JP5615124B2 - Resin valve body and manufacturing method thereof - Google Patents

Resin valve body and manufacturing method thereof Download PDF

Info

Publication number
JP5615124B2
JP5615124B2 JP2010230813A JP2010230813A JP5615124B2 JP 5615124 B2 JP5615124 B2 JP 5615124B2 JP 2010230813 A JP2010230813 A JP 2010230813A JP 2010230813 A JP2010230813 A JP 2010230813A JP 5615124 B2 JP5615124 B2 JP 5615124B2
Authority
JP
Japan
Prior art keywords
valve body
resin
microwave
heating element
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010230813A
Other languages
Japanese (ja)
Other versions
JP2012082917A (en
Inventor
隆行 大平
隆行 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2010230813A priority Critical patent/JP5615124B2/en
Publication of JP2012082917A publication Critical patent/JP2012082917A/en
Application granted granted Critical
Publication of JP5615124B2 publication Critical patent/JP5615124B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、樹脂製バルブボディ及びその製造方法に関するものであり、特に、樹脂製バルブボディの製造方法とそれによって製造された樹脂製バルブボディに関するものである。   The present invention relates to a resin valve body and a method for manufacturing the same, and particularly to a method for manufacturing a resin valve body and a resin valve body manufactured thereby.

2つの樹脂成形品を溶着させることは公知の技術であり、その加熱手段として、例えば、レーザ、超音波等の熱源による接合面の加熱による方法が採用されてきた。
しかし、このような方法は2つの樹脂成形品を溶着させる手段として採用することができても、3つ以上の樹脂成形品を一度に溶着することはできない。
したがって、公知のAT車のバルブボディについても、合成樹脂で、しかも溶着によって製造することは困難であった。
It is a known technique to weld two resin molded products, and as a heating means thereof, for example, a method by heating the joint surface with a heat source such as a laser or an ultrasonic wave has been adopted.
However, even if such a method can be adopted as a means for welding two resin molded products, it is not possible to weld three or more resin molded products at a time.
Therefore, it is difficult to manufacture a valve body of a known AT car using a synthetic resin and also by welding.

原理的には、加熱手段としてマイクロ波の照射を行うことにより、2つの樹脂成形品を溶着する方法が考えられる。特許文献1に記載の方法は、まさにその方法であり、溶着媒体である熱可塑性樹脂の紐状物を、該樹脂成形品の溶着面に設けた溝に配置し、2つの樹脂成形品の溶着面同士を密着させて、マイクロ波を照射することにより2つの樹脂成形品の溶着を行っている。   In principle, a method of welding two resin molded products by performing microwave irradiation as a heating means is conceivable. The method described in Patent Document 1 is just that method, and a thermoplastic resin string-like material as a welding medium is disposed in a groove provided on the welding surface of the resin molded product, and the two resin molded products are welded. The two resin molded products are welded by bringing the surfaces into close contact with each other and irradiating with microwaves.

また、特許文献2に記載の方法は、発泡剤とマイクロ波吸収体を混合してなる組成物を、表皮材と基材の間に設置し、加熱して発泡させると同時に、該表皮材と該基材を溶着させている。   In addition, the method described in Patent Document 2 is a composition obtained by mixing a foaming agent and a microwave absorber, placed between a skin material and a base material, heated and foamed, and at the same time, The base material is welded.

特開2000−233450号公報JP 2000-233450 A 特開2000−229328号公報JP 2000-229328 A

特許文献1の方法では、発熱体である溶着媒体を押し出し成形で製造するので、2つ以上に分岐した複雑形状の溶着媒体を得ることが困難であり、また、紐状物を使用した場合には、マイクロ波エネルギの吸収が均一でなく、そして、マイクロ波エネルギの吸収が均一であっても、周囲の熱容量が均一でないために両者を均一に溶着させることが困難であった。
また、特許文献2は、発泡剤とマイクロ波吸収体を混合してなる組成物を、表皮材と基材の間に設置し、加熱して発泡すると同時に、該表皮材と該基材を溶着させる方法であるから、マイクロ波を吸収体させる全体的な接合には適しているが、成形物に歪を残さないように、接合面の一部を溶着したい場合には使用できない。
In the method of Patent Document 1, since a welding medium as a heating element is manufactured by extrusion molding, it is difficult to obtain a welding medium having a complex shape branched into two or more, and when a string-like material is used. However, the absorption of the microwave energy is not uniform, and even if the absorption of the microwave energy is uniform, the surrounding heat capacity is not uniform, so it is difficult to weld the two uniformly.
Patent Document 2 discloses that a composition obtained by mixing a foaming agent and a microwave absorber is placed between a skin material and a base material, heated and foamed, and at the same time, the skin material and the base material are welded together. Therefore, it is suitable for the entire joining that absorbs the microwave, but cannot be used when a part of the joining surface is welded so as not to leave a distortion in the molded product.

そこで、本発明は、上記問題点を解消すべく、マイクロ波エネルギの吸収に若干の乱れがあっても、周囲の熱容量が均一でなくても合成樹脂成型体の溶着を均一に行うことができ、かつ、当該合成樹脂成型体に歪を与えることのない樹脂製バルブボディ及びその製造方法の提供を課題とするものである。   Therefore, in order to solve the above problems, the present invention can uniformly weld the synthetic resin molded body even if there is a slight disturbance in the absorption of microwave energy and the surrounding heat capacity is not uniform. An object of the present invention is to provide a resin valve body that does not give strain to the synthetic resin molding and a method for manufacturing the same.

請求項1の発明にかかる樹脂製バルブボディにおいては、オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂製バルブボディを、前記複数のコントロールバルブ収容部位または前記樹脂製バルブボディ中の油路の中心線に沿って3以上に分割して形成した複数のバルブボディ樹脂成型体と、前記バルブボディ樹脂成型体相互間に挟まれた、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体に、前記バルブボディ樹脂成型体相互間を接合する接合方向に押圧力を加えながら前記マイクロ波を照射することによって溶着した溶着層とを具備するものである。
また、上記バルブボディ樹脂成型体相互間に挟まれたマイクロ波によって誘電加熱自在なマイクロ波板状発熱体にマイクロ波を照射することによって溶着した溶着層とは、マイクロ波板状発熱体の発熱によって形成される溶着層であり、バルブボディ樹脂成型体相互間にマイクロ波板状発熱体が配置されることにより、マイクロ波板状発熱体とバルブボディ樹脂成型体とが溶着した溶着層やマイクロ波板状発熱体の周囲にできるバルブボディ樹脂成型体相互が溶着した溶着層を指す。本発明ではこれらの一方または双方を含むものである。
ここで、複数のコントロールバルブ収容部位または前記樹脂製バルブボディ中の油路の中心線に沿って3以上に分割して形成した複数のバルブボディ樹脂成型体とは、電磁バルブ、油圧バルブ等のコントロールバルブが略円柱状であり、それを保持するバルブボディ樹脂成型体は組み付けの際にコントロールバルブを組み込んだり、取り出したりできるように、開放自在に形成され、また、前記樹脂製バルブボディ中の油路も略円形断面を有していることから、コントロールバルブの収容部位または油路の中心線に沿って樹脂製バルブボディが3以上に分割されるものであればよい。なお、油路の断面は分割可能な対称形状であれば略円形断面に限定するものではない。
In the resin valve body according to the first aspect of the present invention, the resin valve body that houses a plurality of control valves for controlling the hydraulic pressure and the oil amount for performing automatic transmission in the automatic transmission is provided with the plurality of control valve housing parts or the Dielectric heating by microwaves sandwiched between a plurality of valve body resin molded bodies formed by dividing into three or more along the center line of the oil passage in the resin valve body, and the valve body resin molded bodies. And a welded layer that is welded by irradiating the microwave while applying a pressing force in the joining direction for joining the valve body resin molded bodies together.
The welded layer welded by irradiating microwaves to a microwave plate-like heating element that can be dielectrically heated by microwaves sandwiched between the valve body resin moldings is the heat generation of the microwave plate-like heating element. The microwave plate-like heating element is disposed between the valve body resin molded bodies, so that the microwave plate-like heating element and the valve body resin molded body are welded to each other. This refers to the welded layer formed by welding the valve body resin moldings around the corrugated heating element. In the present invention, one or both of these are included.
Here, the plurality of valve body resin molded bodies formed by dividing into three or more along the center line of the oil passage in the plurality of control valve housing parts or the resin valve body are electromagnetic valves, hydraulic valves, etc. The control valve has a substantially cylindrical shape, and the valve body resin molded body that holds the control valve is formed so as to be freely opened so that the control valve can be incorporated and removed during assembly. Since the oil passage also has a substantially circular cross section, the resin valve body may be divided into three or more along the control valve housing part or the center line of the oil passage. Note that the cross section of the oil passage is not limited to a substantially circular cross section as long as it can be divided symmetrically.

また、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルム、または金属箔から形成したものである。 Moreover, the microwave plate-like heating element that can be dielectrically heated by microwaves is formed from a thermoplastic resin film kneaded with metal powder as a conductor, a thermoplastic resin film having a metal thin film, or a metal foil.

請求項2の発明にかかる樹脂製バルブボディのマイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、前記複数のバルブボディ樹脂成型体の接合面に沿った形状に形成されているものである。ここでバルブボディ樹脂成型体の接合面に沿った形状とは、樹脂製バルブボディを3以上に分割したバルブボディ樹脂成型体の接合面の外周側及び内周側に所定の幅を残して接合面に沿った形状である。勿論、接合面と同じ大きさの形状に形成することを除外するものではない。 The microwave plate-like heating element that can be dielectrically heated by the microwave of the resin valve body according to the invention of claim 2 is formed in a shape along the joint surface of the plurality of valve body resin molded bodies. . Here, the shape along the joint surface of the valve body resin molded body means that the resin valve body is divided into three or more parts while leaving a predetermined width on the outer peripheral side and inner peripheral side of the joint surface of the valve body resin molded body. It is a shape along the surface. Of course, it does not exclude the formation of the same size as the joint surface.

請求項3の発明にかかる樹脂製バルブボディのマイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、全角に面取り処理をされているものである。
ここで、全角の面取り処理とは、マイクロ波板状発熱体の平面の角を円弧状または斜めに加工することを意味し、マイクロ波のエネルギが集中し火花の発生に繋がらなければよく、それによって角の面取りが決定される。
The microwave plate-like heating element that can be dielectrically heated by the microwave of the resin valve body according to the invention of claim 3 is chamfered in all angles.
Here, the full-width chamfering process means that the corners of the plane of the microwave plate-like heating element are processed in an arc shape or obliquely, and it is sufficient if the energy of the microwave is concentrated and does not lead to the generation of a spark. The corner chamfer is determined by.

請求項4の発明にかかる樹脂製バルブボディのマイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、位置決めする貫通孔が穿設されているものである。
ここで、位置決めする貫通孔とは、バルブボディ樹脂成型体側に突起を設け、そこに、マイクロ波板状発熱体を位置決めするものであればよく、複数突起による基準点を設けることにより位置決めの精度を上げることができる。
The microwave plate-like heating element that can be dielectrically heated by the microwave of the resin valve body according to the invention of claim 4 is provided with a through hole for positioning.
Here, the through-hole to be positioned is not limited as long as a projection is provided on the valve body resin molded body side and the microwave plate-like heating element is positioned there, and positioning accuracy is provided by providing a reference point with a plurality of projections. Can be raised.

請求項5の発明にかかる樹脂製バルブボディの製造方法においては、オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂バルブボディを3以上に、前記複数のコントロールバルブ収容部位または前記樹脂製バルブボディ中の油路の中心線に沿って分割して形成した複数のバルブボディ樹脂成型体を、前記バルブボディ樹脂成型体相互間にマイクロ波によって誘電加熱自在なマイクロ波板状発熱体を挟み、その接合面にその接合方向に押圧力を加えながら、そこに前記マイクロ波を照射することによって両者を溶着するものである。
ここで、コントロールバルブ収容部位または樹脂製バルブボディ中の油路の中心線に沿って3以上に分割してなる複数のバルブボディ樹脂成型体とは、電磁バルブ、油圧バルブ等のコントロールバルブが略円柱状であり、それを保持するバルブボディ樹脂成型体は組み付けの際に開放自在に形成され、また前記樹脂製バルブボディ中の油路も略円形断面を有していることから、コントロールバルブの収容部位または油路の中心線に沿って、樹脂製バルブボディが3以上に分割されるものであればよい。
また、上記バルブボディ樹脂成型体相互間に挟まれたマイクロ波によって誘電加熱自在なマイクロ波板状発熱体にマイクロ波を照射することによって溶着した溶着層とは、マイクロ波板状発熱体の発熱によって形成される溶着層であり、バルブボディ樹脂成型体相互間にマイクロ波板状発熱体が配置されることにより、マイクロ波板状発熱体とバルブボディ樹脂成型体とが溶着した溶着層やマイクロ波板状発熱体の周囲にできるバルブボディ樹脂成型体相互が溶着した溶着層を指す。本発明ではこれらの一方または双方を含むものである。
そして、上記マイクロ波板状発熱体を挟み、その接合面にその接合方向に押圧力を加えながらとは、バルブボディ樹脂成型体相互間にその間隔が狭くなるような押圧力を加えることにより、さらに詳しくは、マイクロ波エネルギの制御(マイクロ波板状発熱体の温度制御)及び接合面に加わる押圧力の制御によってバルブボディ樹脂成型体相互間の隙間の仕上がりが決定できればよい。なお、押圧力は、自重に置き換えることができる。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a resin valve body, wherein the number of resin valve bodies containing a plurality of control valves for controlling hydraulic pressure and oil amount for automatic transmission in an automatic transmission is increased to three or more. A plurality of valve body resin molded bodies formed by dividing along a valve housing part or a center line of an oil passage in the resin valve body are micro-electrically heated by microwaves between the valve body resin molded bodies. By sandwiching the corrugated plate-like heating element and applying a pressing force to the joining surface in the joining direction, the microwaves are irradiated to the two to weld them together.
Here, the plurality of valve body resin molded bodies divided into three or more along the center line of the oil passage in the control valve housing part or the resin valve body are control valves such as electromagnetic valves and hydraulic valves. The valve body resin molded body that holds the cylinder is formed so as to be freely opened when assembled, and the oil passage in the resin valve body has a substantially circular cross section. The resin valve body may be divided into three or more along the center line of the housing part or the oil passage.
The welded layer welded by irradiating microwaves to a microwave plate-like heating element that can be dielectrically heated by microwaves sandwiched between the valve body resin moldings is the heat generation of the microwave plate-like heating element. The microwave plate-like heating element is disposed between the valve body resin molded bodies, so that the microwave plate-like heating element and the valve body resin molded body are welded to each other. This refers to the welded layer formed by welding the valve body resin moldings around the corrugated heating element. In the present invention, one or both of these are included.
And while sandwiching the microwave plate-like heating element and applying a pressing force to the bonding surface in the bonding direction, by applying a pressing force that narrows the interval between the valve body resin molded bodies, More specifically, it is only necessary to determine the finish of the gap between the valve body resin molded bodies by controlling the microwave energy (controlling the temperature of the microwave plate-like heating element) and controlling the pressing force applied to the joint surface. The pressing force can be replaced with its own weight.

また、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体を、導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルム、または金属箔から形成したものである。 Further, a microwave plate-like heating element that can be dielectrically heated by microwaves is formed from a thermoplastic resin film kneaded with metal powder as a conductor, a thermoplastic resin film having a metal thin film, or a metal foil.

請求項6の発明にかかる樹脂製バルブボディの製造方法においては、マイクロ波によって誘電加熱自在な前記複数のバルブボディ樹脂成型体の接合面に沿った形状に形成されているものである。
ここでバルブボディ樹脂成型体の接合面に沿った形状とは、樹脂製バルブボディを3以上に分割したバルブボディ樹脂成型体の接合面の外周側及び内周側に所定の幅を残して接合面に沿った形状である。勿論、接合面と同じ大きさの形状に形成することを除外するものではない。
In the manufacturing method of the resin valve body according to the invention of claim 6 , the resin valve body is formed in a shape along the joint surface of the plurality of valve body resin moldings that can be dielectrically heated by microwaves.
Here, the shape along the joint surface of the valve body resin molded body means that the resin valve body is divided into three or more parts while leaving a predetermined width on the outer peripheral side and inner peripheral side of the joint surface of the valve body resin molded body. It is a shape along the surface. Of course, it does not exclude the formation of the same size as the joint surface.

請求項7の発明にかかる樹脂製バルブボディの製造方法においては、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、全角に面取り処理をしたものである。
ここで、全角の面取り処理とは、マイクロ波板状発熱体の平面の角を円弧状または斜めに加工することを意味し、マイクロ波のエネルギが集中し、火花の発生に繋がらなければよい。
In the method for manufacturing a resin valve body according to the seventh aspect of the invention, the microwave plate-like heating element that can be dielectrically heated by microwaves is chamfered in all angles.
Here, the full-width chamfering process means that the corners of the plane of the microwave plate-like heating element are processed in an arc shape or obliquely, and it is sufficient that the energy of the microwave is concentrated and does not lead to the generation of a spark.

請求項8の発明にかかる樹脂製バルブボディの製造方法においては、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、位置決めする貫通孔が穿設されているものである。
ここで、位置決めする貫通孔とは、バルブボディ樹脂成型体側に突起を設け、そこにマイクロ波板状発熱体を位置決めするものであればよく、複数突起による基準点を設けることで位置決め精度を上げることができる。
In the method for manufacturing a resin valve body according to the eighth aspect of the present invention, the microwave plate-like heating element that can be dielectrically heated by microwaves is provided with a through hole for positioning.
Here, the through-hole to be positioned is not limited as long as a projection is provided on the valve body resin molded body side and the microwave plate-like heating element is positioned there, and positioning accuracy is improved by providing a reference point with a plurality of projections. be able to.

請求項1の発明の樹脂製バルブボディにおいては、オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂製バルブボディを、前記複数のコントロールバルブ収容部位または前記樹脂製バルブボディ中の油路の中心線に沿って3以上に分割して形成した複数のバルブボディ樹脂成型体と、前記バルブボディ樹脂成型体相互間に挟まれた、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体に、前記バルブボディ樹脂成型体相互間を接合する接合方向に押圧力を加えながらマイクロ波を照射することによって溶着した溶着層とを具備する樹脂製バルブボディである。このように樹脂製バルブボディを複数のコントロールバルブ収容部位または樹脂製バルブボディ中の油路の中心線に沿って3以上に分割した形状に予め成型し、これらをマイクロ波板状発熱体によって溶着して一体化することで複雑な形状のバルブボディであっても簡便に製作することが可能となる。特にマイクロ波板状発熱体を使用することにより、マイクロ波を照射して誘電加熱自在なマイクロ波板状発熱体を加熱する際、該マイクロ波によって誘電加熱自在なマイクロ波板状発熱体が薄く、発熱温度を一様に高くすることが可能であるので、安定した溶着が可能であり、樹脂製バルブボディをより容易に製造することが可能である。したがって、従来から存在する金属製バルブボディであれば、切削加工が必要であり、また、切削加工の加工屑等の除去が必要であるものの、それらの加工及び清掃を簡略化できるので生産性が向上する。また、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体の熱容量が小さいから、発熱時間が極めて短時間で済み、量産化が可能である。
更に、3個以上のバルブボディ樹脂成型体を一度に溶着させる際には、導電性の板状合成樹脂からなるマイクロ波板状発熱体を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。また、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体の形状を熱容量を基に設定すれば、均一な溶融状態が得られ、バルブボディ樹脂成型体に熱的に変形する歪を残すことはない。
したがって、マイクロ波エネルギの吸収に若干の乱れがあっても、周囲のバルブボディ樹脂成型体の熱容量が均一でなくても合成樹脂成型体の溶着を均一に行うことができ、かつ、当該バルブボディ樹脂成型体に歪を与えることのない樹脂製バルブボディとなる。
In the resin valve body according to the first aspect of the present invention, the resin valve body that houses a plurality of control valves for controlling the hydraulic pressure and the oil amount for performing automatic transmission in the automatic transmission is used as the plurality of control valve housing parts or the resin. A plurality of valve body resin moldings divided into three or more along the center line of the oil passage in the valve body and a microwave sandwiched between the valve body resin moldings can be heated by dielectric heating. A resin valve body comprising a microwave plate-like heating element and a weld layer welded by irradiating microwaves while applying a pressing force in a joining direction for joining the valve body resin molded bodies. In this way, the resin valve body is molded in advance into a shape divided into three or more along the center line of the oil passage in the plurality of control valve housing parts or the resin valve body, and these are welded by a microwave plate heating element. Thus, even a valve body having a complicated shape can be easily manufactured. In particular, by using a microwave plate-like heating element, when the microwave plate-like heating element that can be dielectrically heated by irradiation with microwaves is heated, the microwave plate-like heating element that can be dielectrically heated by the microwave becomes thin. Since the heat generation temperature can be increased uniformly, stable welding is possible, and the resin valve body can be more easily manufactured. Therefore, with a conventional metal valve body, cutting is necessary, and removal of machining scraps and the like of the cutting is necessary, but since the machining and cleaning can be simplified, productivity is improved. improves. In addition, since the heat capacity of the microwave plate-like heating element that can be dielectrically heated by microwaves is small, the heat generation time is extremely short, and mass production is possible.
Furthermore, when three or more valve body resin moldings are welded at once, the degree of heating of each welded portion can be made uniform by adjusting a microwave plate heating element made of conductive plate-like synthetic resin. It is possible to make adjustments. In addition, if the shape of the microwave plate heating element that can be dielectrically heated by microwaves is set based on the heat capacity, a uniform molten state can be obtained, and the valve body resin molded body can remain thermally deformed. Absent.
Therefore, even if there is a slight disturbance in the absorption of microwave energy, the synthetic resin molding can be uniformly welded even if the heat capacity of the surrounding valve body resin molding is not uniform, and the valve body It becomes a resin valve body which does not give distortion to a resin molding.

また、誘電加熱自在なマイクロ波板状発熱体は、導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルム、または金属箔から形成したものであるから、金属粉末の量または金属薄膜若しくは金属箔の厚みによって発熱特性を任意に設定できる。 Further, dielectric heating freely microwave plate heating element, since it is one formed from a thermoplastic resin film or a metal foil, having a thermoplastic resin film or a metal thin film obtained by kneading metal powder is a conductor, a metal powder The heat generation characteristics can be arbitrarily set according to the amount of metal or the thickness of the metal thin film or metal foil.

請求項2の発明の樹脂製バルブボディのマイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、前記複数のバルブボディ樹脂成型体の接合面に沿った形状に形成されているものである。請求項1に記載の効果に加えて、このようにマイクロ波板状発熱体をバルブボディ樹脂成型体の接合面に沿った形状に形成することでバルブボディの複雑な形状に対しても確実な溶着ができ、一体化したバルブボディの製作が可能となる。 The microwave plate-like heating element that can be dielectrically heated by the microwave of the resin valve body according to the second aspect of the present invention is formed in a shape along the joint surface of the plurality of valve body resin molded bodies. In addition to the effect of the first aspect, by forming the microwave plate-like heating element in a shape along the joint surface of the valve body resin molded body in this way, it is possible to ensure even a complicated shape of the valve body. Welding is possible, making it possible to manufacture an integrated valve body.

請求項3の発明の樹脂製バルブボディのマイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、全角に面取り処理をされているものであるから、請求項1乃至請求項2のいずれか1項に記載の効果に加えて、マイクロ波のエネルギの集中が生じないので、火花が入ったり、バルブボディ樹脂成型体を焼いたりすることがない。 Since the microwave plate-like heating element that can be dielectrically heated by the microwave of the resin valve body according to the invention of claim 3 is chamfered at all angles, either one of claims 1 to 2. In addition to the effect described in the item, since the concentration of the microwave energy does not occur, there is no spark and the valve body resin molding is not burned.

請求項4の発明の樹脂製バルブボディのマイクロ波によって誘電加熱自在なマイクロ波板状発熱体は、位置決めする貫通孔が穿設されているものであるから、請求項1乃至請求項3のいずれか1項に記載の効果に加えて、バルブボディ樹脂成型体の接合面に対するマイクロ波板状発熱体の位置決めを正確に行うことができる。 Since the microwave plate-like heating element that can be dielectrically heated by the microwave of the resin valve body of the invention of claim 4 has a through hole for positioning, any one of claims 1 to 3 is provided. In addition to the effects described in item 1, the microwave plate-like heating element can be accurately positioned with respect to the joint surface of the valve body resin molded body.

請求項5の発明の樹脂製バルブボディの製造方法においては、オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂バルブボディを3以上に、前記複数のコントロールバルブ収容部位または前記樹脂製バルブボディ中の油路の中心線に沿って分割して形成した複数のバルブボディ樹脂成型体を、前記バルブボディ樹脂成型体相互間にマイクロ波によって誘電加熱自在なマイクロ波板状発熱体を挟み,そこに前記マイクロ波を照射することによって両者を溶着するものであるから、前記マイクロ波を照射してマイクロ波板状発熱体を加熱する際、該マイクロ波板状発熱体の発熱温度を一様に高くすることができ、安定した溶着が可能であり、樹脂製バルブボディをより容易に製造することが可能である。特に、従来からある金属製バルブボディであれば、切削加工したり、また、切削加工の加工屑等の除去が必要である。しかし、本発明では、それらの加工及び清掃を簡略化できるので生産性が向上する。また、マイクロ波板状発熱体の熱容量が小さいから、発熱時間が極めて短時間で済み、量産化が可能である。そして、バルブボディを予めコントロールバルブ収容部位または樹脂製バルブボディ中の油路の中心線に沿って3以上に分割したバルブボディ樹脂成型体を形成し、これらバルブボディ樹脂成型体をマイクロ波板状発熱体の加熱により溶着することで複雑な形状に対しても製作が可能となる。
そして、上記マイクロ波板状発熱体を挟み、その接合面にその接合方向に押圧力を加えながら、バルブボディ樹脂成型体相互間にその間隔が狭くなるような押圧力を加え、マイクロ波エネルギの制御(マイクロ波板状発熱体の温度制御)及び接合面に加わる押圧力の制御によって仕上がり精度を上げることができる。なお、押圧力は、自重に置き換えることもできる。
更に、3個以上のバルブボディ樹脂成型体を一度に溶着させる場合であっても、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。また、マイクロ波板状発熱体の形状を熱容量を考慮して設定すれば、均一な溶融状態が得られ、バルブボディ樹脂成型体に熱的に変形する歪を残すことはない。
したがって、マイクロ波エネルギの吸収に若干の乱れがあっても、周囲のバルブボディ樹脂成型体の熱容量が均一でなくても、そのバルブボディ樹脂成型体の溶着を均一に行うことができ、かつ、当該バルブボディ樹脂成型体に歪を与えることのない樹脂製バルブボディの製造方法となる。
In the method of manufacturing a resin valve body according to the fifth aspect of the present invention, the number of resin valve bodies for accommodating a plurality of control valves for controlling hydraulic pressure and oil amount for performing automatic transmission in an automatic transmission is set to three or more , and the plurality of control valves A plurality of valve body resin molded bodies formed by being divided along the center line of the oil passage in the housing part or the resin valve body are microwaves that can be dielectrically heated by microwaves between the valve body resin molded bodies. Since the plate-like heating element is sandwiched and both are welded by irradiating the microwave to the plate-like heating element, the microwave plate-like heating element is heated when the microwave plate-like heating element is heated by irradiating the microwave. The heat generation temperature of the body can be increased uniformly, stable welding is possible, and the plastic valve body is easier It is possible to manufacture. In particular, in the case of a conventional metal valve body, it is necessary to perform cutting processing or to remove cutting waste and the like. However, in the present invention, since the processing and cleaning can be simplified, productivity is improved. Moreover, since the heat capacity of the microwave plate-like heating element is small, the heat generation time is very short, and mass production is possible. Then, a valve body resin molded body is formed by dividing the valve body into three or more along the center line of the oil passage in the control valve housing part or the resin valve body, and these valve body resin molded bodies are formed in a microwave plate shape. It is possible to manufacture even complicated shapes by welding by heating the heating element.
Then, the microwave plate-like heating element is sandwiched between the valve body resin moldings while applying a pressing force to the bonding surface in the bonding direction, and the microwave energy is applied. Finishing accuracy can be improved by control (temperature control of the microwave plate-like heating element) and control of the pressing force applied to the joint surface. The pressing force can be replaced with its own weight.
Furthermore, even when three or more valve body resin moldings are welded at once, the degree of heating of each welded portion can be made uniform by adjusting the microwave plate-shaped heating element that can be dielectrically heated by microwaves. It is possible to make adjustments. Moreover, if the shape of the microwave plate-like heating element is set in consideration of the heat capacity, a uniform molten state can be obtained, and the valve body resin molded body does not leave a strain that is thermally deformed.
Therefore, even if there is a slight disturbance in the absorption of microwave energy, even if the heat capacity of the surrounding valve body resin molding is not uniform, the valve body resin molding can be uniformly welded, and It becomes the manufacturing method of the resin-made valve body which does not give distortion to the said valve body resin molding.

また、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体を、導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルム、または金属箔から形成したものであるから、金属粉末の量または金属薄膜若しくは金属箔の厚みによって発熱特性を任意に設定できる。 Also, a microwave plate-like heating element that can be dielectrically heated by microwaves is formed from a thermoplastic resin film kneaded with a metal powder as a conductor, a thermoplastic resin film having a metal thin film, or a metal foil. The heat generation characteristics can be arbitrarily set according to the amount of the metal powder or the thickness of the metal thin film or the metal foil.

請求項6の発明の樹脂製バルブボディの製造方法においては、前記複数のバルブボディ樹脂成型体の接合面に沿った形状に形成されているものである。請求項5に記載の効果に加えて、このようにマイクロ波板状発熱体をバルブボディ樹脂成型体の接合面に沿った形状に形成することでバルブボディの複雑な形状に対しても確実な溶着ができ、一体化したバルブボディの製作が可能となる。 In the method of manufacturing a resin valve body according to the sixth aspect of the present invention, the resin valve body is formed in a shape along the joint surface of the plurality of valve body resin molded bodies. In addition to the effect of the fifth aspect, by forming the microwave plate-like heating element in a shape along the joint surface of the valve body resin molded body in this way, the complicated shape of the valve body can be ensured. Welding is possible, making it possible to manufacture an integrated valve body.

請求項7の発明の樹脂製バルブボディの製造方法においては、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体の全角に面取り処理をしたものであるから、請求項5または請求項6に記載の効果に加えて、マイクロ波のエネルギの集中が生じないので、火花が入ったり、バルブボディ樹脂成型体を焼いたりすることがない。 In the production method of the resin-made valve body of the invention of claim 7, since it is obtained by the chamfering process to full width of the dielectric heating freely microwave plate-like heating element by microwaves, according to claim 5 or claim 6 In addition to the above effect, the concentration of microwave energy does not occur, so there is no spark and no burning of the valve body resin molding.

請求項8の発明の樹脂製バルブボディの製造方法においては、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体に位置決めする貫通孔が穿設されているから、請求項5乃至請求項7のいずれか1項に記載の効果に加えて、バルブボディ樹脂成型体の接合面に対するマイクロ波板状発熱体の位置決めを正確に行うことができる。 In the production method of the resin-made valve body of the invention of claim 8, since the through hole for positioning the dielectric heating freely microwave plate-like heating element by microwaves are bored, of claims 5 to 7 In addition to the effect described in any one of the items, the microwave plate-like heating element can be accurately positioned with respect to the joint surface of the valve body resin molded body.

図1は本発明の実施の形態にかかる樹脂製バルブボディの組み立て工程を説明する製造工程を示す概念図であり、(a)は組み付け概念図、(b)は組み付け溶着前完成図を説明する製造工程を示すものである。FIG. 1 is a conceptual diagram illustrating a manufacturing process for explaining an assembling process of a resin valve body according to an embodiment of the present invention, where (a) is an assembling conceptual diagram, and (b) is a completed drawing before assembling welding. A manufacturing process is shown. 図2は本発明の実施の形態にかかる樹脂製バルブボディの一部断面図である。FIG. 2 is a partial sectional view of the resin valve body according to the embodiment of the present invention. 図3は本発明の実施の形態にかかる樹脂製バルブボディで使用するマイクロ波板状発熱体の平面図で、基本形状の平面図(a)、穿孔形状の平面図(b)、長円形状の平面図(c)、メッシュ形状の平面図(d)を示すものである。FIG. 3 is a plan view of a microwave plate-like heating element used in the resin valve body according to the embodiment of the present invention. The basic shape is a plan view (a), the perforated shape is a plan view (b), and an oval shape. A plan view (c) and a plan view (d) of a mesh shape are shown. 図4は本発明の実施の形態にかかる樹脂製バルブボディで使用するマイクロ波板状発熱体と接合面との関係を説明する説明図で、(a)は接合面が狭い場合(b)は接合面が広い場合である。FIG. 4 is an explanatory view for explaining the relationship between the microwave plate-like heating element used in the resin valve body according to the embodiment of the present invention and the joining surface. FIG. 4 (a) shows a case where the joining surface is narrow (b). This is the case where the joint surface is wide. 図5は本発明の実施の形態にかかる樹脂製バルブボディで使用するマイクロ波板状発熱体にマイクロ波を照射した場合の時間−温度特性図である。FIG. 5 is a time-temperature characteristic diagram when the microwave plate-like heating element used in the resin valve body according to the embodiment of the present invention is irradiated with microwaves. 図6は本発明の実施の形態にかかる樹脂製バルブボディで使用するマイクロ波の出力パターンを示す説明図である。FIG. 6 is an explanatory diagram showing a microwave output pattern used in the resin valve body according to the embodiment of the present invention. 図7は本発明の実施の形態にかかる樹脂製バルブボディで使用するマイクロ波板状発熱体の時間−温度特性図である。FIG. 7 is a time-temperature characteristic diagram of the microwave plate heating element used in the resin valve body according to the embodiment of the present invention. 図8は本発明の実施の形態にかかる樹脂製バルブボディの製造方法の工程図である。FIG. 8 is a process diagram of a method for manufacturing a resin valve body according to an embodiment of the present invention.

[実施の形態]
以下、本発明の実施の形態について、図面に基づいて説明する。なお、図中、本実施の形態における同一記号及び同一符号は、同一または相当する機能部分であるから、ここでは重複する説明を省略する。
図1乃至図5において、まず、本発明の実施の形態にかかる樹脂製バルブボディの全体の構成を概略的に説明する。
オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブが収容された後リニアソレノイド(図示では1個)を収容する樹脂製バルブボディ100を2個以上に、コントロールバルブ収容部位の中心線に沿って分割して形成し、前記複数の本実施の形態では、6個に分割してなるバルブボディ樹脂成型体11,12,13,14,15,16から構成されている。この実施の形態で示すコントロールバルブとしてのリニアソレノイドバルブAは、電磁制御部A1とバルブ部A2で構成されている。なお分割の個数は6個に限定するものではなく、バルブボディの形状と、そこに収容されるコントロールバルブ及び油路の形状によって所望の個数にすることができる。この際本発明の実施の形態のようにコントロールバルブではなく樹脂製バルブボディ100中の油路の中心線とすることもでき、さらにコントロールバルブ収容部位と油路の両方の中心線によって分割することも有り得る。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same symbols and the same reference numerals in the present embodiment are the same or corresponding functional parts, and therefore, duplicate description is omitted here.
1 to 5, first, an overall configuration of a resin valve body according to an embodiment of the present invention will be schematically described.
After a plurality of control valves for controlling hydraulic pressure and oil amount for automatic transmission in an automatic transmission are accommodated, the resin valve body 100 for accommodating a linear solenoid (one in the figure) is accommodated in two or more, and the control valve accommodating portion A plurality of valve body resin molded bodies 11, 12, 13, 14, 15, 16 are formed along the center line and divided into six pieces in the present embodiment. A linear solenoid valve A as a control valve shown in this embodiment is composed of an electromagnetic control unit A1 and a valve unit A2. The number of divisions is not limited to six, but can be set to a desired number depending on the shape of the valve body and the shape of the control valve and oil passage accommodated therein. At this time, the center line of the oil passage in the resin valve body 100 may be used instead of the control valve as in the embodiment of the present invention, and further divided by the center lines of both the control valve housing part and the oil passage. It is also possible.

それらバルブボディ樹脂成型体11,12,13,14,15,16の相互間には、導電性の板状合成樹脂からなるマイクロ波によって誘電加熱自在なマイクロ波板状発熱体21,22,23,24,25が配置され、マイクロ波板状発熱体21,22,23,24,25間を狭めるように、即ち、積載方向に押圧力を与えて、そこにマイクロ波を照射することによって両者を溶着するものである。   Between these valve body resin molded bodies 11, 12, 13, 14, 15, 16 microwave plate heating elements 21, 22, and 23 that can be dielectrically heated by microwaves made of conductive plate synthetic resin. , 24, 25 are arranged so as to narrow the space between the microwave plate-like heating elements 21, 22, 23, 24, 25, that is, by applying a pressing force in the stacking direction and irradiating the microwaves thereto. Are to be welded.

次に、本実施の形態にかかる樹脂製バルブボディを仔細に説明する。
バルブボディ樹脂成型体11,12,13,14,15,16は、オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブ収容部位の中心線に沿って開口面(端面)を形成し、前記複数のコントロールバルブを収容する樹脂製バルブボディ100を、本実施の形態では6個、即ち、上から順にアッパー(U)、ミドル(1)、ミドル(2)、ミドル(3)、ミドル(4)、ロアー(L)に分割したものである。
なお、この樹脂製バルブボディ100は、従来は金属製であり、鋳込み、切削加工等を経て製造されたものを、本実施の形態では、合成樹脂製とし6個に分割して成型し、その後溶着して一体化したものである。
Next, the resin valve body according to the present embodiment will be described in detail.
Valve body resin moldings 11, 12, 13, 14, 15, and 16 have opening surfaces (end surfaces) along the center lines of a plurality of control valve housing parts that control oil pressure and oil amount for automatic transmission in an automatic transmission. In the present embodiment, there are six resin valve bodies 100 formed and accommodating the plurality of control valves, that is, upper (U), middle (1), middle (2), middle (3) in order from the top. , Middle (4), and lower (L).
The resin valve body 100 is conventionally made of metal, and is manufactured by casting, cutting, etc., and in this embodiment, is made of synthetic resin, divided into six parts, and then molded. It is welded and integrated.

なお、図1に示すように、バルブボディ樹脂成型体11,12,13,14,15,16は、積層させて、この各層間を溶着させるために、各層間にマイクロ波板状発熱体21,22,23,24,25を配置するが、各層の両面には必要に応じて、凹部や溝、孔部、凸部を設け、全ての層を溶着させた後には、これらの凹部、溝、孔部、凸部が互いに接続され、目的とする機能を発揮させることになる。
したがって、後述するマイクロ波板状発熱体21,22,23,24,25は、当該形状に合致した形状に形成される。
As shown in FIG. 1, the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are laminated, and in order to weld each of the layers, a microwave plate heating element 21 is provided between the layers. 22, 23, 24, 25 are provided, but if necessary, recesses, grooves, holes, and protrusions are provided on both surfaces of each layer, and after all layers are welded, these recesses and grooves Then, the hole and the convex are connected to each other, and the intended function is exhibited.
Therefore, microwave plate-like heating elements 21, 22, 23, 24, and 25, which will be described later, are formed in a shape that matches the shape.

マイクロ波板状発熱体21,22,23,24,25は、バルブボディ樹脂成型体11,12,13,14,15,16の相互間に挟まれ、マイクロ波を照射されることによってマイクロ波板状発熱体21,22,23,24,25が発熱し、バルブボディ樹脂成型体11,12,13,14,15,16を溶着するもので、全体が均一の厚みの板状であり、被溶着物であるバルブボディ樹脂成型体11,12,13,14,15,16の接合面の間に挟んだ状態で、押圧力を加え、マイクロ波を照射して加熱するものである。マイクロ波板状発熱体21,22,23,24,25は厚すぎると、バルブボディ樹脂成型体11,12,13,14,15,16間に空隙を生じる恐れ、バリが発生する恐れがあるので、導電性の板状合成樹脂からなるマイクロ波板状発熱体21,22,23,24,25は厚さが2mm以下、好ましくは1mm以下とすることが好ましい。勿論、全体が均一の厚みでなくても、その接合面積及び機械的強度等を考慮し、厚みの変化を持たせることもできる。   The microwave plate-shaped heating elements 21, 22, 23, 24, and 25 are sandwiched between valve body resin molded bodies 11, 12, 13, 14, 15, and 16, and are irradiated with microwaves to generate microwaves. The plate-shaped heating elements 21, 22, 23, 24, and 25 generate heat, and the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are welded. In a state of being sandwiched between the joint surfaces of the valve body resin molded bodies 11, 12, 13, 14, 15, and 16, which are the objects to be welded, a pressing force is applied, and microwaves are irradiated and heated. If the microwave plate-like heating elements 21, 22, 23, 24, and 25 are too thick, there is a risk that voids will be generated between the valve body resin molded bodies 11, 12, 13, 14, 15, and 16, and burrs may be generated. Therefore, it is preferable that the microwave plate-like heating elements 21, 22, 23, 24, and 25 made of conductive plate-like synthetic resin have a thickness of 2 mm or less, preferably 1 mm or less. Of course, even if the entire thickness is not uniform, the thickness can be changed in consideration of the bonding area, mechanical strength, and the like.

特に、マイクロ波板状発熱体21,22,23,24,25の厚さが2mm以下、好ましくは1mm以下とは、マイクロ波板状発熱体21,22,23,24,25を挟み込んだ際のバルブボディ樹脂成型体11,12,13,14,15,16相互間の隙間が2mm以下、好ましくは1mm以下となるので、できるだけ薄いマイクロ波板状発熱体21,22,23,24,25を使用するのが好適である。そしてマイクロ波板状発熱体21,22,23,24,25の発熱によってマイクロ波板状発熱体21,22,23,24,25に接するバルブボディ樹脂成型体11,12,13,14,15,16の接合面内の接触面及びその接触面近傍が溶融または軟化するとともにバルブボディ樹脂成型体11,12,13,14,15,16に加えられた押圧力によってバルブボディ樹脂成型体11,12,13,14,15,16相互間の隙間が減少する。発明者等の実験においては、溶着の実施により、0.01mm以下または0.005mm以下の接合誤差が生ずる程度であり、所定の押圧力を確保すれば、精度のよい接合を行うことができた。
なお、このときの溶着する際の押圧力は、バルブボディ樹脂成型体11,12,13,14,15,16相互間に挟まれたマイクロ波板状発熱体21,22,23,24,25の体積を少なくする方向に押圧力を加えるものである。ここで、2mmを超えるとマイクロ発熱体を合成樹脂成型体間に配置したときの間隙が大きく、押圧を加えて溶着した後に合成樹脂成型体間に間隙が残りやすい。
In particular, the thickness of the microwave plate-like heating elements 21, 22, 23, 24, 25 is 2 mm or less, preferably 1 mm or less when the microwave plate-like heating elements 21, 22, 23, 24, 25 are sandwiched. Since the gap between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 is 2 mm or less, preferably 1 mm or less, the microwave plate-like heating elements 21, 22, 23, 24, 25 are as thin as possible. Is preferably used. Then, valve body resin molded bodies 11, 12, 13, 14, 15 that come into contact with the microwave plate-shaped heating elements 21, 22, 23, 24, 25 by the heat generated by the microwave plate-shaped heating elements 21, 22, 23, 24, 25 are used. , 16 contact surface in the joint surface and the vicinity of the contact surface are melted or softened, and the valve body resin molded body 11, 16 is pressed by the pressure applied to the valve body resin molded body 11, 12, 13, 14, 15, 16. The gap between 12, 13, 14, 15, 16 is reduced. In the experiments conducted by the inventors, the welding error was such that a welding error of 0.01 mm or less or 0.005 mm or less occurred, and if a predetermined pressing force was ensured, it was possible to perform highly accurate joining. .
The pressing force at the time of welding at this time is the microwave plate-like heating elements 21, 22, 23, 24, 25 sandwiched between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 The pressing force is applied in the direction of decreasing the volume of the. Here, if it exceeds 2 mm, the gap when the micro-heating element is arranged between the synthetic resin moldings is large, and the gap tends to remain between the synthetic resin moldings after being pressed and welded.

また、本実施の形態で使用するマイクロ波板状発熱体21,22,23,24,25は、例えば、図3(a)〜(d)に示されているように、マイクロ波板状発熱体20(21,22,23,24,25)として、その平面の角は面取りとしてのR(アール)が形成されている。この面取りにより、照射するマイクロ波エネルギの集中が生じないので、スパークの発生、バルブボディ樹脂成型体11,12,13,14,15,16の焼け等が防止される。面取りは大きいほうが好ましく、溶着する製品の幅とマイクロ波板状発熱体の幅から設定される。また、面取りはR形状以外にもスパークの発生が生じないのであれば平面の角度が90度以上の斜めの直線状に面取りすることも有り得る。そして全体の平面形状は図1(a)のマイクロ波板状発熱体21,22,23,24,25として示されているように、バルブボディ樹脂成型体11,12,13,14,15,16の接合面に沿った形状であり、その幅は図4(a)または図4(b)に示したようにバルブボディ樹脂成型体11,12,13,14,15,16の接合面の幅より狭い幅に設定されている。このようにマイクロ波板状発熱体21,22,23,24,25の幅をバルブボディ樹脂成型体11,12,13,14,15,16の接合面の幅より小さくすることで溶着時に接合面から溶融した樹脂がはみ出すことを防止している。 Moreover, the microwave plate-shaped heating elements 21, 22, 23, 24, and 25 used in the present embodiment are, for example, as shown in FIGS. As the body 20 (21, 22, 23, 24, 25), R (R) as a chamfer is formed at the corner of the plane. By this chamfering, concentration of microwave energy to be irradiated does not occur, so that generation of sparks and burning of the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are prevented. The chamfer is preferably larger, and is set based on the width of the product to be welded and the width of the microwave plate heating element. In addition, the chamfering may be chamfered into an oblique straight line having a plane angle of 90 degrees or more if no spark is generated other than the R shape. Then, as shown in FIG. 1 (a) as microwave plate-like heating elements 21, 22, 23, 24, 25, the overall planar shape is a valve body resin molded body 11, 12, 13, 14, 15, 16, and the width of the joint surface of the valve body resin molded body 11, 12, 13, 14, 15, 16 as shown in FIG. 4 (a) or 4 (b). The width is set narrower than the width. In this manner, the width of the microwave plate-like heating elements 21, 22, 23, 24, 25 is made smaller than the width of the joint surface of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 at the time of welding. The molten resin is prevented from protruding from the surface.

勿論、マイクロ波板状発熱体21,22,23,24,25の大きさや形状は、バルブボディ樹脂成型体11,12,13,14,15,16の形状や構造などによって決定されるが、バルブボディ樹脂成型体11,12,13,14,15,16の形状や構造が複雑化する程、溶着が必要な接合面も複雑な形状となり、より高精度な溶着が必要とされることになる。このような場合には、図3(b)〜(d)に示されるように、マイクロ波板状発熱体20(21,22,23,24,25)に貫通孔としての穿設孔20aを設けたり、特定方向に貫通孔が長い長円穿設形状20bを設けたり、または、マイクロ波板状発熱体21,22,23,24,25自体を網状に貫通孔を形成したメッシュ形状20cで形成することができる。網状に貫通孔を形成したメッシュ形状20cは、図3(d)においては、長方形の開口としているが、円形または三角形、平行四辺形等の開口とすることができる。   Of course, the size and shape of the microwave plate-like heating elements 21, 22, 23, 24, 25 are determined by the shape and structure of the valve body resin molded bodies 11, 12, 13, 14, 15, 16, etc. The more complicated the shape and structure of the valve body resin molded body 11, 12, 13, 14, 15, 16 is, the more complicated the joint surface that needs to be welded, and the need for more accurate welding. Become. In such a case, as shown in FIGS. 3B to 3D, the microwave plate-like heating element 20 (21, 22, 23, 24, 25) is provided with a hole 20a as a through hole. Or a mesh shape 20c in which the microwave plate-like heating elements 21, 22, 23, 24, and 25 themselves are formed in a net-like shape are provided. Can be formed. The mesh shape 20c in which the through-holes are formed in a net shape is a rectangular opening in FIG. 3D, but may be a circular, triangular, parallelogram or the like opening.

殊に、マイクロ波板状発熱体20(21,22,23,24,25)の図3(d)のメッシュ形状20cは、全体に孔の行及び列を複数とし、そのマトリックスで接合するものである。接合面積が広い場合に使用すると好適である。
特に、図3(b)及び(c)のマイクロ波板状発熱体20(21,22,23,24,25)の穿設孔20a、長円穿設形状20bは、その空間にマイクロ波エネルギを使用しないので、周囲の温度上昇が高い効率的な制御となり、マイクロ波板状発熱体20(21,22,23,24,25)の溶着作業速度を早めることができる。
In particular, the mesh shape 20c of FIG. 3 (d) of the microwave plate-like heating element 20 (21, 22, 23, 24, 25) has a plurality of holes in rows and columns and is joined by a matrix thereof. It is. It is suitable for use when the bonding area is large.
In particular, the perforated hole 20a and the oval perforated shape 20b of the microwave plate-like heating element 20 (21, 22, 23, 24, 25) shown in FIGS. Therefore, the ambient temperature rise is highly efficient and the welding operation speed of the microwave plate-like heating element 20 (21, 22, 23, 24, 25) can be increased.

また、このようにマイクロ波板状発熱体21,22,23,24,25に穿設孔20a、長円穿設形状20bを設けたり、メッシュ形状20cとすることによって、予め接合面に形成される図示しない微小な突起等の位置決め突部に、穿設孔20a、長円穿設形状20b、メッシュ形状20cの目を挿入することによって、接合面の所定の位置にマイクロ波板状発熱体21,22,23,24,25を正確に位置決めしながら溶着することが可能となる。特に、マイクロ波板状発熱体21,22,23,24,25として特定の複雑形状のシートを挟む場合等に好適である。なお、微小な位置決め突部は、マイクロ波板状発熱体21,22,23,24,25の厚みの2/3〜1/3程度の高さが、溶着に影響を与え難く、かつ、取り付け作業性を良くしている。   In addition, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are provided with the perforated holes 20a and the oval perforated shape 20b as described above, or the mesh shape 20c. The microwave plate-like heating element 21 is placed at a predetermined position on the joint surface by inserting the perforation hole 20a, the oval perforation shape 20b, and the mesh shape 20c into a positioning projection such as a minute projection (not shown). , 22, 23, 24, 25 can be welded while accurately positioning. In particular, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are suitable for sandwiching a specific complex shaped sheet. The minute positioning protrusions have a height of about 2/3 to 1/3 of the thickness of the microwave plate-like heating elements 21, 22, 23, 24, 25, and are difficult to affect the welding. Workability is improved.

また、このような穿設孔20a、長円穿設形状20b、メッシュ形状20cの貫通孔を利用し、バルブボディ樹脂成型体11,12,13,14,15,16に形成した図示しない微小な突起を挿入させて、バルブボディ樹脂成型体11,12,13,14,15,16とマイクロ波板状発熱体21,22,23,24,25の平面形状の位置合わせを行い、その後に溶着させることによって、精度が高い組み付け溶着を行うことができる。
このようなマイクロ波板状発熱体21,22,23,24,25に設けた穿設孔20a、長円穿設形状20b、メッシュ形状20c等の貫通孔等は、対応するバルブボディ樹脂成型体11,12,13,14,15,16の接合面、即ち、各層の溶着部の表面に貫通孔等に対応する突起を設けることによって、接合面にマイクロ波板状発熱体21,22,23,24,25を正確に位置決めする精度の向上や、マイクロ波板状発熱体21,22,23,24,25のセットに要する時間を短縮させることができる。
Further, by using the through-holes of the perforated hole 20a, the oval perforated shape 20b, and the mesh shape 20c, a minute (not shown) formed in the valve body resin molded body 11, 12, 13, 14, 15, 16 is formed. The protrusions are inserted to align the planar shape of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the microwave plate-like heating elements 21, 22, 23, 24, 25, and then welded. As a result, assembly welding with high accuracy can be performed.
The through holes such as the perforation holes 20a, the oval perforation shape 20b, and the mesh shape 20c provided in the microwave plate-like heating elements 21, 22, 23, 24, and 25 correspond to the corresponding valve body resin moldings. 11, 12, 13, 14, 15, 16, that is, by providing projections corresponding to through holes or the like on the surface of the welded portion of each layer, microwave plate-like heating elements 21, 22, 23 are provided on the joint surface. 24, 25 can be accurately positioned, and the time required for setting the microwave plate-like heating elements 21, 22, 23, 24, 25 can be shortened.

この際マイクロ波板状発熱体21,22,23,24,25が導電体である金属粉末を混練した熱可塑性樹脂フィルムである場合、バルブボディ樹脂成型体11,12,13,14,15,16に由来する樹脂と、マイクロ波板状発熱体21,22,23,24,25を形成している樹脂が、互いに同一材料であると、十分に溶融・混合されることによって、溶着後の接着強度を向上させることが可能となり、そのような機械的強度の向上は溶着により得た各種部材自体の強度を向上させることになり、バルブボディ樹脂成型体11,12,13,14,15,16が一体化でき、本発明の実施の形態にかかる樹脂製バルブボディ100としての信頼性を高めることになる。ここで参考までに記載するが、図3に示したマイクロ波板状発熱体20の形状は本発明の実施の形態に使用するマイクロ波板状発熱体21,22,23,24,25の一部分に適用するものとして説明のために記載したものであり、この形状のままで使用するものではない。   In this case, when the microwave plate-like heating elements 21, 22, 23, 24, 25 are thermoplastic resin films kneaded with metal powder as a conductor, the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the resin forming the microwave plate-like heating elements 21, 22, 23, 24, 25 are the same material as each other, and are sufficiently melted and mixed, It becomes possible to improve the adhesive strength, and the improvement of such mechanical strength will improve the strength of various members obtained by welding, and the valve body resin molded bodies 11, 12, 13, 14, 15, 16 can be integrated, and the reliability of the resin valve body 100 according to the embodiment of the present invention is enhanced. Although described here for reference, the shape of the microwave plate-like heating element 20 shown in FIG. 3 is a part of the microwave plate-like heating elements 21, 22, 23, 24, 25 used in the embodiment of the present invention. It is described for the sake of explanation as applied to the above, and is not used in this shape.

本発明の実施の形態では、マイクロ波板状発熱体21,22,23,24,25は、基本的には熱可塑性樹脂と金属粉末からなる。熱可塑性材料としては、公知の熱可塑性材料、例えば、エンジニアリング・プラスチック、スーパー・エンジニアリング・プラスチックを用いることができる。具体的には、ポリアミド(ナイロン、芳香族ポリアミド等)、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ガラス繊維強化ポリエチレンテレフタレート、環状ポリオレフィン等がある。そして、スーパーエンプラとしては、ポリフェニレンスルフィド(PPS)、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアレート、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、熱硬化性ポリイミド、ポリアミドイミド等がある。   In the embodiment of the present invention, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are basically made of a thermoplastic resin and a metal powder. As the thermoplastic material, known thermoplastic materials such as engineering plastics and super engineering plastics can be used. Specific examples include polyamide (nylon, aromatic polyamide, etc.), polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), glass fiber reinforced polyethylene terephthalate, and cyclic polyolefin. Super engineering plastics include polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone, amorphous polyarate, liquid crystal polymer, polyetheretherketone (PEEK), thermosetting polyimide, and polyamideimide. Etc.

本発明の実施の形態にかかる樹脂製バルブボディ100で、どのような熱可塑性材料を使用するかは、バルブボディ樹脂成型体11,12,13,14,15,16との相溶性を考慮して決定される。
例えば、バルブボディ樹脂成型体11,12,13,14,15,16の材料がポリエチレンであれば、マイクロ波板状発熱体21,22,23,24,25に使用する樹脂もポリエチレンとし、バルブボディ樹脂成型体11,12,13,14,15,16の材料がPPS樹脂であれば、マイクロ波板状発熱体21,22,23,24,25に使用する樹脂材料も同様にPPS樹脂を使用する等、バルブボディ樹脂成型体11,12,13,14,15,16を構成する樹脂と同じ樹脂を用いて成形して得たマイクロ波板状発熱体21,22,23,24,25を使用することが、バルブボディ樹脂成型体11,12,13,14,15,16とマイクロ波板状発熱体21,22,23,24,25との樹脂の相溶性を最適なものとするのが好ましい。なおバルブボディ樹脂成型体11,12,13,14,15,16の材料とマイクロ波板状発熱体21,22,23,24,25に使用する樹脂材料が異なっていても溶着性に影響を与えない限り使用可能である。
通常、マイクロ波板状発熱体21,22,23,24,25を構成する材料としは、ウレタン樹脂、アクリル樹脂、PPS樹脂、ポリアミド樹脂等をマイクロ波板状発熱体21,22,23,24,25に使用される樹脂として選択される。
In the resin valve body 100 according to the embodiment of the present invention, what kind of thermoplastic material is used is determined by considering compatibility with the valve body resin moldings 11, 12, 13, 14, 15, and 16. Determined.
For example, if the material of the valve body resin molded body 11, 12, 13, 14, 15, 16 is polyethylene, the resin used for the microwave plate heating elements 21, 22, 23, 24, 25 is also polyethylene, If the material of the body resin moldings 11, 12, 13, 14, 15, 16 is PPS resin, the resin material used for the microwave plate-like heating elements 21, 22, 23, 24, 25 is also made of PPS resin. Microwave plate heating elements 21, 22, 23, 24, 25 obtained by molding using the same resin as that constituting the valve body resin molded bodies 11, 12, 13, 14, 15, 16, etc. Is used to optimize the resin compatibility between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the microwave plate-like heating elements 21, 22, 23, 24, 25. of Preferred. Even if the material of the valve body resin molded body 11, 12, 13, 14, 15, 16 and the resin material used for the microwave plate heating elements 21, 22, 23, 24, 25 are different, the weldability is affected. It can be used unless given.
Usually, as a material constituting the microwave plate-like heating elements 21, 22, 23, 24, 25, urethane resin, acrylic resin, PPS resin, polyamide resin or the like is used as the microwave plate-like heating elements 21, 22, 23, 24. , 25 is selected as the resin used.

マイクロ波板状発熱体21,22,23,24,25に使用される金属粉末となる金属としては、図7に示したように銅、酸化鉄、アルミニウム等の金属を選択し使用することができる。更に、金属粉末として金属を酸化してなる粉末も使用することができる。これらの金属粉末はレーザ回折・散乱法によって測定した中位径、即ち、粉体の粒径分布において、ある粒子径より大きい個数または質量が全粉体の50%をしめるときの粒子径が1〜100μmであり、更には、中位径が3μm〜30μmのものを好ましく使用することができる。
当然ながら、ふるい分け試験で測定した粒子径の値が1μm〜100μmの範囲内とすることもできる。
As a metal to be a metal powder used for the microwave plate-like heating elements 21, 22, 23, 24, 25, it is possible to select and use a metal such as copper, iron oxide, or aluminum as shown in FIG. it can. Furthermore, a powder obtained by oxidizing a metal can also be used as the metal powder. These metal powders have a median diameter measured by the laser diffraction / scattering method, that is, the particle diameter when the number or mass larger than a certain particle diameter accounts for 50% of the total powder in the particle size distribution of the powder. The median diameter is preferably 3 μm to 30 μm.
Of course, the value of the particle diameter measured by the screening test can be in the range of 1 μm to 100 μm.

なお、ここで、「ふるい分け試験」とは、JIS−Z−8801によって規定された目開きをもつ標準ふるいを用いて、測定対象となる粉末をふるい分けることによって粒度分布を測定する試験方法をいうものである。標準ふるいなどを用いて行う粒径,粒径分布を測定する方法のことである。粒径と、粒径分布の表現は、使用したふるいの目開き(μm )とふるい上残量(オーバサイズ)またはふるい下通過量(アンダーサイズ)の全体に対する比率で表される。   Here, the “sieving test” refers to a test method for measuring the particle size distribution by sieving the powder to be measured using a standard sieve having openings defined by JIS-Z-8801. Is. It is a method of measuring particle size and particle size distribution using a standard sieve. The expression of the particle size and the particle size distribution is expressed as a ratio of the used sieve opening (μm) and the remaining amount on the sieve (oversize) or the total amount passing under the sieve (undersize).

マイクロ波板状発熱体21,22,23,24,25は、熱可塑性樹脂フィルム上にコートした金属薄膜や金属箔としても、金属粉末を使用した場合と同じ金属を採用することができる。また、これらの金属薄膜や金属箔としては、熱可塑性樹脂フィルム上に担持され得る程度の薄さでよく、通常、金属薄膜や金属箔として使用される範囲内の厚さを有する熱可塑性樹脂フィルムで、約0.01mm以下の蒸着、スパッタリングされた金属薄膜や金属箔が形成されていればよい。
また、熱可塑性樹脂フィルム上に担持させることなく、金属箔単独にて金属薄膜に代えて、板状のマイクロ波板状発熱体とすることもできる。特に、このときには合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16が、熱可塑性樹脂である必要がある。
何れにせよ、本発明の実施の形態にかかる樹脂製バルブボディ100においては、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体21,22,23,24,25が、導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルムとして形成したもの、または金属箔であればよい。
The microwave plate-like heating elements 21, 22, 23, 24, and 25 can employ the same metal as when metal powder is used as a metal thin film or metal foil coated on a thermoplastic resin film. These metal thin films and metal foils may be thin enough to be supported on a thermoplastic resin film, and usually have a thickness within a range used as a metal thin film or metal foil. Therefore, it is sufficient that a vapor-deposited and sputtered metal thin film or metal foil of about 0.01 mm or less is formed.
Moreover, it can replace with a metal thin film only by metal foil, and can be set as a plate-shaped microwave plate-shaped heat generating body, without making it carry | support on a thermoplastic resin film. In particular, at this time, the valve body resin molded body 11, 12, 13, 14, 15, 16 as the synthetic resin molded body needs to be a thermoplastic resin.
In any case, in the resin valve body 100 according to the embodiment of the present invention, the microwave plate-like heating elements 21, 22, 23, 24, 25 that can be dielectrically heated by microwaves are metal powders that are conductors. What is necessary is just what was formed as a thermoplastic resin film which knead | mixed or as a thermoplastic resin film which has a metal thin film, or metal foil.

本実施の形態のマイクロ波板状発熱体21,22,23,24,25によって溶着されるバルブボディ樹脂成型体11,12,13,14,15,16としては、基本的には熱可塑性樹脂からなる成形体であれば良い。熱可塑性樹脂としては、公知の熱可塑性樹脂を使用することが可能であるが、どのような熱可塑性樹脂を使用するかは、熱可塑性樹脂成形体の用途や形状等、従来の考え方によって決定される。
実際には、バルブボディ樹脂成型体11,12,13,14,15,16を構成する材料としては、ポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン樹脂、PPS樹脂、ポリアミド樹脂等をバルブボディ樹脂成型体11,12,13,14,15,16に使用される樹脂として選択される。マイクロ波板状発熱体21,22,23,24,25はその発熱温度を高温とすることができるので、PPS等の高融点の樹脂にも対応することが可能である。
また、バルブボディ樹脂成型体11,12,13,14,15,16は、熱可塑性樹脂に対して、公知の樹脂用添加剤、例えば着色材、可塑剤、酸化防止剤、充填材等を含有させることができる。
As the valve body resin moldings 11, 12, 13, 14, 15, and 16 welded by the microwave plate-like heating elements 21, 22, 23, 24, and 25 of the present embodiment, basically, a thermoplastic resin is used. Any molded body may be used. As the thermoplastic resin, a known thermoplastic resin can be used, but what kind of thermoplastic resin is used is determined by the conventional concept such as the use and shape of the thermoplastic resin molded body. The
Actually, as the material constituting the valve body resin molded body 11, 12, 13, 14, 15, 16, a polyolefin resin such as polyethylene resin or polypropylene resin, PPS resin, polyamide resin or the like is used as the valve body resin molded body 11. , 12, 13, 14, 15, 16 is selected as a resin. Since the microwave plate-like heating elements 21, 22, 23, 24, and 25 can be heated to a high temperature, they can be applied to high melting point resins such as PPS.
Further, the valve body resin molded body 11, 12, 13, 14, 15, 16 contains a known resin additive such as a colorant, a plasticizer, an antioxidant, a filler, etc. with respect to the thermoplastic resin. Can be made.

即ち、マイクロ波板状発熱体21,22,23,24,25としては、銅粉等の金属粉を含有する熱可塑性樹脂を採用する場合には、その熱可塑性樹脂としては、バルブボディ樹脂成型体11,12,13,14,15,16を構成する熱可塑性樹脂と同じ樹脂が好ましい。同じ樹脂であれば、マイクロ波板状発熱体21,22,23,24,25を構成する樹脂との相溶性に優れるので、溶着後の溶着強度に優れた製品とすることができる。   That is, as the microwave plate-like heating elements 21, 22, 23, 24, 25, when a thermoplastic resin containing metal powder such as copper powder is employed, the thermoplastic resin is molded into a valve body resin. The same resin as the thermoplastic resin constituting the bodies 11, 12, 13, 14, 15, 16 is preferable. If it is the same resin, since it is excellent in compatibility with the resin which comprises the microwave plate-shaped heating elements 21, 22, 23, 24, 25, it can be set as the product excellent in the welding strength after welding.

本発明の実施の形態のバルブボディ樹脂成型体11,12,13,14,15,16の積層形状は、任意の積層でよいが、例えば、図1に示すように、6層程度までの薄板であってそれを重ねて形成されるものでもよい。この場合、各層の両面には凹部や溝が設けられ、これらの層を重ねることによって、内部に流路等が形成された成形体とすることができる。   The laminated shape of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 of the embodiment of the present invention may be arbitrarily laminated. For example, as shown in FIG. However, it may be formed by overlapping them. In this case, a concave body and a groove are provided on both surfaces of each layer, and by stacking these layers, a molded body in which a flow path or the like is formed can be obtained.

本実施の形態で使用するマイクロ波板状発熱体21,22,23,24,25を加熱するマイクロ波発生装置としては、マイクロ波を照射することができる形態であればよく、市販の産業用マイクロ波発生装置が使用できる。
また、均一にマイクロ波を照射するために、内部に載置したバルブボディ樹脂成型体11,12,13,14,15,16に対して、収容装置の壁面構造、マイクロを拡販するための構造、バルブボディ樹脂成型体11,12,13,14,15,16を載置するターンテーブルの構造、形状、回転条件等を最適化させるのが望ましい。
As a microwave generator for heating the microwave plate-like heating elements 21, 22, 23, 24, and 25 used in the present embodiment, any form that can irradiate microwaves may be used. A microwave generator can be used.
Further, in order to uniformly irradiate the microwave, the wall structure of the housing device and the structure for expanding the sales of the molded valve body resin 11, 12, 13, 14, 15, 16 placed inside. It is desirable to optimize the structure, shape, rotation conditions, etc. of the turntable on which the valve body resin molded bodies 11, 12, 13, 14, 15, 16 are placed.

次に、具体的な本発明の実施の形態にかかる樹脂製バルブボディの溶着について説明する。
溶着方法としては、例えば、図4に示すように、実施例を説明するための溶着部分の要部断面を示す。
バルブボディ樹脂成型体11,12,13,14,15,16の各層は、例えば、PPSのような熱可塑性樹脂からなり、必要に応じて各種樹脂用添加剤が配合されている。
図4(a)に示すように、バルブボディ樹脂成型体11,12の幅3mmの接合面の溶着部11a、12a相互を溶着する場合には、その溶着部の中心にマイクロ波板状発熱体21を設けることになる。例えば、該溶着部11a、12aの相互の幅が3mmであれば、その中心に設置するマイクロ波板状発熱体21の幅は0.5〜2.0mm程度が好ましい。0.5mm未満であれば十分に加熱溶着することができない場合もあるし、2mmを超えるとバルブボディ樹脂成型体11,12の接合面の樹脂が溶融しすぎて、バリが発生する可能性がある。
Next, welding of a resin valve body according to a specific embodiment of the present invention will be described.
As a welding method, for example, as shown in FIG. 4, a cross section of a main part of a welded portion for explaining the embodiment is shown.
Each layer of the valve body resin molded body 11, 12, 13, 14, 15, 16 is made of, for example, a thermoplastic resin such as PPS, and various additives for resin are blended as necessary.
As shown in FIG. 4A, when welding the welded portions 11a and 12a of the joint surfaces of the valve body resin molded bodies 11 and 12 having a width of 3 mm, a microwave plate-like heating element is formed at the center of the welded portion. 21 will be provided. For example, when the mutual width of the welded portions 11a and 12a is 3 mm, the width of the microwave plate-like heating element 21 installed at the center is preferably about 0.5 to 2.0 mm. If it is less than 0.5 mm, it may not be possible to sufficiently heat-weld, and if it exceeds 2 mm, the resin on the joint surface of the valve body resin molded bodies 11 and 12 may be melted excessively, and burrs may occur. is there.

同じく、図4(b)に示すように、バルブボディ樹脂成型体11,12の幅が5mm程度の厚肉部を溶着する場合には、マイクロ波板状発熱体21の幅は1.5〜4mm程度が好ましく、マイクロ波板状発熱体21の幅が狭すぎたり、広すぎたりする場合には、前者と同様の問題が生じる。   Similarly, as shown in FIG. 4 (b), when the thick portions of the valve body resin molded bodies 11 and 12 having a width of about 5 mm are welded, the width of the microwave plate heating element 21 is 1.5 to. About 4 mm is preferable, and when the width of the microwave plate-shaped heating element 21 is too narrow or too wide, the same problem as the former occurs.

本実施の形態のマイクロ波板状発熱体21,22,23,24,25に含有される金属粉末は30〜80重量%であり、特に、50〜70重量%とすることが好ましい。30重量%未満であれば、十分に効率よく加熱されない可能性があり、80重量%を超えると使用する樹脂量が少なくなるために、マイクロ波板状発熱体21,22,23,24,25とバルブボディ樹脂成型体11,12,13,14,15,16との間で樹脂を相溶させることによる強力な溶着強度を発揮することが困難になる可能性がある。
このような金属粉末含有樹脂からなるマイクロ波板状発熱体21,22,23,24,25は、金属粉末含有熱可塑性樹脂を押し出し成型または射出成型等によりシート状のマイクロ波板状発熱体21,22,23,24,25とした後、必要に応じてさらに加圧して延ばすことによって薄膜化することもできる。
The metal powder contained in the microwave plate-like heating elements 21, 22, 23, 24, and 25 of the present embodiment is 30 to 80% by weight, and particularly preferably 50 to 70% by weight. If it is less than 30% by weight, there is a possibility that it will not be heated sufficiently efficiently. If it exceeds 80% by weight, the amount of resin to be used is reduced, so that the microwave plate heating elements 21, 22, 23, 24, 25 And the valve body resin molded body 11, 12, 13, 14, 15, 16 may be difficult to exert a strong welding strength by making the resin compatible.
The microwave plate-like heating elements 21, 22, 23, 24, and 25 made of such a metal powder-containing resin are sheet-like microwave plate-like heating elements 21 formed by extrusion molding or injection molding of a metal powder-containing thermoplastic resin. , 22, 23, 24, and 25, and further thinned by further pressing and extending as necessary.

このように、被溶着物を構成するバルブボディ樹脂成型体11,12,13,14,15,16と、バルブボディ樹脂成型体11,12,13,14,15,16の各層間にマイクロ波板状発熱体21,22,23,24,25を設置させて、マイクロ波板状発熱体21,22,23,24,25を介在してバルブボディ樹脂成型体11,12,13,14,15,16の各層を積層させ、マイクロ波をこの積層してなるマイクロ波板状発熱体21,22,23,24,25に照射するものである。その際、バルブボディ樹脂成型体11,12,13,14,15,16の各層の間で十分に溶着することができるよう、バルブボディ樹脂成型体11,12,13,14,15,16の各層間は0.1〜5.0MPaの加圧力で加圧されることが好ましい。このような加圧された状態にてマイクロ波を0.5〜10KWの出力で照射すると、マイクロ波板状発熱体21,22,23,24,25が発熱されてバルブボディ樹脂成型体11,12,13,14,15,16の接合面内の溶着部表面が溶融を始めるから、加圧力を弱くする等の調整を行うことによって、バリの発生防止や溶着後の製品の寸法精度を良好にすることができる。   In this way, microwaves are formed between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the valve body resin molded bodies 11, 12, 13, 14, 15, 16 constituting the welded material. Plate body heating elements 21, 22, 23, 24, 25 are installed, and valve body resin molded bodies 11, 12, 13, 14, and 25 are interposed via microwave plate heating elements 21, 22, 23, 24, 25. The layers 15 and 16 are stacked, and the microwave plate-like heating elements 21, 22, 23, 24, and 25 are irradiated with microwaves. At that time, the valve body resin moldings 11, 12, 13, 14, 15, 16 are sufficiently welded between the respective layers of the valve body resin moldings 11, 12, 13, 14, 15, 16. It is preferable that each layer is pressurized with a pressure of 0.1 to 5.0 MPa. When microwaves are irradiated with an output of 0.5 to 10 kW in such a pressurized state, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are heated and the valve body resin moldings 11, Since the surface of the welded portion in the joint surface of 12, 13, 14, 15, 16 begins to melt, adjustments such as weakening the applied pressure can prevent the occurrence of burrs and improve the dimensional accuracy of the product after welding Can be.

このとき、マイクロ波発生装置の出力は、図6に示すように、急激に出力を上げ、その出力でマイクロ波板状発熱体21,22,23,24,25の軟化及び溶融状態に変化させ、その溶融状態を出力の調整によって制御し、マイクロ波板状発熱体21,22,23,24,25を均一温度とするものである。
このとき、図5に示すように、マイクロ波板状発熱体21,22,23,24,25の温度特性は、速やかに溶融温度に上昇し、所定の融着温度となり、通常、30秒以内に融着温度となる。但し、マイクロ波板状発熱体21,22,23,24,25の立ち上げの温度特性は、白抜き矢印に示すように、出力を大きくすると早期に立ち上がることになる。
マイクロ波板状発熱体21,22,23,24,25が融着温度となると、その接合方向に対する押圧力によってバルブボディ樹脂成型体11,12,13,14,15,16相互が密に融着される。ここで、マイクロ波板状発熱体21,22,23,24,25が発熱することでマイクロ波板状発熱体21,22,23,24,25の樹脂が溶融し、さらにマイクロ波板状発熱体21,22,23,24,25に接したバルブボディ樹脂成型体11,12,13,14,15,16の溶着部の樹脂が溶融するため、マイクロ波板状発熱体21,22,23,24,25の樹脂とバルブボディ樹脂成型体11,12,13,14,15,16の樹脂が接着し溶着層が形成される。このときバルブボディ樹脂成型体11,12,13,14,15,16の溶着部の樹脂はマイクロ波板状発熱体21,22,23,24,25に接した接触部位だけでなく、その近傍の部位が溶融することがあり、このときはバルブボディ樹脂成型体11,12,13,14,15,16間にも溶着層が形成される。ここで、マイクロ波板状発熱体21,22,23,24,25が金属箔膜を有する熱可塑性フィルムまたは金属箔の場合はバルブボディ樹脂成型体11,12,13,14,15,16間のみに溶着層が形成されることになる。
At this time, as shown in FIG. 6, the output of the microwave generator is rapidly increased, and the output is changed to the softened and molten state of the microwave plate-like heating elements 21, 22, 23, 24, 25. The molten state is controlled by adjusting the output so that the microwave plate-like heating elements 21, 22, 23, 24, and 25 have a uniform temperature.
At this time, as shown in FIG. 5, the temperature characteristics of the microwave plate-shaped heating elements 21, 22, 23, 24, and 25 quickly rise to the melting temperature and become a predetermined fusion temperature, usually within 30 seconds. It becomes the fusing temperature. However, the temperature characteristics of the start-up of the microwave plate-like heating elements 21, 22, 23, 24, and 25 rise early when the output is increased, as shown by the white arrows.
When the microwave plate-shaped heating elements 21, 22, 23, 24, and 25 reach the fusion temperature, the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are melted tightly by the pressing force in the joining direction. Worn. Here, when the microwave plate-like heating elements 21, 22, 23, 24, and 25 generate heat, the resin of the microwave plate-like heating elements 21, 22, 23, 24, and 25 melts, and further, the microwave plate-like heating elements. Since the resin in the welded portion of the valve body resin molded body 11, 12, 13, 14, 15, 16 in contact with the bodies 21, 22, 23, 24, 25 melts, the microwave plate heating elements 21, 22, 23 , 24, 25 and the resin of the valve body resin molded body 11, 12, 13, 14, 15, 16 are bonded to form a weld layer. At this time, the resin of the welded portion of the valve body resin molded body 11, 12, 13, 14, 15, 16 is not only the contact portion in contact with the microwave plate-like heating elements 21, 22, 23, 24, 25, but also its vicinity. In this case, a weld layer is also formed between the valve body resin molded bodies 11, 12, 13, 14, 15, and 16. Here, when the microwave plate-like heating elements 21, 22, 23, 24, 25 are thermoplastic films or metal foils having a metal foil film, between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 Only the weld layer is formed.

このようなマイクロ波発生装置によりバルブボディ樹脂成型体11,12,13,14,15,16を加熱して溶着を行った後、バルブボディ樹脂成型体11,12,13,14,15,16をマイクロ波発生装置から取り出し放冷することによって、溶着工程を終了させる。或いは、加熱工程を2回以上行う必要がある場合には、放冷前後のいずれかにおいて、2回目以降のマイクロ波照射を行うことになる。   After the valve body resin molded bodies 11, 12, 13, 14, 15, 16 are heated and welded by such a microwave generator, the valve body resin molded bodies 11, 12, 13, 14, 15, 16 are used. Is removed from the microwave generator and allowed to cool, thereby terminating the welding process. Or when it is necessary to perform a heating process twice or more, the microwave irradiation after the 2nd time will be performed either before and after standing_to_cool.

また、図6に示すように、マイクロ波照射後、一定時間を経過(例えば、30秒)した後に、出力を上下させる等の制御を行うのが好適である。   Also, as shown in FIG. 6, it is preferable to perform control such as raising or lowering the output after a certain time has elapsed (for example, 30 seconds) after microwave irradiation.

このように構成された樹脂製バルブボディは、図9に示すように製造される。
まず、成形されたバルブボディ樹脂成型体11,12,13,14,15,16の中から、まず、ロアー(L)バルブボディ樹脂成型体11を基にして、マイクロ波板状発熱体21をロアー(L)バルブボディ樹脂成型体11の最適な位置に配置し、そして、そのマイクロ波板状発熱体21を挟むようにミドル(4)バルブボディ樹脂成型体12を載置する。
The resin valve body configured as described above is manufactured as shown in FIG.
First, from among the molded valve body resin molded bodies 11, 12, 13, 14, 15, and 16, first, the microwave plate-like heating element 21 is formed based on the lower (L) valve body resin molded body 11. The middle (4) valve body resin molded body 12 is placed so as to sandwich the microwave plate-like heating element 21 between the lower (L) valve body resin molded body 11.

また、ミドル(4)バルブボディ樹脂成型体12の上の最適な位置にマイクロ波板状発熱体22を配置し、そのマイクロ波板状発熱体22を挟むようにミドル(3)バルブボディ樹脂成型体13を載置する。同様に、ミドル(3)バルブボディ樹脂成型体13の上にマイクロ波板状発熱体23をミドル(3)バルブボディ樹脂成型体13の最適な位置に配置し、そのマイクロ波板状発熱体23を挟むようにミドル(2)バルブボディ樹脂成型体14を載置する。同様に、ミドル(2)バルブボディ樹脂成型体14の上にマイクロ波板状発熱体24をミドル(2)バルブボディ樹脂成型体14の最適な位置に配置し、そして、その上にミドル(1)バルブボディ樹脂成型体15を載置する。 Further, a microwave plate-like heating element 22 is arranged at an optimum position on the middle (4) valve body resin molding 12, and the middle (3) valve body resin molding is arranged so as to sandwich the microwave plate-like heating element 22. The body 13 is placed. Similarly, the microwave plate-shaped heating element 23 is disposed on the middle (3) valve body resin molded body 13 at an optimum position of the middle (3) valve body resin molded body 13, and the microwave plate-shaped heating element 23. The middle (2) valve body resin molded body 14 is placed so as to sandwich it. Similarly, a microwave plate-like heating element 24 is disposed on the middle (2) valve body resin molded body 14 at an optimum position of the middle (2) valve body resin molded body 14, and the middle (1) ) Place the valve body resin molding 15.

更に、ミドル(1)バルブボディ樹脂成型体15の上にマイクロ波板状発熱体25を最適な位置に配置し、その上にアッパー(U)バルブボディ樹脂成型体16を載置する。この間、チェックボール、サブストレーナ、バイパスバルブ等の部品をバルブボディ樹脂成型体11,12,13,14,15,16で挟み込む所定の位置に配置する。 Further, the microwave plate-like heating element 25 is arranged at an optimal position on the middle (1) valve body resin molded body 15, and the upper (U) valve body resin molded body 16 is placed thereon. During this time, components such as a check ball, a sub-strainer, and a bypass valve are arranged at predetermined positions to be sandwiched between valve body resin molded bodies 11, 12, 13, 14, 15, and 16.

最後に、全体をボルト等で仮止めして各種組み込み部品の組付けを完了する。そして、部品の組付けを完了した樹脂製バルブボディ100に対して、バルブボディ樹脂成型体11,12,13,14,15,16の積載方向に平行な押圧力を加え、同時に、部品の組付けを完了した樹脂製バルブボディ100に対してマイクロ波を照射させて溶着する。
次に、各油圧系統等の漏れの存在を確認し、各油圧系統に漏れが存在していないとき、次の部品取り付け工程、即ち、後工程に入る。後工程では、スリーブの圧入、カラーの圧入、複数のコントロールバルブの挿入、リニアソレノイドの組付け等を行い、動作チェックの後に出荷される。
Finally, the whole is temporarily fixed with bolts or the like to complete the assembly of various built-in parts. Then, a pressing force parallel to the loading direction of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 is applied to the resin valve body 100 in which the assembly of the parts is completed, and at the same time, the assembly of the parts is performed. The resin valve body 100 that has been attached is irradiated with microwaves and welded.
Next, the presence of leakage in each hydraulic system is confirmed, and when there is no leakage in each hydraulic system, the next component mounting step, that is, the subsequent step is entered. In the post-process, sleeve press-fitting, collar press-fitting, insertion of a plurality of control valves, assembly of linear solenoids, etc. are performed and shipped after operation check.

[実施例]
本発明の実施例として、マイクロ波板状発熱体21,22,23,24,25を製造し、これを用いた樹脂製バルブボディ及びその製造方法を説明する。
オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂製バルブボディ100を、コントロールバルブ収容部位の中心線に沿って6個に分割して形成する。ここで、樹脂製バルブボディ100に収容するコントロールバルブ収容部位の中心線に沿って6個に分割とは、樹脂製バルブボディ100の分割できるパーティングラインを意味し、バルブボディ樹脂成型体11,12,13,14,15,16に円筒状のコントロールバルブを収容できることを意味する。ここで使用した樹脂はPPS樹脂である。
[Example]
As an embodiment of the present invention, microwave plate-like heating elements 21, 22, 23, 24, and 25 are manufactured, and a resin valve body using the same and a manufacturing method thereof will be described.
A resin valve body 100 that houses a plurality of control valves that control oil pressure and oil amount for automatic transmission in an automatic transmission is divided into six along the center line of the control valve housing part. Here, the division into six along the center line of the control valve accommodating portion accommodated in the resin valve body 100 means a parting line where the resin valve body 100 can be divided, and the valve body resin molded body 11, This means that cylindrical control valves 12, 13, 14, 15 and 16 can be accommodated. The resin used here is a PPS resin.

金属粉としては、レーザ回折・散乱法によって測定した中位径(粉体の粒径分布において、ある粒子径より大きい個数または質量が全粉体の50%をしめるときの粒子径)が10μmの銅粉を採用し、PPS樹脂に70重量%となるように混合し、マイクロ波板状発熱体21,22,23,24,25を0.1mmの薄いPPS樹脂シートとした。PPS樹脂からなるバルブボディ樹脂成型体11,12,13,14,15,16は、6層を形成する樹脂部品とし、それらを積層させ、内部に流路等が形成されるように各層の片面または両面を合わせている。   The metal powder has a median diameter measured by a laser diffraction / scattering method (particle diameter when the number or mass larger than a certain particle diameter represents 50% of the total powder in the particle size distribution of the powder) is 10 μm. Copper powder was employed and mixed with the PPS resin so as to be 70% by weight, and the microwave plate-like heating elements 21, 22, 23, 24, and 25 were formed into thin PPS resin sheets of 0.1 mm. Valve body resin moldings 11, 12, 13, 14, 15, and 16 made of PPS resin are resin parts that form six layers, and are laminated on one side of each layer so that a flow path or the like is formed inside. Or both sides are matched.

これらのバルブボディ樹脂成型体11,12,13,14,15,16の層の構成は、図1に示すとおりである。これらの6層のバルブボディ樹脂成型体11,12,13,14,15,16を積層させる際に生じる各層の計5か所の間にマイクロ波板状発熱体21,22,23,24,25を配置した。これらの5枚のマイクロ波板状発熱体21,22,23,24,25と6層のバルブボディ樹脂成型体11,12,13,14,15,16を積層させ、更にこの積層させた樹脂製バルブボディ100に対して、マイクロ波により加熱されないセラミックの治具により固定し、この積層させてなるバルブボディ樹脂成型体11,12,13,14,15,16及びマイクロ波板状発熱体21,22,23,24,25を0.1〜5.0MPa程度の圧力で加圧し、その状態でマイクロ波を照射し、溶着を行った。   The structure of the layers of these valve body resin molded bodies 11, 12, 13, 14, 15, 16 is as shown in FIG. Microwave plate heating elements 21, 22, 23, 24, between a total of five points of each layer generated when these six layers of valve body resin molded bodies 11, 12, 13, 14, 15, 16 are laminated. 25 was placed. These five microwave plate-like heating elements 21, 22, 23, 24, 25 and six layers of valve body resin moldings 11, 12, 13, 14, 15, 16 are laminated, and this laminated resin is laminated. The valve body resin molded body 11, 12, 13, 14, 15, 16 and the microwave plate-shaped heating element 21 are fixed to the valve body 100 by a ceramic jig that is not heated by microwaves and laminated. , 22, 23, 24, and 25 were pressurized at a pressure of about 0.1 to 5.0 MPa, and microwaves were irradiated in this state to perform welding.

即ち、図1(b)として示すように、マイクロ波板状発熱体21,22,23,24,25は、加熱により樹脂が溶解するから、各層のバルブボディ樹脂成型体11,12,13,14,15,16が互いに沈み込むから、加える荷重を調整することによって、寸法精度を上げることができ、かつ、溶着によるバリの発生を防止することができる。
その溶着後の各層を拡大した状態を図2に示す。この図2においては、6層を形成するバルブボディ樹脂成型体11,12を断面として見たもので、それらの間にはマイクロ波板状発熱体21が挟まれている。
That is, as shown in FIG. 1B, the microwave plate-like heating elements 21, 22, 23, 24, and 25 dissolve the resin by heating. Therefore, the valve body resin moldings 11, 12, 13, and Since 14, 15, and 16 sink, the dimensional accuracy can be improved by adjusting the applied load, and the occurrence of burrs due to welding can be prevented.
FIG. 2 shows an enlarged state of each layer after the welding. In FIG. 2, the valve body resin molded bodies 11 and 12 forming six layers are viewed in cross section, and a microwave plate heating element 21 is sandwiched between them.

ここで、マイクロ波板状発熱体21,22,23,24,25は、各層を積層させることによって形成される作動油の流路等にはみ出すことがないように、各層が溶着される接合面に正確に設置されていることが必要である。前述したように、各層が溶着される接合の幅が3mmの場合、発熱体の幅を1mmとするようにし、必要に応じてマイクロ波板状発熱体21,22,23,24,25の樹脂が直接溶着できるよう、マイクロ波板状発熱体21,22,23,24,25をその条件に応じた形状または貫通孔を穿設する。   Here, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are bonded surfaces on which the respective layers are welded so as not to protrude into the hydraulic oil flow path formed by laminating the respective layers. Must be installed accurately. As described above, when the bonding width of each layer is 3 mm, the width of the heating element is set to 1 mm, and the resin of the microwave plate-like heating elements 21, 22, 23, 24, and 25 as necessary. The microwave plate-like heating elements 21, 22, 23, 24, and 25 are formed with a shape or a through-hole according to the conditions.

このように、被溶着物を構成するバルブボディ樹脂成型体11,12,13,14,15,16と、バルブボディ樹脂成型体11,12,13,14,15,16の各層間にマイクロ波板状発熱体21,22,23,24,25を設置させて、マイクロ波板状発熱体21,22,23,24,25を介してバルブボディ樹脂成型体11,12,13,14,15,16の各層を積層させ、マイクロ波をこの積層してなるマイクロ波板状発熱体21,22,23,24,25に照射するものである。その際、バルブボディ樹脂成型体11,12,13,14,15,16の各層の間で十分に溶着することができるよう、バルブボディ樹脂成型体11,12,13,14,15,16の各層間は0.1〜5.0MPaの加圧力で加圧されることが必要である。このような加圧された状態にてマイクロ波を0.5〜10KWの出力で照射すると、マイクロ波板状発熱体21,22,23,24,25が発熱されてバルブボディ樹脂成型体11,12,13,14,15,16の接合面の溶着表面が溶融を始めるから、加圧力を弱くする等の調整を行うことによって、バリの発生防止や溶着後の製品の寸法精度を良好にすることができる。   In this way, microwaves are formed between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the valve body resin molded bodies 11, 12, 13, 14, 15, 16 constituting the welded material. The plate-shaped heating elements 21, 22, 23, 24, 25 are installed, and the valve body resin molded bodies 11, 12, 13, 14, 15 are provided via the microwave plate-shaped heating elements 21, 22, 23, 24, 25. , 16 are laminated, and microwaves are applied to the laminated microwave plate-like heating elements 21, 22, 23, 24, 25. At that time, the valve body resin moldings 11, 12, 13, 14, 15, 16 are sufficiently welded between the respective layers of the valve body resin moldings 11, 12, 13, 14, 15, 16. Each layer needs to be pressurized with a pressure of 0.1 to 5.0 MPa. When microwaves are irradiated with an output of 0.5 to 10 kW in such a pressurized state, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are heated and the valve body resin moldings 11, Since the welding surface of the joining surface of 12, 13, 14, 15, 16 begins to melt, by adjusting the pressure, etc., to reduce the occurrence of burrs and improve the dimensional accuracy of the product after welding. be able to.

また、マイクロ波を照射してマイクロ波板状発熱体21,22,23,24,25を加熱する際、マイクロ波板状発熱体21,22,23,24,25の発熱温度を、マイクロ波の照射エネルギを制御することで、高精度に制御することが可能であり、安定した溶着が可能であり、樹脂製バルブボディ100をより容易に製造することが可能である。そして、マイクロ波板状発熱体21,22,23,24,25の形状を任意の形状に設定することによって、緻密で、均一な溶着が可能となる。特に、バルブボディ樹脂成型体11,12,13,14,15,16の接合面の一部分を加熱することができ、溶着工程によるバリの発生を防止することができる。   Further, when the microwave plate-like heating elements 21, 22, 23, 24, 25 are heated by irradiating microwaves, the heating temperature of the microwave plate-like heating elements 21, 22, 23, 24, 25 is changed to the microwave. By controlling the irradiation energy, it is possible to control with high accuracy, stable welding is possible, and the resin valve body 100 can be more easily manufactured. And by setting the shape of the microwave plate-like heating elements 21, 22, 23, 24, 25 to an arbitrary shape, dense and uniform welding becomes possible. In particular, a part of the joint surface of the valve body resin molded body 11, 12, 13, 14, 15, 16 can be heated, and the occurrence of burrs due to the welding process can be prevented.

更に、マイクロ波板状発熱体21,22,23,24,25が、バルブボディ樹脂成型体11,12,13,14,15,16の接合面の形状に則して形成されているから、バルブボディ樹脂成型体11,12,13,14,15,16に対してマイクロ波板状発熱体21,22,23,24,25をセットする時間が極めて短時間で済み作業性がよい。
また、バルブボディ樹脂成型体11,12,13,14,15,16の接合面には、特許文献1のように、マイクロ波板状発熱体21,22,23,24,25を収納するための溝を形成する必要はない。
そして、バルブボディ樹脂成型体11,12,13,14,15,16の接合面が複雑な形状であっても、その形状に適合した複雑な形状のマイクロ波板状発熱体21,22,23,24,25を得ることができるので、いかなる複雑な形状に対しても溶着が可能である。
Furthermore, since the microwave plate-like heating elements 21, 22, 23, 24, 25 are formed in accordance with the shape of the joint surface of the valve body resin molded bodies 11, 12, 13, 14, 15, 16, The time required for setting the microwave plate-like heating elements 21, 22, 23, 24, 25 to the valve body resin molded bodies 11, 12, 13, 14, 15, 16 is very short, and the workability is good.
Moreover, in order to accommodate the microwave plate-like heating elements 21, 22, 23, 24, 25 on the joint surfaces of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 as in Patent Document 1. It is not necessary to form a groove.
Even if the joint surfaces of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 have a complicated shape, the microwave plate-like heating elements 21, 22, 23 having a complicated shape suitable for the shape. , 24, 25 can be obtained, so that welding can be performed to any complicated shape.

加えて、マイクロ波板状発熱体21,22,23,24,25は金属粉末を含有させることによって発熱させるので、一度加熱した後の再加熱が可能である。また、被溶着物のバルブボディ樹脂成型体11,12,13,14,15,16を複数層一度に溶着させる際には、金属粉末と熱可塑性樹脂のそれぞれの含有比率を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。   In addition, since the microwave plate-like heating elements 21, 22, 23, 24, and 25 generate heat by containing metal powder, they can be reheated after being heated once. Further, when a plurality of layers of the welded valve body resin molded body 11, 12, 13, 14, 15, 16 are welded at a time, by adjusting the content ratio of the metal powder and the thermoplastic resin, Adjustments such as making the degree of heating of each welded portion uniform are possible.

以上のように、本実施の形態における樹脂製バルブボディの製造に際して、樹脂製バルブボディ100を予め複数のバルブボディ樹脂成型体11,12,13,14,15,16に分割した形状に形成した後、押圧力を加えながらバルブボディ樹脂成型体11,12,13,14,15,16の接合面に沿った特定形状のマイクロ波板状発熱体21,22,23,24,25にマイクロ波を照射することでバルブボディ樹脂成型体11,12,13,14,15,16相互の安定した溶着を行うことができる。このように任意の形状のマイクロ波板状発熱体21,22,23,24,25を用いることによって、多様な形状或いは複雑な形状のバルブボディ樹脂成型体11,12,13,14,15,16に対応が可能であり、バルブボディ樹脂成型体11,12,13,14,15,16のセットに要する時間が短時間で済み、生産性を良くすることができる。また、押圧力、マイクロ波板状発熱体21,22,23,24,25の組成及び形状(厚みを含む)、マイクロ波の照射条件等を制御することによって接合部位においてはバリの発生を抑えて所望の接合強度が得られることから、その後のバリ除去工程を削減できる。加えて、従来の特許文献1のように、紐状の発熱体を使用する際に必要であった半円形の溝を必要とせず、マイクロ波板状発熱体21,22,23,24,25は、複数回の加熱が可能である。また、任意の発熱効率を得ることが可能である。   As described above, when the resin valve body according to the present embodiment is manufactured, the resin valve body 100 is formed in a shape divided into a plurality of valve body resin molded bodies 11, 12, 13, 14, 15, and 16 in advance. Thereafter, microwaves are applied to the microwave plate-like heating elements 21, 22, 23, 24, 25 having specific shapes along the joint surfaces of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 while applying a pressing force. , The valve body resin molded bodies 11, 12, 13, 14, 15, 16 can be stably welded to each other. As described above, by using the microwave plate-shaped heating elements 21, 22, 23, 24, and 25 having arbitrary shapes, various or complicated shapes of valve body resin molded bodies 11, 12, 13, 14, 15, 16, the time required for setting the valve body resin molded bodies 11, 12, 13, 14, 15, 16 can be shortened, and productivity can be improved. In addition, by controlling the pressing force, the composition and shape (including thickness) of the microwave plate-like heating elements 21, 22, 23, 24, and 25, the microwave irradiation conditions, etc., the occurrence of burrs is suppressed at the bonded portion. Thus, since the desired bonding strength can be obtained, the subsequent deburring process can be reduced. In addition, unlike the conventional Patent Document 1, the semicircular grooves required when using the string-like heating element are not required, and the microwave plate-like heating elements 21, 22, 23, 24, 25 are used. Can be heated multiple times. Moreover, it is possible to obtain arbitrary heat generation efficiency.

上記実施の形態にかかる樹脂製バルブボディ100は、オートマッチックトランスミッション用樹脂製バルブボディ100として説明してきたが、自動車用としては、CVT、HV等用のバルブボディ、或いは、溶着を複数回繰り返して製品化していたインテークマニホールド、リザーバタンク等とすることもできる。また本発明は自動車用に限定されるものではなく、油圧制御が必要な装置用の樹脂製バルブボディ、燃料電池のセパレータ等の多層の樹脂部品を固定してなるものにも適用できる。勿論、これらに限定されるものではなく、2つ以上の熱可塑性樹脂からなる部材を一体化させてなる部材等の製造に使用することも可能である。   The resin valve body 100 according to the above embodiment has been described as a resin valve body 100 for an auto-match transmission, but for an automobile, a valve body for CVT, HV, etc., or welding is repeated a plurality of times. Intake manifolds, reservoir tanks, etc. that have been commercialized can also be used. Further, the present invention is not limited to automobiles, and can be applied to those formed by fixing multi-layer resin parts such as a resin valve body for a device requiring hydraulic control, a separator of a fuel cell, and the like. Of course, it is not limited to these, It can also be used for manufacture of the member etc. which integrated the member which consists of two or more thermoplastic resins.

A リニアソレノイドバルブ
A1 電磁制御部
A2 バルブ部
11,12,13,14,15,16 バルブボディ樹脂成型体
20、21,22,23,24,25 マイクロ波板状発熱体
100 樹脂製バルブボディ
A Linear solenoid valve A1 Electromagnetic control part A2 Valve parts 11, 12, 13, 14, 15, 16 Valve body resin molded body 20, 21, 22, 23, 24, 25 Microwave plate heating element 100 Resin valve body

Claims (8)

オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂製バルブボディを、前記複数のコントロールバルブ収容部位または前記樹脂製バルブボディ中の油路の中心線に沿って3以上に分割して形成した複数のバルブボディ樹脂成型体と、
前記バルブボディ樹脂成型体相互間に挟まれた、マイクロ波によって誘電加熱自在な導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルム、または金属箔から形成したマイクロ波板状発熱体に、前記バルブボディ樹脂成型体相互間を接合する接合方向に押圧力を加えながら、前記マイクロ波を照射することによって溶着した溶着層と
を具備することを特徴とする樹脂製バルブボディ。
A resin valve body that accommodates a plurality of control valves that control oil pressure and oil amount for automatic transmission in an automatic transmission is disposed along the center line of the oil passage in the plurality of control valve accommodation portions or the resin valve body. A plurality of valve body resin moldings divided into three or more ,
A thermoplastic resin film or a thermoplastic resin film having a metal thin film kneaded with metal powder, which is a conductor that can be dielectrically heated by microwaves, sandwiched between the valve body resin molded bodies , or a micro formed from a metal foil And a welded layer welded by irradiating the microwave while applying a pressing force in a joining direction for joining the valve body resin molded bodies to the corrugated plate-like heating element. Valve body.
前記マイクロ波板状発熱体は、前記複数のバルブボディ樹脂成型体の接合面に沿った形状に形成されていることを特徴とする請求項1に記載の樹脂製バルブボディ。 2. The resin valve body according to claim 1, wherein the microwave plate-like heating element is formed in a shape along a joint surface of the plurality of valve body resin molded bodies. 前記マイクロ波板状発熱体は、全角に面取り処理されていることを特徴とする請求項1または請求項2に記載の樹脂製バルブボディ。 3. The resin valve body according to claim 1, wherein the microwave plate-like heating element is chamfered at all angles. 前記マイクロ波板状発熱体は、位置決めする貫通孔が穿設されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の樹脂製バルブボディ。 The resin valve body according to any one of claims 1 to 3 , wherein the microwave plate-like heating element has a through hole for positioning. オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂バルブボディを3以上に、前記複数のコントロールバルブ収容部位または前記樹脂製バルブボディ中の油路の中心線に沿って分割して形成した複数のバルブボディ樹脂成型体に対して、
前記複数のバルブボディ樹脂成型体相互間にマイクロ波によって誘電加熱自在な導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルム、または金属箔から形成したマイクロ波板状発熱体を挟み、前記複数のバルブボディ樹脂成型体相互間の接合面にはその接合方向に押圧力を加えながら、前記マイクロ波を照射することによって両者を溶着することを特徴とする樹脂製バルブボディの製造方法。
Three or more resin valve bodies that contain a plurality of control valves that control oil pressure and oil amount for automatic transmission in an automatic transmission are placed on the center line of the oil passages in the plurality of control valve housing parts or the resin valve bodies. For multiple valve body resin moldings formed by dividing along
Microwave plate formed from a thermoplastic resin film or a thermoplastic resin film having a metal thin film obtained by kneading a metal powder that is a conductor that can be dielectrically heated by microwaves between the plurality of valve body resin molded bodies , or a metal foil A resinous product characterized in that a heat generating member is sandwiched between the plurality of valve body resin molded bodies and welded to each other by irradiating the microwave while applying a pressing force in the joining direction. Manufacturing method of valve body.
前記マイクロ波板状発熱体は、前記複数のバルブボディ樹脂成型体の接合面に沿った形状に形成されていることを特徴とする請求項5に記載の樹脂製バルブボディの製造方法。 6. The method for manufacturing a resin valve body according to claim 5, wherein the microwave plate-like heating element is formed in a shape along a joint surface of the plurality of valve body resin molded bodies. 前記マイクロ波板状発熱体は、全角に面取り処理されていることを特徴とする請求項5または請求項6に記載の樹脂製バルブボディの製造方法。 The method for producing a resin valve body according to claim 5 or 6, wherein the microwave plate-like heating element is chamfered at all angles. 前記マイクロ波板状発熱体は、位置決めする貫通孔が穿設されていることを特徴とする請求項5乃至請求項7のいずれか1項に記載の樹脂製バルブボディの製造方法。 The method for manufacturing a resin valve body according to any one of claims 5 to 7, wherein the microwave plate-like heating element has a through hole for positioning.
JP2010230813A 2010-10-13 2010-10-13 Resin valve body and manufacturing method thereof Expired - Fee Related JP5615124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010230813A JP5615124B2 (en) 2010-10-13 2010-10-13 Resin valve body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230813A JP5615124B2 (en) 2010-10-13 2010-10-13 Resin valve body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012082917A JP2012082917A (en) 2012-04-26
JP5615124B2 true JP5615124B2 (en) 2014-10-29

Family

ID=46242000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230813A Expired - Fee Related JP5615124B2 (en) 2010-10-13 2010-10-13 Resin valve body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5615124B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350409B2 (en) * 2015-06-23 2018-07-04 マツダ株式会社 Method for manufacturing valve body of hydraulic control device
WO2017146261A1 (en) 2016-02-25 2017-08-31 アイシン・エィ・ダブリュ株式会社 Hydraulic control device for transmission device for vehicle
WO2017183694A1 (en) 2016-04-20 2017-10-26 アイシン・エィ・ダブリュ株式会社 Hydraulic control device for automatic transmission, and method for manufacturing same
WO2017183695A1 (en) * 2016-04-20 2017-10-26 アイシン・エィ・ダブリュ株式会社 Hydraulic control device for vehicle driving device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239631A (en) * 1995-03-02 1996-09-17 Sekisui Chem Co Ltd Resin sheet for microwave welding, resin composition for microwave welding, and method of welding therewith
JP3642681B2 (en) * 1998-05-22 2005-04-27 ジヤトコ株式会社 Structure of hydraulic control valve for automatic transmission
JP2000346003A (en) * 1999-06-01 2000-12-12 Honda Motor Co Ltd Hydraulic control valve unit
JP4476160B2 (en) * 2001-02-02 2010-06-09 三菱重工業株式会社 Logic plate
JP2009066924A (en) * 2007-09-13 2009-04-02 Inax Corp Composite material, and its manufacturing method
JP5384883B2 (en) * 2008-08-29 2014-01-08 日立オートモティブシステムズ株式会社 Electronic hydraulic control module

Also Published As

Publication number Publication date
JP2012082917A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5586410B2 (en) Microwave heating element and welding method using the same
JP5615124B2 (en) Resin valve body and manufacturing method thereof
CN102131632B (en) Method and apparatus for joining resin and metal
EP3053732A1 (en) Method for manufacture of a plastic component, plastic component, and shoe
CN105917145A (en) Method for producing an electronic module having an interlockingly connected housing part element
KR20170116249A (en) Welding method and weld
US20160375618A1 (en) Thermoplastic injection molded element with integral thermoplastic positioning system for reinforced composite structures
US10298729B2 (en) Connector and method of manufacturing the same
JP5709731B2 (en) Microwave resin welded body and welding method using the same
JP2013173248A (en) Laser joining method
US20150174881A1 (en) Rf node welding of corrugated honeycomb core
JP5988902B2 (en) Microwave dielectric welded body and welding method using microwave dielectric welded body
CN109954880B (en) Method and apparatus for forming a node-panel joint
JP2009522720A (en) Ultrasonic welded integrated electrode assembly for fuel cells
JP2011240685A (en) Seal structure for metallic composite joint body and method of manufacturing the same
KR20190090853A (en) Method of Making Weldable Metal-Polymer Multilayer Composites
Hoehr et al. Ultrasonic welding of polymer micro fluidic devices by inserting metal parts
EP3488999B1 (en) Joining method for thermoplastic elements
JP5882529B2 (en) Composite structure element and method
JP7380252B2 (en) Method for manufacturing laminate
JP6153505B2 (en) Microwave dielectric heating element and welding method using the same
JP2010092733A (en) Membrane-electrode assembly, and method and apparatus for manufacturing the same
JP6735462B1 (en) Method of joining composite members
JP4342592B2 (en) Method for producing hollow fiber membrane element and hollow fiber membrane module
JP5958972B2 (en) Microwave dielectric heating assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5615124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees