JPH09136357A - Method for fusion of thermoplastic resin - Google Patents
Method for fusion of thermoplastic resinInfo
- Publication number
- JPH09136357A JPH09136357A JP7296465A JP29646595A JPH09136357A JP H09136357 A JPH09136357 A JP H09136357A JP 7296465 A JP7296465 A JP 7296465A JP 29646595 A JP29646595 A JP 29646595A JP H09136357 A JPH09136357 A JP H09136357A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- thermoplastic resin
- resin
- heat
- fused
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1403—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
- B29C65/1425—Microwave radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/1477—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は熱可塑性樹脂の融着
方法に関する。詳しくは、特定の発熱体を分散した熱可
塑性樹脂成形物にマイクロ波を照射することからなる熱
可塑性樹脂の融着方法に関する。TECHNICAL FIELD The present invention relates to a method for fusing a thermoplastic resin. More specifically, the present invention relates to a method for fusing a thermoplastic resin, which comprises irradiating a thermoplastic resin molded product in which a specific heating element is dispersed with microwaves.
【0002】[0002]
【従来の技術】フイルム、板、パイプなどの熱可塑性樹
脂で成形された成形物を接続する方法については種々の
提案がなされているが最も効果的なのは同質の材料から
なる成形物を加熱融着する方法である。加熱方法として
は高温の物質を融着しようとする部分に接触させる方法
の他に、マイクロ波などを照射することで発熱させる非
接触的な方法(特開平3-186690、特開平2-261626等) が
ある。特に後者の非接触的な方法は有効な方法と考えら
れる。2. Description of the Related Art Various methods have been proposed for connecting a molded article made of a thermoplastic resin such as a film, a plate, and a pipe, but the most effective method is to heat and fuse a molded article made of the same material. How to As a heating method, in addition to a method in which a high-temperature substance is brought into contact with a portion to be fused, a non-contact method in which heat is generated by irradiating a microwave or the like (JP-A-3-186690, JP-A-2-261626, etc.) ) In particular, the latter non-contact method is considered to be an effective method.
【0003】[0003]
【発明が解決しようとする課題】マイクロ波を照射する
方法は優れていると考えられるが有効な発熱体が知られ
ていないとか、密度高くマイクロ波を照射するとか発熱
体を高濃度に分散して融着を効率的に行おうとするとマ
イクロ波を照射した時に誘導電流の発生のため、場合に
よっては発火にいたるという問題がある。The method of irradiating microwaves is considered to be excellent, but an effective heating element is not known, or microwaves are irradiated with high density, or the heating elements are dispersed in high concentration. If the fusion is to be carried out efficiently, an induced current is generated when the microwave is irradiated, and there is a problem that ignition may occur in some cases.
【0004】本発明の目的は、効率的に熱可塑性樹脂を
融着する方法を提供することにある。An object of the present invention is to provide a method for efficiently fusing a thermoplastic resin.
【0005】[0005]
【課題を解決するための手段】本発明者らは上記問題を
解決して効率的に熱可塑性樹脂を融着する方法について
鋭意検討し本発明を完成した。[Means for Solving the Problems] The present inventors completed the present invention by intensively studying a method for solving the above problems and efficiently fusing a thermoplastic resin.
【0006】即ち本発明は、熱可塑性樹脂中にマイクロ
波発熱体を分散してなる成形物にマイクロ波を照射する
ことによって熱可塑性樹脂を融着する方法において、マ
イクロ波発熱体として耐熱性樹脂でコーティングしたも
のを用いることを特徴とする熱可塑性樹脂の融着方法で
ある。That is, the present invention relates to a method of fusing a thermoplastic resin by irradiating a molded product obtained by dispersing the microwave heating element in the thermoplastic resin with microwaves. The method for fusing a thermoplastic resin is characterized by using a material coated with.
【0007】[0007]
【発明の実施の形態】本発明において融着することがで
きる熱可塑性樹脂としては特に制限はなく加熱融着可能
な樹脂であれは良い。具体的には、ポリビニルアルコー
ル、ポリ酢酸ビニル、ポリアミド、ポリエチレン、ポリ
プロピレン、あるいはエチレン、プロピレンなどの共重
合体などのポリオレフィン、ポリスチレン、ポリ塩化ビ
ニル、ポリ塩化ビニリデン、ポリメチルメタクリレー
ト、あるいはスチレン、塩化ビニル、メチルメタクリレ
ート、塩化ビニリデンなどの共重合体、ポリカーボネー
ト、ポリアミド、ポリエステル、ポリイミド、ポリエー
テル、ポリエーテルケトン、ポリエーテルエーテルケト
ンなどの縮合系のエンジニアリングプラスチックなどが
例示される。BEST MODE FOR CARRYING OUT THE INVENTION The thermoplastic resin that can be fused in the present invention is not particularly limited, and any resin that can be heat-fused may be used. Specifically, polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or a polyolefin such as a copolymer of ethylene or propylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polymethylmethacrylate, or styrene, vinyl chloride. Examples thereof include copolymers such as methyl methacrylate and vinylidene chloride, and condensation-type engineering plastics such as polycarbonate, polyamide, polyester, polyimide, polyether, polyether ketone, and polyether ether ketone.
【0008】融着される熱可塑性樹脂の形状、成形方法
についても、本発明の趣旨から明らかなように特に制限
はない。The shape of the thermoplastic resin to be fused and the molding method are not particularly limited, as is clear from the gist of the present invention.
【0009】本発明において、マイクロ波発熱体として
は種々のものが利用できるが、熱可塑性樹脂に分散して
効果的なものとしては、フェライト、針状酸化チタンが
例示される。In the present invention, various types of microwave heating elements can be used, and ferrite and acicular titanium oxide are exemplified as those effectively dispersed in a thermoplastic resin.
【0010】フェライトとしては四三酸化鉄が好まし
い。四三酸化鉄としては市販のものがそのまま利用可能
であり、天然の磁鉄鉱を微粉砕したもの、あるいは鉄を
空気中で焼成したもの、酸化鉄(III) を水蒸気を含む水
素で還元したもの、赤熱した鉄に水蒸気を作用させたも
のなどを微粉砕することで合成したものなどが例示でき
る。このような四三酸化鉄の粒径としては1000μm
以下、好ましくは0.01〜100μm 程度のものが好
ましく利用される。Ferrite tetroxide is preferred as the ferrite. Commercially available iron oxide black oxide can be used as it is, natural magnetite finely pulverized, iron calcined in air, iron (III) oxide reduced with hydrogen containing steam, Examples thereof include those obtained by finely pulverizing red hot iron with steam acting thereon, and the like. The particle size of such ferrosoferric oxide is 1000 μm
Below, those having a thickness of preferably about 0.01 to 100 μm are preferably used.
【0011】針状酸化チタンとしては市販のものが利用
可能であり、短軸の長さが0.01〜10μm 、アスペ
クト比が5〜1000の針状の酸化チタンであり、マグ
ネシウム、カルシウムなど他の金属酸化物がドープされ
たもの、さらには酸化錫、酸化インジウム等をドープし
て導電性にしたものであっても良く市販されたものがそ
のまま利用できる。酸化チタンの結晶形としてはルチル
型、アナターゼ型のどちらであっても良いがアナターゼ
型に有効なものが多く、微粒子の形状が針状または柱状
であることが必要である。As the acicular titanium oxide, commercially available acicular titanium oxide is acicular titanium oxide having a minor axis length of 0.01 to 10 μm and an aspect ratio of 5 to 1000, such as magnesium and calcium. A metal oxide doped with a metal oxide, or a metal oxide doped with tin oxide, indium oxide, or the like to be made conductive, or a commercially available product can be used as it is. The crystal form of titanium oxide may be either rutile type or anatase type, but many are effective for anatase type, and it is necessary that the shape of the fine particles be acicular or columnar.
【0012】本発明において、上記発熱体をコーティン
グするに用いる耐熱性樹脂としては、分散して用いる熱
可塑性樹脂が溶融しても流動化しないものであれば良く
特定できないがコーティングが簡単であるとか発熱体の
性能を損なわないなどから溶剤に可溶な樹脂が好ましく
利用できる。特に熱硬化性樹脂を溶剤に可能なプレポリ
マーの状態で用いると効果的である。具体的には上述の
エンジニアプラスチックあるいは後述の熱硬化性樹脂が
例示される。具体的にはフェノール樹脂、ユリア樹脂、
メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹
脂、珪素樹脂、ポリウレタン樹脂、ジアリルフタレート
樹脂、熱硬化性ポリイミド、ポリカルボジイミド樹脂な
どが利用でき、特に好ましくは溶剤に可溶なプレポリマ
ーとして利用される。In the present invention, the heat-resistant resin used for coating the heating element cannot be specified as long as it does not fluidize when the thermoplastic resin used in dispersion is melted, but the coating is simple. A resin soluble in a solvent can be preferably used because it does not impair the performance of the heating element. It is particularly effective to use the thermosetting resin in the state of a prepolymer which can be used as a solvent. Specifically, the above-mentioned engineered plastic or the thermosetting resin described later is exemplified. Specifically, phenol resin, urea resin,
Melamine resin, unsaturated polyester resin, epoxy resin, silicon resin, polyurethane resin, diallyl phthalate resin, thermosetting polyimide, polycarbodiimide resin and the like can be used, and particularly preferably used as a solvent-soluble prepolymer.
【0013】コーティングの方法としては特に制限はな
いが耐熱性樹脂あるいはそのプレポリマーを溶剤に溶解
し、上述の発熱体の粒子を分散した後、ろ過、乾燥しさ
らに必要に応じ加熱硬化するのが一般的である。溶剤と
しては特に制限はなく、耐熱性樹脂あるいはそのプレポ
リマーを溶解するものであれば良い。例えば、水、アル
コール、炭化水素化合物、ハロゲン化炭化水素、エステ
ル、エーテルなどが例示される。コーティングの目安と
しては発熱体1g当たり0.000001〜0.1g程
度、好ましくは0.00001〜0.01g程度であ
る。硬化に際し硬化剤を混合して用いることも可能であ
る。The coating method is not particularly limited, but it is possible to dissolve the heat-resistant resin or its prepolymer in a solvent, disperse the particles of the heating element described above, filter, dry, and heat-cure if necessary. It is common. The solvent is not particularly limited as long as it can dissolve the heat resistant resin or its prepolymer. Examples thereof include water, alcohols, hydrocarbon compounds, halogenated hydrocarbons, esters, ethers and the like. The amount of coating is about 0.000001 to 0.1 g, preferably about 0.00001 to 0.01 g per 1 g of the heating element. It is also possible to mix and use a curing agent at the time of curing.
【0014】耐熱性樹脂でコーティングした発熱体を熱
可塑性樹脂中に分散させる方法としては特に制限はな
く、よく混合できる方法であればどのような方法でも良
い。たとえば、熱可塑性樹脂の溶液に四三酸化鉄あるい
は針状酸化チタンを混合し、ボールミル、ホモジナイザ
ーなど公知の混合方法でよく混合することで分散しつい
で成形乾燥することも可能であるが、熱可塑性樹脂の粉
末と耐熱性樹脂でコーティングした発熱体を加熱溶融混
合するのが好ましい。具体的には熱可塑性樹脂と耐熱性
樹脂でコーティングした発熱体をヘンシェルミキサーな
どで混合した後、押出機、ブラベンダーなどで加熱溶融
混合しついでペレット状としておくと所望の形状に成形
するのが容易である。The method of dispersing the heating element coated with the heat resistant resin in the thermoplastic resin is not particularly limited, and any method can be used as long as it can be well mixed. For example, it is also possible to mix ferrosoferric oxide or acicular titanium oxide with a solution of a thermoplastic resin and mix them well by a known mixing method such as a ball mill or a homogenizer to disperse and then mold and dry. It is preferable to heat-melt and mix the resin powder and the heating element coated with the heat-resistant resin. Specifically, a heating element coated with a thermoplastic resin and a heat-resistant resin is mixed with a Henschel mixer or the like, and then heated and melted and mixed with an extruder, a Brabender, etc., and then pelletized to form a desired shape. It's easy.
【0015】ここで熱可塑性樹脂と発熱体の比率として
は100:1〜100:500(重量比)程度、好まし
くは100:5〜100:200(重量比)程度であ
る。Here, the ratio of the thermoplastic resin to the heating element is about 100: 1 to 100: 500 (weight ratio), preferably about 100: 5 to 100: 200 (weight ratio).
【0016】熱可塑性樹脂の融着に際しては、少なくと
も融着部の一方に上記熱可塑性樹脂中に発熱体を分散し
たものを配する必要がある。発熱体が含まれる部分のみ
がマイクロ波の照射によって発熱し熱可塑性樹脂を溶融
するため、融着したい部分にのみ発熱体を配することで
その部分のみを融着することができる。また場合によっ
ては熱可塑性樹脂成形体の内部に発熱体を配し表面には
発熱体からの熱が伝導して溶融するように構成すること
も可能である。When fusing the thermoplastic resin, it is necessary to dispose at least one of the fusing parts in which the heating element is dispersed in the thermoplastic resin. Since only the portion including the heating element generates heat by irradiation with microwaves and melts the thermoplastic resin, by disposing the heating element only in the portion to be fused, only that portion can be fused. In some cases, it is also possible to dispose a heating element inside the thermoplastic resin molded body so that the heat from the heating element is conducted and melted on the surface.
【0017】照射に用いるマイクロ波としては家庭用の
電子レンジとして市販されている程度の波長、エネルギ
ーで充分熱可塑性樹脂を融着する程度に加熱可能であ
り、数ギガヘルツ(通常2.45ギガヘルツ)の周波数
のマイクロ波が利用でき、数KW/1Kg程度のエネル
ギーで充分である。The microwave used for irradiation can be heated to such an extent that the thermoplastic resin can be sufficiently fused with a wavelength and energy that is commercially available for household microwave ovens, and is several gigahertz (usually 2.45 gigahertz). The microwave of the frequency of is available, and the energy of several KW / 1 Kg is sufficient.
【0018】[0018]
【実施例】以下に実施例を示しさらに本発明を説明す
る。The present invention will be further described with reference to examples.
【0019】実施例1 四三酸化鉄(和光純薬(株)製試薬)30gを、テトラ
ヒドロフラン50mlにメラミン樹脂前駆体(メラミン
とホルマリンの約1:2付加物)1gを溶解した溶液に
1時間攪拌下に分散し次いでろ過乾燥した後、加熱窒素
で流動しながら200℃で10分間処理してコーティン
グした。こうして得た表面をメラミンでコーティングし
た四三酸化鉄15gと日本石油化学(株)製高密度ポリ
エチレン(銘柄名スタフレンE792)20gをラボプ
ラストミルR型(東洋精機製作所(株)製)で240℃
で良く混合した。この操作を繰り返して約100gの混
合物を得た。混合物を220℃でプレス成形して厚さ1
mmのシートを作った。一方、日本石油化学(株)製高
密度ポリエチレン(銘柄名スタフレンE801)を同様
にプレス成形して厚さ4mmのシートを得た。Example 1 A solution prepared by dissolving 30 g of iron trioxide (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 1 g of a melamine resin precursor (adduct of melamine and formalin of about 1: 2) in 50 ml of tetrahydrofuran for 1 hour. After dispersion under stirring, filtration and drying, the coating was carried out at 200 ° C. for 10 minutes while flowing with heated nitrogen. 15 g of iron tetroxide coated with melamine on the surface thus obtained and 20 g of high density polyethylene (brand name: Staflen E792) manufactured by Nippon Petrochemical Co., Ltd. were used at Labo Plastomill R type (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at 240 ° C.
Mixed well. This operation was repeated to obtain about 100 g of the mixture. The mixture is press molded at 220 ° C to a thickness of 1
I made a mm sheet. On the other hand, a high-density polyethylene manufactured by Nippon Petrochemical Co., Ltd. (brand name: Staphlen E801) was similarly press-molded to obtain a sheet having a thickness of 4 mm.
【0020】四三酸化鉄を混合したものを90mm×1
60mmのシート状に切り出し、高密度ポリエチレンは
100mm×170mmに切り出し、重ね230℃でプ
レス成形して厚さ3mmの複合シートとした。同様な操
作で作ったシートを真ん中で切断したところポリエチレ
ン部、四三酸化鉄含有部の厚さは2.4mm、0.8m
mの厚さであった。90 mm × 1 mixed with ferrosoferric oxide
The sheet was cut into a sheet of 60 mm, and the high-density polyethylene was cut into a piece of 100 mm × 170 mm, and the sheets were stacked at 230 ° C. and press-molded to form a composite sheet having a thickness of 3 mm. When a sheet made by the same operation was cut in the middle, the thickness of the polyethylene part and the ferrosoferric oxide-containing part was 2.4 mm and 0.8 m.
It was m thick.
【0021】こうして得た複合シートと厚さ4mmの高
密度ポリエチレンのシートを四三酸化鉄含有部側で接触
するように重ねて市販の電子レンジ(東芝製東芝電子レ
ンジERT−540F)に入れマイクロ波を3分間照射
し取り出したところ充分に融着していた。The composite sheet thus obtained and a sheet of high-density polyethylene having a thickness of 4 mm were superposed so as to contact each other on the side containing triiron tetraoxide, and put in a commercially available microwave oven (Toshiba microwave oven ERT-540F manufactured by Toshiba). When it was irradiated with waves for 3 minutes and taken out, it was found to be sufficiently fused.
【0022】実施例2 コーティングした四三酸化鉄の使用量を25gとした他
は実施例1と同様にしたところ2分の照射で充分に融着
した。Example 2 The same procedure as in Example 1 was carried out except that the amount of the coated iron oxide tetroxide was 25 g, and it was sufficiently fused by irradiation for 2 minutes.
【0023】比較例1 メラミンでコーティングすることなく四三酸化鉄をその
まま用いた他は実施例1と同様にしたところ3分では融
着が充分ではなく5分の照射で充分な強度となった。COMPARATIVE EXAMPLE 1 The same procedure as in Example 1 was carried out except that ferrosoferric oxide was used as it was without being coated with melamine, but fusion was not sufficient in 3 minutes and sufficient strength was obtained by irradiation for 5 minutes. .
【0024】比較例2 メラミンでコーティングすることなく四三酸化鉄をその
まま用いた他は実施例2と同様にしたところ照射15秒
で放電し発火した。Comparative Example 2 The same procedure as in Example 2 was carried out except that iron tetroxide was used as it was without being coated with melamine.
【0025】[0025]
【発明の効果】本発明の方法を実施することで容易に熱
可塑性樹脂を融着でき工業的に極めて価値がある。EFFECT OF THE INVENTION By carrying out the method of the present invention, a thermoplastic resin can be easily fused and is industrially extremely valuable.
Claims (3)
してなる成形物にマイクロ波を照射することによって熱
可塑性樹脂を融着する方法において、マイクロ波発熱体
として耐熱性樹脂でコーティングしたものを用いること
を特徴とする熱可塑性樹脂の融着方法。1. A method of fusing a thermoplastic resin by irradiating a molded product obtained by dispersing a microwave heating element in a thermoplastic resin with microwaves, wherein the microwave heating element is coated with a heat-resistant resin. What is used is a method for fusing a thermoplastic resin.
たは針状酸化チタンである請求項1に記載の方法。2. The method according to claim 1, wherein the microwave heating element is ferric oxide and / or acicular titanium oxide.
に記載の方法。3. The heat resistant resin is a thermosetting resin.
The method described in.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7296465A JPH09136357A (en) | 1995-11-15 | 1995-11-15 | Method for fusion of thermoplastic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7296465A JPH09136357A (en) | 1995-11-15 | 1995-11-15 | Method for fusion of thermoplastic resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09136357A true JPH09136357A (en) | 1997-05-27 |
Family
ID=17833912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7296465A Pending JPH09136357A (en) | 1995-11-15 | 1995-11-15 | Method for fusion of thermoplastic resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09136357A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013107208A (en) * | 2011-11-17 | 2013-06-06 | Aisin Chemical Co Ltd | Microwave resin welded body and welding method by the same |
JP2014180778A (en) * | 2013-03-18 | 2014-09-29 | Aisin Chemical Co Ltd | Microwave dielectric welding body and welding method by using microwave dielectric welding body |
-
1995
- 1995-11-15 JP JP7296465A patent/JPH09136357A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013107208A (en) * | 2011-11-17 | 2013-06-06 | Aisin Chemical Co Ltd | Microwave resin welded body and welding method by the same |
JP2014180778A (en) * | 2013-03-18 | 2014-09-29 | Aisin Chemical Co Ltd | Microwave dielectric welding body and welding method by using microwave dielectric welding body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5015940B2 (en) | Plastic composite molded body obtained by welding in an alternating electromagnetic field | |
US20090230347A1 (en) | Formulation comprising a polymerizable monomer and/or a polymer and, dispersed therein, a superparamagnetic powder | |
JP2007537894A5 (en) | ||
JPH09136357A (en) | Method for fusion of thermoplastic resin | |
KR101285210B1 (en) | Spherical composite composition and process for producing spherical composite composition | |
JPS63278547A (en) | Production of encapsulated particle | |
JP3765905B2 (en) | Method for fusing resin moldings | |
JP3340254B2 (en) | How to connect pipes | |
JPH0864360A (en) | Heating method | |
JPH07205293A (en) | Heating method | |
JPH07205319A (en) | Heating method | |
JPH0857960A (en) | Connecting method for pipe | |
JPH0857961A (en) | Connecting method for pipe | |
JPH07137137A (en) | Method for fusion weld of thermoplastic resin molded product | |
JPH08222367A (en) | Heating method | |
US3591671A (en) | Agglomeration of plastic particles in liquid suspension | |
JP3369000B2 (en) | How to connect pipes | |
JP3340252B2 (en) | How to connect pipes | |
JP3340256B2 (en) | How to connect pipes | |
JPH07320860A (en) | Heating method | |
JPH0861581A (en) | Pipe connecting method | |
JPH08155970A (en) | Heating method | |
JPH0857962A (en) | Connecting method for pipe | |
JPH07178817A (en) | Fusion bonding method for thermoplastic resin molding | |
JPH07223265A (en) | Method for joining pipes |