JP2013105817A - Optical semiconductor device and method of manufacturing the same - Google Patents

Optical semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2013105817A
JP2013105817A JP2011247303A JP2011247303A JP2013105817A JP 2013105817 A JP2013105817 A JP 2013105817A JP 2011247303 A JP2011247303 A JP 2011247303A JP 2011247303 A JP2011247303 A JP 2011247303A JP 2013105817 A JP2013105817 A JP 2013105817A
Authority
JP
Japan
Prior art keywords
resin
substrate
manufacturing
resin mold
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247303A
Other languages
Japanese (ja)
Inventor
Teiichiro Takano
貞一郎 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011247303A priority Critical patent/JP2013105817A/en
Publication of JP2013105817A publication Critical patent/JP2013105817A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which, in a conventional manufacturing method in which a multi-faced substrate on which a plurality of LED chips are mounted is pressure-bonded onto a metal mold made of a fluoro resin and having recesses potted with a liquid resin, centers of the LED chips are not matched with centers of the recesses on the multi-faced substrate due to a difference in thermal expansion coefficient between the mold made of the fluoro resin and the multi-faced substrate when the substrate is composed of ceramic.SOLUTION: A method of manufacturing an optical semiconductor device includes: pressure-bonding discrete ceramic substrates 2 each having an LED chip 1 mounted thereon onto respective recesses 3a on a non-adhesive resin mold 3, each having a transparent resin layer 4 formed therein; and curing the transparent resin layers 4 at a temperature of 150°C for about one hour. As a result, the discrete ceramic substrates 2 are horizontally stored in level differences 3a-1 of the recesses 3a on the non-adhesive resin mold 3 without inclination.

Description

本発明は光半導体装置及びその製造方法に関する。   The present invention relates to an optical semiconductor device and a method for manufacturing the same.

一般に、光半導体装置たとえば発光ダイオード(LED)装置の製造方法として樹脂型を利用したものがあり、次の通りである(参照:特許文献1)。
(1)準備工程:複数のLEDチップが実装された多面取り基板及びLEDパッケージ用レンズの材料の樹脂が入るように凹部が形成されたフルオロ樹脂よりなる金型を準備する。
(2)ポッティング工程:金型の凹部にレンズの材料となる液状の樹脂を定量だけ注入する。
(3)圧着工程:液状の樹脂が注入された金型上にLEDチップが実装された多面取り基板を圧着させて液状の樹脂を仮硬化させる。
(4)分離工程:金型を分離した後に液状の樹脂を完全硬化させる。
(5)分割工程:最後に、レンズ付きのLEDチップ毎に多面取り基板をダイシング等により分割してLEDパッケージが完成する。
In general, as a method of manufacturing an optical semiconductor device such as a light emitting diode (LED) device, there is a method using a resin mold as follows (refer to Patent Document 1).
(1) Preparatory step: A mold made of a fluororesin having recesses formed so that a resin of a material for a multi-sided substrate on which a plurality of LED chips are mounted and a lens for an LED package enters.
(2) Potting step: A fixed amount of liquid resin serving as a lens material is injected into the concave portion of the mold.
(3) Crimping step: A multi-sided substrate on which LED chips are mounted on a mold into which a liquid resin is injected is crimped to temporarily cure the liquid resin.
(4) Separation step: After separating the mold, the liquid resin is completely cured.
(5) Dividing step: Finally, the multi-cavity substrate is divided by dicing or the like for each LED chip with a lens to complete an LED package.

特開2008−66733号公報JP 2008-66733 A

しかしながら、特許文献1の示すLED装置の製造方法においては、次のような課題があった。   However, the LED device manufacturing method disclosed in Patent Document 1 has the following problems.

第1に、多面取り基板としてセラミック基板を用いた場合には、そのセラミック基板の熱膨張係数は約7.1×10E−6/℃であるのに対して金型たとえばフルオロ樹脂の熱膨張係数は5〜12×10E−5/℃と一桁近く熱膨張係数が異なる。尚、基板のLEDチップの数は、実際には多数個たとえば20個程度である。従って、圧着工程において、すべてのLEDチップの中心がフルオロ樹脂の金型の凹部の中心に一致することは困難である。この結果、完成したパッケージのレンズ(透明樹脂層)とLEDチップの中心とが一致せず、所望の光学的指向特性が得られないという課題があった。 First, when a ceramic substrate is used as the multi-sided substrate, the thermal expansion coefficient of the ceramic substrate is about 7.1 × 10E −6 / ° C., whereas the thermal expansion coefficient of a mold such as a fluororesin is used. Is 5-12 × 10E −5 / ° C., and the coefficient of thermal expansion is different by almost one digit. The number of LED chips on the substrate is actually a large number, for example, about 20. Therefore, it is difficult for the center of all LED chips to coincide with the center of the recess of the fluororesin mold in the crimping process. As a result, the lens (transparent resin layer) of the completed package and the center of the LED chip do not coincide with each other, and there is a problem that desired optical directivity characteristics cannot be obtained.

第2に、圧着工程において、多面取り基板のLEDチップ側の平面部とフルオロ樹脂よりなる金型の凹部以外の平面部との圧力接触によって透明樹脂層の外部への漏れを防止しているが、これだけでは、高温度の仮硬化時に透明樹脂層の圧力上昇による樹脂漏れを完全に防止できず、この結果、多面取り基板の浮き上がりを招き、やはり、所望の光学的指向特性が得られないという課題があった。   Secondly, in the crimping step, leakage of the transparent resin layer to the outside is prevented by pressure contact between the flat part on the LED chip side of the multi-sided substrate and the flat part other than the concave part of the mold made of fluororesin. This alone cannot completely prevent the resin leakage due to the pressure increase of the transparent resin layer at the time of temporary curing at a high temperature, and as a result, the multi-sided substrate is lifted, and the desired optical directivity characteristics cannot be obtained. There was a problem.

第3に、高温度の仮硬化時に発生する気泡を透明樹脂層に巻き込んでしまう可能性がある。この結果、やはり、所望の光学的指向特性が得られないという課題があった。   Thirdly, there is a possibility that bubbles generated during temporary curing at a high temperature are caught in the transparent resin layer. As a result, there is still a problem that desired optical directivity characteristics cannot be obtained.

第4に、多面取り基板のダイシング等による分割工程を必要とするので、製造コストの上昇を招くという課題もあった。   Fourthly, since a dividing step by dicing or the like of the multi-sided substrate is required, there is a problem that the manufacturing cost is increased.

上述の課題を解決するために、本発明に係る光半導体装置の製造方法は、少なくとも1つの発光素子が実装された個片基板を複数準備する工程と、複数の凹部が形成された樹脂型を準備する工程と、樹脂型の各凹部に光透過性樹脂を注入する工程と、各個片基板を光透過性樹脂が注入された樹脂型の各凹部に圧着する工程と、光透過性樹脂を硬化する工程とを具備し、各凹部は、圧着する工程において、個片基板の側面と当接する側面部、及び、個片基板の発光素子の実装面の一部と当接する上面部を有するものである。これにより、個片基板は樹脂型の凹部に傾斜せずに水平に収まることになる。   In order to solve the above-described problem, an optical semiconductor device manufacturing method according to the present invention includes a step of preparing a plurality of individual substrates on which at least one light emitting element is mounted, and a resin mold in which a plurality of recesses are formed. A step of preparing, a step of injecting a light-transmitting resin into each recess of the resin mold, a step of pressing each individual substrate to each of the recesses of the resin mold into which the light-transmitting resin is injected, and curing the light-transmitting resin Each of the recesses has a side portion that contacts the side surface of the individual substrate and an upper surface portion that contacts a part of the mounting surface of the light emitting element of the individual substrate in the step of crimping. is there. As a result, the individual substrate is horizontally accommodated without being inclined in the resin-shaped recess.

また、個片基板を圧着する工程の前において、凹部の開口サイズは個片基板の外形サイズより小さい。凹部には、側面部と上面部から構成される第一の段差の下に、第二の段差が形成されている。これにより、樹脂の外部への漏れを防止して基板の浮き上がりを防止する。
さらにまた、凹部の外側と第二の段差との間の第一の段差に、気泡抜きスリットを設け、この気泡抜きスリットは凹部の外側の樹脂型の上面部まで延伸している。
Further, before the step of crimping the individual substrate, the opening size of the recess is smaller than the outer size of the individual substrate. A second step is formed in the recess below the first step composed of the side surface and the top surface. This prevents the resin from leaking to the outside and prevents the substrate from floating.
Furthermore, a bubble removal slit is provided in the first step between the outside of the recess and the second step, and the bubble removal slit extends to the upper surface of the resin mold outside the recess.

さらに、上記製造方法は、光透過性樹脂の硬化の後に、樹脂型を分離する工程を具備する。   Furthermore, the manufacturing method includes a step of separating the resin mold after the light-transmitting resin is cured.

さらに、上記製造方法は、光透過性樹脂の硬化の後に、隣接する各個片基板間で樹脂型を分割する工程を具備する。   Furthermore, the manufacturing method includes a step of dividing the resin mold between adjacent individual substrates after the light-transmitting resin is cured.

本発明に係る光半導体装置は、少なくとも1つの発光素子が実装された基板と、基板上で発光素子を囲むように配置された樹脂型と、基板上で発光素子を覆うように樹脂型内を充填する光透過性樹脂層とを具備し、樹脂型の内側面の一部は、基板の側面と当接している。   An optical semiconductor device according to the present invention includes a substrate on which at least one light emitting element is mounted, a resin mold disposed so as to surround the light emitting element on the substrate, and a resin mold so as to cover the light emitting element on the substrate. And a part of the inner surface of the resin mold is in contact with the side surface of the substrate.

本発明によれば、基板を傾斜させることなく、発光素子が実装された個片基板を樹脂型の各凹部に圧着させることができるので、すべての発光素子の中心は樹脂型の各凹部の中心に一致でき、この結果、完成したパッケージの光学的指向特性等を向上できる。   According to the present invention, since the individual substrate on which the light emitting element is mounted can be crimped to each recess of the resin mold without tilting the substrate, the center of all the light emitting elements is the center of each recess of the resin mold. As a result, the optical directivity of the completed package can be improved.

本発明に係るLED装置の製造方法の第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第3の実施の形態を示す図である。It is a figure which shows 3rd Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第3の実施の形態を示す図である。It is a figure which shows 3rd Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第3の実施の形態を示す図である。It is a figure which shows 3rd Embodiment of the manufacturing method of the LED device which concerns on this invention. 本発明に係るLED装置の製造方法の第3の実施の形態を示す図である。It is a figure which shows 3rd Embodiment of the manufacturing method of the LED device which concerns on this invention.

図1〜図4は本発明に係るLED装置の製造方法の第1の実施の形態を示す図である。   1-4 is a figure which shows 1st Embodiment of the manufacturing method of the LED device based on this invention.

始めに、準備工程を示す図1を参照すると、少なくとも1つのLEDチップ1が実装されたアルミナ等よりなる個片セラミック基板2を準備すると共に(図1の(A))、LEDパッケージ用レンズの材料の樹脂が入るように凹部3aが形成された非粘着性樹脂型3を準備する(図1の(B1)、(B2)、(B3))。尚、図1の(B1)、は斜視図、図1の(B2)は1つの凹部3aの上面図、図1の(B3)は(B2)の中心を通る断面図である。   First, referring to FIG. 1 showing a preparation process, an individual ceramic substrate 2 made of alumina or the like on which at least one LED chip 1 is mounted is prepared (FIG. 1A), and an LED package lens is prepared. A non-adhesive resin mold 3 in which a recess 3a is formed so that the material resin enters is prepared ((B1), (B2), (B3) in FIG. 1). 1B is a perspective view, FIG. 1B2 is a top view of one recess 3a, and FIG. 1B3 is a cross-sectional view through the center of (B2).

図1の(A)に示すLEDチップ1が実装された個片セラミック基板2は、LEDチップ1が実装されていない個片セラミック基板2を専用キャリア治具にセットした上でLEDチップ1をダイボンディングし、その後、専用キャリア治具を個片セラミック基板2から取り外すことによって得られる。あるいは、溝を形成した1枚のセラミック基板に複数のLEDチップを実装した後に、セラミック基板を溝に沿って割ってもよい。この場合、個片セラミック基板2にバリが発生することがあるが、たとえバリが発生しても、後述の圧着工程では、非粘着性樹脂型3は弾性を有するのでその凹部3a内に収めることができる。また、個片セラミック基板2に実装されるLEDチップ1の数は1つでも2つ以上でもよい。また、2つ以上の場合には、異なる色のLEDチップあるいは同一色たとえば青色LEDチップでもよい。   The individual ceramic substrate 2 on which the LED chip 1 shown in FIG. 1A is mounted is set on the dedicated carrier jig after the individual ceramic substrate 2 on which the LED chip 1 is not mounted. It is obtained by bonding and then removing the dedicated carrier jig from the individual ceramic substrate 2. Alternatively, after mounting a plurality of LED chips on a single ceramic substrate having a groove, the ceramic substrate may be divided along the groove. In this case, burrs may occur in the individual ceramic substrate 2, but even if burrs occur, the non-adhesive resin mold 3 has elasticity in the press-bonding process described later, so that it will fit in the recess 3 a. Can do. The number of LED chips 1 mounted on the individual ceramic substrate 2 may be one or two or more. In the case of two or more, LED chips of different colors or the same color such as a blue LED chip may be used.

図1の(B1)、(B2)、(B3)に示す非粘着性樹脂型3は登録商標名テフロンとして広く知られているポリテトラフルオロエチレンを代表とするフッ素を含むオレフィンの重合で得られるフッ素樹脂よりなる。この樹脂は耐熱性、弾性、摩擦係数が小さい離型性を有している。この非粘着性樹脂型3は、切削加工が困難であるので、金型を作製して成型するのが好ましい。   The non-adhesive resin mold 3 shown in (B1), (B2), and (B3) of FIG. 1 is obtained by polymerization of a fluorine-containing olefin typified by polytetrafluoroethylene, which is widely known as a registered trade name Teflon. Made of fluororesin. This resin has releasability with low heat resistance, elasticity, and friction coefficient. Since this non-adhesive resin mold 3 is difficult to cut, it is preferable to produce and mold a mold.

また、図1の(B2)、(B3)に示すように、非粘着性樹脂型3の凹部3aには、2つの段差3a−1、3a−2が設けられている。段差3a−1の側面は後述の圧着工程で個片セラミック基板2の側面に当接するように作用し、他方、段差3a−1の上面は後述の圧着工程で個片セラミック基板2のLEDチップ1側の平面に当接するように作用する。また、段差3a−2は後述の圧着工程で充填された樹脂の溜まりの作用をし、その樹脂の逃げを受けるためのものである。   Moreover, as shown to (B2) and (B3) of FIG. 1, the two level | step differences 3a-1 and 3a-2 are provided in the recessed part 3a of the non-adhesive resin type | mold 3. The side surface of the step 3a-1 acts so as to come into contact with the side surface of the individual ceramic substrate 2 in a later-described pressing step, while the upper surface of the step 3a-1 is the LED chip 1 of the individual ceramic substrate 2 in the later-described pressing step. It acts to abut against the flat surface on the side. Further, the step 3a-2 acts as a reservoir for the resin filled in the press-bonding process described later, and receives the escape of the resin.

次に、ポッティング工程を示す図2を参照すると、非粘着性樹脂型3の凹部3aにレンズの材料となる液状の光透過性樹脂4aたとえばシリコーン樹脂、エポキシ樹脂をディスペンサ等で定量注入する(図2の(A))。この結果、非粘着性樹脂型3の凹部3aに透明樹脂層4が形成される(図2の(B))。この場合、光透過性樹脂4aの量が少な過ぎると、後述の圧着工程で圧着不良を生じるので、光透過性樹脂4aの量は、後述の圧着工程において、充填された光透過性樹脂4aの上部が基板に接して押し広げられる量とする。つまり、段差3a−1の上面(平坦面)を超えるように、たとえば盛り形状として充填されることが好ましい。従って、この場合、後述の圧着工程にて、透明樹脂層4は、樹脂溜まりの段差3a−2まで延伸することになる。また、液状の光透過性樹脂4aは、段差3a−1の上面および側面に接しないように充填される。これにより、後述の圧着工程において、個片セラミック基板2の上面と段差3a−1の上面、基板2の側面と段差3a−1の側面とを光透過性樹脂4aを介することなく確実に当接させることができるので、個片セラミック基板2が傾斜することなく固定することができる。 Next, referring to FIG. 2 showing the potting process, a liquid light-transmitting resin 4a as a lens material, for example, a silicone resin or an epoxy resin is quantitatively injected into the recess 3a of the non-adhesive resin mold 3 with a dispenser or the like (FIG. 2). 2 (A)). As a result, the transparent resin layer 4 is formed in the recess 3a of the non-adhesive resin mold 3 ((B) in FIG. 2). In this case, if the amount of the light-transmitting resin 4a is too small, a press-bonding failure occurs in the press-bonding process described later. Therefore, the amount of the light-transmitting resin 4a is the same as that of the filled light-transmitting resin 4a in the press-bonding process described later. The amount is such that the upper part is in contact with the substrate and spreads. That is, it is preferable to fill, for example, as a raised shape so as to exceed the upper surface (flat surface) of the step 3a-1. Therefore, in this case, the transparent resin layer 4 extends to the step 3a-2 of the resin reservoir in the press-bonding process described later. Further, the liquid light-transmitting resin 4a is filled so as not to contact the upper surface and the side surface of the step 3a-1. This ensures that the upper surface of the individual ceramic substrate 2 and the upper surface of the step 3a-1 and the side surface of the substrate 2 and the side surface of the step 3a-1 are brought into contact with each other without passing through the light-transmitting resin 4a in the crimping step described later. Therefore, the individual ceramic substrate 2 can be fixed without being inclined.

次に、圧着工程を示す図3を参照すると、透明樹脂層4が形成された非粘着性樹脂型3の各凹部3a上にLEDチップ1が実装された個片セラミック基板2を圧着させ(図3の(A))、透明樹脂層4を加熱炉で約150℃の高温度で1時間程度で硬化させる(図3の(B))。   Next, referring to FIG. 3 showing the crimping process, the individual ceramic substrate 2 on which the LED chip 1 is mounted is crimped on each recess 3a of the non-adhesive resin mold 3 on which the transparent resin layer 4 is formed (FIG. 3). 3 (A)), the transparent resin layer 4 is cured in a heating furnace at a high temperature of about 150 ° C. for about 1 hour (FIG. 3B).

図3の(A)に示すごとく、圧着前において、非粘着性樹脂型3の凹部3aの開口サイズつまり段差3a−1の外形サイズd31は、次式に示すごとく、個片セラミック基板2の外形サイズd2より小さくある。
d31=α・d2
但し、0.9≦α<1.0
これにより、非粘着性樹脂型3が弾性を有しているので、個片セラミック基板2は段差3a−1に収容されるように、凹部3aの開口を多少押し広げて嵌め合わされる。つまり、個片セラミック基板2を非粘着性樹脂型3に圧着することができ、その圧着した際には、個片セラミック基板2の側面は段差3a−1の側面に確実に当接し、かつ個片セラミック基板2のLEDチップ1側の平面は段差3a−1の上面に確実に当接する。この結果、図3の(B)に示すごとく、個片セラミック基板2は非粘着性樹脂型3の凹部3aの段差3a−1内に傾斜せずに水平に収まることができる。このとき、段差3a−1の側面との圧接によって個片セラミック基板2の中心は非粘着性樹脂型3の中心に確実に一致する。また、樹脂溜りの作用する段差3a−2の外形サイズd32は、
d32<d31
である。
As shown in FIG. 3A, before the press bonding, the opening size of the recess 3a of the non-adhesive resin mold 3, that is, the outer size d31 of the step 3a-1, is the outer shape of the individual ceramic substrate 2 as shown in the following equation. It is smaller than the size d2.
d31 = α · d2
However, 0.9 ≦ α <1.0
Thereby, since the non-adhesive resin mold 3 has elasticity, the individual ceramic substrate 2 is fitted with the opening of the recess 3a being somewhat expanded so as to be accommodated in the step 3a-1. That is, the individual ceramic substrate 2 can be pressure-bonded to the non-adhesive resin mold 3, and when the pressure-bonding is performed, the side surface of the individual ceramic substrate 2 is securely in contact with the side surface of the step 3 a-1. The plane on the LED chip 1 side of the piece ceramic substrate 2 is surely in contact with the upper surface of the step 3a-1. As a result, as shown in FIG. 3B, the individual ceramic substrate 2 can be horizontally accommodated without being inclined in the step 3 a-1 of the recess 3 a of the non-adhesive resin mold 3. At this time, the center of the individual ceramic substrate 2 surely coincides with the center of the non-adhesive resin mold 3 by pressure contact with the side surface of the step 3a-1. Further, the external size d32 of the step 3a-2 on which the resin pool acts is
d32 <d31
It is.

最後に、分離工程を示す図4を参照すると、透明樹脂層4の硬化後に非粘着性樹脂型3を分離してLEDパッケージが完成する。尚、図4の(A)は断面図、図4の(B)は斜視図である。   Finally, referring to FIG. 4 showing the separation process, the LED package is completed by separating the non-adhesive resin mold 3 after the transparent resin layer 4 is cured. 4A is a sectional view, and FIG. 4B is a perspective view.

図5〜図8は本発明に係るLED装置の製造方法の第2の実施の形態を示す図である。   5-8 is a figure which shows 2nd Embodiment of the manufacturing method of the LED device based on this invention.

始めに、準備工程を示す図5を参照すると、少なくともLEDチップ1が実装された個片セラミック基板2を準備すると共に(図5の(A))、LEDパッケージ用レンズの材料の樹脂が入るように凹部3aが形成された非粘着性樹脂型3を準備する(図5の(B1)、(B2)、(B3))。尚、図5の(B1)は斜視図、図5の(B2)は1つの凹部3aの上面図、図5の(B3)は(B2)の凹部3aの中心つまり気泡抜きスリット部3a−3を通る断面図である。   First, referring to FIG. 5 showing the preparation process, at least an individual ceramic substrate 2 on which the LED chip 1 is mounted is prepared ((A) of FIG. 5), and the resin of the LED package lens material enters. A non-adhesive resin mold 3 having a recess 3a formed thereon is prepared ((B1), (B2), (B3) in FIG. 5). 5B1 is a perspective view, FIG. 5B2 is a top view of one recess 3a, and FIG. 5B3 is the center of the recess 3a in FIG. 5B, that is, a bubble removal slit 3a-3. It is sectional drawing which passes through.

図5の(A)に示すLEDチップ1が実装された個片セラミック基板2は、図1の(A)の場合と同一である。 The individual ceramic substrate 2 on which the LED chip 1 shown in FIG. 5A is mounted is the same as that in FIG.

図5の(B)に示す非粘着性樹脂型3においては、図1の(B1)、(B2)、(B3)に示す非粘着性樹脂型3の凹部3aの段差3a−1に4つの気泡抜きスリット3a−3を設けてある。気泡抜きスリット3a−3は段差3a−2と同一深さを有し、後述の圧着工程で液状の樹脂に気泡が生じた場合に、その気泡を逃がすためのものである。気泡抜きスリット3a−3は、凹部3aの外側と段差3a−2との間の段差3a−1に設けられ、凹部3aの外側の上面部まで延伸している。つまり、段差3a−1の上面(平坦面)から段差3a−1を超えた非粘着性樹脂型3の上面まで延伸した溝形状に形成されている。そのため、気泡抜きスリット3a−3の一部(段差3a−1の上面以外の領域)は、個片基板の圧着工程以降においても、個片セラミック基板2によって覆われることがなく、透過性樹脂4内に発生した気泡の排出口として作用する。   In the non-adhesive resin mold 3 shown in FIG. 5 (B), there are four steps 3a-1 in the recess 3a of the non-adhesive resin mold 3 shown in (B1), (B2), and (B3) of FIG. A bubble removal slit 3a-3 is provided. The bubble removal slit 3a-3 has the same depth as the step 3a-2, and is used for releasing bubbles when bubbles are generated in the liquid resin in the press-bonding process described later. The bubble removal slit 3a-3 is provided at the step 3a-1 between the outside of the recess 3a and the step 3a-2, and extends to the upper surface of the outside of the recess 3a. That is, it is formed in a groove shape extending from the upper surface (flat surface) of the step 3a-1 to the upper surface of the non-adhesive resin mold 3 beyond the step 3a-1. Therefore, a part of the bubble removal slit 3a-3 (a region other than the upper surface of the step 3a-1) is not covered with the individual ceramic substrate 2 even after the individual substrate pressing process, and the transparent resin 4 Acts as a discharge port for bubbles generated inside.

次に、ポッティング工程を示す図6を参照すると、図2の場合と同様に非粘着性樹脂型3の凹部3aにレンズの材料となる光透過性樹脂4aたとえばシリコーン樹脂、エポキシ樹脂をディスペンサ等で定量注入する(図6の(A))。この結果、非粘着性樹脂型3の凹部3aに透明樹脂層4が形成される(図6の(B))。この場合も、光透過性樹脂4aの量が少な過ぎると、後述の圧着工程で圧着不良を生じるので、光透過性樹脂4aの量は、後述の圧着工程において、充填された光透過性樹脂4aの上部が基板に接して押し広げられる量とする。つまり、段差3a−1の上面(平坦面)を超えるように、たとえば盛り形状として充填されることが好ましい。従って、この場合、後述の圧着工程にて、透明樹脂層4は、樹脂溜まりの段差3a−2及び気泡抜きスリット3a−3の一部まで延伸することになる。また、液状の光透過性樹脂4aは、段差3a−1の上面および側面に接しないように充填される。これにより、後述の圧着工程において、基板2の上面と段差3a−1の上面、基板2の側面と段差3a−1の側面とを光透過性樹脂4aを介することなく確実に当接させることができるので、個片セラミック基板2が傾斜することなく固定することができる。   Next, referring to FIG. 6 showing the potting process, in the same manner as in FIG. 2, a light-transmitting resin 4a as a lens material, such as a silicone resin or an epoxy resin, is dispensed to the recess 3a of the non-adhesive resin mold 3 with a dispenser or the like. A fixed amount is injected ((A) in FIG. 6). As a result, the transparent resin layer 4 is formed in the recess 3a of the non-adhesive resin mold 3 ((B) in FIG. 6). Also in this case, if the amount of the light-transmitting resin 4a is too small, a press-bonding failure occurs in the press-bonding process described later. Therefore, the amount of the light-transmitting resin 4a is the same as that of the light-transmitting resin 4a filled in the press-bonding process described later. The amount that the upper part of the substrate is expanded in contact with the substrate. That is, it is preferable to fill, for example, as a raised shape so as to exceed the upper surface (flat surface) of the step 3a-1. Therefore, in this case, the transparent resin layer 4 extends to a part of the resin reservoir level difference 3a-2 and a part of the bubble removal slit 3a-3 in the press-bonding step described later. Further, the liquid light-transmitting resin 4a is filled so as not to contact the upper surface and the side surface of the step 3a-1. Thereby, in the crimping | compression-bonding process mentioned later, the upper surface of the board | substrate 2 and the upper surface of level | step difference 3a-1 and the side surface of the board | substrate 2 and the side surface of level | step difference 3a-1 can be reliably contact | abutted without passing through the translucent resin 4a. Therefore, the individual ceramic substrate 2 can be fixed without being inclined.

次に、圧着工程を示す図7を参照すると、透明樹脂層4が形成された非粘着性樹脂型3の各凹部3a上にLEDチップ1が実装された個片セラミック基板2を圧着させ(図7の(A))、透明樹脂層4を加熱炉で約150℃の高温度で1時間程度で硬化させる(図7の(B))。この場合、たとえば、LEDチップ1がフリップチップ型であればバンプの隙間の空気、あるいはボンディングワイヤに吸着していた空気等が透明樹脂層4内に気泡として発生する。このような気泡は気泡抜きスリット3a−3を介して図7の(B)の矢印に示すごとく抜け出る。   Next, referring to FIG. 7 showing the crimping process, the individual ceramic substrate 2 on which the LED chip 1 is mounted is crimped on each recess 3a of the non-adhesive resin mold 3 on which the transparent resin layer 4 is formed (FIG. 7). 7 (A)), the transparent resin layer 4 is cured in a heating furnace at a high temperature of about 150 ° C. for about 1 hour (FIG. 7B). In this case, for example, if the LED chip 1 is a flip-chip type, air in the gaps between the bumps or air adsorbed on the bonding wires is generated as bubbles in the transparent resin layer 4. Such bubbles escape through the bubble removal slit 3a-3 as shown by the arrow in FIG.

尚、図6、図7においては、気泡抜きスリット3a−3を通る断面図で説明したが、本第2の実施の形態においても、圧着工程の際、図示しない断面において、第1の実施の形態と同様に、個片セラミック基板2の側面が段差3a−1の側面に当接し、また、個片セラミック基板2のLED搭載面が段差3a−1の上面に当接し、この結果、個片セラミック基板2は凹部3aに固定されている。   6 and 7, the cross-sectional view passing through the bubble removal slit 3a-3 has been described, but also in the second embodiment, the first embodiment is performed in a cross section (not shown) during the crimping process. Similarly to the embodiment, the side surface of the individual ceramic substrate 2 is in contact with the side surface of the step 3a-1, and the LED mounting surface of the individual ceramic substrate 2 is in contact with the upper surface of the step 3a-1. The ceramic substrate 2 is fixed to the recess 3a.

最後に、分離工程を示す図8を参照すると、図4の場合と同様に、透明樹脂層4の硬化後に非粘着性樹脂型3を分離して、LEDパッケージが完成する。この場合、透明樹脂層4は気泡抜きスリット3a−3に対する突出部4bを有する場合がある。尚、図8において、透明樹脂層4のすべてに突出部4bが形成されている状態を示したが、突出部4bは必ず形成される必要はなく、光透過性樹脂4aの量に応じて形成される。 Finally, referring to FIG. 8 showing the separation process, as in the case of FIG. 4, the non-adhesive resin mold 3 is separated after the transparent resin layer 4 is cured to complete the LED package. In this case, the transparent resin layer 4 may have a protruding portion 4b with respect to the bubble removal slit 3a-3. Although FIG. 8 shows a state in which the protruding portion 4b is formed on all of the transparent resin layer 4, the protruding portion 4b is not necessarily formed, and is formed according to the amount of the light transmissive resin 4a. Is done.

上述の本発明の第1、第2の実施の形態においては、非粘着性樹脂型3は分離された後に再利用できるので、製造コストも点で有利である。また、非粘着性樹脂型3は非粘着性樹脂の一体型よりなる非粘着性樹脂型を用いているが、金型に非粘着性樹脂を塗布したものを用いてもよく、離型が可能な樹脂型を適宜用いることができる。   In the first and second embodiments of the present invention described above, the non-adhesive resin mold 3 can be reused after being separated, which is advantageous in terms of manufacturing cost. The non-adhesive resin mold 3 is a non-adhesive resin mold made of an integral type of non-adhesive resin, but a non-adhesive resin coated with a mold may be used, and release is possible. Various resin molds can be used as appropriate.

図9〜図12は本発明に係るLED装置の製造方法の第3の実施の形態を示す図である。   FIGS. 9-12 is a figure which shows 3rd Embodiment of the manufacturing method of the LED device based on this invention.

始めに、準備工程を示す図9を参照すると、少なくとも1つのLEDチップ1が実装されたアルミナ等よりなる個片セラミック基板2を準備すると共に(図9の(A))、LEDパッケージ用レンズの材料の樹脂が入るように凹部5aが形成された透明樹脂型5を準備する(図9の(B1)、(B2)、(B3))。尚、図9の(B1)は斜視図、図9の(B2)は1つの凹部5aの上面図、図9の(B3)は(B2)の凹部5aの中心を通る断面図である。   First, referring to FIG. 9 showing a preparation process, an individual ceramic substrate 2 made of alumina or the like on which at least one LED chip 1 is mounted is prepared ((A) of FIG. 9), and an LED package lens is prepared. A transparent resin mold 5 in which a recess 5a is formed so that the material resin enters is prepared ((B1), (B2), (B3) in FIG. 9). 9B is a perspective view, FIG. 9B2 is a top view of one recess 5a, and FIG. 9B3 is a cross-sectional view passing through the center of the recess 5a.

図9の(A)に示すLEDチップ1が実装された個片セラミック基板2は、図1の(A)の場合と同一である。   The individual ceramic substrate 2 on which the LED chip 1 shown in FIG. 9A is mounted is the same as that in FIG.

図9の(B1)、(B2)、(B3)に示す透明性樹脂型5はたとえばシリコーン樹脂よりなる。切削加工が困難であるので、金型を作製して成型するのが好ましい。   The transparent resin mold 5 shown in (B1), (B2), and (B3) of FIG. 9 is made of, for example, a silicone resin. Since cutting is difficult, it is preferable to produce and mold a mold.

また、図9の(B2)、(B3)に示すように、透明性樹脂型5の凹部5aには、図1の(B2)、(B3)の2つの段差3a−1、3a−2に対応する2つの段差5a−1、5a−2が設けられている。すなわち、段差5a−1の側面は後述の圧着工程で個片セラミック基板2の側面に当接するように作用し、他方、段差5a−1の上面は後述の圧着工程で個片セラミック基板2のLEDチップ1側の平面に当接するように作用する。また、段差5a−2は後述の圧着工程で充填された樹脂の溜まりの作用をし、その樹脂の逃げを受けるためのものである。   Further, as shown in (B2) and (B3) of FIG. 9, the recess 5a of the transparent resin mold 5 has two steps 3a-1 and 3a-2 in (B2) and (B3) of FIG. Two corresponding steps 5a-1 and 5a-2 are provided. That is, the side surface of the step 5a-1 acts so as to come into contact with the side surface of the individual ceramic substrate 2 in a later-described pressing step, while the upper surface of the step 5a-1 is the LED of the individual ceramic substrate 2 in the later-described pressing step. It acts so as to come into contact with the flat surface on the chip 1 side. Further, the step 5a-2 acts as a reservoir of the resin filled in the press-bonding process described later, and receives the escape of the resin.

次に、ポッティング工程を示す図10を参照すると、透明性樹脂型5の凹部5aにレンズの材料となる光透過性樹脂4aたとえばシリコーン樹脂、エポキシ樹脂をディスペンサ等で定量注入する(図10の(A))。この結果、透明性樹脂型5の凹部5aに透明樹脂層4が形成される(図10の(B))。この場合も、光透過性樹脂4aの量が少な過ぎると、後述の圧着工程で圧着不良を生じるので、光透過性樹脂4aの量は、後述の圧着工程において、充填された光透過性樹脂4aの上部が基板に接して押し広げられる量とする。つまり、段差5a−1の上面(平坦面)を超えるように、たとえば盛り形状として充填されることが好ましい。従って、この場合、後述の圧着工程にて、透明樹脂層4は、樹脂溜まりの段差5a−2まで延伸することになる。また、液状の光透過性樹脂4aは、段差5a−1の上面および側面に接しないように充填される。これにより、後述の圧着工程において、基板2の上面と段差5a−1の上面、基板2の側面と段差5a−1の側面とを光透過性樹脂4aを介することなく確実に当接させることができるので、個片セラミック基板2が傾斜することなく固定することができる。 Next, referring to FIG. 10 showing the potting process, a light-transmitting resin 4a as a lens material, for example, a silicone resin or an epoxy resin is quantitatively injected into the concave portion 5a of the transparent resin mold 5 with a dispenser or the like ( A)). As a result, the transparent resin layer 4 is formed in the recess 5a of the transparent resin mold 5 ((B) of FIG. 10). Also in this case, if the amount of the light-transmitting resin 4a is too small, a press-bonding failure occurs in the press-bonding process described later. Therefore, the amount of the light-transmitting resin 4a is the same as that of the light-transmitting resin 4a filled in the press-bonding process described later. The amount that the upper part of the substrate is expanded in contact with the substrate. That is, it is preferable to fill, for example, as a raised shape so as to exceed the upper surface (flat surface) of the step 5a-1. Therefore, in this case, the transparent resin layer 4 extends to the step 5a-2 of the resin reservoir in the press-bonding process described later. The liquid light-transmitting resin 4a is filled so as not to contact the upper surface and the side surface of the step 5a-1. Thereby, in the crimping | compression-bonding process mentioned later, the upper surface of the board | substrate 2 and the upper surface of level | step difference 5a-1 and the side surface of the board | substrate 2 and the side surface of level | step difference 5a-1 can be reliably contact | abutted without passing through the translucent resin 4a. Therefore, the individual ceramic substrate 2 can be fixed without being inclined.

次に、圧着工程を示す図11を参照すると、図3の場合と同様に、透明樹脂層4が形成された透明性樹脂型5の各凹部5a上にLEDチップ1が実装された個片セラミック基板2を圧着させ(図11の(A))、透明樹脂層4を加熱炉で約150℃の高温度で1時間程度で硬化させる(図11の(B))。   Next, referring to FIG. 11 showing the crimping process, as in the case of FIG. 3, the individual ceramics in which the LED chip 1 is mounted on each recess 5a of the transparent resin mold 5 on which the transparent resin layer 4 is formed. The substrate 2 is pressed (FIG. 11A), and the transparent resin layer 4 is cured in a heating furnace at a high temperature of about 150 ° C. for about 1 hour (FIG. 11B).

最後に、分割工程を示す図12を参照すると、透明樹脂層4の硬化後に透明樹脂型5をダイシング等により図11の分割面DFに沿って分割することにより、LEDパッケージが完成する。そして、完成したLEDパッケージにおいて、樹脂型5の内側面の一部、すなわち凹部5aの段差5a−1の側面に相当する部分は、基板2の側面に当接している。   Finally, referring to FIG. 12 showing the dividing step, the LED package is completed by dividing the transparent resin mold 5 along the dividing surface DF of FIG. 11 by dicing or the like after the transparent resin layer 4 is cured. In the completed LED package, a part of the inner surface of the resin mold 5, that is, a portion corresponding to the side surface of the step 5 a-1 of the recess 5 a is in contact with the side surface of the substrate 2.

このように、本発明の第3の実施の形態においては、第1、第2の実施の形態の分離工程は存在しない。つまり、透明樹脂型5は分離することなくそのまま個片セラミック基板2と一体になってLEDパッケージとなる。   As described above, in the third embodiment of the present invention, the separation step of the first and second embodiments does not exist. That is, the transparent resin mold 5 is integrated with the individual ceramic substrate 2 as it is without being separated into an LED package.

尚、上述の本発明の第3の実施の形態においても、第2の実施の形態における気泡抜きスリット3a−3を透明性樹脂枠5の凹部5aに設けることができる。   In the above-described third embodiment of the present invention, the bubble removal slit 3a-3 in the second embodiment can be provided in the recess 5a of the transparent resin frame 5.

上述の本発明の各実施の形態における光半導体装置を白色LED装置として使用する場合には、LEDチップ1表面に蛍光層を塗布するか、透明樹脂層4に蛍光体を分散すればよい。   When the optical semiconductor device according to each embodiment of the present invention described above is used as a white LED device, a fluorescent layer may be applied to the surface of the LED chip 1 or a phosphor may be dispersed in the transparent resin layer 4.

また、本発明はLEDチップ以外の発光するチップたとえば半導体レーザチップ等にも適用できる。   The present invention can also be applied to light emitting chips other than LED chips, such as semiconductor laser chips.

1:LEDチップ
2:個片セラミック基板
3:非粘着性樹脂型
3a:凹部
3a−1、3a−2:段差
3a−3:気泡抜きスリット
4:透明性樹脂層
4a:樹脂
4b:突出部
5:透明性樹脂型
5a:凹部
5a−1、5a−2:段差
1: LED chip 2: Individual ceramic substrate 3: Non-adhesive resin mold 3a: Recess 3a-1, 3a-2: Step
3a-3: Bubble removal slit 4: Transparent resin layer 4a: Resin 4b: Protrusion 5: Transparent resin mold 5a: Recess 5a-1, 5a-2: Step

Claims (8)

少なくとも1つの発光素子が実装された個片基板を複数準備する工程と、
複数の凹部が形成された樹脂型を準備する工程と、
前記樹脂型の各凹部に光透過性樹脂を注入する工程と、
前記各個片基板を前記光透過性樹脂が注入された前記樹脂型の各凹部に圧着する工程と、
前記光透過性樹脂を硬化する工程と
を具備し、
前記各凹部は、前記圧着する工程において、前記個片基板の側面と当接する側面部、及び、前記個片基板の前記発光素子の実装面の一部と当接する上面部を有する光半導体装置の製造方法。
Preparing a plurality of individual substrates on which at least one light emitting element is mounted;
Preparing a resin mold in which a plurality of recesses are formed;
Injecting a light transmissive resin into each recess of the resin mold;
Crimping each individual substrate to each recess of the resin mold into which the light-transmitting resin is injected;
Curing the light transmissive resin,
In the optical semiconductor device, each of the recesses includes a side surface portion that contacts the side surface of the individual substrate and an upper surface portion that contacts a part of the mounting surface of the light emitting element of the individual substrate in the crimping step. Production method.
前記個片基板を圧着する工程の前において、前記凹部のサイズは、前記個片基板の外形サイズより小さい請求項1に記載の光半導体装置の製造方法。   The method of manufacturing an optical semiconductor device according to claim 1, wherein the size of the concave portion is smaller than the outer size of the individual substrate before the step of pressure-bonding the individual substrate. 前記個片基板はセラミック基板である請求項1または請求項2に記載の光半導体装置の製造方法。   The method of manufacturing an optical semiconductor device according to claim 1, wherein the individual substrate is a ceramic substrate. 前記凹部には、前記側面部と前記上面部から構成される第一の段差の下に、第二の段差が形成されている請求項1ないし3のいずれかに記載の光半導体装置の製造方法。   4. The method of manufacturing an optical semiconductor device according to claim 1, wherein a second step is formed in the concave portion below a first step composed of the side surface portion and the upper surface portion. . 前記凹部の外側と前記第二の段差との間の前記第一の段差に、気泡抜きスリットを設け、該気泡抜きスリットは前記凹部の外側の前記樹脂型の上面部まで延伸した請求項4に記載の光半導体装置の製造方法。   The bubble removal slit is provided in the first step between the outside of the recess and the second step, and the bubble removal slit extends to the upper surface of the resin mold outside the recess. The manufacturing method of the optical semiconductor device of description. さらに、前記光透過性樹脂の硬化の後に、前記樹脂型を分離する工程を具備する請求項1ないし5のいずれかに記載の光半導体装置の製造方法。   The method for manufacturing an optical semiconductor device according to claim 1, further comprising a step of separating the resin mold after the light-transmitting resin is cured. さらに、前記光透過性樹脂の硬化の後に、隣接する前記個片基板間で前記樹脂型を分割する工程を具備する請求項1ないし5のいずれかに記載の光半導体装置の製造方法。   6. The method of manufacturing an optical semiconductor device according to claim 1, further comprising a step of dividing the resin mold between the adjacent individual substrates after the light transmissive resin is cured. 少なくとも1つの発光素子が実装された基板と、
前記基板上で前記発光素子を囲むように配置された樹脂型と、
前期基板上で前記発光素子を覆うように前記樹脂型内を充填する光透過性樹脂層とを具備し、
前記樹脂型の内側面の一部は、前記基板の側面と当接している光半導体装置。
A substrate on which at least one light emitting element is mounted;
A resin mold disposed on the substrate so as to surround the light emitting element;
Comprising a light-transmitting resin layer filling the resin mold so as to cover the light emitting element on the substrate in the previous period,
An optical semiconductor device in which a part of the inner surface of the resin mold is in contact with the side surface of the substrate.
JP2011247303A 2011-11-11 2011-11-11 Optical semiconductor device and method of manufacturing the same Pending JP2013105817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247303A JP2013105817A (en) 2011-11-11 2011-11-11 Optical semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247303A JP2013105817A (en) 2011-11-11 2011-11-11 Optical semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013105817A true JP2013105817A (en) 2013-05-30

Family

ID=48625171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247303A Pending JP2013105817A (en) 2011-11-11 2011-11-11 Optical semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013105817A (en)

Similar Documents

Publication Publication Date Title
US9269873B2 (en) Semiconductor light emitting device and method for manufacturing same
KR100665121B1 (en) Method of producing wavelength-converted light emitting diode package
US7452737B2 (en) Molded lens over LED die
JP6203759B2 (en) LED chip manufacturing method
JP5497469B2 (en) Light emitting device and manufacturing method thereof
US9490398B2 (en) Manufacturing method of light emitting device in a flip-chip configuration with reduced package size
JP2014112669A (en) Semiconductor light-emitting device and manufacturing method of the same
US20100127288A1 (en) Light-emitting diode devices and methods for fabricating the same
TWI550904B (en) System and methods providing semiconductor light emitters
TWI751274B (en) Uv led package structure and manufacturing method thereof
TW201034262A (en) Overmolded phosphor lens for an LED
TWI648880B (en) Method of forming a light emitting device
JP2011233552A (en) Semiconductor light emitting device and manufacturing method for the same
JP2012164902A (en) Method of manufacturing semiconductor light-emitting device
JP5702481B2 (en) Light emitting device and manufacturing method thereof
KR101867304B1 (en) Method of fabricating light emitting apparatus
JP2011210963A (en) Method of manufacturing light-emitting device
JP2013033808A (en) Semiconductor light-emitting device manufacturing method
JP2013105817A (en) Optical semiconductor device and method of manufacturing the same
JP5816479B2 (en) A method for manufacturing a semiconductor light emitting device.
KR101465708B1 (en) Method of manufacturing a semiconductor device structure
KR20120012677A (en) Light emitting device package and fabricating method thereof
KR20160059450A (en) Molded substrate, package structure, and method of manufacture the same
JP2011023460A (en) Method of manufacturing light emitting device and light emitting device
KR20140048178A (en) Method of manufacutruing semiconductor device structure