JP2013105566A - Flat insulated wire - Google Patents

Flat insulated wire Download PDF

Info

Publication number
JP2013105566A
JP2013105566A JP2011247352A JP2011247352A JP2013105566A JP 2013105566 A JP2013105566 A JP 2013105566A JP 2011247352 A JP2011247352 A JP 2011247352A JP 2011247352 A JP2011247352 A JP 2011247352A JP 2013105566 A JP2013105566 A JP 2013105566A
Authority
JP
Japan
Prior art keywords
flat
insulating film
pdiv
corner
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247352A
Other languages
Japanese (ja)
Inventor
Yosuke Sumi
陽介 角
Naofumi Chiwata
直文 千綿
Hideyuki Kikuchi
英行 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011247352A priority Critical patent/JP2013105566A/en
Publication of JP2013105566A publication Critical patent/JP2013105566A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flat insulated wire stably having high partial discharge start voltage.SOLUTION: In a flat insulated wire, when a film thickness of an insulating coating 3 at each of corners 4 is denoted as T, and the thinnest film thickness and the thickest film thickness of the insulating coating 3 at a flat portion 5 between the corners 4 are denoted as Tand T, respectively, a relationship represented by the following expression (1) is satisfied: T/T>0.13×(T/T)+0.74...(1), the insulating coating 3 comprises a resin having a dielectric constant of 2.5 or more, and a ratio (T/T) between the thinnest film thickness Tand the thickest film thickness Tof the insulating coating 3 at the flat portion 5 satisfies a relationship represented by the following expression (2): 1>T/T≥0.85...(2).

Description

本発明は、平角導体の外周に樹脂からなる絶縁皮膜を形成した平角絶縁電線に係り、特に、モータなどの電気機器のコイル等に用いられる巻線用の平角絶縁電線に関するものである。   The present invention relates to a rectangular insulated wire in which an insulating film made of resin is formed on the outer periphery of a rectangular conductor, and more particularly to a rectangular insulated wire for winding used in a coil of an electric device such as a motor.

モータなどの電気機器には、導体上に絶縁塗料を塗布し、焼付けして形成された絶縁皮膜を備えた絶縁電線が使用されており、特にコイル等の巻線用には、平角導体の外周に少なくとも1層の絶縁皮膜を形成した平角絶縁電線が一般に使用されている。   Electrical equipment such as motors uses insulated wires with an insulating coating formed by applying insulating paint on the conductor and baking it. Especially for windings such as coils, the outer circumference of a flat conductor In general, a rectangular insulated wire having at least one insulating film formed thereon is used.

近年、電気機器の高出力化のために、高電圧でのインバータ制御が行われており、これに伴い、過大なサージ電圧の発生によって電気機器に使用されている絶縁電線に部分放電(PD:Partial Discharge)が発生することがあり、この部分放電の発生によって、絶縁皮膜が劣化・損傷することが懸念されている。   In recent years, in order to increase the output of electrical equipment, inverter control at a high voltage has been performed, and accordingly, partial discharge (PD: (Partial Discharge) may occur, and there is a concern that this partial discharge may cause deterioration and damage of the insulating film.

ところで、平角絶縁電線は、コーナー部に丸め加工が施されているのが一般的である。このような平角絶縁電線を用いてコイルを成形すると、丸め加工が施されたコーナー部(角R部)にて隣り合う平角絶縁電線間(あるいは平角絶縁電線と平角絶縁電線を収容するスロットとの間)にギャップが生じてしまうため、コーナー部で部分放電が発生し易い。   By the way, it is general that the rectangular insulated wire is rounded at a corner portion. When a coil is formed using such a flat insulated wire, a rounded corner portion (corner R portion) is formed between adjacent flat insulated wires (or between a flat insulated wire and a slot that accommodates the flat insulated wire). A gap is generated between the corners, and partial discharge is likely to occur at the corners.

このような部分放電の発生による絶縁皮膜の劣化・損傷を防止するため、特許文献1では、コーナー部の膜厚Aと、コーナー部の間の平坦な部分である平坦部の膜厚Bとが、A≧0.6×Bの関係を満たす半導電層を断面平角状の導体上に形成した平角状電線が開示されている。   In order to prevent the deterioration and damage of the insulating film due to the occurrence of such partial discharge, in Patent Document 1, the film thickness A of the corner portion and the film thickness B of the flat portion, which is a flat portion between the corner portions, are obtained. , A rectangular electric wire in which a semiconductive layer satisfying the relationship of A ≧ 0.6 × B is formed on a conductor having a rectangular cross section is disclosed.

また、特許文献2では、コーナー部での絶縁皮膜の厚さが、平坦部での絶縁皮膜の厚さ以上であり、かつ、コーナー部の誘電率が平坦部の誘電率よりも小さい絶縁皮膜を導体上に形成した平角電線が開示されている。   Moreover, in patent document 2, the thickness of the insulating film in a corner part is more than the thickness of the insulating film in a flat part, and the dielectric constant of a corner part is smaller than the dielectric constant of a flat part. A rectangular electric wire formed on a conductor is disclosed.

このように、従来の平角絶縁電線では、絶縁皮膜のコーナー部の膜厚を大きくすることによって、コーナー部での部分放電の発生を抑制し、部分放電の発生による絶縁皮膜の劣化・損傷を防止していた。   In this way, with conventional rectangular insulated wires, by increasing the film thickness at the corners of the insulation film, the occurrence of partial discharge at the corners is suppressed, and deterioration and damage of the insulation film due to the occurrence of partial discharges are prevented. Was.

特開2008−41568号公報JP 2008-41568 A 特開2009−123418号公報JP 2009-123418 A

しかしながら、上述のようにコーナー部の絶縁皮膜の膜厚を大きくした平角絶縁電線を用いてコイルを成形した場合であっても、コイル成形後の部分放電開始電圧(PDIV:Partial Discharge Inception Voltage)の値が低くなってしまったり、PDIVの値の大きさがばらついてしまうことがあった。   However, even when a coil is formed using a flat insulated wire having a thick insulating coating at the corner as described above, the partial discharge inception voltage (PDIV) after the coil is formed. In some cases, the value became low or the value of PDIV varied.

すなわち、コーナー部の絶縁皮膜の膜厚の大きさから想定され得るPDIVの値よりも低い電圧で部分放電が発生してしまうことがあり、コーナー部の膜厚を大きくしただけでは、安定して高い部分放電開始電圧が得られず、部分放電に対する耐性が十分であるとは言えなかった。   That is, partial discharge may occur at a voltage lower than the value of PDIV that can be assumed from the thickness of the insulating film at the corner, and it is stable only by increasing the thickness of the corner. A high partial discharge starting voltage could not be obtained, and it could not be said that the resistance against partial discharge was sufficient.

本発明は上記事情に鑑み為されたものであり、安定して高い部分放電開始電圧を有する平角絶縁電線を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a flat insulated wire having a stable and high partial discharge starting voltage.

本発明は上記目的を達成するために創案されたものであり、断面矩形状でコーナー部に丸め加工が施された平角導体と、該平角導体の外周に形成された樹脂からなる少なくとも1層の絶縁皮膜と、を備えた平角絶縁電線において、前記コーナー部での前記絶縁皮膜の膜厚をT3、前記コーナー部間の平坦部での前記絶縁皮膜の最薄膜厚をT1、最厚膜厚をT2としたとき、下式(1)
1/T2>0.13×(T3/T2)+0.74 ・・・(1)
の関係を満たし、前記絶縁皮膜が、誘電率2.5以上の樹脂からなり、前記平坦部での前記絶縁皮膜の最薄膜厚T1と最厚膜厚T2との比(T1/T2)が、下式(2)
1>T1/T2≧0.85 ・・・(2)
の関係を満たす平角絶縁電線である。
The present invention has been devised to achieve the above object, and includes at least one layer of a rectangular conductor having a rectangular cross section and rounded corners, and a resin formed on the outer periphery of the rectangular conductor. In a flat insulated wire having an insulating film, the thickness of the insulating film at the corner portion is T 3 , the thinnest film thickness of the insulating film at the flat portion between the corner portions is T 1 , and the thickest film thickness when was the T 2, the following equation (1)
T 1 / T 2 > 0.13 × (T 3 / T 2 ) +0.74 (1)
The insulating film is made of a resin having a dielectric constant of 2.5 or more, and the ratio between the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film at the flat part (T 1 / T 2 ) is the following formula (2)
1> T 1 / T 2 ≧ 0.85 (2)
It is a flat insulated wire satisfying the relationship.

前記コーナー部での前記絶縁皮膜の膜厚T3は、前記コーナー部での部分放電開始電圧が、予め設定した許容値以上となる厚さに形成されるとよい。 The thickness T 3 of the insulating film at the corner may be formed such that the partial discharge start voltage at the corner is equal to or greater than a preset allowable value.

前記絶縁皮膜が、誘電率3.5以上の樹脂からなり、前記平坦部での前記絶縁皮膜の最薄膜厚T1と最厚膜厚T2との比(T1/T2)が、下式(3)
1>T1/T2≧0.87 ・・・(3)
の関係を満たしてもよい。
The insulating film is made of a resin having a dielectric constant of 3.5 or more, and the ratio (T 1 / T 2 ) between the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film at the flat portion is Formula (3)
1> T 1 / T 2 ≧ 0.87 (3)
May be satisfied.

前記コーナー部での前記絶縁皮膜の膜厚T3、前記コーナー部間の平坦部での前記絶縁皮膜の最薄膜厚T1、最厚膜厚T2が、下式(4)
1/T2>0.13×(T3/T2)+0.79 ・・・(4)
の関係を満たしてもよい。
The thickness T 3 of the insulating film at the corner portion, the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film at the flat portion between the corner portions are expressed by the following formula (4).
T 1 / T 2 > 0.13 × (T 3 / T 2 ) +0.79 (4)
May be satisfied.

本発明によれば、安定して高い部分放電開始電圧を有する平角絶縁電線を提供できる。   According to the present invention, it is possible to provide a flat insulated wire having a stable high partial discharge starting voltage.

本発明の一実施の形態に係る平角絶縁電線を示す図であり、(a)は横断面図、(b)はその要部拡大断面図である。It is a figure which shows the flat insulated wire which concerns on one embodiment of this invention, (a) is a cross-sectional view, (b) is the principal part expanded sectional view. 図1の平角絶縁電線を用いたコイルの断面図である。It is sectional drawing of the coil using the flat insulated wire of FIG. 本発明において、平坦部に生じるギャップの大きさによっては、コーナー部で生じる部分放電よりも平坦部で生じる部分放電が支配的となることを説明する図である。In this invention, it is a figure explaining that the partial discharge which arises in a flat part becomes dominant rather than the partial discharge which arises in a corner part depending on the magnitude | size of the gap which arises in a flat part. 本発明において、PDIVの測定方法を説明する図である。In this invention, it is a figure explaining the measuring method of PDIV. 本発明において、コーナー部が絶縁皮膜で均一に被覆された場合における、平坦部でのPDIVとコーナー部でのPDIVとの比と、T1/T2との関係を示すグラフ図である。In the present invention, in the case where the corner portion is uniformly covered with an insulating film, is a graph showing the ratio of the PDIV in PDIV and corner portions of the flat portion, the relation between T 1 / T 2. 本発明において、均一被覆時のコーナー部でのPDIVと偏肉したときのコーナー部でのPDIVとの比と、T3/T2との関係を示すグラフ図である。In the present invention, it is a graph showing the ratio of PDIV, the relationship between T 3 / T 2 of the corner portion when the PDIV and Hen'niku at the corner portion at the time of uniform coating. 本発明において、平坦部でのPDIVとコーナー部でのPDIVが等しくなるときのT1/T2とT3/T2との関係と、さらに放電のばらつきを考慮したときのT1/T2とT3/T2との関係を示すグラフ図である。In the present invention, the relationship between T 1 / T 2 and T 3 / T 2 at which PDIV equal in PDIV and corner portions of the flat portion, T 1 / T 2 when further consideration of variations of the discharge it is a graph showing the relationship between T 3 / T 2 and. 本発明において、コーナー部が絶縁皮膜で均一に被覆され、絶縁皮膜の誘電率εを2.5,3.5,4.0と変化させた場合における、平坦部でのPDIVとコーナー部でのPDIVとの比と、T1/T2との関係を示すグラフ図である。In the present invention, when the corner portion is uniformly coated with the insulating film and the dielectric constant ε of the insulating film is changed to 2.5, 3.5, 4.0, the PDIV in the flat portion and the corner portion the ratio of the PDIV, a graph showing the relationship between T 1 / T 2. 本発明において、コーナー部が絶縁皮膜で均一に被覆された場合における、平坦部でのPDIVとコーナー部でのPDIVとの比と、ギャップ幅Wとの関係を示すグラフ図である。In this invention, when a corner part is uniformly coat | covered with the insulating film, it is a graph which shows the relationship between the ratio of PDIV in a flat part, and PDIV in a corner part, and the gap width W. FIG.

本発明者らは、平角絶縁電線におけるコーナー部間の平坦な部分である平坦部、すなわちコイルを成形した際に隣り合う平角絶縁電線同士で接触する部分の絶縁皮膜の状態と部分放電との関係を鋭意検討した結果、平坦部に特定のギャップが生じた場合に、コーナー部で生じる部分放電よりも平坦部で生じる部分放電が支配的となり、当該ギャップの部分において部分放電が発生してしまい、実質的にPDIVの低下が起こることを見出し、本発明に至った。   The inventors of the present invention have described the relationship between the state of the insulating film and the partial discharge of the flat portion that is a flat portion between the corner portions in the flat insulated wire, that is, the portion that contacts the adjacent flat insulated wires when the coil is formed. As a result of intensive investigation, when a specific gap occurs in the flat portion, the partial discharge generated in the flat portion is dominant over the partial discharge generated in the corner portion, and the partial discharge occurs in the gap portion, It was found that PDIV substantially decreased, and the present invention was reached.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本実施の形態に係る平角絶縁電線を示す図であり、(a)は横断面図、(b)はその要部拡大断面図である。また、図2は、図1の平角絶縁電線を用いたコイルの断面図である。   1A and 1B are diagrams showing a rectangular insulated wire according to the present embodiment, in which FIG. 1A is a transverse sectional view and FIG. 1B is an enlarged sectional view of an essential part thereof. FIG. 2 is a cross-sectional view of a coil using the flat insulated wire of FIG.

図1,2に示すように、平角絶縁電線1は、断面矩形状でコーナー部4に丸め加工が施された平角導体2と、平角導体2の外周に形成された樹脂からなる少なくとも1層の絶縁皮膜3と、を備えている。コイル10は、本発明の平角絶縁電線1をスロット11内に収容したものである。   As shown in FIGS. 1 and 2, the flat insulated wire 1 includes a rectangular conductor 2 having a rectangular cross section and rounded corner portions 4, and at least one layer of resin formed on the outer periphery of the flat conductor 2. And an insulating film 3. The coil 10 is obtained by housing the flat insulated wire 1 of the present invention in a slot 11.

平角導体2としては、良導電性金属を用いるとよく、例えば、銅、アルミニウム、銅合金等を用いるとよい。平角導体2のコーナー部(角R部)4の曲率半径は、コイル10を成形した際の巻線密度を高くするために、なるべく小さくすることが望ましく、0.3mm以下とすることが望ましい。ここでは、平角導体2のコーナー部4の曲率半径を0.3mmとした。   As the flat conductor 2, a highly conductive metal is preferably used, and for example, copper, aluminum, a copper alloy, or the like is preferably used. The radius of curvature of the corner portion (corner R portion) 4 of the flat conductor 2 is desirably as small as possible and desirably 0.3 mm or less in order to increase the winding density when the coil 10 is formed. Here, the radius of curvature of the corner portion 4 of the flat conductor 2 is 0.3 mm.

絶縁皮膜3は、平角導体2の外周に絶縁塗料を塗布し、焼付けして形成される。なお、部分放電開始電圧(PDIV)を低下させる観点からは、絶縁皮膜3をなるべく厚く形成することが望ましいが、実際にはサイズの規定等のために、絶縁皮膜3を無制限に厚くすることはできない。   The insulating film 3 is formed by applying an insulating paint to the outer periphery of the flat conductor 2 and baking it. In addition, from the viewpoint of lowering the partial discharge start voltage (PDIV), it is desirable to form the insulating film 3 as thick as possible, but in practice, in order to define the size, etc., it is not possible to increase the thickness of the insulating film 3 without limitation. Can not.

コーナー部4での絶縁皮膜3の膜厚T3は、コーナー部4での部分放電開始電圧(PDIV)が、予め設定した許容値(例えばピーク値で900V)以上となる厚さに形成される。より具体的には、コーナー部4での絶縁皮膜3の膜厚T3は、40μm以上とされることが望ましい。コーナー部4での絶縁皮膜3の膜厚T3の調整は、絶縁塗料を塗布する際に用いるダイスの形状を調節したり、あるいは絶縁塗料の粘度を調節することにより行うとよい。なお、ここでいうコーナー部4での絶縁皮膜3の膜厚T3とは、丸め加工が施されたコーナー部4の平角導体2の表面から絶縁皮膜3の表面までの最短距離(つまり、コーナー部4での絶縁皮膜3の最薄膜厚)のことである。 The film thickness T 3 of the insulating film 3 at the corner portion 4 is formed such that the partial discharge start voltage (PDIV) at the corner portion 4 is equal to or greater than a preset allowable value (for example, a peak value of 900 V). . More specifically, the film thickness T 3 of the insulating film 3 at the corner portion 4 is desirably 40 μm or more. The film thickness T 3 of the insulating film 3 at the corner 4 may be adjusted by adjusting the shape of the die used when applying the insulating paint or adjusting the viscosity of the insulating paint. Here, the film thickness T 3 of the insulating film 3 at the corner 4 is the shortest distance from the surface of the flat conductor 2 of the rounded corner 4 to the surface of the insulating film 3 (that is, the corner). (The thinnest film thickness of the insulating film 3 at the portion 4).

なお、絶縁塗料の粘度を高くし過ぎると、絶縁皮膜3の膜厚が不均一となり、製造工程におけるラインスピードも遅くする必要が生じ生産性も低下するため、絶縁塗料の粘度はある程度低くする必要がある。そのため、特にコーナー部4の曲率半径を小さくした場合には、平角導体2の外周に絶縁塗料をダイス塗布した際に、表面張力によりコーナー部4での絶縁塗料の膜厚が薄くなり、コーナー部4に形成される絶縁皮膜3の膜厚T3が薄くなってしまうことは避けられない。このような表面張力による影響等も考慮し、コーナー部4での絶縁皮膜3の膜厚T3を適宜な厚さに調整する必要がある。 If the viscosity of the insulating paint is too high, the film thickness of the insulating coating 3 becomes non-uniform, and it is necessary to slow down the line speed in the manufacturing process, resulting in a decrease in productivity. Therefore, the viscosity of the insulating paint needs to be lowered to some extent. There is. Therefore, especially when the radius of curvature of the corner portion 4 is reduced, when the insulating paint is applied to the outer periphery of the flat conductor 2, the film thickness of the insulating paint at the corner portion 4 becomes thin due to surface tension, and the corner portion 4 It is inevitable that the thickness T 3 of the insulating film 3 formed on the thin film 4 becomes thin. Considering the influence of such surface tension and the like, it is necessary to adjust the film thickness T 3 of the insulating film 3 at the corner portion 4 to an appropriate thickness.

ところで、図2に示すように、平角絶縁電線1の平坦部5同士、もしくは平角絶縁電線1の平坦部5とスロット11とが接触した状態において、平坦部5に形成された絶縁皮膜3の膜厚が不均一である場合、接触面にギャップが生じてしまい、そのギャップ部分で部分放電が発生してしまう可能性がある。   By the way, as shown in FIG. 2, in the state where the flat portions 5 of the flat insulated wires 1 or between the flat portions 5 of the flat insulated wires 1 and the slots 11 are in contact with each other, the film of the insulating film 3 formed on the flat portions 5 is used. When the thickness is not uniform, a gap is generated on the contact surface, and partial discharge may occur in the gap portion.

図3に示すように、平坦部5に生じるギャップ31の大きさによっては、平坦部5のPDIVがコーナー部4のPDIVよりも低くなり、コーナー部4で生じる部分放電32よりも平坦部5で生じる部分放電33が支配的となり、その結果、平角絶縁電線1全体のPDIVが低下してしまう。   As shown in FIG. 3, depending on the size of the gap 31 generated in the flat part 5, the PDIV of the flat part 5 is lower than the PDIV of the corner part 4, and the flat part 5 is higher than the partial discharge 32 generated in the corner part 4. The generated partial discharge 33 becomes dominant, and as a result, the PDIV of the entire flat insulated wire 1 is lowered.

そこで、本発明者らは、コーナー部4で十分なPDIVを確保した上で、絶縁皮膜3の膜厚分布を制御して平坦部5でのギャップ31の生成を抑制することで、平坦部5のPDIVをコーナー部4のPDIVよりも高くし、コーナー部4での部分放電を優先的として平坦部5での部分放電の発生を抑制することを考えた。   Therefore, the present inventors secure a sufficient PDIV at the corner portion 4 and then control the film thickness distribution of the insulating film 3 to suppress the generation of the gap 31 at the flat portion 5, whereby the flat portion 5. The PDIV of the corner portion 4 is made higher than the PDIV of the corner portion 4, and partial discharge at the corner portion 4 is preferentially considered to suppress the occurrence of partial discharge at the flat portion 5.

より具体的には、本実施の形態に係る平角絶縁電線1は、図2に示すように、コーナー部4での絶縁皮膜3の膜厚をT3、コーナー部4間の平坦な部分である平坦部5での絶縁皮膜3の最薄膜厚をT1、最厚膜厚をT2としたとき、下式(1)
1/T2>0.13×(T3/T2)+0.74 ・・・(1)
の関係を満たすものである。平坦部5での絶縁皮膜3の最薄膜厚T1、最厚膜厚T2の調整は、コーナー部4での絶縁皮膜3の膜厚T3と同様に、絶縁塗料を塗布する際に用いるダイスの形状や絶縁塗料の粘度を調節することにより行うことができる。なお、平坦部5での絶縁皮膜3の最厚膜厚T2は、例えば40〜150μm程度である。本実施の形態では、平坦部5での絶縁皮膜3の最厚膜厚T2を60μmとした。
More specifically, as shown in FIG. 2, the flat insulated wire 1 according to the present embodiment is a flat portion between the corner portions 4 where the thickness of the insulating film 3 at the corner portions 4 is T 3 . When the thinnest film thickness of the insulating film 3 at the flat part 5 is T 1 and the maximum film thickness is T 2 , the following formula (1)
T 1 / T 2 > 0.13 × (T 3 / T 2 ) +0.74 (1)
It satisfies the relationship. The adjustment of the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film 3 at the flat part 5 is used when applying the insulating paint, similarly to the film thickness T 3 of the insulating film 3 at the corner part 4. This can be done by adjusting the shape of the die and the viscosity of the insulating paint. Incidentally, most AtsumakuAtsu T 2 of the insulating film 3 of the flat portion 5 is, for example, about 40 to 150. In the present embodiment, the maximum thickness T 2 of the insulating film 3 in the flat portion 5 is set to 60 μm.

以下、式(1)の根拠について説明する。   Hereinafter, the basis of the formula (1) will be described.

3.2mm×1.8mmの平角導体2の外周に絶縁皮膜3を形成した平角絶縁電線1を2本用い、2本の平角絶縁電線1の平坦部5同士を接触させて、図4に示すような背合せ試料41を作製し、2本の平角絶縁電線1の平角導体2間に交流電源42により交流電圧(周波数50Hz)を印加してPDIVを測定した。平角導体2のコーナー部4の曲率半径は0.3mmとし、ギャップ幅(くぼみ幅)W(図1(b)参照)は0.4mmとした。また、絶縁皮膜3の誘電率εは3.5とし、平坦部5での絶縁皮膜3の最厚膜厚T2は0.06mmとした。 Using two flat rectangular insulated wires 1 having an insulating film 3 formed on the outer periphery of a 3.2 mm × 1.8 mm rectangular conductor 2, the flat portions 5 of the two rectangular insulated wires 1 are brought into contact with each other, as shown in FIG. A back-to-back sample 41 was prepared, and an AC voltage (frequency 50 Hz) was applied between the flat conductors 2 of the two flat insulated wires 1 by an AC power source 42 to measure PDIV. The radius of curvature of the corner portion 4 of the flat conductor 2 was 0.3 mm, and the gap width (recess width) W (see FIG. 1B) was 0.4 mm. The dielectric constant ε of the insulating film 3 was 3.5, and the maximum thickness T 2 of the insulating film 3 at the flat portion 5 was 0.06 mm.

コーナー部4が絶縁皮膜3で均一に被覆された場合、すなわちT2=T3=0.06mmとした場合における、平坦部5でのPDIVとコーナー部4でのPDIVとの比(PDIV@平坦部/PDIV@コーナー部均一)と、T1/T2との関係を図5に示す。 The ratio of PDIV at the flat portion 5 and PDIV at the corner portion 4 (PDIV @ flat) when the corner portion 4 is uniformly coated with the insulating film 3, that is, when T 2 = T 3 = 0.06 mm. Part / PDIV @ corner part uniform) and T 1 / T 2 are shown in FIG.

図5に示すように、平坦部5での最薄膜厚T1が薄くなるほど、平坦部5でのPDIVは低下する。図5より、T1/T2が0.87以上であれば、平坦部5でのPDIVとコーナー部4でのPDIVとの比(PDIV@平坦部/PDIV@コーナー部均一)が1以上、すなわち、コーナー部4でのPDIVが平坦部5でのPDIVと同じか、または高くなり、コーナー部4でのPDIVよりも平坦部5でのPDIVが高くなったときに、コーナー部4で優先的に部分放電が発生することが分かる。 As shown in FIG. 5, the PDIV at the flat portion 5 decreases as the thinnest film thickness T 1 at the flat portion 5 decreases. From FIG. 5, if T 1 / T 2 is 0.87 or more, the ratio of PDIV at the flat part 5 to PDIV at the corner part 4 (PDIV @ flat part / PDIV @ corner part uniform) is 1 or more. That is, when the PDIV at the corner portion 4 is the same as or higher than the PDIV at the flat portion 5, and the PDIV at the flat portion 5 is higher than the PDIV at the corner portion 4, the corner portion 4 has priority. It can be seen that partial discharge occurs.

さらに、均一被覆時(T2=T3=0.06mm)のコーナー部4でのPDIVと偏肉したとき(T2≠T3)のコーナー部4でのPDIVとの比(PDIV@コーナー部/PDIV@コーナー部均一)と、T3/T2との関係を求めた。結果を図6に示す。 Further, the ratio of PDIV at the corner 4 when uniformly coated (T 2 = T 3 = 0.06 mm) and PDIV at the corner 4 when the thickness is uneven (T 2 ≠ T 3 ) (PDIV @ corner) / PDIV @ corner part uniform) and the relationship between T 3 and T 2 were obtained. The results are shown in FIG.

図6に示すように、均一被覆時(T2=T3、T3/T2=1)のPDIVを基準とすると、コーナー部4での絶縁皮膜3の膜厚T3が薄くなるほど、コーナー部4でのPDIVは低下している。 As shown in FIG. 6, when PDIV at the time of uniform coating (T 2 = T 3 , T 3 / T 2 = 1) is used as a reference, the thinner the film thickness T 3 of the insulating film 3 at the corner portion 4, the more the corner PDIV in part 4 is decreasing.

図5と図6より、コーナー部4での偏肉を考慮して、平坦部5でのPDIVとコーナー部4でのPDIVが等しくなる(PDIV@平坦部/PDIV@コーナー部=1となる)ときのT1/T2とT3/T2との関係を求めると、図7に破線で示す直線のようになる。この破線で示す直線は、下式(5)
1/T2=0.13×(T3/T2)+0.74 ・・・(5)
で表される。
From FIG. 5 and FIG. 6, considering the uneven thickness at the corner portion 4, PDIV at the flat portion 5 and PDIV at the corner portion 4 are equal (PDIV @ flat portion / PDIV @ corner portion = 1). When the relationship between T 1 / T 2 and T 3 / T 2 is obtained, a straight line indicated by a broken line in FIG. 7 is obtained. The straight line indicated by the broken line is the following formula (5)
T 1 / T 2 = 0.13 × (T 3 / T 2 ) +0.74 (5)
It is represented by

式(5)で表される直線は、平坦部5でのPDIVとコーナー部4でのPDIVが等しくなるときのT1/T2とT3/T2との関係であるから、平坦部5のPDIVをコーナー部4でのPDIVよりも高くするには、T1/T2とT3/T2との関係が、この直線よりも図示上側の領域にあればよい(つまり上述の式(1)を満たせばよい)ことになる。 Since the straight line represented by the equation (5) is the relationship between T 1 / T 2 and T 3 / T 2 when the PDIV at the flat portion 5 and the PDIV at the corner portion 4 are equal, the flat portion 5 Is higher than the PDIV at the corner 4, the relationship between T 1 / T 2 and T 3 / T 2 suffices to be in the region above the straight line (that is, the above formula ( 1) must be satisfied.

なお、本実施の形態では、さらに、平坦部5での部分放電を確実に抑えるために、放電のばらつきとして5%を加味して、破線の直線(式(5)の直線)を図示上側にスライドさせた実線の直線を用いることが好ましい。この実線の直線は、下式(6)
1/T2=0.13×(T3/T2)+0.79 ・・・(6)
で表される。
In the present embodiment, in order to suppress partial discharge in the flat portion 5 with certainty, 5% is added as a variation in discharge, and a broken straight line (the straight line in the formula (5)) is on the upper side in the figure. It is preferable to use a slid solid line. This solid straight line is expressed by the following equation (6)
T 1 / T 2 = 0.13 × (T 3 / T 2 ) +0.79 (6)
It is represented by

1/T2とT3/T2との関係が、この式(6)で表される直線よりも図示上側の領域であれば、放電のばらつきも考慮した上で、確実に平坦部5での部分放電の発生を抑制することが可能である。つまり、下式(4)
1/T2>0.13×(T3/T2)+0.79 ・・・(4)
を満足すれば、平坦部5のPDIVをコーナー部4でのPDIVよりも高め、確実に平坦部5での部分放電の発生を抑制することが可能になる。ここでは、放電のばらつきを5%としたが、これは放電のばらつきを示す値として一般的な値である。
If the relationship between T 1 / T 2 and T 3 / T 2 is a region on the upper side in the drawing from the straight line represented by the equation (6), the flat portion 5 is surely taken into consideration in consideration of discharge variation. It is possible to suppress the occurrence of partial discharge. That is, the following formula (4)
T 1 / T 2 > 0.13 × (T 3 / T 2 ) +0.79 (4)
If satisfied, the PDIV of the flat portion 5 can be made higher than the PDIV at the corner portion 4, and the occurrence of partial discharge in the flat portion 5 can be reliably suppressed. Here, the variation in discharge is set to 5%, but this is a general value indicating the variation in discharge.

次に、絶縁皮膜3の誘電率εの影響について検討する。   Next, the influence of the dielectric constant ε of the insulating film 3 will be examined.

コーナー部4が絶縁皮膜3で均一に被覆された場合、すなわちT2=T3=0.06mmとした場合において、絶縁皮膜3の誘電率εを2.5,3.5,4.0と変化させて、平坦部5でのPDIVとコーナー部4でのPDIVとの比(PDIV@平坦部/PDIV@コーナー部均一)と、T1/T2との関係を求めた。結果を図8に示す。 When the corner portion 4 is uniformly coated with the insulating film 3, that is, when T 2 = T 3 = 0.06 mm, the dielectric constant ε of the insulating film 3 is 2.5, 3.5, 4.0. By changing, the ratio between PDIV at the flat portion 5 and PDIV at the corner portion 4 (PDIV @ flat portion / PDIV @ corner portion uniform) and T 1 / T 2 was determined. The results are shown in FIG.

図8に示すように、誘電率εが小さくなるほど、平坦部5でのPDIVが増加している。平坦部5でのPDIVとコーナー部4でのPDIVとの比(PDIV@平坦部/PDIV@コーナー部均一)が1以上となるときのT1/T2の値は、誘電率εが2.5のときは0.85以上、誘電率εが3.5のときは0.87以上、誘電率εが4.0のときは0.88以上となる。この傾向から、誘電率εを2.5未満とした場合には、平坦部5でのPDIVとコーナー部4でのPDIVとの比(PDIV@平坦部/PDIV@コーナー部均一)が1となるときのT1/T2の値は、0.85未満の値となると考えられる。なお、T1は最薄膜厚、T2は最厚膜厚であるからT1/T2の値は1以上となることはない。 As shown in FIG. 8, the PDIV at the flat part 5 increases as the dielectric constant ε decreases. The value of T 1 / T 2 when the ratio of PDIV at the flat part 5 to PDIV at the corner part 4 (PDIV @ flat part / PDIV @ corner part uniform) is 1 or more is that the dielectric constant ε is 2. 5 is 0.85 or more, when the dielectric constant ε is 3.5, it is 0.87 or more, and when the dielectric constant ε is 4.0, it is 0.88 or more. From this tendency, when the dielectric constant ε is less than 2.5, the ratio of PDIV at the flat portion 5 to PDIV at the corner portion 4 (PDIV @ flat portion / PDIV @ corner portion uniform) is 1. The value of T 1 / T 2 at that time is considered to be a value less than 0.85. Since T 1 is the thinnest film thickness and T 2 is the thickest film thickness, the value of T 1 / T 2 never becomes 1 or more.

したがって、絶縁皮膜3が誘電率2.5以上の樹脂からなる場合には、平坦部5での絶縁皮膜3の最薄膜厚T1と最厚膜厚T2との比(T1/T2)が、下式(2)
1>T1/T2≧0.85 ・・・(2)
の関係を満たせば、平坦部5でのPDIVとコーナー部4でのPDIVとの比(PDIV@平坦部/PDIV@コーナー部均一)が1以上となり、平坦部5での部分放電の発生を抑制することができる。
Therefore, when the insulating film 3 is made of a resin having a dielectric constant of 2.5 or more, the ratio (T 1 / T 2) between the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film 3 in the flat portion 5. ) Is the following formula (2)
1> T 1 / T 2 ≧ 0.85 (2)
If the above relationship is satisfied, the ratio of PDIV at the flat part 5 to PDIV at the corner part 4 (PDIV @ flat part / PDIV @ corner part uniform) becomes 1 or more, and the occurrence of partial discharge at the flat part 5 is suppressed. can do.

また、絶縁皮膜3が誘電率3.5以上の樹脂からなる場合には、平坦部5での絶縁皮膜3の最薄膜厚T1と最厚膜厚T2との比(T1/T2)が、下式(3)
1>T1/T2≧0.87 ・・・(3)
の関係を満たせば、平坦部5での部分放電の発生を抑制することができる。
When the insulating film 3 is made of a resin having a dielectric constant of 3.5 or more, the ratio (T 1 / T 2) between the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film 3 in the flat portion 5. ) Is the following formula (3)
1> T 1 / T 2 ≧ 0.87 (3)
If this relationship is satisfied, the occurrence of partial discharge in the flat portion 5 can be suppressed.

なお、式(2)や式(3)の関係は、コーナー部4が絶縁皮膜3で均一に被覆された場合において導かれた関係であるが、上述のように、コーナー部4の絶縁皮膜3の膜厚T3が小さくなるほどコーナー部4でのPDIVが低下して平坦部5で部分放電が発生しにくくなる(図6参照)ので、式(2)や式(3)の関係を満たせば、コーナー部4の絶縁皮膜3の膜厚T3が小さくなった場合であっても、平坦部5での部分放電の発生を抑制できることになる。 In addition, although the relationship of Formula (2) and Formula (3) is a relationship derived when the corner portion 4 is uniformly coated with the insulating coating 3, as described above, the insulating coating 3 of the corner portion 4 is used. As the film thickness T 3 becomes smaller, the PDIV at the corner portion 4 decreases and partial discharge is less likely to occur at the flat portion 5 (see FIG. 6). Therefore, if the relationship of the equations (2) and (3) is satisfied Even when the film thickness T 3 of the insulating film 3 in the corner portion 4 is reduced, the occurrence of partial discharge in the flat portion 5 can be suppressed.

次に、ギャップ幅Wの影響について検討する。   Next, the influence of the gap width W will be examined.

コーナー部4が絶縁皮膜3で均一に被覆された場合、すなわちT2=T3=0.06mmとした場合において、ギャップ幅Wを0.3mm〜1.1mmの範囲で変化させたときの、平坦部5でのPDIVとコーナー部4でのPDIVとの比(PDIV@平坦部/PDIV@コーナー部均一)を求めた。結果を図9に示す。 When the corner portion 4 is uniformly coated with the insulating film 3, that is, when T 2 = T 3 = 0.06 mm, the gap width W is changed in the range of 0.3 mm to 1.1 mm. The ratio of PDIV at the flat part 5 and PDIV at the corner part 4 (PDIV @ flat part / PDIV @ corner part uniform) was determined. The results are shown in FIG.

図9に示すように、平坦部5での絶縁皮膜3の最厚膜厚T2と最薄膜厚T1との差(T2−T1)を0.005mm、0.01mm、0.02mmとしたいずれの場合においても、平坦部5でのPDIVの値の変化は殆どなかった。つまり、ギャップ幅Wが変化しても、平坦部5でのPDIVの値の変化は小さく、ギャップ幅WのPDIVに対する影響は殆どない。 As shown in FIG. 9, the difference (T 2 −T 1 ) between the maximum thickness T 2 and the minimum thickness T 1 of the insulating film 3 in the flat portion 5 is 0.005 mm, 0.01 mm, 0.02 mm. In either case, there was almost no change in the value of PDIV at the flat portion 5. That is, even if the gap width W changes, the change in the value of PDIV in the flat portion 5 is small, and the gap width W has little influence on PDIV.

以上説明したように、本実施の形態に係る平角絶縁電線1は、下式(1)
1/T2>0.13×(T3/T2)+0.74 ・・・(1)
の関係を満たしている。
As described above, the flat insulated wire 1 according to the present embodiment is represented by the following formula (1).
T 1 / T 2 > 0.13 × (T 3 / T 2 ) +0.74 (1)
Meet the relationship.

これにより、平坦部5のPDIVをコーナー部4でのPDIVよりも高め、確実に平坦部5での部分放電の発生を抑制することができる。   Thereby, PDIV of the flat part 5 can be made higher than PDIV in the corner part 4, and generation | occurrence | production of the partial discharge in the flat part 5 can be suppressed reliably.

その結果、コーナー部4の絶縁皮膜3の膜厚の大きさから想定され得るPDIVの値よりも低い電圧で部分放電が発生してしまうことがなくなり、安定して高いPDIVを有する平角絶縁電線1を実現できる。   As a result, there is no occurrence of partial discharge at a voltage lower than the value of PDIV that can be assumed from the thickness of the insulating film 3 in the corner portion 4, and the rectangular insulated wire 1 having a high PDIV stably. Can be realized.

また、本実施の形態では、コーナー部4での絶縁皮膜3の膜厚T3を、コーナー部4でのPDIVが、予め設定した許容値以上となる厚さに形成しているため、コーナー部4での部分放電を許容範囲内に抑えることができ、平角絶縁電線1全体のPDIVを向上できる。 In the present embodiment, since the film thickness T 3 of the insulating film 3 at the corner portion 4 is formed to a thickness at which the PDIV at the corner portion 4 is greater than or equal to a preset allowable value, 4 can be suppressed within an allowable range, and the PDIV of the entire flat insulated wire 1 can be improved.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

1 平角絶縁電線
2 平角導体
3 絶縁皮膜
4 コーナー部
5 平坦部
1 Flat insulated wire 2 Flat conductor 3 Insulating film 4 Corner part 5 Flat part

Claims (4)

断面矩形状でコーナー部に丸め加工が施された平角導体と、
該平角導体の外周に形成された樹脂からなる少なくとも1層の絶縁皮膜と、
を備えた平角絶縁電線において、
前記コーナー部での前記絶縁皮膜の膜厚をT3、前記コーナー部間の平坦部での前記絶縁皮膜の最薄膜厚をT1、最厚膜厚をT2としたとき、下式(1)
1/T2>0.13×(T3/T2)+0.74 ・・・(1)
の関係を満たし、
前記絶縁皮膜が、誘電率2.5以上の樹脂からなり、
前記平坦部での前記絶縁皮膜の最薄膜厚T1と最厚膜厚T2との比(T1/T2)が、下式(2)
1>T1/T2≧0.85 ・・・(2)
の関係を満たす
ことを特徴とする平角絶縁電線。
A rectangular conductor with a rectangular cross section and rounded corners;
At least one insulating film made of a resin formed on the outer periphery of the rectangular conductor;
In a flat insulated wire with
When the film thickness of the insulating film at the corner part is T 3 , the thinnest film thickness of the insulating film at the flat part between the corner parts is T 1 , and the maximum film thickness is T 2 , the following formula (1 )
T 1 / T 2 > 0.13 × (T 3 / T 2 ) +0.74 (1)
Satisfy the relationship
The insulating film is made of a resin having a dielectric constant of 2.5 or more,
The ratio (T 1 / T 2 ) between the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film in the flat part is expressed by the following formula (2)
1> T 1 / T 2 ≧ 0.85 (2)
A flat insulated wire characterized by satisfying the following relationship.
前記コーナー部での前記絶縁皮膜の膜厚T3は、前記コーナー部での部分放電開始電圧が、予め設定した許容値以上となる厚さに形成される
請求項1記載の平角絶縁電線。
The thickness T 3 of the insulating film at the corner portion, the partial discharge starting voltage at the corners, rectangular insulated wire according to claim 1, wherein is formed to a thickness of the allowable value or more set in advance.
前記絶縁皮膜が、誘電率3.5以上の樹脂からなり、
前記平坦部での前記絶縁皮膜の最薄膜厚T1と最厚膜厚T2との比(T1/T2)が、下式(3)
1>T1/T2≧0.87 ・・・(3)
の関係を満たす
請求項1または2記載の平角絶縁電線。
The insulating film is made of a resin having a dielectric constant of 3.5 or more,
The ratio (T 1 / T 2 ) between the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film in the flat part is expressed by the following formula (3)
1> T 1 / T 2 ≧ 0.87 (3)
The flat insulated wire according to claim 1 or 2, wherein the relationship is satisfied.
前記コーナー部での前記絶縁皮膜の膜厚T3、前記コーナー部間の平坦部での前記絶縁皮膜の最薄膜厚T1、最厚膜厚T2が、下式(4)
1/T2>0.13×(T3/T2)+0.79 ・・・(4)
の関係を満たす
請求項1〜3いずれかに記載の平角絶縁電線。
The thickness T 3 of the insulating film at the corner portion, the thinnest film thickness T 1 and the thickest film thickness T 2 of the insulating film at the flat portion between the corner portions are expressed by the following formula (4).
T 1 / T 2 > 0.13 × (T 3 / T 2 ) +0.79 (4)
The flat insulated wire according to any one of claims 1 to 3, wherein the relationship is satisfied.
JP2011247352A 2011-11-11 2011-11-11 Flat insulated wire Pending JP2013105566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247352A JP2013105566A (en) 2011-11-11 2011-11-11 Flat insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247352A JP2013105566A (en) 2011-11-11 2011-11-11 Flat insulated wire

Publications (1)

Publication Number Publication Date
JP2013105566A true JP2013105566A (en) 2013-05-30

Family

ID=48624980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247352A Pending JP2013105566A (en) 2011-11-11 2011-11-11 Flat insulated wire

Country Status (1)

Country Link
JP (1) JP2013105566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025832A1 (en) * 2016-08-02 2018-02-08 株式会社デンソー Insulated wire, coil and dynamo-electric machine
US11232885B2 (en) 2015-10-28 2022-01-25 Essex Furukawa Magnet Wire Japan Co., Ltd. Insulated wire, method of producing insulated wire, coil, rotating electrical machine, and electrical or electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187262A (en) * 2010-03-08 2011-09-22 Hitachi Magnet Wire Corp Polyamideimide resin insulation coating and insulated wire using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187262A (en) * 2010-03-08 2011-09-22 Hitachi Magnet Wire Corp Polyamideimide resin insulation coating and insulated wire using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11232885B2 (en) 2015-10-28 2022-01-25 Essex Furukawa Magnet Wire Japan Co., Ltd. Insulated wire, method of producing insulated wire, coil, rotating electrical machine, and electrical or electronic equipment
WO2018025832A1 (en) * 2016-08-02 2018-02-08 株式会社デンソー Insulated wire, coil and dynamo-electric machine
US20190156978A1 (en) * 2016-08-02 2019-05-23 Denso Corporation Insulated electrical wire, coil, and rotary electric machine
CN109983654A (en) * 2016-08-02 2019-07-05 株式会社电装 Insulated electric conductor, coil and rotating electric machine

Similar Documents

Publication Publication Date Title
KR20200085562A (en) Stator for electric rotating machine
CN101399111B (en) Electrical winding conductor with a rectangular cross section
JP2012016273A (en) Stator bar
JP6346843B2 (en) Manufacturing method of flat insulated wire for edgewise coil
JP5588384B2 (en) Flat rectangular insulated wire material for coil and manufacturing method thereof
JP2013105566A (en) Flat insulated wire
JP2007317477A (en) Twisted-wire conductor
JP2012113836A (en) Insulation coating conductor wire and rotary electric machine
JP6740642B2 (en) Insulated wire manufacturing method
JP2013012401A (en) Flat electric wire
JP2007281131A (en) Resin-molded coil
JP2015073341A (en) Rotary electric machine
US10325697B2 (en) Multi-phase cable
US20150243409A1 (en) Insulated winding wire containing semi-conductive layers
CN103904806A (en) 15.75 kV grade generator stator multi-gel mold pressing thinning optimization structure
JP2016181344A (en) Insulated wire
KR20190084656A (en) Corona discharge processing apparatus for surface treatment of flouride resin insulator of calble and method of processing the same
CN114189082B (en) Corona discharge inhibition method and structure of generator stator bar and generator
JP2013121210A (en) Manufacturing method for winding coil of rotary electric machine
JP5121813B2 (en) Trance
JP2000184563A (en) Gas isolating apparatus bus
KR20120057824A (en) Electrical power cable formed smoothness metallic sheath
KR100892562B1 (en) Direct current cable
WO2021020386A1 (en) Insulating superconducting wire material, method of manufacturing insulating superconducting wire material, and superconducting coil
JP4885907B2 (en) Litz wire coil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117