凸は、微細三次元網目形状に形成された凹状部と少なくとも一部がブリッジ形状またはオーバーハング形状をなした凸部となっている。ここで、ブリッジ形状とは、生成された凸部の頂上同士が溶融してつながりアーチ状になり下部に孔が開いている形状である。
上記の微細な凹凸が付与された金属表面に樹脂材料を射出成形すると、微細三次元網目形状の凹状部とブリッジ部下空孔に樹脂材料が入り込む結果、金属表面(接合面)と樹脂材料が接する表面積が増大すると同時に極めて高いアンカー効果が得られるとしている。
Specifically, Patent Document 1 (Japanese Patent No. 4020957) and Patent Document 2 (Japanese Patent Laid-Open No. 2010-167475) disclose the following configurations.
That is, laser scanning is performed on the surface of the metal member in one scanning direction, and laser scanning is performed in another scanning direction that intersects the scanning direction in the same plane (cross-scanning processing). A technique for imparting irregularities to a metal surface is disclosed. The cross-scanning process is performed multiple times in a superimposed manner, and the applied fine unevenness is a concave portion formed in a fine three-dimensional network shape and a convex portion in which at least a part forms a bridge shape or an overhang shape. ing. Here, the bridge shape is a shape in which the tops of the generated convex portions are melted and connected to form an arch shape and a hole is opened in the lower portion.
When the resin material is injection-molded on the metal surface with the fine irregularities described above, the resin material enters the concave portion of the fine three-dimensional mesh shape and the pores below the bridge portion, so that the metal surface (joint surface) and the resin material are in contact with each other. It is said that an extremely high anchor effect can be obtained at the same time as the surface area increases.
また、特許文献3(特開平10−294024号公報)には、金属表面にレーザ光を照射して、表面をストライプ状、点線状、波線状、ローレット状、あるいは梨地状凹凸形状に荒らすことが開示されている。しかし、特許文献3には、その技術と荒らされた表面性状について具体的には開示されていない。 Patent Document 3 (Japanese Patent Laid-Open No. 10-294024) discloses that a metal surface is irradiated with laser light to roughen the surface into a striped, dotted, wavy, knurled, or satin-like uneven shape. It is disclosed. However, Patent Document 3 does not specifically disclose the technique and the roughened surface properties.
さらに、特許文献4(特開2008−087409号公報)には、金属材の表面にレーザ光を照射して複数の微細孔を備えた凹陥部を形成することが開示されている。しかし、特許文献4には、その技術と微細孔の形状について具体的には開示されていない。 Further, Patent Document 4 (Japanese Patent Laid-Open No. 2008-087409) discloses that a laser beam is irradiated on the surface of a metal material to form a recessed portion having a plurality of fine holes. However, Patent Document 4 does not specifically disclose the technology and the shape of the fine holes.
上記特許文献1や特許文献2に開示された技術は、クロススキャニング加工をしているので、加工工数が増大する。 Since the techniques disclosed in Patent Document 1 and Patent Document 2 perform cross-scanning processing, the number of processing steps increases.
本発明が解決しようとする課題は、レーザ光の照射により金属部材表面に付与された微細凹凸の形状を工夫し、レーザ光照射による加工工数を増やさずに金属部材と樹脂部材の接合部の気密性・液密性を確保することである。 The problem to be solved by the present invention is to devise the shape of fine irregularities provided on the surface of a metal member by laser light irradiation, and to increase the airtightness of the joint between the metal member and the resin member without increasing the number of processing steps by laser light irradiation. It is to ensure the property and liquid tightness.
本発明は、樹脂部材と断面形状が矩形又は多角形の金属部材で構成され、前記金属部材をインサート物とした樹脂部材の成形により、金属部材が樹脂部材と接合・一体化され、金属部材の一部が樹脂部材の端面から露出している樹脂成形品を対象としている。
そして、前記金属部材の樹脂部材との接合面には、レーザ光照射による微細幅寸法の溝の集合領域が付与されており、前記溝の集合領域は、溝の両端が矩形又は多角形の断面形状を構成する金属部材の全ての面を周回して互いにつながっている閉ループの溝を隣接させて配置した閉ループの溝の集合体である。それぞれの溝は、レーザ光スポットによる走査が、レーザ光スポットの径より小さい送りピッチで当該閉ループの溝を周回するように複数回繰り返されて形成されたものであり、前記隣接させて配置した溝と溝は、前記レーザ光スポットの径の30%以上の微細な幅寸法の連続した凸条により隔てられていることを特徴とする(請求項1)。
前記閉ループの溝は、レーザ光スポットによる走査を、レーザ光スポットの径より小さい送りピッチで溝を複数回周回して形成されたものであるので、十分な深さを有している。また、隣り合う溝と溝を隔てる前記連続した凸条の頂部には、溝が形成される時に昇華して飛散した金属が冷却され付着することにより複雑な凹凸が生成している。この複雑な凹凸は、閉ループの溝を周回する走査を繰り返し、その都度、昇華し冷却されて析出した微細金属塊が積み重なって生成されたものであることから、極めて複雑で微細な凹凸形状を呈している。この金属部材に樹脂部材を成形により一体化すると、前記溝には樹脂材料が深く入り込み、他方で、樹脂材料が凸条の頂部の複雑・微細な凹凸の間隙にも侵入して複雑・微細な凹凸を確実に抱え込む。
上記において、隣り合う溝と溝を隔てている連続した凸条の幅寸法を、レーザ光スポットの径の30%以上としているのは、30%より小さいと凸条の頂部に複雑・微細な凹凸を十分に付与する広さを確保できないためである。前記凸条の幅寸法のレーザ光スポットの径に対する割合の上限は、好ましくは、凸条の頂部に複雑・微細な凹凸が付与されない金属部材の地肌のままの箇所が残存してしまわない値に設定する。これは、レーザ光の出力の大きさ、金属部材の材質等によって決定される。
The present invention includes a resin member and a metal member having a rectangular or polygonal cross-sectional shape, and the metal member is joined and integrated with the resin member by molding the resin member using the metal member as an insert. The object is a resin molded product partly exposed from the end face of the resin member.
The joint surface of the metal member with the resin member is provided with a gathering region of grooves having a fine width by laser light irradiation, and the groove gathering region has a cross section in which both ends of the groove are rectangular or polygonal. It is an aggregate of closed-loop grooves in which closed-loop grooves that circulate all the surfaces of the metal members constituting the shape and are connected to each other are arranged adjacent to each other. Each groove is formed by repeating scanning with a laser beam spot a plurality of times so as to go around the groove of the closed loop with a feed pitch smaller than the diameter of the laser beam spot. And the groove are separated by continuous ridges having a fine width of 30% or more of the diameter of the laser beam spot (claim 1).
The closed loop groove has a sufficient depth because it is formed by scanning the laser beam spot around the groove multiple times at a feed pitch smaller than the diameter of the laser beam spot. In addition, at the tops of the continuous ridges that separate the adjacent grooves from each other, complicated unevenness is generated by cooling and adhering the metal that has sublimated and scattered when the grooves are formed. These complex irregularities are formed by repeatedly forming fine metal masses that have been sublimated, cooled, and deposited each time scanning around the closed-loop groove is repeated. ing. When the resin member is integrated with the metal member by molding, the resin material penetrates deeply into the groove, and on the other hand, the resin material penetrates into the complicated and fine uneven gaps at the top of the ridges and becomes complicated and fine. Hold the unevenness securely.
In the above, the width of the continuous ridges separating the grooves from each other is set to 30% or more of the diameter of the laser light spot. This is because it is not possible to secure a space for sufficiently imparting. The upper limit of the ratio of the width dimension of the ridges to the diameter of the laser beam spot is preferably a value that does not leave a portion of the surface of the metal member that does not have complex and fine irregularities on the top of the ridges. Set. This is determined by the output level of the laser beam, the material of the metal member, and the like.
上記の請求項1に係る発明における断面形状が矩形又は多角形の金属部材は、断面形状が円形の金属部材に代えることができる(請求項2)。この場合、溝の集合領域は、溝の両端が金属部材の周面を一周して互いにつながっている閉ループの溝を隣接させて配置した閉ループの溝の集合体となる。 The metal member having a rectangular or polygonal cross-sectional shape in the invention according to claim 1 can be replaced with a metal member having a circular cross-sectional shape (claim 2). In this case, the groove collection region is a closed loop groove assembly in which the closed loop grooves in which both ends of the groove are connected to each other around the circumference of the metal member are adjacent to each other.
上記請求項1に係る発明の樹脂成形体の製造法は、金属部材の樹脂部材との接合面にレーザ光を照射して連続する凸条により隔てられた微細幅寸法の溝の集合領域を形成する工程を含み、前記溝の集合領域は、それぞれの溝の両端が矩形又は多角形の断面形状を構成する金属部材の全ての面を周回して互いにつながった閉ループの溝を隣接させて配置した集合体となる。それぞれの閉ループの溝形成は、レーザ光スポットの送りピッチをレーザ光スポットの径より小さく設定して、レーザ光スポットによる走査を、当該閉ループの溝を周回するように複数回繰り返すことによって実施する。このとき、前記隣接させた溝と溝を隔てる微細幅寸法の連続した凸条が残るように、隣接する溝形成への移動ピッチ距離を調整して、前記連続した凸条の幅寸法をレーザ光スポットの径の30%以上とすることを特徴とする(請求項3)。 In the method of manufacturing a resin molded body according to the first aspect of the present invention, a joining region of a metal member with a resin member is irradiated with laser light to form a collective region of grooves having fine widths separated by continuous ridges. The groove collecting region is arranged such that both ends of each groove are adjacent to each other in a closed loop groove that is connected to each other around the entire surface of the metal member having a rectangular or polygonal cross-sectional shape. It becomes an aggregate. Each closed loop groove is formed by setting the laser beam spot feed pitch smaller than the diameter of the laser beam spot and repeating the scanning with the laser beam spot a plurality of times so as to go around the closed loop groove. At this time, the moving pitch distance to the adjacent groove formation is adjusted so that the continuous protrusions having the fine width dimension separating the adjacent grooves remain, and the width dimension of the continuous protrusions is changed to the laser beam. It is characterized by being 30% or more of the spot diameter (claim 3).
上記請求項2に係る発明の樹脂成形体の製造法は、上記請求項3に係る発明における断面形状が矩形又は多角形の金属部材を、断面形状が円形の金属部材に代えて採用する。溝の集合領域は、溝の両端が金属部材の周面を一周して互いにつながっている閉ループの溝を隣接させて配置した閉ループの溝の集合体であり、それぞれの閉ループの溝形成は、レーザ光スポットの送りピッチをレーザ光スポットの径より小さく設定して、レーザ光スポットによる走査を、当該閉ループの溝を周回するように複数回繰り返すことによって実施し、以下は、請求項3に係る発明と同様とする(請求項4)。 The method for producing a resin molded body of the invention according to claim 2 employs a metal member having a rectangular or polygonal cross-section in the invention according to claim 3 in place of a metal member having a circular cross-sectional shape. The groove aggregation region is a closed loop groove assembly in which the closed loop grooves in which both ends of the groove are connected to each other around the circumference of the metal member are adjacent to each other. The light spot feed pitch is set smaller than the diameter of the laser light spot, and scanning with the laser light spot is performed a plurality of times so as to go around the groove of the closed loop, and the following is the invention according to claim 3 (Claim 4).
上記請求項3又は4に係る発明において、レーザ光スポットによる溝を周回する複数回の走査は、先ず、溝の集合領域の全体を区画するために、レーザ光スポットによる走査を1回行なうごとに隣接する溝形成へ所定ピッチ移動して、隣接する溝形成に移るという操作を繰り返して一通り行ない、これと同一軌跡をなぞりながら、同様のレーザ光スポットによる走査を繰り返すことが好ましい(請求項5)。 In the invention according to claim 3 or 4, a plurality of scans circling the groove by the laser beam spot are performed every time the scan by the laser beam spot is performed once in order to demarcate the entire aggregate region of the grooves. It is preferable to repeat the operation of moving to the adjacent groove formation by a predetermined pitch and moving to the adjacent groove formation, and repeating scanning with the same laser light spot while tracing the same locus (claim 5). ).
本発明においては、金属部材の接合部に付与されている溝の集合領域のそれぞれの溝が、レーザ光スポットをその径より小さい送りピッチで当該溝を周回する複数回の走査を繰り返して形成されたものであり十分な深さを有しているので、樹脂部材の成形により前記溝には樹脂材料が深く入り込み、接合部界面の高い気密性・液密性を確保することができる。すなわち、金属部材の一部が、成形品を構成する樹脂部材の端面から露出している場合に、その端面における金属部材と樹脂部材の界面に高い気密性・液密性を付与することができる。殊に、断面形状が矩形又は多角形の金属部材の場合には、面と面が交差する角部(この部位は気密性・液密性を保ち難い)にも溝が形成され、樹脂材料が深く入り込むので、高い気密性・液密性を付与することができる。 In the present invention, each groove of the aggregate region of the grooves provided at the joint portion of the metal member is formed by repeating a plurality of scans that circulate the laser light spot at a feed pitch smaller than its diameter. Therefore, since the resin material is molded, the resin material penetrates deeply into the groove by the molding of the resin member, and it is possible to ensure high air tightness and liquid tightness at the joint interface. That is, when a part of the metal member is exposed from the end surface of the resin member constituting the molded product, high air tightness / liquid tightness can be imparted to the interface between the metal member and the resin member at the end surface. . In particular, in the case of a metal member having a rectangular or polygonal cross-sectional shape, grooves are also formed at the corners where the surfaces intersect (it is difficult to maintain airtightness and liquid tightness), and the resin material Since it penetrates deeply, high airtightness and liquid tightness can be imparted.
また、連続した凸条の頂部に生成された複雑・微細な凹凸の間隙に樹脂材料が侵入して、当該樹脂材料が複雑・微細な凹凸を確実に抱え込んでいるので、金属部材と樹脂部材の接合強度も大きくなっている。さらに、レーザ光スポットによる走査方向は、溝を周回する方向であるので、特許文献1、特許文献2に見られるクロススキャニング加工と異なり、加工工数が少なくて済む。 In addition, since the resin material penetrates into the gaps between the complex and fine irregularities generated on the tops of the continuous ridges, and the resin material securely holds the complex and minute irregularities, the metal member and the resin member Bonding strength is also increased. Furthermore, since the scanning direction by the laser beam spot is a direction around the groove, unlike the cross-scanning process shown in Patent Document 1 and Patent Document 2, the number of processing steps can be reduced.
以下、図面を参照して、本発明の実施の形態について説明する。
本発明に係る樹脂成形品は、金属部材をインサート物とした樹脂部材を例えば射出成形して、金属部材と樹脂部材を接合し一体化したものとされる。金属部材に何らの処理も付与されていない場合は、金属部材と樹脂部材とは単に接触しているだけであり、両者の界面での結合はなく容易に剥離してしまうし、気密性・液密性も保てない。そこで、本発明においては、以下に説明するように、金属部材の接合面に、レーザ光を照射して形成される平行な微細幅寸法の溝の集合領域が付与されている。
Embodiments of the present invention will be described below with reference to the drawings.
The resin molded product according to the present invention is obtained by, for example, injection molding a resin member using a metal member as an insert, and joining and integrating the metal member and the resin member. When no treatment is applied to the metal member, the metal member and the resin member are simply in contact with each other, and there is no bonding at the interface between them, so that they are easily peeled off. I cannot keep it dense. Therefore, in the present invention, as will be described below, a collective region of parallel fine width grooves formed by irradiating a laser beam is provided on the joint surface of the metal member.
図1上段実施例の各スケールで示された写真は、溝の集合領域が平行な溝の集合体によりリング状に構成されている場合であるので、実施例そのものではなく、実施例相当の写真であることを断っておく。実施例相当の写真ではあるが、拡大写真(c)、(d)において観察される性状は、本発明に係る実施例においても同等であるので、以下、この実施例相当の拡大写真を参照して説明する。
それぞれの溝(写真においてより黒い色調で現れている縦方向の縞)は、レーザ光スポットによる走査を、レーザ光スポットの径より小さい送りピッチで溝を複数回周回するように繰り返して形成されたものである。そして、前記隣り合う溝と溝は、前記レーザ光スポットの径の30%以上の微細な幅寸法の連続した凸条(写真においてより灰白色の色調で現れている縦方向の縞)により隔てられている。
The photographs shown at each scale in the upper example of FIG. 1 are cases where the groove collection region is configured in a ring shape by a collection of parallel grooves, and thus is not an example itself but a photograph corresponding to the example. I refuse to be. Although it is a photograph corresponding to the example, the properties observed in the enlarged photographs (c) and (d) are the same in the embodiment according to the present invention. I will explain.
Each groove (vertical stripe appearing in a black color tone in the photograph) was formed by repeating scanning with a laser beam spot so as to go around the groove multiple times at a feed pitch smaller than the diameter of the laser beam spot. Is. The adjacent grooves are separated from each other by continuous protrusions (longitudinal stripes appearing in a grayish white color tone in the photograph) having a fine width of 30% or more of the diameter of the laser beam spot. Yes.
レーザ光スポットの径は、20〜100μmであり、通常採用されているものである。閉ループの溝を周回するレーザ光スポットによる走査の送りピッチは、レーザ光スポットの径の10〜50%が好ましく、照射しているレーザ光スポットの周縁が、一つ前に照射されたレーザ光スポットの周縁に一部重なるように調整する。 The diameter of the laser beam spot is 20 to 100 μm and is usually employed. The scanning feed pitch by the laser beam spot that circulates in the closed loop groove is preferably 10 to 50% of the diameter of the laser beam spot, and the periphery of the irradiated laser beam spot is irradiated with the previous laser beam spot. Adjust so that it partially overlaps the periphery.
また、連続した凸条の幅寸法は、前記レーザ光スポットの径の30%以上に設定される。言い換えれば、或る一つの閉ループの溝から隣接する次の閉ループの溝形成に移るときの移動ピッチ距離を、前記レーザ光スポットの径の130%以上に設定する。凸条の幅寸法は、20μm以上とすることが好ましい。しかし、凸条の幅寸法を大きく設定し過ぎて、凸条の頂部に複雑・微細な凹凸が付与されない金属部材の地肌のままの箇所が残存してしまわないようにする。凸条の頂部に付与される複雑・微細な凹凸の状況は、レーザ光の出力の大きさ、金属部材の材質等によって変化するので、レーザ光の出力の大きさ、金属部材の材質等に応じ、凸条の幅寸法の上限を適宜決定する。 Moreover, the width dimension of the continuous protrusion is set to 30% or more of the diameter of the laser beam spot. In other words, the moving pitch distance when moving from one closed loop groove to the next adjacent closed loop groove formation is set to 130% or more of the diameter of the laser beam spot. The width dimension of the ridge is preferably 20 μm or more. However, the width dimension of the ridge is set too large so that the portion of the metal member that does not have complicated and fine irregularities on the top of the ridge does not remain. The condition of the complex and fine irregularities given to the top of the ridge changes depending on the laser beam output, the metal material, etc., so it depends on the laser beam output, the metal member, etc. The upper limit of the width dimension of the ridge is appropriately determined.
閉ループの溝のそれぞれの形成は、レーザ光スポットによる走査の送りピッチをレーザ光スポットの径より小さく設定し、溝を周回する走査を複数回繰り返して実施する。ここで、溝を周回する走査の複数回繰り返しは、先ず、溝の集合領域の全体を区画するために、レーザ光スポットによる走査を1回行なう(閉ループの溝を1回周回する)ごとに隣接する溝形成へ所定ピッチ移動して、隣接する溝形成に移るという操作を繰り返して一通り行ない、これと同一軌跡をなぞりながら、同様のレーザ光スポットによる走査を繰り返す方法を採用する。なお、溝を周回する走査の複数回繰り返しは、一つの閉ループの溝ごとに所定の溝深さになるまで周回する走査を繰り返して溝形成を完了し、次いで、隣接する溝形成へ所定ピッチ移動して、隣接する溝の形成工程に移るという方法により溝の集合領域を区画する方法を採用することを妨げるものではないが、前者の方法を採用することが好ましい。 Each of the closed-loop grooves is formed by setting the scanning feed pitch by the laser light spot to be smaller than the diameter of the laser light spot and repeating the scanning around the groove a plurality of times. Here, a plurality of repetitions of scanning around the groove are first performed every time scanning with a laser beam spot is performed once (the loop of the closed loop is turned once) in order to define the entire aggregate region of the grooves. A method of repeating scanning with the same laser light spot while tracing the same locus by repeating the operation of moving a predetermined pitch to the groove formation to be performed and moving to adjacent groove formation is adopted. In addition, the scanning that goes around the groove is repeated a plurality of times to complete the groove formation by repeating the scanning that goes around until a predetermined groove depth is obtained for each groove of one closed loop, and then moves to the adjacent groove formation by a predetermined pitch. Thus, although it does not prevent the adoption of the method of partitioning the aggregate region of the grooves by the method of moving to the adjacent groove forming step, it is preferable to adopt the former method.
図1上段実施例における倍率500倍の上方から見た写真と斜め45度上方から見た写真から理解できるように、上記のレーザ光スポットによる繰り返し走査の結果、付与された溝は十分な深さを有し、溝壁面・底面とも比較的均一で微細な凹凸形状を呈している。一方、隣り合う溝と溝を隔てる凸条の頂部には、レーザ光スポットによる走査の繰り返しの都度、昇華して飛散し冷却されて析出した微細金属塊が付着して積み重なっているので、極めて複雑で微細な凹凸が生成している。
溝の深さは、好ましくは、50〜100μmであり、走査の繰り返し回数は、レーザ光の出力の大きさと金属部材の材質を勘案しながら決定される。
As can be understood from the photograph seen from above at a magnification of 500 times and the photograph seen from above at an angle of 45 degrees in the upper embodiment of FIG. 1, as a result of the repeated scanning with the laser beam spot, the groove provided is sufficiently deep. The groove wall surface / bottom surface has a relatively uniform and fine uneven shape. On the other hand, the top of the ridge that separates the grooves from each other is extremely complicated because fine metal lumps that are sublimated, scattered, cooled, and deposited each time scanning with a laser beam spot is repeated. And fine irregularities are generated.
The depth of the groove is preferably 50 to 100 μm, and the number of scanning repetitions is determined in consideration of the output level of the laser beam and the material of the metal member.
図3(A)に示すように、金属部材1の接合面に付与される微細幅寸法の溝の集合領域2は、例えば、矩形の断面形状を構成する金属部材1の四面全ての面を周回するように、上述したレーザ光スポットによる繰り返し走査により個々の閉ループの溝が形成され、その溝の集合体により区画されたものである。前記溝の集合領域2は、レーザ光スポットによる走査方向と直交する方向に間隔をあけて、二重或いはそれ以上付与されていてもよい。
そして、例えば、図3(C)に示すように、金属部材1をインサート物として樹脂部材3の射出成形により一体化された樹脂成形品4とする。樹脂部材3は、金属部材1の溝の集合領域2に強固に接合している。
As shown in FIG. 3A, the aggregate region 2 of the fine width dimension grooves provided on the joint surface of the metal member 1 circulates all four surfaces of the metal member 1 constituting a rectangular cross-sectional shape, for example. As described above, individual closed-loop grooves are formed by the above-described repeated scanning with the laser beam spot, and are partitioned by an aggregate of the grooves. The groove aggregation region 2 may be provided in a double or more manner with an interval in the direction orthogonal to the scanning direction by the laser beam spot.
Then, for example, as shown in FIG. 3C, a resin molded product 4 integrated by injection molding of the resin member 3 is used with the metal member 1 as an insert. The resin member 3 is firmly bonded to the groove collecting region 2 of the metal member 1.
図2上段実施例の写真は、図1上段実施例における金属部材と樹脂部材の接合部の断面を、各スケールで示したものである。これは、溝と交差する方向の断面の拡大写真であり、上側の灰白色の色調で現れている部分が金属部材であり、下側の黒色と灰白色の斑模様で現れている部分が樹脂部材である。また、写真(b)は写真(a)における右端二つの溝を拡大して示しており、写真(c)は写真(b)における左側の溝を拡大して示し、写真(d)は写真(b)における右側の溝を拡大して示している。
図2上段実施例の断面写真から理解できるように、溝の集合領域のそれぞれの溝は、レーザ光スポットによる走査を、レーザ光スポットの径より小さい送りピッチで溝を複数回周回するように繰り返して形成され十分な深さを有しているので、樹脂部材の成形により前記溝には樹脂材料が深く入り込んでいる。これが、接合部界面の高い気密性・液密性を確保することに寄与している。また、連続した凸条の頂部に生成された複雑・微細な凹凸の間隙に樹脂材料が侵入して、当該樹脂材料が複雑・微細な凹凸を確実に抱え込んでいる。これが、金属部材と樹脂部材の接合強度を大きくすることに寄与している。図3(C)に示した例では、金属部材1の一部が樹脂部材3の端面から露出しており、その端面における金属部材1と樹脂部材3の界面の気密性・液密性が良好に保たれる。
The photograph of the upper example in FIG. 2 shows the cross section of the joint between the metal member and the resin member in the upper example of FIG. 1 on each scale. This is an enlarged photograph of the cross section in the direction intersecting the groove, the upper part that appears in grayish white color tone is a metal member, and the lower part that appears in black and grayish white spots is a resin member is there. Also, the photograph (b) shows the two rightmost grooves in the photograph (a) in an enlarged manner, the photograph (c) shows the enlarged groove on the left side in the photograph (b), and the photograph (d) shows a photograph ( The right groove in b) is shown enlarged.
As can be understood from the cross-sectional photograph of the upper embodiment in FIG. 2, each groove in the groove assembly region is repeatedly scanned with a laser beam spot so as to go around the groove multiple times with a feed pitch smaller than the diameter of the laser beam spot. Since the resin material is formed and has a sufficient depth, the resin material deeply enters the groove by molding the resin member. This contributes to ensuring high air tightness and liquid tightness at the interface of the joint. Moreover, the resin material penetrates into the gaps between the complex and fine irregularities generated at the tops of the continuous ridges, and the resin material surely holds the complex and minute irregularities. This contributes to increasing the bonding strength between the metal member and the resin member. In the example shown in FIG. 3C, a part of the metal member 1 is exposed from the end surface of the resin member 3, and the air tightness and liquid tightness of the interface between the metal member 1 and the resin member 3 at the end surface are good. To be kept.
既述のように、閉ループの溝のそれぞれの形成は、レーザ光スポットによる走査の送りピッチをレーザ光スポットの径より小さく設定し、溝を周回する走査を複数回繰り返して実施する。図4は、閉ループの溝形成のためのレーザ光スポット5の走査方向とレーザ光の光源からの照射方向の位置関係を例示したものである。
図4(A)は金属部材1の上方で閉ループの溝の中心に光源が位置している場合である。この場合、図4(B)に示すように、金属部材の表面に対してほぼ垂直な深さ方向を有する閉ループの溝6と、隣接する溝6と溝6を隔てる金属部材の表面に対してほぼ垂直な凸条7が形成される。
図4(C)は閉ループの溝の中心上方に光源が位置しない場合である。この場合、図4(D)に示すように、隣接する溝6と溝6を隔てる凸条7が、表面に対し傾斜した状態で形成される。この例では、金属部材と樹脂部材のより大きい接合強度を期待できる。また、溝の集合領域を任意の区画に分け、前記区画毎に光源を相対的に移動させ、2以上の方向からそれぞれ照射することもできる。この場合、凸条7は、前記区画毎に表面に対して2以上の方向に傾斜した状態で形成される。この例では、金属部材と樹脂部材のさらに大きい接合強度を期待できる。
図4(A)(C)いずれの場合も、金属部材の矩形の断面形状を構成する面と面が交差する角部にも溝が形成されるので、樹脂材料が深く入り込む。金属部材の互いに交差する二面に溝を形成した後、金属部材の状下面を反転して残りの二面にも溝を形成する。
As described above, each of the closed loop grooves is formed by setting the scanning feed pitch by the laser light spot to be smaller than the diameter of the laser light spot and repeating the scanning around the groove a plurality of times. FIG. 4 illustrates the positional relationship between the scanning direction of the laser beam spot 5 for forming a closed loop groove and the irradiation direction of the laser beam from the light source.
FIG. 4A shows the case where the light source is located above the metal member 1 and in the center of the closed loop groove. In this case, as shown in FIG. 4B, the closed-loop groove 6 having a depth direction substantially perpendicular to the surface of the metal member, and the surface of the metal member that separates the adjacent groove 6 from the groove 6. A substantially vertical ridge 7 is formed.
FIG. 4C shows a case where the light source is not located above the center of the closed loop groove. In this case, as shown in FIG. 4D, the adjacent grooves 6 and the ridges 7 separating the grooves 6 are formed in an inclined state with respect to the surface. In this example, a greater bonding strength between the metal member and the resin member can be expected. Further, the aggregate region of the grooves can be divided into arbitrary sections, and the light source can be moved relative to each section, and irradiation can be performed from two or more directions. In this case, the ridges 7 are formed in a state of being inclined in two or more directions with respect to the surface for each section. In this example, a greater bonding strength between the metal member and the resin member can be expected.
4A and 4C, grooves are also formed at the corners where the surfaces of the metal member forming the rectangular cross-sectional shape intersect, so that the resin material penetrates deeply. After the grooves are formed on the two surfaces of the metal member that intersect each other, the lower surface of the metal member is inverted to form the grooves on the remaining two surfaces.
また、金属部材の断面形状が円形の場合は、半周に溝を形成した後、金属部材を半周回転させて残りの溝を形成する。 Further, when the cross-sectional shape of the metal member is circular, after forming the groove on the half circumference, the metal member is rotated by a half circumference to form the remaining grooves.
本発明において、金属部材は、アルミニウム、アルミニウム合金、銅、銅合金鉄鋼、ステンレス鋼等の金属材料から目的、用途に応じて適宜選択することができ、表面にニッケル、スズ、クロム、その他の金属のメッキが施されていてもよい。 In the present invention, the metal member can be appropriately selected from metal materials such as aluminum, aluminum alloy, copper, copper alloy steel, and stainless steel according to the purpose and application, and nickel, tin, chromium, and other metals on the surface May be plated.
また、本発明において、樹脂部材は、ポリフェニレンサルファイド、ABS樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂等の樹脂材料から目的、用途に応じて適宜選択することができ、各種樹脂をブレンドしたもの、繊維状や粒状の充填材を適宜添加したものであってもよい。また、樹脂部材の成形は、射出成形、圧縮成形等の成形手段を適宜採用することができる。 Further, in the present invention, the resin member can be appropriately selected according to the purpose and use from a resin material such as a thermoplastic resin such as polyphenylene sulfide and ABS resin, a thermosetting resin such as an epoxy resin and a phenol resin, What blended various resin and what added fibrous and granular fillers suitably may be used. In addition, molding means such as injection molding and compression molding can be appropriately employed for molding the resin member.
以下、本発明の実施例を、従来例と対比して説明する。 Examples of the present invention will be described below in comparison with conventional examples.
〔実施例〕
図3(A)に示すように、断面形状が矩形の金属部材1(幅3mm、厚み0.5mmのアルミニウム板)の表面に、微細幅寸法の溝の集合領域2を付与した。それぞれの溝は、矩形の断面形状を構成する四面全てを周回する閉ループであり、内径8mm、外径10mmであり、溝の集合領域2の幅寸法は1mmである。
照射するレーザ光は、Ybファイバレーザ、波長1070nm、出力42Wである。
レーザ光スポットによる走査は、レーザ光スポットの径を70μmとし、走査の送りピッチを20μmとして、閉ループの溝を周回するようにした。走査速度は、1000mm/秒である。
また、一つの閉ループの溝から隣接する次の溝形成に移るときの移動ピッチ距離(隣接する溝の幅方向の中心間距離)を100μmとした。
上記の条件で、先ず、溝の集合領域2の全体を区画するために、レーザ光スポットによる走査を、閉ループの溝を1回周回するごとに100μm移動して、隣接する溝形成に移るという操作を繰り返して一通り行ない、これと同一軌跡をなぞりながら、同様のレーザ光照射の走査を10回繰り返した。なお、溝形成のためのレーザ光スポット5の走査方向とレーザ光の光源からの照射方向の位置関係は、図4(A)に示したとおりとした。
上記のようにして形成された溝6は、幅が約55μm、金属部材1の表面からの深さが約60μmである。また、形成された凸条7は、幅寸法が約45μm、溝底部からの高さが約110μmである。凸条7の頂部は、金属部材1の表面よりも突出しており、これは、レーザ光スポットによる溝を周回する走査の繰り返しの都度、昇華して飛散し冷却されて析出した微細金属塊が付着して積み重なった結果である(図2上段実施例の倍率90倍の断面写真を参照)。
上記の金属部材1に射出成形により樹脂部材3(ポリフェニレンサルファイド)を成形し、図3(C)に示した形状の両者を一体化した樹脂成形品4とした。
〔Example〕
As shown in FIG. 3 (A), a groove region 2 having a fine width was provided on the surface of a metal member 1 (aluminum plate having a width of 3 mm and a thickness of 0.5 mm) having a rectangular cross-sectional shape. Each groove is a closed loop that goes around all four surfaces constituting a rectangular cross-sectional shape, and has an inner diameter of 8 mm and an outer diameter of 10 mm, and the width dimension of the groove collecting region 2 is 1 mm.
The laser beam to be irradiated is a Yb fiber laser, a wavelength of 1070 nm, and an output of 42 W.
In the scanning with the laser beam spot, the diameter of the laser beam spot was set to 70 μm and the scanning feed pitch was set to 20 μm so as to go around the closed loop groove. The scanning speed is 1000 mm / second.
The movement pitch distance (distance between the centers of adjacent grooves in the width direction) when moving from one closed loop groove to the next adjacent groove formation was set to 100 μm.
Under the above-mentioned conditions, first, in order to partition the entire groove collecting region 2, the scanning with the laser beam spot is moved by 100 μm every time the closed-loop groove is circulated, and the operation is shifted to the adjacent groove formation. The same laser beam irradiation scan was repeated 10 times while tracing the same trajectory. Note that the positional relationship between the scanning direction of the laser beam spot 5 for groove formation and the irradiation direction of the laser beam from the light source was as shown in FIG.
The groove 6 formed as described above has a width of about 55 μm and a depth from the surface of the metal member 1 of about 60 μm. The formed protrusion 7 has a width dimension of about 45 μm and a height from the groove bottom of about 110 μm. The top of the ridge 7 protrudes from the surface of the metal member 1, which is attached to the fine metal lump that is sublimated and scattered and cooled and deposited each time the scanning around the groove by the laser light spot is repeated. (See the cross-sectional photograph of the magnification of 90 times in the upper example of FIG. 2).
A resin member 3 (polyphenylene sulfide) was formed on the metal member 1 by injection molding to obtain a resin molded product 4 in which both of the shapes shown in FIG.
〔従来例1〕
図3(B)に示すように、金属部材1’(アルミニウム板)の表面に、微細幅寸法の溝の集合領域2’を付与した。溝の集合領域2’の幅寸法は、上記の実施例と同様である。
本従来例が、上記実施例と異なる点は、レーザ光スポットによる走査が直交する二方向からである(実施例は閉ループの溝を周回する走査のみ)点と、レーザ光スポットによる走査の繰り返しが各方向5回である(実施例は閉ループの溝を周回する走査のみ10回)点である。
本従来例においては、図1下段従来例の拡大写真の観察から理解できるように、直交する二方向からのレーザ光スポットによる走査によって、直交する溝が明確に形成されているわけではなく、言わば、周囲に凹陥部が形成された結果、残存した部分が凸部として現出した状態となっている(図1下段従来例の倍率500倍の写真を参照)。そして、前記凸部の頂部は、金属部材1’の表面とほぼ同一高さのままである(図2下段従来例の倍率90倍の断面写真を参照)。
[Conventional example 1]
As shown in FIG. 3 (B), a groove aggregate region 2 ′ having a fine width was provided on the surface of the metal member 1 ′ (aluminum plate). The width dimension of the groove collecting region 2 ′ is the same as that in the above embodiment.
This conventional example is different from the above-described embodiment in that the scanning by the laser beam spot is from two directions orthogonal to each other (in this embodiment, only the scanning around the groove of the closed loop) and the scanning by the laser beam spot is repeated. The number of points is 5 times in each direction (in the example, only 10 times of scanning that goes around the closed-loop groove).
In this conventional example, as can be understood from the observation of the enlarged photograph of the lower conventional example in FIG. 1, the orthogonal grooves are not clearly formed by scanning with the laser beam spots from the two orthogonal directions. As a result of the formation of the recessed portion around the periphery, the remaining portion appears as a projecting portion (see the photograph at a magnification of 500 times in the lower conventional example in FIG. 1). And the top part of the said convex part remains substantially the same height as the surface of metal member 1 '(refer the cross-sectional photograph of the magnification of 90 times of the lower stage conventional example of FIG. 2).
〔従来例2〕
上記従来例1において、溝の集合領域2’の幅寸法を3mmとし、そのほかは従来例1と同様とした。
[Conventional example 2]
In the conventional example 1, the width dimension of the groove collecting region 2 ′ was 3 mm, and the others were the same as in the conventional example 1.
〔従来例3〕
上記従来例1において、溝の集合領域2’の幅寸法を5mmとし、そのほかは従来例1と同様とした。
[Conventional example 3]
In the above conventional example 1, the width dimension of the groove gathering region 2 ′ was set to 5 mm, and the others were the same as in the conventional example 1.
〔従来例4〕
上記従来例1において、幅寸法1mmの溝の集合領域2’を、レーザスポットによる走査方向と直交する方向に1mmの間隔で配置した三重とし、そのほかは従来例1と同様とした。
[Conventional Example 4]
In the conventional example 1, the groove collecting region 2 ′ having a width dimension of 1 mm is triple arranged at intervals of 1 mm in the direction perpendicular to the scanning direction by the laser spot, and the other is the same as in the conventional example 1.
上記実施例と従来例の樹脂成形品について、気密性・液密性の評価試験を実施した。
気密性評価は、金属部材が露出している樹脂部材の端面に、両者の界面を覆うようにエアパイプを強く密着させ、これを水中に没して、外圧より最大で0.6Mpa高い圧力をかけて、前記端面とは反対側の端面の金属部材と樹脂部材の界面からの空気漏れの有無を確認した。
液密性評価は、樹脂成形品の前記端面に浸透液((株)タイホーコーザイ製、ミクロチェック浸透液)を注ぎ、常温で2週間放置して反対側の端面からの浸透液の染み出しの有無を確認した。
表1には、上記評価試験の結果と、溝の集合領域を付与するための加工時間を比較して示した。
The resin molded products of the above examples and conventional examples were subjected to an airtightness / liquidtightness evaluation test.
In the airtightness evaluation, the air pipe is strongly adhered to the end face of the resin member where the metal member is exposed so as to cover the interface between the two, and this is submerged in water, and a pressure higher than the external pressure by 0.6 Mpa is applied. The presence or absence of air leakage from the interface between the metal member and the resin member on the end surface opposite to the end surface was confirmed.
For the liquid tightness evaluation, a penetrant (Microcheck penetrant manufactured by Taiho Kosai Co., Ltd.) is poured onto the end face of the resin molded product, and left at room temperature for 2 weeks to allow the penetrant liquid to seep out from the opposite end face. The presence or absence was confirmed.
Table 1 shows a comparison of the results of the above evaluation test and the processing time for providing the groove aggregate region.
表1から明らかなように、本発明に係る実施例では、少ない加工時間で気密性・液密性が確保されていることが分かる。図2下段従来例の写真(c)(d)を観察すると、レーザ光スポットによる走査で形成された凹陥部が複雑で微細な凹凸形状を呈しており、樹脂材料が侵入できない未充填箇所を確認できる。樹脂材料が複雑で微細な凹凸形状を抱き込んで金属部材と樹脂部材の大きな接合強度は確保できるものの、前記樹脂材料未充填箇所の存在により、特に、気密性の確保が不十分になっていると推測される。 As is apparent from Table 1, in the examples according to the present invention, it can be seen that airtightness and liquid tightness are ensured in a short processing time. When the photographs (c) and (d) of the lower conventional example in FIG. 2 are observed, the concave portion formed by scanning with the laser beam spot has a complicated and fine irregular shape, and an unfilled portion where the resin material cannot enter is confirmed. it can. Although the resin material can hold a complicated and fine concavo-convex shape and can secure a large bonding strength between the metal member and the resin member, the presence of the resin material unfilled portion is particularly insufficient to ensure airtightness. It is guessed.
1,1’ 金属部材
2,2’ 溝の集合領域
3 樹脂部材
4 樹脂成形品
5 レーザ光スポット
6 溝
7 凸条
1, 1 'metal member 2, 2' groove gathering region 3 resin member 4 resin molded product 5 laser beam spot 6 groove 7 ridge
Claims (5)
前記金属部材の樹脂部材との接合面には、レーザ光照射による微細幅寸法の溝の集合領域が付与されており、
前記溝の集合領域は、それぞれの溝の両端が矩形又は多角形の断面形状を構成する金属部材の全ての面を周回して互いにつながった閉ループの溝を隣接させて配置した集合体であり、
それぞれの溝は、レーザ光スポットによる走査が、レーザ光スポットの径より小さい送りピッチで当該閉ループの溝を周回するように複数回繰り返されて形成されたものであり、
前記隣接させた溝と溝は、前記レーザ光スポットの径の30%以上の微細な幅寸法の連続した凸条により隔てられていることを特徴とする樹脂成形品。 The resin member and the cross-sectional shape are formed of a rectangular or polygonal metal member, and the metal member is joined and integrated with the resin member by molding the resin member using the metal member as an insert, and a part of the metal member is resin. A resin molded product exposed from the end face of the member,
The joint surface of the metal member with the resin member is provided with a collection region of grooves having a fine width by laser light irradiation,
The groove aggregation region is an aggregate in which both ends of each groove are arranged adjacent to each other with closed loop grooves connected to each other around the entire surface of the metal member that forms a rectangular or polygonal cross-sectional shape,
Each groove is formed by repeating scanning with a laser beam spot a plurality of times so as to go around the groove of the closed loop at a feed pitch smaller than the diameter of the laser beam spot,
The adjacent groove and the groove are separated by continuous protrusions having a fine width dimension of 30% or more of the diameter of the laser beam spot.
前記金属部材の樹脂部材との接合面には、レーザ光照射による微細幅寸法の溝の集合領域が付与されており、
前記溝の集合領域は、それぞれの溝の両端が、金属部材の周面を一周して互いにつながった閉ループの溝を隣接させて配置した集合体であり、
それぞれの溝は、レーザ光スポットによる走査が、レーザ光スポットの径より小さい送りピッチで当該閉ループの溝を周回するように複数回繰り返されて形成されたものであり、
前記隣接させた溝と溝は、前記レーザ光スポットの径の30%以上の微細な幅寸法の連続した凸条により隔てられていることを特徴とする樹脂成形品。 A resin member and a metal member having a circular cross-sectional shape are formed. By molding the resin member using the metal member as an insert, the metal member is joined and integrated with the resin member, and a part of the metal member is an end surface of the resin member. A resin molded product exposed from
The joint surface of the metal member with the resin member is provided with a collection region of grooves having a fine width by laser light irradiation,
The collective region of the grooves is an aggregate in which both ends of each groove are arranged adjacent to each other with closed loop grooves that are connected to each other around the circumference of the metal member,
Each groove is formed by repeating scanning with a laser beam spot a plurality of times so as to go around the groove of the closed loop at a feed pitch smaller than the diameter of the laser beam spot,
The adjacent groove and the groove are separated by continuous protrusions having a fine width dimension of 30% or more of the diameter of the laser beam spot.
前記金属部材の樹脂部材との接合面にレーザ光を照射して連続する凸条により隔てられた微細幅寸法の溝の集合領域を形成する工程を含み、
前記溝の集合領域は、それぞれの溝の両端が矩形又は多角形の断面形状を構成する金属部材の全ての面を周回して互いにつながった閉ループの溝を隣接させて配置した集合体であり、
それぞれの閉ループの溝形成は、レーザ光スポットの送りピッチをレーザ光スポットの径より小さく設定して、レーザ光スポットによる走査を、当該閉ループの溝を周回するように複数回繰り返すことによって実施し、
前記隣接させた溝と溝を隔てる微細幅寸法の連続した凸条が残るように、隣接する溝形成への移動ピッチ距離を調整して、前記連続した凸条の幅寸法をレーザ光スポットの径の30%以上とすることを特徴とする樹脂成形品の製造法。 Resin molding in which a resin member and a metal member having a rectangular or polygonal cross-section are joined and integrated by molding a resin member using the metal member as an insert, and a part of the metal member is exposed from the end surface of the resin member A method of manufacturing a product,
Irradiating a laser beam on the joint surface of the metal member with the resin member to form an aggregate region of grooves having a fine width dimension separated by continuous ridges,
The groove aggregation region is an aggregate in which both ends of each groove are arranged adjacent to each other with closed loop grooves connected to each other around the entire surface of the metal member that forms a rectangular or polygonal cross-sectional shape,
The groove formation of each closed loop is performed by setting the feed pitch of the laser light spot smaller than the diameter of the laser light spot, and repeating scanning with the laser light spot a plurality of times so as to go around the groove of the closed loop,
The movement pitch distance to adjacent groove formation is adjusted so that the continuous protrusions having a fine width dimension separating the adjacent grooves remain, and the width of the continuous protrusions is set to the diameter of the laser light spot. A method for producing a resin molded product, characterized in that the content is 30% or more.
前記金属部材の樹脂部材との接合面にレーザ光を照射して連続する凸条により隔てられた微細幅寸法の溝の集合領域を形成する工程を含み、
前記溝の集合領域は、それぞれの溝の両端が金属部材の周面を一周して互いにつながった閉ループの溝を隣接させて配置した集合体であり、
それぞれの閉ループの溝形成は、レーザ光スポットの送りピッチをレーザ光スポットの径より小さく設定して、レーザ光スポットによる走査を、当該閉ループの溝を周回するように複数回繰り返すことによって実施し、
前記隣接させた溝と溝を隔てる微細幅寸法の連続した凸条が残るように、隣接する溝形成への移動ピッチ距離を調整して、前記連続した凸条の幅寸法をレーザ光スポットの径の30%以上とすることを特徴とする樹脂成形品の製造法。 Manufacturing a resin molded product in which a resin member and a metal member having a circular cross-sectional shape are joined and integrated by molding a resin member using the metal member as an insert, and a part of the metal member is exposed from the end surface of the resin member Law,
Irradiating a laser beam on the joint surface of the metal member with the resin member to form an aggregate region of grooves having a fine width dimension separated by continuous ridges,
The aggregate region of the grooves is an aggregate in which both ends of each groove are arranged adjacent to each other with closed loop grooves that are connected to each other around the circumference of the metal member,
The groove formation of each closed loop is performed by setting the feed pitch of the laser light spot smaller than the diameter of the laser light spot, and repeating scanning with the laser light spot a plurality of times so as to go around the groove of the closed loop,
The movement pitch distance to adjacent groove formation is adjusted so that the continuous protrusions having a fine width dimension separating the adjacent grooves remain, and the width of the continuous protrusions is set to the diameter of the laser light spot. A method for producing a resin molded product, characterized in that the content is 30% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012143858A JP2014004802A (en) | 2012-06-27 | 2012-06-27 | Resin molded product obtained by integrating metal member and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012143858A JP2014004802A (en) | 2012-06-27 | 2012-06-27 | Resin molded product obtained by integrating metal member and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014004802A true JP2014004802A (en) | 2014-01-16 |
Family
ID=50102987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012143858A Pending JP2014004802A (en) | 2012-06-27 | 2012-06-27 | Resin molded product obtained by integrating metal member and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014004802A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160016156A (en) * | 2014-08-04 | 2016-02-15 | 강기석 | Resin molded product bonded to transparent glass, watch, liquid crystal display, aircraft body and method of manufacturing thereof |
JP2016109197A (en) * | 2014-12-05 | 2016-06-20 | ダイセルポリマー株式会社 | Shaft built-in type gear wheel and method for manufacturing the same |
KR101777287B1 (en) | 2015-11-27 | 2017-09-14 | 덕양산업 주식회사 | Method of insert injection molding between cowl crossbar and plastic component and corporate body by the same |
JP2018122257A (en) * | 2017-02-01 | 2018-08-09 | 大豊工業株式会社 | Manufacturing method of sliding member, sliding member and swash plate for compressor using sliding member |
WO2019017428A1 (en) * | 2017-07-20 | 2019-01-24 | ポリプラスチックス株式会社 | Metal resin composite-molded article and method for manufacturing same |
WO2019048325A1 (en) * | 2017-09-11 | 2019-03-14 | Hirschmann Automotive Gmbh | Laser-structured surface for an injection-moulding attachment of the surface |
JP6879615B1 (en) * | 2020-08-07 | 2021-06-02 | 睦月電機株式会社 | Method for manufacturing metal resin joints and metal resin joints |
CN114269540A (en) * | 2019-07-02 | 2022-04-01 | 科莱克特集团公司 | Electrical or electronic component and method for producing an electrical or electronic component |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010167475A (en) * | 2009-01-26 | 2010-08-05 | Yamase Denki Kk | Metallic material joined with different kind of material and having airtightness in boundary therebetween, and method of manufacturing the same |
JP2011240685A (en) * | 2010-05-21 | 2011-12-01 | Aisin Chemical Co Ltd | Seal structure for metallic composite joint body and method of manufacturing the same |
-
2012
- 2012-06-27 JP JP2012143858A patent/JP2014004802A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010167475A (en) * | 2009-01-26 | 2010-08-05 | Yamase Denki Kk | Metallic material joined with different kind of material and having airtightness in boundary therebetween, and method of manufacturing the same |
JP2011240685A (en) * | 2010-05-21 | 2011-12-01 | Aisin Chemical Co Ltd | Seal structure for metallic composite joint body and method of manufacturing the same |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101645401B1 (en) | 2014-08-04 | 2016-08-03 | 강기석 | Resin molded product bonded to transparent glass, watch, liquid crystal display, aircraft body and method of manufacturing thereof |
KR20160016156A (en) * | 2014-08-04 | 2016-02-15 | 강기석 | Resin molded product bonded to transparent glass, watch, liquid crystal display, aircraft body and method of manufacturing thereof |
JP2016109197A (en) * | 2014-12-05 | 2016-06-20 | ダイセルポリマー株式会社 | Shaft built-in type gear wheel and method for manufacturing the same |
KR101777287B1 (en) | 2015-11-27 | 2017-09-14 | 덕양산업 주식회사 | Method of insert injection molding between cowl crossbar and plastic component and corporate body by the same |
JP2018122257A (en) * | 2017-02-01 | 2018-08-09 | 大豊工業株式会社 | Manufacturing method of sliding member, sliding member and swash plate for compressor using sliding member |
EP3656528A4 (en) * | 2017-07-20 | 2020-10-28 | Polyplastics Co., Ltd. | Metal resin composite-molded article and method for manufacturing same |
WO2019017428A1 (en) * | 2017-07-20 | 2019-01-24 | ポリプラスチックス株式会社 | Metal resin composite-molded article and method for manufacturing same |
JP2019018501A (en) * | 2017-07-20 | 2019-02-07 | ポリプラスチックス株式会社 | Metal resin composite molded article and production method thereof |
US11697232B2 (en) | 2017-07-20 | 2023-07-11 | Polyplastics Co., Ltd. | Metal resin composite-molded article and method for manufacturing same |
CN111093932A (en) * | 2017-07-20 | 2020-05-01 | 宝理塑料株式会社 | Metal resin composite molded article and method for producing same |
CN111051035A (en) * | 2017-09-11 | 2020-04-21 | 赫斯曼汽车有限公司 | Laser-structured surface for injection-molded connection surfaces |
EP3681689A1 (en) * | 2017-09-11 | 2020-07-22 | Hirschmann Automotive GmbH | Laser-structured surface for an injection-moulding attachment of the surface |
WO2019048325A1 (en) * | 2017-09-11 | 2019-03-14 | Hirschmann Automotive Gmbh | Laser-structured surface for an injection-moulding attachment of the surface |
CN114269540A (en) * | 2019-07-02 | 2022-04-01 | 科莱克特集团公司 | Electrical or electronic component and method for producing an electrical or electronic component |
CN114269540B (en) * | 2019-07-02 | 2024-06-11 | 科莱克特集团公司 | Electrical or electronic component and method for producing an electrical or electronic component |
JP6879615B1 (en) * | 2020-08-07 | 2021-06-02 | 睦月電機株式会社 | Method for manufacturing metal resin joints and metal resin joints |
WO2022030015A1 (en) * | 2020-08-07 | 2022-02-10 | 睦月電機株式会社 | Metal resin joined body and method for manufacturing metal resin joined body |
CN114340877A (en) * | 2020-08-07 | 2022-04-12 | 睦月电机株式会社 | Metal-resin bonded body and method for producing metal-resin bonded body |
CN114340877B (en) * | 2020-08-07 | 2024-06-07 | 睦月电机株式会社 | Metal-resin bonded body and method for producing metal-resin bonded body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014004802A (en) | Resin molded product obtained by integrating metal member and method for manufacturing the same | |
JP2014004801A (en) | Resin molded product obtained by integrating metal member and method for manufacturing the same | |
JP2014004800A (en) | Resin molded product obtained by integrating metal member and method for manufacturing the same | |
TWI641476B (en) | Manufacturing method of composite formed body | |
US7381921B2 (en) | Method for making products by freeform laser sintering | |
JP5889775B2 (en) | Composite molded body and manufacturing method thereof | |
US9773586B2 (en) | Powered removal for element formed by electron beam melting | |
JP2005507805A (en) | Manufacturing method of three-dimensional sintered molded product | |
CN106061717A (en) | Method for producing three-dimensionally shaped object | |
JP5932700B2 (en) | Method for producing composite molded body | |
JP2018183930A (en) | Stage for three-dimensional shaping | |
WO2021039086A1 (en) | Metallic plate, metal-resin composite, semiconductor device, and metallic plate production method | |
KR20170002945A (en) | Semiconductor package module manufacturing apparatus and method | |
JP6057166B2 (en) | Structure, method for manufacturing structure, and method for manufacturing molded article | |
JP5798534B2 (en) | Method for producing composite molded body | |
DE102014103942B4 (en) | Method for producing a housing for an electronic component and an electronic component, housing for an electronic component and electronic component | |
WO2020250827A1 (en) | Mold and method for manufacturing mold gas venting member | |
JP2018031037A (en) | Method for molding metallic component | |
JP2020203473A (en) | Method for manufacturing degassing member for mold | |
JP7553305B2 (en) | Manufacturing method of composite member, and composite member | |
CN113906104B (en) | Molded body, composite molded body, and method for producing composite molded body | |
KR101917768B1 (en) | Heterojunction body | |
JP2005059574A (en) | Method for producing three-dimensional shaped article | |
WO2019044790A1 (en) | Method for producing marker unit | |
CN109996587B (en) | Ridge filter and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150512 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151217 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20160206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160427 |