JP2013105886A - Method for determining joining condition of electronic component - Google Patents

Method for determining joining condition of electronic component Download PDF

Info

Publication number
JP2013105886A
JP2013105886A JP2011248718A JP2011248718A JP2013105886A JP 2013105886 A JP2013105886 A JP 2013105886A JP 2011248718 A JP2011248718 A JP 2011248718A JP 2011248718 A JP2011248718 A JP 2011248718A JP 2013105886 A JP2013105886 A JP 2013105886A
Authority
JP
Japan
Prior art keywords
electronic component
metal particles
adhesive film
bonding
thermocompression bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248718A
Other languages
Japanese (ja)
Other versions
JP6099303B2 (en
Inventor
Masao Saito
雅男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2011248718A priority Critical patent/JP6099303B2/en
Publication of JP2013105886A publication Critical patent/JP2013105886A/en
Application granted granted Critical
Publication of JP6099303B2 publication Critical patent/JP6099303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately determine joining conditions during heating and pressure bonding of electronic components.SOLUTION: A first electronic component 6 and a second electronic component 7 are heated and pressure-bonded to each other with an adhesive film 1 interposed therebetween, which contains a plurality of metal particles 3 different in solidus temperature and particle diameter. Joining conditions during heating and pressure bonding are determined by observing molten states of the metal particles 3 in the adhesive film 1 after heating and pressure bonding.

Description

本発明は、金属粒子を含有する接着フィルムを用いた電子部品の接合条件決定方法に関する。   The present invention relates to a method for determining bonding conditions for electronic components using an adhesive film containing metal particles.

従来から、導電性粒子が分散された硬化性樹脂を剥離フィルムに塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film)(以下、「接着フィルム」ともいう。))が用いられている。この異方性導電フィルムは、例えば種々の端子同士を接着すると共に電気的に接続する場合に用いられている。   Conventionally, a tape-like connection material (for example, anisotropic conductive film (ACF) (hereinafter also referred to as “adhesive film”) in which a curable resin in which conductive particles are dispersed is applied to a release film. ) Is used. This anisotropic conductive film is used, for example, when various terminals are bonded and electrically connected.

異方性導電フィルムの接合条件を決める際には、例えば、加熱押圧装置(加熱ボンダー)の温度・圧力を設定した後に加熱(空打ち)し、その際、到達した温度を熱電対で測定して温度を推定し、実際に異方性導電フィルムを圧着し、導電性粒子の溶融、結合状態を確認する。   When determining the bonding conditions of the anisotropic conductive film, for example, after setting the temperature and pressure of the heating press device (heating bonder), it is heated (blank), and the temperature reached is measured with a thermocouple. The temperature is estimated, and the anisotropic conductive film is actually pressure-bonded to confirm the melting and bonding state of the conductive particles.

しかし、熱電対による到達温度の測定では、実際の温度とズレが生じることがあった。また、圧力、時間、熱伝導、熱容量等のファクターがあるため、到達温度だけでは、実際に導電性粒子が溶融、金属結合するかどうか判断できなかった。さらに、導電性粒子を含有させた異方性導電フィルムを圧着することで金属結合の有無を確認することはできるが、温度をかけすぎているかどうかを判断することが困難であった。   However, in the measurement of the ultimate temperature with a thermocouple, a deviation from the actual temperature may occur. Further, since there are factors such as pressure, time, heat conduction, heat capacity, etc., it has not been possible to determine whether or not the conductive particles are actually melted and metal-bonded only by the reached temperature. Furthermore, although the presence or absence of a metal bond can be confirmed by press-bonding an anisotropic conductive film containing conductive particles, it has been difficult to determine whether the temperature is excessively applied.

温度をかけすぎてしまうと、異方性導電フィルム中のバインダーが十分に流動する前にバインダーの熱硬化反応が進んでしまい、電子部品の端子間に導電性粒子を捕捉することができない。その後、導電性粒子は、溶融するが、電子部品の端子と十分に接していないため、十分な金属結合を形成することができない。そのため、電子部品の端子同士が接続されてなる接続構造体の導通信頼性が悪化してしまう。温度の測定は、通常、測定部分に微小な熱電対を差し込んで行うが、実際の製品では確認することができない。   If the temperature is excessively applied, the thermosetting reaction of the binder proceeds before the binder in the anisotropic conductive film sufficiently flows, and the conductive particles cannot be captured between the terminals of the electronic component. Thereafter, although the conductive particles melt, they are not sufficiently in contact with the terminals of the electronic component, so that a sufficient metal bond cannot be formed. For this reason, the conduction reliability of the connection structure in which the terminals of the electronic components are connected to each other is deteriorated. The temperature is usually measured by inserting a small thermocouple into the measurement part, but it cannot be confirmed with an actual product.

そこで、特許文献1には、異方性導電フィルムの圧着時の接合条件(例えば、到達温度や硬化度合い)を確認するために、異方性導電フィルムに感熱性の色素カプセルを配合する方法が提案されている。   Therefore, Patent Document 1 discloses a method of blending a heat-sensitive dye capsule in an anisotropic conductive film in order to confirm the bonding conditions (for example, the ultimate temperature and the degree of curing) at the time of pressure bonding of the anisotropic conductive film. Proposed.

しかし、色は、厚みにより濃度が変化するため、厚い異方性導電フィルムでは色が濃くなり、薄い異方性導電フィルムでは色が薄くなってしまう。すなわち、色は、熱の到達とは異なるファクターで変化してしまう。また、異方性導電フィルム自体が薄いので、色をつけようとしても認識できるほどの十分な濃さにならない。   However, since the density of the color changes depending on the thickness, the color becomes dark in the thick anisotropic conductive film, and the color becomes light in the thin anisotropic conductive film. That is, the color changes with a different factor from the arrival of heat. In addition, since the anisotropic conductive film itself is thin, it does not have a sufficient density to be recognized even if it is colored.

特開2010−129960号公報JP 2010-129960 A

本発明は、このような実情に鑑みて提案されたものであり、電子部品の加熱圧着時の接合条件を正確に決定することができる電子部品の接合条件決定方法を提供することを目的とする。   This invention is proposed in view of such a situation, and it aims at providing the joining condition determination method of the electronic component which can determine the joining condition at the time of the thermocompression bonding of an electronic component correctly. .

本発明に係る電子部品の接合条件決定方法は、固相線温度及び粒径が異なる複数の金属粒子を含有する接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定する。   The method for determining bonding conditions for an electronic component according to the present invention heats the first electronic component and the second electronic component by interposing an adhesive film containing a plurality of metal particles having different solidus temperatures and particle sizes. The bonding conditions at the time of thermocompression bonding are determined by crimping and observing the molten state of the metal particles in the adhesive film after thermocompression bonding.

本発明に係る電子部品の接合条件決定方法は、固相線温度が異なる二種類の金属粒子を含有する接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定する。   In the method for determining bonding conditions for electronic components according to the present invention, the first electronic component and the second electronic component are thermocompression bonded via an adhesive film containing two types of metal particles having different solidus temperatures. The bonding conditions at the time of thermocompression bonding are determined by observing the molten state of the metal particles in the adhesive film after thermocompression bonding.

本発明に係る接着フィルムは、固相線温度及び粒径の異なる複数の金属粒子が含有されており、接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定するためのものである。   The adhesive film according to the present invention contains a plurality of metal particles having different solidus temperatures and particle sizes, and thermocompression-bonds the first electronic component and the second electronic component with the adhesive film interposed therebetween. By observing the molten state of the metal particles in the adhesive film after thermocompression bonding, the bonding conditions during thermocompression bonding are determined.

本発明は、第1の電子部品の端子と第2の電子部品の端子との間に接着フィルムを介在させて、第1の電子部品と第2の電子部品とを接続する接続構造体の製造方法において、固相線温度及び粒径が異なる複数の金属粒子を含有する接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定し、接合条件に基づいて、接着フィルムを介在させた第1の電子部品と第2の電子部品とを、相対的に固相線温度が低い金属粒子を溶融させ、他の金属粒子を溶融させない状態の加熱温度で加熱押圧する。   The present invention provides a connection structure for connecting a first electronic component and a second electronic component by interposing an adhesive film between the terminal of the first electronic component and the terminal of the second electronic component. In the method, an adhesive film containing a plurality of metal particles having different solidus temperatures and particle sizes is interposed, and the first electronic component and the second electronic component are thermocompression bonded, and in the adhesive film after thermocompression bonding By observing the molten state of the metal particles, the bonding conditions at the time of thermocompression bonding are determined, and based on the bonding conditions, the first electronic component and the second electronic component with the adhesive film interposed are relatively The metal particles having a low solidus temperature are melted and heated and pressed at a heating temperature that does not melt the other metal particles.

本発明によれば、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、溶融した金属粒子と溶融していない金属粒子とを特定することができるので、加熱圧着時の接合条件、例えば加熱圧着時の到達温度を正確に決定することができる。   According to the present invention, by observing the molten state of the metal particles in the adhesive film after the thermocompression bonding, it is possible to identify the molten metal particles and the non-molten metal particles. It is possible to accurately determine the conditions, for example, the ultimate temperature during thermocompression bonding.

固相線温度及び粒径が異なる二種類の金属粒子を含有する接着フィルムを示す断面図である。It is sectional drawing which shows the adhesive film containing two types of metal particles from which solidus temperature and a particle size differ. 固相線温度及び粒径が異なる三種類の金属粒子を含有する接着フィルムを示す断面図である。It is sectional drawing which shows the adhesive film containing three types of metal particles from which solidus temperature and a particle size differ. 本発明に係る電子部品の接合条件決定方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the joining condition determination method of the electronic component which concerns on this invention. 本発明に係る電子部品の接合条件決定方法における加熱圧着工程の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the thermocompression-bonding process in the joining condition determination method of the electronic component which concerns on this invention. 本発明に係る電子部品の接合条件決定方法における観察工程の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the observation process in the joining condition determination method of the electronic component which concerns on this invention. (A)は120℃、(B)は200℃で接着フィルムを介在させて電子部品を加熱圧着した後の接着フィルム中の金属粒子の溶融状態を示す図である。(A) is 120 degreeC, (B) is a figure which shows the molten state of the metal particle in an adhesive film after carrying out the thermocompression bonding of the electronic component with an adhesive film interposed at 200 degreeC. 本発明に係る接続構造体の製造方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing method of the connection structure which concerns on this invention.

以下、本発明の実施の形態(以下、「本実施の形態」という。)について、図面を参照しながら下記順序にて詳細に説明する。
1.接着フィルム(図1、図2)
1−1.接着フィルムの構成
1−2.接着フィルムの製造方法
2.電子部品の接合条件決定方法(図3〜図6)
3.接続構造体の製造方法(図7)
Hereinafter, embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail in the following order with reference to the drawings.
1. Adhesive film (Fig. 1, Fig. 2)
1-1. Configuration of adhesive film 1-2. 1. Production method of adhesive film Method for determining bonding conditions for electronic components (FIGS. 3 to 6)
3. Manufacturing method of connection structure (FIG. 7)

<1.接着フィルム>
(1−1.接着フィルムの構成)
本実施の形態に係る接着フィルムは、固相線温度(融点)及び粒径が異なる複数の金属粒子が含有されている。このように、接着フィルム中の複数の金属粒子は、粒径と固相線温度がそれぞれ異なるので、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、溶融した金属粒子と溶融していない金属粒子とを特定することができる。例えば、どの粒径の金属粒子までが金属結合したかによって、接着フィルムに対するボンダーのある条件下における加熱温度を確認することができる。
<1. Adhesive film>
(1-1. Configuration of adhesive film)
The adhesive film according to the present embodiment contains a plurality of metal particles having different solidus temperatures (melting points) and particle sizes. Thus, since the plurality of metal particles in the adhesive film have different particle sizes and solidus temperatures, by observing the molten state of the metal particles in the adhesive film after thermocompression bonding, It is possible to identify unmelted metal particles. For example, the heating temperature under a bonder condition with respect to the adhesive film can be confirmed depending on which particle size of the metal particles is metal-bonded.

したがって、後に詳述するように、本実施の形態に係る接着フィルムを介在させて、電子部品の端子同士を加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件、例えば加熱圧着時の到達温度を正確かつ迅速に決定することができる。このような接着フィルム1は、溶融、金属結合条件と、温度をかけすぎたかどうかを判断できるので、加熱圧着時の到達温度を決定する用途の他に、例えば温度測定用の感熱シートに適用することができる。   Therefore, as will be described in detail later, by interposing the adhesive film according to the present embodiment, the terminals of the electronic component are thermocompression bonded, and the molten state of the metal particles in the adhesive film after thermocompression bonding is observed. It is possible to accurately and quickly determine the joining conditions during thermocompression bonding, for example, the ultimate temperature during thermocompression bonding. Since such an adhesive film 1 can determine whether the melting and metal bonding conditions and the temperature are excessively applied, in addition to the use of determining the ultimate temperature at the time of thermocompression bonding, it is applied to, for example, a thermosensitive sheet for temperature measurement. be able to.

図1に示すように、接着フィルム1としては、例えば、異方性導電フィルムを用いることができる。接着フィルム1は、バインダー(接着剤)2に金属粒子3(3A、3B)が分散された異方性導電組成物4を、剥離基材5上に塗布することによって形成されている。   As shown in FIG. 1, for example, an anisotropic conductive film can be used as the adhesive film 1. The adhesive film 1 is formed by applying an anisotropic conductive composition 4 in which metal particles 3 (3A, 3B) are dispersed in a binder (adhesive) 2 on a release substrate 5.

バインダー2としては、例えば、膜形成樹脂、熱硬化性樹脂、潜在性硬化剤、シランカップリング剤等を含有するものを用いることができる。   As the binder 2, for example, a material containing a film-forming resin, a thermosetting resin, a latent curing agent, a silane coupling agent, or the like can be used.

接着フィルム1には、固相線温度及び粒径の異なる複数の金属粒子3を含有されている。このように固相線温度及び粒径の異なる複数の金属粒子3を含有させることにより、加熱圧着後において、溶融した金属粒子3と溶融していない金属粒子3とを特定することができるので、加熱圧着時の到達温度を正確に決定することができる。   The adhesive film 1 contains a plurality of metal particles 3 having different solidus temperatures and particle sizes. By including a plurality of metal particles 3 having different solidus temperatures and particle sizes in this way, it is possible to identify the molten metal particles 3 and the unmelted metal particles 3 after thermocompression bonding. The temperature reached at the time of thermocompression bonding can be accurately determined.

金属粒子3としては、目標とする加熱圧着時の到達温度に近い固相線温度を有するものを複数準備することが好ましい。例えば、目標とする加熱圧着時の到達温度を基準として、固相線温度の差が1℃以上あり、固相線温度が高いものほど粒径が小さい金属粒子3を複数用いることが好ましい。このように固相線温度の差が1℃以上ある金属粒子3を複数用いることにより、溶融した金属粒子3と溶融していない金属粒子3とをより正確に確認することができるので、より正確に加熱圧着時の到達温度を決定することができる。なお、金属粒子3の種類は、二種類以上であればよく、より確実に加熱圧着時の到達温度を確認するためには、三種類以上とすることが好ましい。例えば、図2に示すように、接着フィルム1A中に、固相線温度及び粒径の異なる三種類の金属粒子3(3A、3B、3C)を含有させるようにしてもよい。   As the metal particles 3, it is preferable to prepare a plurality of particles having a solidus temperature close to the target temperature at the time of target thermocompression bonding. For example, it is preferable to use a plurality of metal particles 3 having a difference in solidus line temperature of 1 ° C. or higher with a target solid temperature at the time of thermocompression bonding as the reference, and having a higher solidus line temperature and a smaller particle diameter. In this way, by using a plurality of metal particles 3 having a solidus temperature difference of 1 ° C. or more, the molten metal particles 3 and the unmelted metal particles 3 can be more accurately confirmed, and thus more accurate. The ultimate temperature at the time of thermocompression bonding can be determined. In addition, the kind of metal particle 3 should just be 2 or more types, and in order to confirm the ultimate temperature at the time of thermocompression bonding more reliably, it is preferable to use 3 or more types. For example, as shown in FIG. 2, the adhesive film 1A may contain three types of metal particles 3 (3A, 3B, 3C) having different solidus temperatures and particle sizes.

金属粒子3は、粒径が、実際に使用する接着フィルム1A中の金属粒子3の粒径付近のものを使用することが好ましい。また、金属粒子3としては、粒径の差がそれぞれ1μm以上あるものを複数用いることが好ましい。粒径の差がそれぞれ1μm以上ある金属粒子3を用いることにより、加熱圧着後の金属粒子3の溶融状態を観察することによって、どの粒径の金属粒子3までが溶融したかを容易に確認することができるため、加熱圧着時の到達温度をより正確に決定することができる。   The metal particles 3 preferably have a particle size in the vicinity of the particle size of the metal particles 3 in the actually used adhesive film 1A. In addition, as the metal particles 3, it is preferable to use a plurality of particles each having a particle size difference of 1 μm or more. By using the metal particles 3 each having a particle size difference of 1 μm or more, it is possible to easily confirm to what particle size the metal particles 3 have melted by observing the molten state of the metal particles 3 after thermocompression bonding. Therefore, the ultimate temperature at the time of thermocompression bonding can be determined more accurately.

金属粒子3としては、種々の導電性粒子を用いることができる。例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属の粒子、半田等の金属合金の粒子、金属酸化物の粒子を用いることができる。また、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたものや、これらの粒子の表面に更に絶縁薄膜をコートしたものを用いることができる。金属粒子3が、樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を用いることができる。   As the metal particles 3, various conductive particles can be used. For example, particles of various metals such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold, particles of metal alloys such as solder, and particles of metal oxide can be used. Moreover, the thing which coat | covered the metal on the surface of particle | grains, such as carbon, a graphite, glass, a ceramic, a plastics, and what further coat | covered the insulating thin film on the surface of these particles can be used. When the metal particles 3 are obtained by coating the surface of the resin particles with metal, examples of the resin particles include epoxy resins, phenol resins, acrylic resins, acrylonitrile / styrene (AS) resins, benzoguanamine resins, and divinylbenzene resins. Particles such as styrene resin can be used.

これらの金属粒子3の中では、半田粒子を用いることが好ましい。半田粒子は、固相線温度が比較的低いため、低温で加熱圧着することができる。また、半田粒子は、組成比を種々に組み合わせることによって、固相線温度を精密に調整することができる。半田粒子は、例えば、通常の水アトマイズ法により、溶融した合金を所定のノズルから水中に噴霧し、急冷凝固することによって得ることができる。   Among these metal particles 3, it is preferable to use solder particles. Since the solder particles have a relatively low solidus temperature, they can be thermocompression bonded at a low temperature. In addition, the solidus temperature of the solder particles can be precisely adjusted by combining the composition ratios in various ways. The solder particles can be obtained, for example, by spraying a molten alloy into water from a predetermined nozzle and quenching and solidifying by a normal water atomizing method.

剥離基材5は、接着フィルム1Aの形状を維持するためのものである。剥離基材5は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなる。   The peeling substrate 5 is for maintaining the shape of the adhesive film 1A. The release substrate 5 is formed, for example, by applying a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene) or the like.

(1−2.接着フィルムの製造方法)
次に、上述した接着フィルム1の製造方法の一例について説明する。例えば、バインダー2と固相線温度及び粒径が異なる複数の金属粒子3とを溶剤中で混合した後、混合物を剥離剤が塗布された剥離基材5上に所定の厚さとなるように塗布し、乾燥させて溶剤を揮発させる。これにより、固相線温度及び粒径が異なる複数の金属粒子3を含有する接着フィルム1を作製することができる。
(1-2. Manufacturing method of adhesive film)
Next, an example of the manufacturing method of the adhesive film 1 described above will be described. For example, after the binder 2 and a plurality of metal particles 3 having different solidus temperatures and particle sizes are mixed in a solvent, the mixture is applied on the release substrate 5 coated with a release agent so as to have a predetermined thickness. And dried to volatilize the solvent. Thereby, the adhesive film 1 containing the some metal particle 3 from which solidus temperature and a particle size differ can be produced.

バインダー2と金属粒子3との配合量は、バインダー2の重量部数が100に対して、各々の金属粒子3の重量部数が0.5〜10程度となるようにすることが好ましい。金属粒子3の配合量が0.5重量部未満であると、量が少なすぎるため、端子間に十分な金属結合を形成することができない。また、金属粒子3の配合量が0.5重量部未満であると、金属粒子3の数が少なすぎるため、どの粒径の金属粒子3が溶融したかの判定が困難になってしまう。一方、金属粒子3の配合量が10重量部を超えると、横方向に隣り合う端子間で電気的な結合(ショート)が生じるおそれがある。また、金属粒子3の配合量が10重量部を超えると、金属粒子3同士が溶融・結合して、金属粒子3の粒径が分からなくなってしまうおそれがある。   The blending amount of the binder 2 and the metal particles 3 is preferably such that the weight parts of each metal particle 3 is about 0.5 to 10 with respect to 100 parts by weight of the binder 2. When the blending amount of the metal particles 3 is less than 0.5 parts by weight, the amount is too small, so that a sufficient metal bond cannot be formed between the terminals. Further, if the blending amount of the metal particles 3 is less than 0.5 parts by weight, it is difficult to determine which particle size of the metal particles 3 is melted because the number of the metal particles 3 is too small. On the other hand, when the compounding amount of the metal particles 3 exceeds 10 parts by weight, electrical coupling (short circuit) may occur between terminals adjacent in the lateral direction. Moreover, when the compounding quantity of the metal particle 3 exceeds 10 weight part, there exists a possibility that the metal particle 3 may fuse | melt and couple | bond together and the particle size of the metal particle 3 may become unknown.

なお、上述した接着フィルム1に含有される金属粒子3は、電子部品の端子同士を電気的に接合する目的で使用することも可能であるが、温度指示の目的、すなわち加熱圧着時の到達温度を正確に決定する目的にのみ使用するようにしてもよい。   The metal particles 3 contained in the above-described adhesive film 1 can be used for the purpose of electrically joining the terminals of the electronic components, but for the purpose of temperature indication, that is, the ultimate temperature during thermocompression bonding It may be used only for the purpose of accurately determining.

<2.電子部品の接合条件決定方法>
本実施の形態に係る電子部品の接合条件決定方法を行うにあたっては、加熱押圧装置の温度・圧力を設定した後に加熱を行い、その際、到達した温度を熱電対で測定して温度を推定しておく。その後、実際に接着フィルム1を圧着し、金属粒子3の溶融、結合状態を確認する。
<2. Method for determining bonding conditions for electronic components>
In performing the electronic component joining condition determination method according to the present embodiment, heating is performed after setting the temperature and pressure of the heating and pressing device, and at that time, the temperature reached is estimated by measuring with a thermocouple. Keep it. Thereafter, the adhesive film 1 is actually pressure-bonded, and the molten and bonded state of the metal particles 3 is confirmed.

本実施の形態に係る電子部品の接合条件決定方法では、接着フィルム1を介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム1中の金属粒子3の溶融状態を観察することによって、加熱圧着時の接合条件を決定する。これにより、例えば従来の熱電対による圧着温度の測定よりも正確に、加熱圧着時の到達温度の測定をすることが可能となる。また、一種類の金属粒子3のみを含有した接着フィルムを用いた場合に比べて、より細かな温度範囲を特定することができる。結果として、加熱圧着時の到達温度を正確かつ迅速に決定することができる。   In the electronic component joining condition determination method according to the present embodiment, the first electronic component and the second electronic component are thermocompression bonded with the adhesive film 1 interposed therebetween, and the metal in the adhesive film 1 after thermocompression bonding. By observing the molten state of the particles 3, the bonding conditions during thermocompression bonding are determined. Thereby, for example, it is possible to measure the temperature reached at the time of thermocompression bonding more accurately than the measurement of the pressure bonding temperature by a conventional thermocouple. Moreover, a finer temperature range can be specified as compared with the case where an adhesive film containing only one kind of metal particles 3 is used. As a result, the ultimate temperature at the time of thermocompression bonding can be determined accurately and quickly.

本実施の形態に係る電子部品の接合条件決定方法は、例えば図3に示すように、接着フィルム作製工程S1と、加熱圧着工程S2と、観察工程S3とを有する。   As shown in FIG. 3, for example, the electronic component joining condition determination method according to the present embodiment includes an adhesive film manufacturing step S1, a thermocompression bonding step S2, and an observation step S3.

接着フィルム作製工程S1において、例えば上述した接着フィルム1の製造方法によって接着フィルム1を作製する。   In the adhesive film production step S1, the adhesive film 1 is produced by, for example, the method for producing the adhesive film 1 described above.

加熱圧着工程S2において、例えば図4に示すように、接着フィルム1を介在させて、第1の電子部品6と第2の電子部品7とを加熱圧着する。   In the thermocompression bonding step S2, for example, as shown in FIG. 4, the first electronic component 6 and the second electronic component 7 are thermocompression bonded with the adhesive film 1 interposed.

第1の電子部品6及び第2の電子部品7としては、例えば、ICチップ、LSI(Large Scale Integration)チップ等のICチップ以外の半導体チップやチップコンデンサ等の半導体素子、フレキシブルプリント基板、リジッド基板等を挙げることができる。   Examples of the first electronic component 6 and the second electronic component 7 include semiconductor chips other than IC chips such as IC chips and LSI (Large Scale Integration) chips, semiconductor elements such as chip capacitors, flexible printed boards, and rigid boards. Etc.

第1の電子部品6と第2の電子部品7との加熱圧着は、例えば加熱押圧装置を用いて行うことができる。例えば、加熱圧着は、加熱押圧装置の条件、例えば温度、圧力、時間を設定し、電子部品の上面を加熱押圧装置により、所定の圧力で加圧しながら接着フィルム1中の熱硬化性樹脂の硬化温度以上の温度で加熱することにより行う。加熱圧着時の加熱温度は、熱硬化性樹脂の種類によっても異なるが、例えば温度140〜230℃程度とすればよい。加熱圧着時の圧力は、例えば2〜50MPa程度とすればよい。加熱圧着する時間は、例えば5〜30秒とすることが好ましい。加熱圧着する時間を5〜30秒とすることにより、異方性導電組成物4の流動性が不十分となってしまうことを防止し、また、作業性が低下してしまうことを防止することができる。   The thermocompression bonding of the first electronic component 6 and the second electronic component 7 can be performed using, for example, a heat pressing device. For example, thermocompression bonding sets the conditions of the heating and pressing device, such as temperature, pressure, and time, and cures the thermosetting resin in the adhesive film 1 while pressing the upper surface of the electronic component with the heating and pressing device at a predetermined pressure. It is performed by heating at a temperature higher than the temperature. Although the heating temperature at the time of thermocompression bonding varies depending on the type of thermosetting resin, for example, the temperature may be about 140 to 230 ° C. The pressure at the time of thermocompression bonding may be about 2 to 50 MPa, for example. The time for thermocompression bonding is preferably 5 to 30 seconds, for example. Preventing the fluidity of the anisotropic conductive composition 4 from becoming insufficient and preventing the workability from deteriorating by setting the time for thermocompression bonding to 5 to 30 seconds. Can do.

観察工程S3において、加熱圧着した部位を剥がし、加熱圧着後の接着フィルム1中の金属粒子3の溶融状態を観察することによって、溶融しなかった金属粒子3と溶融した金属粒子3とを確認する。   In the observation step S3, the part that has been heat-bonded is peeled off, and the molten metal particles 3 in the adhesive film 1 after the heat-bonding are observed to confirm the molten metal particles 3 and the molten metal particles 3. .

例えば、図5に示すように、観察工程S3において、まず、溶融していない金属粒子3があるかどうかを確認する(工程S10)。例えば、加熱圧着した接着フィルム1の加熱圧着した部位を手で剥がし、接着フィルム1中の金属粒子3の粒径を、光学顕微鏡を用いて目視で観察することにより、金属粒子3が溶融しているかどうかを確認する。   For example, as shown in FIG. 5, in the observation step S <b> 3, first, it is confirmed whether there are unmelted metal particles 3 (step S <b> 10). For example, the heat-pressed adhesive film 1 is peeled off by hand, and the particle size of the metal particles 3 in the adhesive film 1 is visually observed using an optical microscope. Check if it is.

接着フィルム1を介在させて第1の電子部品6と第2の電子部品7とを加熱圧着した後の金属粒子3の溶融状態の一例を図6に示す。図6に示す例では、金属粒子3として、平均粒径10μm、固相線温度が140〜200℃の半田粒子(140℃から溶融を開始し、200℃で完全に溶融する固液相線幅が広い半田粒子)を用いた。加熱圧着する際の温度は、120℃(固相線温度以下)及び200℃(固相線温度以上)とした。   An example of the molten state of the metal particles 3 after the first electronic component 6 and the second electronic component 7 are thermocompression bonded with the adhesive film 1 interposed therebetween is shown in FIG. In the example shown in FIG. 6, as the metal particles 3, solder particles having an average particle diameter of 10 μm and a solidus temperature of 140 to 200 ° C. (solid-liquid phase line width that starts melting from 140 ° C. and completely melts at 200 ° C. Wide solder particles). The temperature for thermocompression bonding was 120 ° C. (solidus temperature or lower) and 200 ° C. (solidus temperature or higher).

固相線温度以下で加熱圧着した場合、図6(A)に示すように、金属粒子3が多少押しつぶされるため、加熱圧着前と比べて金属粒子3の粒径が少し大きくなる。一方、固相線温度以上の温度で加熱圧着した場合、図6(B)に示すように、加熱圧着前と比べて金属粒子3の粒径が明らかに大きくなる。このように、加熱圧着後の接着フィルム1中の金属粒子3の粒径を観察することにより、金属粒子3が溶融しているかどうかを確認することができる。なお、図6(A)に示す例では、第1の電子部品6又は第2の電子部品7と、硬化した接着フィルム1の層との界面で引き剥がされている(界面破壊)。図6(B)に示す例では、硬化した接着フィルム1の層が破壊されることによって引き剥がされている(凝集破壊)。   When thermocompression bonding is performed at a temperature below the solidus temperature, the metal particles 3 are somewhat crushed as shown in FIG. 6A, so that the particle size of the metal particles 3 is slightly larger than before the thermocompression bonding. On the other hand, when thermocompression bonding is performed at a temperature equal to or higher than the solidus temperature, as shown in FIG. 6B, the particle size of the metal particles 3 is clearly larger than that before thermocompression bonding. Thus, by observing the particle size of the metal particles 3 in the adhesive film 1 after thermocompression bonding, it can be confirmed whether or not the metal particles 3 are melted. In the example shown in FIG. 6A, the first electronic component 6 or the second electronic component 7 is peeled off at the interface between the cured adhesive film 1 layer (interface failure). In the example shown in FIG. 6B, the layer of the cured adhesive film 1 is peeled off by being broken (cohesive failure).

工程S10において、溶融していない金属粒子3がある場合には、工程S11に進み、溶融しなかった金属粒子3がない場合には、工程S12に進む。   In step S10, when there are unmelted metal particles 3, the process proceeds to step S11, and when there are no unmelted metal particles 3, the process proceeds to step S12.

工程S11において、溶融していない金属粒子3の粒径を観察する。これにより、加熱圧着時の到達温度は、溶融しなかった金属粒子3の固相線温度未満であって、溶融した金属粒子3の固相線温度以上であることを特定することができる。   In step S11, the particle size of the unmelted metal particles 3 is observed. Thereby, it is possible to specify that the ultimate temperature at the time of thermocompression bonding is lower than the solidus temperature of the molten metal particles 3 and is equal to or higher than the solidus temperature of the molten metal particles 3.

工程S12において、溶融していない金属粒子3がなかった場合、加熱圧着時の到達温度が過剰であるため、接着フィルム作製工程S1に戻る。   If there is no unmelted metal particle 3 in step S12, the temperature reached at the time of thermocompression bonding is excessive, so the process returns to the adhesive film production step S1.

本実施の形態に係る電子部品の接合条件決定方法では、固相線温度及び粒径が異なる複数の金属粒子3を含有する接着フィルム1を介在させて、第1の電子部品6と第2の電子部品7とを加熱圧着し、加熱圧着後の接着フィルム1中の金属粒子3の粒径を観察する。   In the electronic component joining condition determination method according to the present embodiment, the first electronic component 6 and the second electronic component 6 are interposed by interposing an adhesive film 1 containing a plurality of metal particles 3 having different solidus temperatures and particle sizes. The electronic component 7 is thermocompression bonded, and the particle size of the metal particles 3 in the adhesive film 1 after thermocompression bonding is observed.

金属粒子3の粒径を観察した結果、上述したように、加熱圧着前と比べて金属粒子3の粒径が少し大きくなっていたときは、その金属粒子3が溶融していないことを特定することができる。一方、加熱圧着前と比べて金属粒子3の粒径が明らかに大きくなっているときは、その金属粒子3が溶融していることを特定することができる。このように、加熱圧着後の接着フィルム1中の金属粒子3の溶融状態を観察することによって、溶融した金属粒子3と溶融していない金属粒子3とを特定することができるので、加熱圧着時の到達温度を正確に決定することができる。   As a result of observing the particle size of the metal particle 3, as described above, when the particle size of the metal particle 3 is slightly larger than that before the thermocompression bonding, it is specified that the metal particle 3 is not melted. be able to. On the other hand, when the particle size of the metal particle 3 is clearly larger than that before the thermocompression bonding, it can be specified that the metal particle 3 is melted. Thus, by observing the molten state of the metal particles 3 in the adhesive film 1 after thermocompression bonding, the molten metal particles 3 and the unmelted metal particles 3 can be specified. Can be accurately determined.

なお、上述した説明では、観察工程S3において、金属粒子3の溶融状態を、光学顕微鏡を用いて目視で観察するものとしたが、これに限定されるものではない。例えば、光学顕微鏡を用いて金属粒子3の粒径を観察する際に、画像処理によって金属粒子3の面積値を算出することにより、溶融した金属粒子3と溶融していない金属粒子3とを特定し、加熱圧着時の到達温度を決定するようにしてもよい。   In the above description, in the observation step S3, the molten state of the metal particles 3 is visually observed using an optical microscope. However, the present invention is not limited to this. For example, when observing the particle size of the metal particle 3 using an optical microscope, the area value of the metal particle 3 is calculated by image processing to identify the molten metal particle 3 and the unmelted metal particle 3. And the ultimate temperature at the time of thermocompression bonding may be determined.

例えば、金属粒子3として、上述した平均粒径10μm、固相線温度が140〜200℃の半田粒子を用いて、加熱圧着する際の温度を120℃(固相線温度以下)と、200℃(固相線温度以上)とした場合の加熱圧着後の金属粒子3の面積値の結果を表1に示す。   For example, as the metal particles 3, the above-described solder particles having an average particle diameter of 10 μm and a solidus temperature of 140 to 200 ° C. are used, and the temperature at the time of thermocompression bonding is 120 ° C. (below the solidus temperature) and 200 ° C. Table 1 shows the results of the area values of the metal particles 3 after thermocompression bonding in the case of (above the solidus temperature).

Figure 2013105886
Figure 2013105886

表1に示すように、固相線温度以下で加熱圧着した場合の面積置の平均(630.4393μm)と、固相線温度以上で加熱圧着した場合の面積置の平均(1143.96μm)とでは、約2倍の差があることが分かる。そのため、画像処理によって加熱圧着後の金属粒子3の面積値を算出することにより、溶融した金属粒子3と溶融していない金属粒子3とを特定し、加熱圧着時の到達温度を決定することができる。 As shown in Table 1, the average of the area location in the case of heat pressing in the solidus temperature less (630.4393μm 2), the average of the area location in the case of thermocompression bonding at the solidus temperature or more (1143.96μm 2 ) And there is a difference of about twice. Therefore, by calculating the area value of the metal particles 3 after thermocompression bonding by image processing, it is possible to identify the molten metal particles 3 and the unmelted metal particles 3 and determine the ultimate temperature during thermocompression bonding. it can.

また、上述した説明では、固相線温度及び粒径が異なる複数の金属粒子3を含有する接着フィルム1を用いるものとしたが、この例に限定されず、例えば、固相線温度のみが異なる二種類の金属粒子を含有する接着フィルムを用いるようにしてもよい。このように固相線温度のみが異なる二種類の金属粒子を含有する接着フィルムを介在させて、第1の電子部品6と第2の電子部品7とを加熱圧着した場合にも、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察する。これにより、溶融した金属粒子と溶融していない金属粒子とを特定することができので、加熱圧着時の到達温度を正確に決定することができる。   In the above description, the adhesive film 1 containing a plurality of metal particles 3 having different solidus temperatures and particle sizes is used. However, the present invention is not limited to this example. For example, only the solidus temperature is different. An adhesive film containing two types of metal particles may be used. Even when the first electronic component 6 and the second electronic component 7 are thermocompression-bonded by interposing an adhesive film containing two types of metal particles having only different solidus temperatures as described above, The molten state of the metal particles in the adhesive film is observed. Thereby, since the melted metal particle and the metal particle which is not melt | dissolved can be specified, the ultimate temperature at the time of thermocompression bonding can be determined correctly.

さらに、上述した説明では、加熱圧着時の接合条件として、圧力と加熱圧着時間を一定としたときの最適な到達温度を決定するものとしたが、この例に限定されるものではない。例えば、加熱圧着時の接合条件として、到達温度と圧力を一定としたときの最適な加熱圧着時間や、到達温度と加熱圧着時間を一定としたときの最適な圧力を決定するようにしてもよい。   Further, in the above description, the optimum ultimate temperature when the pressure and the thermocompression bonding time are fixed is determined as the joining condition during thermocompression bonding, but the present invention is not limited to this example. For example, as a bonding condition at the time of thermocompression bonding, an optimal thermocompression bonding time when the ultimate temperature and pressure are constant, and an optimal pressure when the ultimate temperature and thermocompression bonding time are constant may be determined. .

<3.接続構造体の製造方法>
次に、上述した電子部品の接合条件決定方法を適用した接続構造体の製造方法について説明する。本実施の形態に係る接続構造体の製造方法では、第1の電子部品6の端子と第2の電子部品7の端子との間に接着フィルム1を介在させて、第1の電子部品6と第2の電子部品7とを接続する。固相線温度及び粒径が異なる複数の金属粒子3を含有する接着フィルム1を介在させて、第1の電子部品6と第2の電子部品7とを加熱圧着し、加熱圧着後の接着フィルム1中の金属粒子の溶融状態を観察する。これにより、相対的に固相線温度が低い金属粒子3を溶融させ、他の金属粒子3を溶融させないような加熱圧着時の到達温度を決定する。続いて、決定した到達温度に基づいて、接着フィルム1を介在させた第1の電子部品6と第2の電子部品7とを、相対的に固相線温度が低い金属粒子3を溶融させ、他の金属粒子3を溶融させないような加熱押圧装置の温度(ツール温度)で加熱押圧する。
<3. Manufacturing method of connection structure>
Next, a method for manufacturing a connection structure to which the above-described electronic component joining condition determination method is applied will be described. In the manufacturing method of the connection structure according to the present embodiment, the adhesive film 1 is interposed between the terminal of the first electronic component 6 and the terminal of the second electronic component 7, and the first electronic component 6 and The second electronic component 7 is connected. The first electronic component 6 and the second electronic component 7 are thermocompression bonded with the adhesive film 1 containing a plurality of metal particles 3 having different solidus temperatures and particle sizes, and the adhesive film after thermocompression bonding The molten state of the metal particles in 1 is observed. Thereby, the ultimate temperature at the time of thermocompression bonding that melts the metal particles 3 having a relatively low solidus temperature and does not melt the other metal particles 3 is determined. Subsequently, based on the determined reached temperature, the first electronic component 6 and the second electronic component 7 with the adhesive film 1 interposed therebetween are melted with the metal particles 3 having a relatively low solidus temperature, Heating and pressing are performed at a temperature (tool temperature) of a heating and pressing device that does not melt the other metal particles 3.

本実施の形態に係る接続構造体の製造方法は、例えば図7に示すように、接着フィルム作製工程S20と、加熱圧着工程S21と、観察工程S22と、本圧着工程S23とを有する。接着フィルム作製工程S20、加熱圧着工程S21及び観察工程S22は、上述した電子部品の接合条件決定方法における接着フィルム作製工程S1、加熱圧着工程S2及び観察工程S3と同様であり、その詳細な説明を省略する。この接続構造体の製造方法において、金属粒子3としては、上述したように固相線温度が高いものほど粒径が小さいものを用いることが好ましい。   The manufacturing method of the connection structure according to the present embodiment includes, for example, as shown in FIG. 7, an adhesive film production step S20, a thermocompression bonding step S21, an observation step S22, and a main pressure bonding step S23. The adhesive film production step S20, the thermocompression bonding step S21 and the observation step S22 are the same as the adhesive film production step S1, the thermocompression bonding step S2 and the observation step S3 in the electronic component joining condition determination method described above, and a detailed description thereof will be given. Omitted. In this connection structure manufacturing method, it is preferable to use the metal particles 3 having a smaller particle diameter as the solidus temperature is higher as described above.

本圧着工程S23では、観察工程S22で観察した金属粒子3の溶融状態に基づいて、接着フィルム1を介在させた第1の電子部品6と第2の電子部品7とを、相対的に固相線温度が低い金属粒子3を溶融させ、他の金属粒子3を溶融させない状態の加熱温度で加熱押圧する。   In the main compression bonding step S23, the first electronic component 6 and the second electronic component 7 with the adhesive film 1 interposed are relatively solid-phased based on the molten state of the metal particles 3 observed in the observation step S22. The metal particles 3 having a low line temperature are melted and heated and pressed at a heating temperature at which the other metal particles 3 are not melted.

このような接続構造体の製造方法で得られた接続構造体は、溶融した金属粒子3が金属結合している。通常は、加熱・加圧によって溶融した金属粒子3が押しつぶされて広がり、横方向の端子が金属粒子3によって短絡する危険があるが、溶融していない金属粒子3、すなわち相対的に固相線温度が高い金属粒子3によって、溶融した金属粒子3を押し潰す際の金属粒子3の厚さを制御して短絡を防止することができる。   In the connection structure obtained by such a manufacturing method of the connection structure, the molten metal particles 3 are metal-bonded. Usually, the metal particles 3 melted by heating and pressurizing are crushed and spread, and there is a risk that the lateral terminals are short-circuited by the metal particles 3, but the metal particles 3 that are not melted, that is, relatively solid phase lines. A short circuit can be prevented by controlling the thickness of the metal particles 3 when the molten metal particles 3 are crushed by the metal particles 3 having a high temperature.

また、接続構造体の生産量が少ない場合には、例えば、接合条件決定用の異方性導電フィルムを実際の接続用の異方性導電フィルムとしても使用できるため、本実施の形態に係る接続構造体の製造方法は、コスト的に有利である。   Further, when the production amount of the connection structure is small, for example, an anisotropic conductive film for determining bonding conditions can also be used as an anisotropic conductive film for actual connection. Therefore, the connection according to the present embodiment The manufacturing method of the structure is advantageous in terms of cost.

なお、本圧着工程S23では、必要に応じて、観察工程S22で観察した到達温度に基づいて加熱押圧装置の条件を変更し、再度第1の電子部品6と第2の電子部品7との加熱圧着を行うようにしてもよい。   In the main crimping step S23, if necessary, the conditions of the heating and pressing device are changed based on the temperature reached in the observation step S22, and the heating of the first electronic component 6 and the second electronic component 7 is performed again. Crimping may be performed.

以下、本発明の実施例について説明する。なお、本発明は、これらの実施例に限定されるものではない。以下の実施例では、製造例1〜製造例5において固相線温度及び粒径が異なる複数の半田粒子を含有する異方性導電フィルムを作製し、この異方性導電フィルムを用いて電子部品の接合条件を決定した。   Examples of the present invention will be described below. The present invention is not limited to these examples. In the following examples, an anisotropic conductive film containing a plurality of solder particles having different solidus temperatures and particle sizes in Production Example 1 to Production Example 5 is produced, and an electronic component is produced using this anisotropic conductive film. The joining conditions were determined.

<異方性導電フィルムの作製>
(半田粒子の作製)
通常の水アトマイズ法により、溶融した合金を所定のノズルから水中に噴霧し、急冷凝固して、以下の(1)〜(5)の5種類の半田粒子を得た。
(1)半田粒子(a)
Sn:91重量部、Zn:9重量部(固相線温度198℃、粒径16μm)
(2)半田粒子(b)
Sn:95.8重量部、Ag:3.5重量部、Cu:0.7重量部(固相線温度217℃、粒径14μm)
(3)半田粒子(c)
Sn:96.5重量部、Ag:3.5重量部(固相線温度221℃、粒径12μm)
(4)半田粒子(d)
Sn:49重量部、In:34重量部、Pb:17重量部(固相線温度130℃、粒径12μm)
(5)半田粒子(e)
Sn:47重量部、Bi:53重量部(固相線温度138℃、粒径10μm)
<Preparation of anisotropic conductive film>
(Preparation of solder particles)
By a normal water atomization method, the molten alloy was sprayed into water from a predetermined nozzle and rapidly solidified to obtain the following five types of solder particles (1) to (5).
(1) Solder particles (a)
Sn: 91 parts by weight, Zn: 9 parts by weight (solidus temperature 198 ° C., particle size 16 μm)
(2) Solder particles (b)
Sn: 95.8 parts by weight, Ag: 3.5 parts by weight, Cu: 0.7 parts by weight (solidus temperature 217 ° C., particle size 14 μm)
(3) Solder particles (c)
Sn: 96.5 parts by weight, Ag: 3.5 parts by weight (solidus temperature 221 ° C., particle size 12 μm)
(4) Solder particles (d)
Sn: 49 parts by weight, In: 34 parts by weight, Pb: 17 parts by weight (solidus temperature 130 ° C., particle size 12 μm)
(5) Solder particles (e)
Sn: 47 parts by weight, Bi: 53 parts by weight (solidus temperature 138 ° C., particle size 10 μm)

(異方性導電フィルムの作製)
以下の製造例1〜製造例5に示すように、ベース配合樹脂100重量部と半田粒子所定部数とをトルエン100重量部に溶解し、混合後、バーコーターを用いて剥離PETシート上に塗布し、60℃で10分間乾燥させて溶剤を揮発させ、厚み30μmの異方性導電フィルムを得た。ベース配合樹脂(バインダー)としては、イミダゾール系硬化剤(旭チバ社製、HX−3941HP)40重量部と、フェノキシ樹脂(PKHH)40重量部と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製 ep828)20重量部とを用いた。
(Preparation of anisotropic conductive film)
As shown in the following Production Examples 1 to 5, 100 parts by weight of the base compounding resin and a predetermined number of solder particles are dissolved in 100 parts by weight of toluene, mixed, and then applied onto a peeled PET sheet using a bar coater. The solvent was volatilized by drying at 60 ° C. for 10 minutes to obtain an anisotropic conductive film having a thickness of 30 μm. As the base compounding resin (binder), 40 parts by weight of an imidazole-based curing agent (manufactured by Asahi Ciba, HX-3941HP), 40 parts by weight of phenoxy resin (PKHH), and bisphenol A type epoxy resin (ep828, manufactured by Japan Epoxy Resin Co., Ltd.) ) 20 parts by weight were used.

製造例1では、ベース配合樹脂100重量部と、半田粒子(a)3重量部と、半田粒子(b)3重量部と、半田粒子(c)3重量部とを配合した異方性導電フィルムを得た。   In Production Example 1, an anisotropic conductive film in which 100 parts by weight of a base compounded resin, 3 parts by weight of solder particles (a), 3 parts by weight of solder particles (b), and 3 parts by weight of solder particles (c) are blended Got.

製造例2では、ベース配合樹脂100重量部と、半田粒子(d)3重量部と、半田粒子(e)3重量部とを配合した異方性導電フィルムを得た。   In Production Example 2, an anisotropic conductive film in which 100 parts by weight of the base compounding resin, 3 parts by weight of the solder particles (d), and 3 parts by weight of the solder particles (e) were obtained was obtained.

製造例3では、ベース配合樹脂100重量部と、半田粒子(a)3重量部とを配合した異方性導電フィルムを得た。   In Production Example 3, an anisotropic conductive film in which 100 parts by weight of the base compounding resin and 3 parts by weight of the solder particles (a) were blended was obtained.

製造例4では、ベース配合樹脂100重量部と、半田粒子(b)3重量部とを配合した異方性導電フィルムを得た。   In Production Example 4, an anisotropic conductive film in which 100 parts by weight of the base compounding resin and 3 parts by weight of the solder particles (b) were blended was obtained.

製造例5では、ベース配合樹脂100重量部と、半田粒子(d)3重量部とを配合した異方性導電フィルムを得た。   In Production Example 5, an anisotropic conductive film in which 100 parts by weight of the base compounding resin and 3 parts by weight of the solder particles (d) were blended was obtained.

製造例6では、ベース配合樹脂100重量部と、半田粒子(e)3重量部とを配合した異方性導電フィルムを得た。   In Production Example 6, an anisotropic conductive film in which 100 parts by weight of the base compounding resin and 3 parts by weight of the solder particles (e) were blended was obtained.

<実施例1>
実施例1では、製造例1で得られた異方性導電フィルムを用いて、半田粒子(a)のみを金属結合させる最適な加熱押圧装置の温度(ツール温度)を決定した。
<Example 1>
In Example 1, using the anisotropic conductive film obtained in Production Example 1, the optimum temperature (tool temperature) of the heating and pressing device that metal-bonds only the solder particles (a) was determined.

(測定1)
製造例1で得られた異方性導電フィルムを用いて、200μmピッチ(L/S=100μm/100μm、金メッキ処理)の導通信頼性評価用のフレキシブルプリント基板とリジット基板の端子部とを接続した。加熱押圧ボンダー(ソニーケミカル&インフォメーションデバイス株式会社製)によって、400℃、3MPaで10秒間の加熱押圧を行い、その後圧力を開放して接続構造体を得た。得られた接続構造体の接着剤部分を手で引き剥がして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。異方性導電フィルム中の溶融していない半田粒子の粒径を観察することによって、溶融した半田粒子を特定し、加熱圧着時の到達温度を確認した。半田粒子の溶融状態は、半田粒子の溶融、金属結合の有無について、光学顕微鏡を用いて目視で確認した。
(Measurement 1)
Using the anisotropic conductive film obtained in Production Example 1, a flexible printed board for conductive reliability evaluation with a 200 μm pitch (L / S = 100 μm / 100 μm, gold plating treatment) and a terminal part of a rigid board were connected. . Using a heat press bonder (manufactured by Sony Chemical & Information Device Co., Ltd.), heat press was performed at 400 ° C. and 3 MPa for 10 seconds, and then the pressure was released to obtain a connection structure. The adhesive part of the obtained connection structure was peeled off by hand, and the molten state of the solder particles in the anisotropic conductive film after thermocompression bonding was observed. By observing the particle size of unmelted solder particles in the anisotropic conductive film, the melted solder particles were identified, and the temperature reached during thermocompression bonding was confirmed. The melting state of the solder particles was visually confirmed using an optical microscope for the melting of the solder particles and the presence or absence of metal bonding.

半田粒子(a)は溶融しており、半田粒子(b)は溶融しておらず、半田粒子(c)は溶融していなかった。この結果から、測定1における加熱圧着時の到達温度は、198℃以上217℃未満であり、また、加熱圧着時の到達温度が適正であることを確認することができた。   The solder particles (a) were melted, the solder particles (b) were not melted, and the solder particles (c) were not melted. From this result, the ultimate temperature at the time of thermocompression bonding in Measurement 1 was 198 ° C. or higher and less than 217 ° C., and it was confirmed that the ultimate temperature at the thermocompression bonding was appropriate.

(測定2)
加熱押圧ボンダーによって、430℃、3MPaで10秒間の加熱押圧を行ったこと以外は、測定1と同様にして接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(a)は溶融しており、半田粒子(b)は溶融しており、半田粒子(c)は溶融していなかった。この結果から、測定2における加熱圧着時の到達温度は、217℃以上221℃未満であり、また、加熱圧着時の到達温度が過剰であることを確認することができた。
(Measurement 2)
A connection structure was obtained in the same manner as in Measurement 1 except that a heat press bonder was used for 10 seconds at 430 ° C. and 3 MPa. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. The solder particles (a) were melted, the solder particles (b) were melted, and the solder particles (c) were not melted. From this result, the ultimate temperature at the time of thermocompression bonding in Measurement 2 was 217 ° C. or more and less than 221 ° C., and it was confirmed that the ultimate temperature at the thermocompression bonding was excessive.

<実施例2>
実施例2では、製造例2で得られた異方性導電フィルムを用いて、半田粒子(d)のみを金属結合させる最適な加熱押圧装置の温度(ツール温度)を決定した。
<Example 2>
In Example 2, using the anisotropic conductive film obtained in Production Example 2, the optimum temperature (tool temperature) of the heating and pressing device that metal-bonds only the solder particles (d) was determined.

(測定3)
製造例2で得られた異方性導電フィルムを用いて、フレキシブルプリント基板とリジット基板の端子部とを接続した。加熱押圧ボンダー(ソニーケミカル&インフォメーションデバイス株式会社製)によって、300℃、3MPaで10秒間の加熱押圧を行い、その後圧力を開放して接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(d)は溶融しており、半田粒子(e)は溶融していなかった。この結果から、測定3における加熱圧着時の到達温度は、130℃以上138℃未満であり、また、加熱圧着時の到達温度が適正であることを確認することができた。
(Measurement 3)
Using the anisotropic conductive film obtained in Production Example 2, the flexible printed circuit board and the terminal part of the rigid circuit board were connected. Using a heat press bonder (manufactured by Sony Chemical & Information Device Co., Ltd.), heat press was performed at 300 ° C. and 3 MPa for 10 seconds, and then the pressure was released to obtain a connection structure. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. The solder particles (d) were melted, and the solder particles (e) were not melted. From this result, the ultimate temperature at the time of thermocompression bonding in Measurement 3 was 130 ° C. or higher and less than 138 ° C., and it was confirmed that the ultimate temperature at the thermocompression bonding was appropriate.

(測定4)
加熱押圧ボンダーによって、330℃、3MPaで10秒間の加熱押圧を行ったこと以外は、測定3と同様にして接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(d)は溶融しており、半田粒子(e)は溶融していた。この結果から、測定4における加熱圧着時の到達温度は、138℃以上であり、また、加熱圧着時の到達温度が過剰であることを確認することができた。
(Measurement 4)
A connection structure was obtained in the same manner as in Measurement 3, except that the heat pressing was performed at 330 ° C. and 3 MPa for 10 seconds using a heat pressing bonder. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. The solder particles (d) were melted and the solder particles (e) were melted. From this result, it was confirmed that the ultimate temperature during thermocompression bonding in Measurement 4 was 138 ° C. or higher, and that the ultimate temperature during thermocompression bonding was excessive.

<比較例1>
(測定5)
製造例3で得られた異方性導電フィルムを用いて、フレキシブルプリント基板とリジット基板の端子部とを接続した。加熱押圧ボンダー(ソニーケミカル&インフォメーションデバイス株式会社製)によって、400℃、3MPaで10秒間の加熱押圧を行い、その後圧力を開放して接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(a)は溶融していた。この結果から、測定5における加熱圧着時の到達温度は、198℃以上であることを確認することができた。しかし、加熱圧着時の到達温度が適正であるか過剰であるかどうかを確認することができなかった。
<Comparative Example 1>
(Measurement 5)
Using the anisotropic conductive film obtained in Production Example 3, the flexible printed circuit board and the terminal part of the rigid circuit board were connected. Using a heat press bonder (manufactured by Sony Chemical & Information Device Co., Ltd.), heat press was performed at 400 ° C. and 3 MPa for 10 seconds, and then the pressure was released to obtain a connection structure. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. Solder particles (a) were melted. From this result, it was confirmed that the ultimate temperature at the time of thermocompression bonding in Measurement 5 was 198 ° C. or higher. However, it has not been possible to confirm whether the ultimate temperature during thermocompression bonding is appropriate or excessive.

(測定6)
加熱押圧ボンダーによって、430℃、3MPaで10秒間の加熱押圧を行ったこと以外は、測定5と同様にして、接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(d)は溶融しており、半田粒子(e)は溶融していた。この結果から、測定6における加熱圧着時の到達温度は、198℃以上であることを確認することができた。しかし、加熱圧着時の到達温度が適正であるか過剰であるかどうかを確認することができなかった。
(Measurement 6)
A connection structure was obtained in the same manner as in Measurement 5, except that the heating and pressing were performed at 430 ° C. and 3 MPa for 10 seconds using a heating and pressing bonder. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. The solder particles (d) were melted and the solder particles (e) were melted. From this result, it was confirmed that the ultimate temperature during thermocompression bonding in Measurement 6 was 198 ° C. or higher. However, it has not been possible to confirm whether the ultimate temperature during thermocompression bonding is appropriate or excessive.

(測定7)
製造例4で得られた異方性導電フィルムを用いて、フレキシブルプリント基板とリジット基板の端子部とを接続した。加熱押圧ボンダー(ソニーケミカル&インフォメーションデバイス株式会社製)によって、430℃、3MPaで10秒間の加熱押圧を行い、その後圧力を開放して接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(b)は溶融していた。この結果から、測定7における加熱圧着時の到達温度は、217℃以上であることを確認することができた。しかし、加熱圧着時の到達温度が適正であるか過剰であるかどうかを確認することができなかった。
(Measurement 7)
Using the anisotropic conductive film obtained in Production Example 4, the flexible printed circuit board and the terminal part of the rigid circuit board were connected. A heat press bonder (manufactured by Sony Chemical & Information Device Co., Ltd.) was used for 10 seconds at 430 ° C. and 3 MPa, and then the pressure was released to obtain a connection structure. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. Solder particles (b) were melted. From this result, it was confirmed that the ultimate temperature during thermocompression bonding in Measurement 7 was 217 ° C. or higher. However, it has not been possible to confirm whether the ultimate temperature during thermocompression bonding is appropriate or excessive.

<比較例2>
(測定8)
製造例5で得られた異方性導電フィルムを用いて、フレキシブルプリント基板とリジット基板の端子部とを接続した。加熱押圧ボンダー(ソニーケミカル&インフォメーションデバイス株式会社製)によって、300℃、3MPaで10秒間の加熱押圧を行い、その後圧力を開放して接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(d)は溶融していた。この結果から、測定8における加熱圧着時の到達温度は、130℃以上であることを確認することができた。しかし、加熱圧着時の到達温度が適正であるか過剰であるかどうかを確認することができなかった。
<Comparative example 2>
(Measurement 8)
Using the anisotropic conductive film obtained in Production Example 5, the flexible printed circuit board and the terminal part of the rigid circuit board were connected. Using a heat press bonder (manufactured by Sony Chemical & Information Device Co., Ltd.), heat press was performed at 300 ° C. and 3 MPa for 10 seconds, and then the pressure was released to obtain a connection structure. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. The solder particles (d) were melted. From this result, it was confirmed that the ultimate temperature during thermocompression bonding in Measurement 8 was 130 ° C. or higher. However, it has not been possible to confirm whether the ultimate temperature during thermocompression bonding is appropriate or excessive.

(測定9)
加熱押圧ボンダーによって、330℃、3MPaで10秒間の加熱押圧を行ったこと以外は、測定8と同様にして、接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(d)は溶融していた。この結果から、測定9における加熱圧着時の到達温度は、130℃以上であることを確認することができた。しかし、加熱圧着時の到達温度が適正であるか過剰であるかどうかを確認することができなかった。
(Measurement 9)
A connection structure was obtained in the same manner as in measurement 8, except that the heat pressing was performed at 330 ° C. and 3 MPa for 10 seconds using a heat pressing bonder. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. The solder particles (d) were melted. From this result, it was confirmed that the ultimate temperature during thermocompression bonding in Measurement 9 was 130 ° C. or higher. However, it has not been possible to confirm whether the ultimate temperature during thermocompression bonding is appropriate or excessive.

(測定10)
製造例6で得られた異方性導電フィルムを用いて、フレキシブルプリント基板とリジット基板の端子部とを接続した。加熱押圧ボンダー(ソニーケミカル&インフォメーションデバイス株式会社製)によって、330℃、3MPaで10秒間の加熱押圧を行い、その後圧力を開放して接続構造体を得た。得られた接続構造体について、測定1と同様にして、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。半田粒子(e)は溶融していた。この結果から、測定10における加熱圧着時の到達温度は、138℃以上であることを確認することができた。しかし、加熱圧着時の到達温度が適正であるか過剰であるかどうかを確認することができなかった。
(Measurement 10)
Using the anisotropic conductive film obtained in Production Example 6, the flexible printed circuit board and the terminal part of the rigid circuit board were connected. Using a heat press bonder (manufactured by Sony Chemical & Information Device Co., Ltd.), heat press was performed at 330 ° C. and 3 MPa for 10 seconds, and then the pressure was released to obtain a connection structure. About the obtained connection structure, it carried out similarly to the measurement 1, and observed the molten state of the solder particle in the anisotropic conductive film after thermocompression bonding. Solder particles (e) were melted. From this result, it was confirmed that the ultimate temperature during thermocompression bonding in Measurement 10 was 138 ° C. or higher. However, it has not been possible to confirm whether the ultimate temperature during thermocompression bonding is appropriate or excessive.

実施例1、実施例2、比較例1及び比較例2における電子部品の接合条件決定方法の結果をまとめたものを表2に示す。   Table 2 summarizes the results of the electronic component joining condition determination method in Example 1, Example 2, Comparative Example 1 and Comparative Example 2.

Figure 2013105886
Figure 2013105886

また、測定1〜測定10において得られた接続構造体の接続評価を行った。接続評価は、60℃、90%RH、500hr、及び、−40℃〜85℃のTCT(温度サイクル試験)500サイクルの環境試験に、測定1〜測定10において得られた接続構造体を投入した後の導通信頼性を評価した。測定4〜測定10において得られた接続構造体は、いずれも導通信頼性が良好ではなかった。これは、温度をかけすぎてしまったことにより、異方性導電フィルム中のバインダーが十分に流動する前にバインダーの熱硬化反応が進んでしまい、端子間に導電性粒子を捕捉することができず、半田粒子によって十分な金属結合を形成することができなかったためと考えられる。   Moreover, the connection evaluation of the connection structure obtained in the measurement 1 to the measurement 10 was performed. In connection evaluation, the connection structure obtained in measurement 1 to measurement 10 was put into an environmental test of TCT (temperature cycle test) 500 cycles of 60 ° C., 90% RH, 500 hr, and −40 ° C. to 85 ° C. Later conduction reliability was evaluated. None of the connection structures obtained in Measurements 4 to 10 had good conduction reliability. This is because the thermosetting reaction of the binder proceeds before the binder in the anisotropic conductive film sufficiently flows due to excessive application of temperature, and the conductive particles can be captured between the terminals. This is probably because a sufficient metal bond could not be formed by the solder particles.

以上説明したように、本実施例では、固相線温度及び粒径が異なる複数の半田粒子を含有する異方性導電フィルムを介在させて、端子同士を加熱圧着し、加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察した。加熱圧着後の異方性導電フィルム中の半田粒子の溶融状態を観察することによって、溶融した半田粒子と溶融していない半田粒子とを特定することができ、また、温度をかけすぎたかどうかを判断することができた。したがって、本発明では、加熱圧着時の到達温度を正確に決定することができることが分かった。   As described above, in this example, the anisotropic conductive film containing a plurality of solder particles having different solidus temperature and particle size is interposed, the terminals are thermocompression bonded, and the anisotropic after thermocompression bonding The melting state of the solder particles in the conductive film was observed. By observing the melting state of the solder particles in the anisotropic conductive film after thermocompression bonding, it is possible to identify the molten solder particles and the unmelted solder particles, and whether or not the temperature is excessively applied. I was able to judge. Therefore, in the present invention, it has been found that the ultimate temperature at the time of thermocompression bonding can be determined accurately.

1 接着フィルム、2 バインダー、3 金属粒子、4 異方性導電組成物、5 剥離基材、6 第1の電子部品、7 第2の電子部品   DESCRIPTION OF SYMBOLS 1 Adhesive film, 2 Binder, 3 Metal particle, 4 Anisotropic electrically conductive composition, 5 peeling base material, 6 1st electronic component, 7 2nd electronic component

Claims (10)

固相線温度及び粒径が異なる複数の金属粒子を含有する接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定する電子部品の接合条件決定方法。   The first electronic component and the second electronic component are thermocompression bonded via an adhesive film containing a plurality of metal particles having different solidus temperatures and particle sizes, and the metal particles in the adhesive film after thermocompression bonding A bonding condition determination method for an electronic component that determines a bonding condition at the time of thermocompression bonding by observing the molten state. 前記金属粒子の溶融状態として、前記加熱圧着後の接着フィルム中の金属粒子の粒径を観察することによって、前記加熱圧着時の接合条件として到達温度を決定する請求項1記載の電子部品の接合条件決定方法。   The joining of electronic components according to claim 1, wherein an ultimate temperature is determined as a joining condition during the thermocompression bonding by observing a particle size of the metal particles in the adhesive film after the thermocompression bonding as the molten state of the metal particles. Condition determination method. 前記金属粒子は、固相線温度が高いものほど粒径が小さい請求項2記載の電子部品の接合条件決定方法。   The method for determining bonding conditions for an electronic component according to claim 2, wherein the metal particles have a smaller particle size as the solidus temperature increases. 前記金属粒子は、固相線温度の差が1℃以上である請求項3記載の電子部品の接合条件決定方法。   The method for determining bonding conditions for an electronic component according to claim 3, wherein the metal particles have a solidus temperature difference of 1 ° C. or more. 前記金属粒子は、粒径の差が1μm以上である請求項4記載の電子部品の接合条件決定方法。   The method for determining bonding conditions for an electronic component according to claim 4, wherein the metal particles have a particle size difference of 1 μm or more. 前記金属粒子は、半田粒子である請求項2乃至5のうちいずれか1項記載の電子部品の接合条件決定方法。   The method for determining bonding conditions for an electronic component according to any one of claims 2 to 5, wherein the metal particles are solder particles. 前記接着フィルムは、異方性導電フィルムである請求項2乃至5のうちいずれか1項記載の電子部品の接合条件決定方法。   The method for determining bonding conditions for an electronic component according to claim 2, wherein the adhesive film is an anisotropic conductive film. 固相線温度が異なる二種類の金属粒子を含有する接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定する電子部品の接合条件決定方法。   The first electronic component and the second electronic component are thermocompression bonded via an adhesive film containing two types of metal particles having different solidus temperatures, and the metal particles in the adhesive film after thermocompression are melted. An electronic component joining condition determination method for determining a joining condition at the time of thermocompression bonding by observing a state. 固相線温度及び粒径の異なる複数の金属粒子が含有されており、
当該接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の当該接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定するための接着フィルム。
Contains a plurality of metal particles with different solidus temperatures and particle sizes,
By bonding the first electronic component and the second electronic component by interposing the adhesive film, and observing the molten state of the metal particles in the adhesive film after the thermocompression bonding, bonding at the time of thermocompression bonding Adhesive film for determining conditions.
第1の電子部品の端子と第2の電子部品の端子との間に接着フィルムを介在させて、前記第1の電子部品と前記第2の電子部品とを接続する接続構造体の製造方法において、
固相線温度及び粒径が異なる複数の金属粒子を含有する前記接着フィルムを介在させて、第1の電子部品と第2の電子部品とを加熱圧着し、加熱圧着後の接着フィルム中の金属粒子の溶融状態を観察することによって、加熱圧着時の接合条件を決定し、
前記接合条件に基づいて、前記接着フィルムを介在させた前記第1の電子部品と前記第2の電子部品とを、相対的に固相線温度が低い金属粒子を溶融させ、他の金属粒子を溶融させない状態の加熱温度で加熱押圧する接続構造体の製造方法。
In a method for manufacturing a connection structure in which an adhesive film is interposed between a terminal of a first electronic component and a terminal of a second electronic component to connect the first electronic component and the second electronic component. ,
The first electronic component and the second electronic component are thermocompression bonded with the adhesive film containing a plurality of metal particles having different solidus temperatures and particle sizes, and the metal in the adhesive film after thermocompression bonding By observing the melting state of the particles, determine the bonding conditions during thermocompression bonding,
Based on the bonding conditions, the first electronic component and the second electronic component having the adhesive film interposed therebetween are melted with metal particles having a relatively low solidus temperature, and other metal particles are A method for manufacturing a connection structure, in which heating and pressing are performed at a heating temperature that does not cause melting.
JP2011248718A 2011-11-14 2011-11-14 Determining joining conditions for electronic components Active JP6099303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248718A JP6099303B2 (en) 2011-11-14 2011-11-14 Determining joining conditions for electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248718A JP6099303B2 (en) 2011-11-14 2011-11-14 Determining joining conditions for electronic components

Publications (2)

Publication Number Publication Date
JP2013105886A true JP2013105886A (en) 2013-05-30
JP6099303B2 JP6099303B2 (en) 2017-03-22

Family

ID=48625228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248718A Active JP6099303B2 (en) 2011-11-14 2011-11-14 Determining joining conditions for electronic components

Country Status (1)

Country Link
JP (1) JP6099303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158213A (en) * 2021-11-30 2022-03-08 业成科技(成都)有限公司 Adhesive, bonding method and electronic product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226020A (en) * 1992-02-13 1993-09-03 Hitachi Chem Co Ltd Anisotropically conductive adhesive film
JPH11307154A (en) * 1998-04-16 1999-11-05 Fujikura Ltd Anisotropic conductive material
JP2002368410A (en) * 2001-06-07 2002-12-20 Yazaki Corp Solder temperature examining object and temperature examining method by using solder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226020A (en) * 1992-02-13 1993-09-03 Hitachi Chem Co Ltd Anisotropically conductive adhesive film
JPH11307154A (en) * 1998-04-16 1999-11-05 Fujikura Ltd Anisotropic conductive material
JP2002368410A (en) * 2001-06-07 2002-12-20 Yazaki Corp Solder temperature examining object and temperature examining method by using solder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158213A (en) * 2021-11-30 2022-03-08 业成科技(成都)有限公司 Adhesive, bonding method and electronic product
CN114158213B (en) * 2021-11-30 2023-09-22 业成科技(成都)有限公司 Adhesive, adhesive method and electronic product

Also Published As

Publication number Publication date
JP6099303B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
US8188605B2 (en) Components joining method and components joining structure
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
TW392179B (en) Anisotropic conductive composition
Kang et al. Development of high conductivity lead (Pb)-free conducting adhesives
US8794502B2 (en) Method of forming solder on pad on fine pitch PCB and method of flip chip bonding semiconductor using the same
TW200536652A (en) Flux for soldering and soldering process
JPWO2014002893A1 (en) Anisotropic conductive sheet and electrode joining method using the same
WO2015029696A1 (en) Electrically conductive joining composition, electrically conductive joining sheet, electronic component, and production method for same
JP5975167B2 (en) Curing agent, thermosetting resin composition containing the curing agent, bonding method using the same, and method for controlling the curing temperature of the thermosetting resin
JP6099303B2 (en) Determining joining conditions for electronic components
JP2010278025A (en) Anisotropic conductive film
US20230070488A1 (en) Method for manufacturing connection body, and connection body
EP3257109B1 (en) Electrical connection tape
JP2007081198A (en) Method for conductive connection between terminals
JP2015196724A (en) Anisotropic conductive adhesive and method for producing the same
JP3682156B2 (en) Conductive fine particles and conductive connection structure
CN114502685B (en) Method for producing connector, anisotropic conductive bonding material, and connector
JP5310664B2 (en) Electronic component mounting method
JP2009188063A (en) Method for connection between terminals and method for mounting semiconductor element
KR100619390B1 (en) Conductive adhesive and circuit comprising it
JP2015191928A (en) Method of determining bonding temperature condition of electronic component
JP3286182B2 (en) Semiconductor device and manufacturing method thereof
JP2023176346A (en) Manufacturing method of circuit connection structure and circuit connection device
JP2003158153A (en) Flip-chip mounting curing flux, semiconductor package, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160129

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170221

R150 Certificate of patent or registration of utility model

Ref document number: 6099303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250