JP6740642B2 - Insulated wire manufacturing method - Google Patents

Insulated wire manufacturing method Download PDF

Info

Publication number
JP6740642B2
JP6740642B2 JP2016041059A JP2016041059A JP6740642B2 JP 6740642 B2 JP6740642 B2 JP 6740642B2 JP 2016041059 A JP2016041059 A JP 2016041059A JP 2016041059 A JP2016041059 A JP 2016041059A JP 6740642 B2 JP6740642 B2 JP 6740642B2
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
foamed
conductor
resin
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016041059A
Other languages
Japanese (ja)
Other versions
JP2017157463A (en
Inventor
三浦 剛
剛 三浦
百生 秀人
秀人 百生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016041059A priority Critical patent/JP6740642B2/en
Publication of JP2017157463A publication Critical patent/JP2017157463A/en
Application granted granted Critical
Publication of JP6740642B2 publication Critical patent/JP6740642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

本発明は、絶縁電線およびその製造方法に関する。 The present invention relates to an insulated wire and a method for manufacturing the same.

回転電機や変圧器等の電気機器のコイルに使用される絶縁電線である巻線(エナメル線)は、一般的に、コイルの用途や形状に合致する断面形状に成形された導体の周囲に一層以上の絶縁体が形成された構造となっている。このうち、導体としては、例えば、断面丸型の他、コイルの占有体積を縮小する目的で断面角型のものが使用されることも多くなってきている。 Windings (enamel wires), which are insulated wires used for coils of electrical equipment such as rotating electric machines and transformers, generally have a layer around a conductor that is formed into a cross-sectional shape that matches the application and shape of the coil. It has a structure in which the above insulator is formed. Among them, as the conductor, for example, in addition to a circular cross section, a rectangular cross section is often used for the purpose of reducing the volume occupied by the coil.

導体の周囲に絶縁体を形成する方法としては、例えば、有機溶剤に樹脂を溶解させてなる絶縁塗料を導体の周囲に塗布および焼付する方法、予め調合された樹脂組成物を導体の周囲に押出被覆する方法、およびこれらの方法を併用する方法がある。 As a method of forming an insulator around the conductor, for example, a method of coating and baking an insulating paint obtained by dissolving a resin in an organic solvent around the conductor, or extruding a resin composition prepared in advance around the conductor. There are methods of coating and methods of using these methods in combination.

近年、電気機器の小型化の要求により、コアに巻線を巻き付けてコイルを作製するコイル巻線工程において、小径のコアに高張力で巻線を高密度に巻き付けるようになってきているため、絶縁体には、過酷な加工ストレスに耐え得る機械的特性(例えば、密着性や耐摩耗性)が求められている。 In recent years, due to the demand for miniaturization of electrical equipment, in the coil winding process of winding a winding around a core to produce a coil, the winding has become densely wound around a small-diameter core with high tension, Insulators are required to have mechanical properties (for example, adhesion and wear resistance) that can withstand severe processing stress.

また、インバータサージ電圧等のより高い電圧が電気機器中のコイルに印加されることから、部分放電の発生によって絶縁体が劣化したり損傷したりすることがある。 Further, since a higher voltage such as an inverter surge voltage is applied to the coil in the electric device, the insulator may be deteriorated or damaged due to the occurrence of partial discharge.

部分放電による絶縁体の劣化や損傷を防ぐために、部分放電開始電圧の高い絶縁体の開発が進められている。絶縁体の部分放電開始電圧(PDIV)を高くする方法としては、例えば、絶縁体の厚さを厚くする方法や、比誘電率が低い樹脂で絶縁体を形成する方法が挙げられる。 In order to prevent the deterioration and damage of the insulator due to the partial discharge, the insulator having a high partial discharge inception voltage is being developed. Examples of methods for increasing the partial discharge inception voltage (PDIV) of the insulator include a method of increasing the thickness of the insulator and a method of forming the insulator with a resin having a low relative dielectric constant.

しかし、絶縁体の厚さを厚くすると巻線が太くなり、コイルのサイズが大きくなり、占積率が低下することから好ましくない。 However, if the thickness of the insulator is increased, the winding becomes thick, the size of the coil increases, and the space factor decreases, which is not preferable.

一方、比誘電率が低い樹脂としては、従来の比誘電率が3〜4程度のポリイミド樹脂と比較して比誘電率が低い特定の構造を有する弗素系ポリイミド樹脂があるが、弗素系ポリイミド樹脂においても、比誘電率は2.3〜2.8程であり(例えば特許文献1参照)、特段低くはなく、部分放電開始電圧を大きく向上させることは難しい。 On the other hand, as a resin having a low relative dielectric constant, there is a fluorine-based polyimide resin having a specific structure having a lower relative dielectric constant as compared with a conventional polyimide resin having a relative dielectric constant of about 3 to 4. Also, the relative permittivity is about 2.3 to 2.8 (see, for example, Patent Document 1), is not particularly low, and it is difficult to greatly improve the partial discharge inception voltage.

そこで、絶縁体の比誘電率を大きく低下させる手段として、絶縁体を発泡させる方法がある。具体的な方法として、ポリフェニレンサルファイド(PPS)を主材料とした樹脂を導体の周りに押出被覆した後、加圧不活性ガス雰囲気中に保持することにより樹脂中に不活性ガスを含有させ、常圧下で加熱することにより発泡させる方法が知られている(例えば特許文献2参照)。 Therefore, there is a method of foaming the insulator as a means for greatly reducing the relative dielectric constant of the insulator. As a specific method, a resin containing polyphenylene sulfide (PPS) as a main material is extrusion-coated around a conductor and then held in a pressurized inert gas atmosphere so that an inert gas is contained in the resin. A method of foaming by heating under pressure is known (for example, refer to Patent Document 2).

しかしながら、不活性ガスの含浸後、不活性ガスの漏出によって不活性ガスの含浸量は経時的に減少していくことから、所望の発泡度とするためには含浸後から常圧加熱までの時間を厳密に管理しなければならない。また、PPSの結晶化度や副材料の添加量によっても不活性ガスの含浸量は変化するため、所望の発泡度とするためには材料によって不活性ガスの含浸条件(圧力、時間、温度)を調整する必要がある。 However, after impregnation with the inert gas, the impregnated amount of the inert gas decreases with time due to leakage of the inert gas, so in order to obtain the desired degree of foaming, the time from impregnation to normal pressure heating Must be strictly controlled. Further, the impregnated amount of the inert gas also changes depending on the crystallinity of PPS and the amount of the auxiliary material added. Therefore, in order to obtain the desired foaming degree, the impregnation condition (pressure, time, temperature) of the inert gas depends on the material. Need to be adjusted.

特開2002−056720号公報JP, 2002-056720, A 国際公開第2011/118717号パンフレットInternational Publication No. 2011/118717 Pamphlet

本発明の一目的は、不活性ガスの含浸を行うことなく形成されたポリフェニレンサルファイド樹脂からなる発泡絶縁体を備え、部分放電開始電圧を高めた絶縁電線を提供することである。 An object of the present invention is to provide an insulated wire having a foamed insulator made of polyphenylene sulfide resin formed without impregnation with an inert gas and having an increased partial discharge inception voltage.

本発明の観点によれば、
ポリフェニレンサルファイド樹脂と水酸化アルミニウムとを含有する樹脂組成物を前記水酸化アルミニウムの脱水反応により発泡させる工程と、
発泡させた前記樹脂組成物を、導体の周囲に押出し、発泡度が30%以上80%以下である発泡絶縁体を形成する工程と、
を有する絶縁電線の製造方法
が提供される。
According to one aspect of the invention,
A step of foaming a resin composition containing a polyphenylene sulfide resin and aluminum hydroxide by a dehydration reaction of the aluminum hydroxide,
A step of extruding the foamed resin composition around a conductor to form a foamed insulator having a foaming degree of 30% or more and 80% or less;
There is provided a method for manufacturing an insulated electric wire having:

本発明によれば、不活性ガスの含浸を行うことなく形成されたポリフェニレンサルファイド樹脂からなる発泡絶縁体を備え、部分放電開始電圧を高めた絶縁電線を提供することができる。 According to the present invention, it is possible to provide an insulated wire including a foamed insulator made of polyphenylene sulfide resin formed without impregnation with an inert gas and having an increased partial discharge inception voltage.

図1(a)は、本発明の一実施形態による絶縁電線の構造の一例を示す概略的な断面図であり、図1(b)は、実施形態による絶縁電線の製造装置の一例を示す概略図である。1A is a schematic cross-sectional view showing an example of the structure of an insulated wire according to an embodiment of the present invention, and FIG. 1B is a schematic view showing an example of an insulated wire manufacturing apparatus according to the embodiment. It is a figure.

図1(a)を参照して、本発明の一実施形態による絶縁電線(発泡巻線)10について説明する。図1(a)は、絶縁電線10の構造の一例を示す概略的な断面図である。絶縁電線10は、導体20と発泡絶縁体30とを備える。 An insulated wire (foamed wire) 10 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1A is a schematic cross-sectional view showing an example of the structure of the insulated wire 10. The insulated wire 10 includes a conductor 20 and a foam insulator 30.

導体20としては、例えば平角銅線が用いられる。なお、導体20としては、平角銅線に限らず、他の形状や材料のものを用いてもよい。 As the conductor 20, for example, a rectangular copper wire is used. It should be noted that the conductor 20 is not limited to the rectangular copper wire, and other shapes and materials may be used.

発泡絶縁体30は、導体20の周囲に形成されており、発泡領域(発泡部分)31を有する。発泡絶縁体30は、ポリフェニレンサルファイド(PPS)樹脂とアルミナとを含有する樹脂組成物からなる。また、後述する発泡絶縁体30の製造工程から理解されるように、発泡絶縁体30は、PPS樹脂と水酸化アルミニウムとを含有する樹脂組成物を水酸化アルミニウムの脱水反応により発泡させた樹脂組成物からなるということもできる。 The foamed insulator 30 is formed around the conductor 20 and has a foamed region (foamed portion) 31. The foamed insulator 30 is made of a resin composition containing a polyphenylene sulfide (PPS) resin and alumina. Further, as will be understood from the manufacturing process of the foamed insulation 30 described below, the foamed insulation 30 is a resin composition obtained by foaming a resin composition containing a PPS resin and aluminum hydroxide by a dehydration reaction of aluminum hydroxide. It can also be said to consist of things.

なお、発泡絶縁体30を形成する樹脂組成物は、必要に応じて、PPS樹脂以外の樹脂や、各種の添加剤等を含有していてもよい。 The resin composition forming the foamed insulation 30 may contain a resin other than the PPS resin, various additives, and the like, if necessary.

部分放電開始電圧を十分に高めるために、発泡絶縁体30の発泡度は30%以上であることが好ましい。また、発泡絶縁体30の絶縁厚さを安定させるために、発泡絶縁体30の発泡度は80%以下であることが好ましい。発泡度の定義については、実施例および比較例の説明箇所において後述する。 In order to sufficiently increase the partial discharge inception voltage, the foamed insulator 30 preferably has a foaming degree of 30% or more. Further, in order to stabilize the insulation thickness of the foamed insulation 30, the foamed insulation 30 preferably has a foaming degree of 80% or less. The definition of the degree of foaming will be described later in the description of Examples and Comparative Examples.

次に図1(b)を参照して、絶縁電線10の製造方法について説明する。図1(b)は、絶縁電線10の製造装置100の一例を示す概略図である。 Next, a method of manufacturing the insulated wire 10 will be described with reference to FIG. FIG. 1B is a schematic diagram showing an example of an apparatus 100 for manufacturing the insulated wire 10.

導体20を、送出機101から送り出し、プーリ102を介して予備加熱炉103に導入する。予備加熱炉103により、導体20を不活性ガス雰囲気中で予備加熱する。不活性ガスとしては、低コストな汎用気体である窒素ガスや、熱伝導性に優れたヘリウムガスが有効であるが、これらに限定されるものでは無い。 The conductor 20 is fed from the feeder 101 and introduced into the preheating furnace 103 via the pulley 102. The preheating furnace 103 preheats the conductor 20 in an inert gas atmosphere. Nitrogen gas, which is a low-cost general-purpose gas, and helium gas, which has excellent thermal conductivity, are effective as the inert gas, but the inert gas is not limited to these.

予備加熱炉103の内部では、導体20の表面が高温環境下に暴露されるため、導体20の表面が酸化する虞があるが、予備加熱炉103の内部雰囲気を不活性ガス雰囲気で置換することにより、導体20の表面が酸化することを抑制できる。導体20の表面の酸化を抑制することで、導体20と発泡絶縁体30との密着性が低下することを抑制できる。 Since the surface of the conductor 20 is exposed to a high temperature environment inside the preheating furnace 103, the surface of the conductor 20 may be oxidized. However, the atmosphere inside the preheating furnace 103 should be replaced with an inert gas atmosphere. Thereby, the surface of the conductor 20 can be suppressed from being oxidized. By suppressing the oxidation of the surface of the conductor 20, it is possible to prevent the adhesion between the conductor 20 and the foamed insulation 30 from decreasing.

予備加熱炉103による導体20の予備加熱温度は、PPS樹脂の融点以上、具体的には例えば280℃以上とすることが好ましく、300℃以上320℃以下とすることがより好ましい。これにより、導体20と発泡絶縁体30との密着性を良好とすることができる。 The preheating temperature of the conductor 20 in the preheating furnace 103 is preferably equal to or higher than the melting point of the PPS resin, specifically, for example, 280° C. or higher, and more preferably 300° C. or higher and 320° C. or lower. As a result, the adhesion between the conductor 20 and the foam insulation 30 can be improved.

次に、予備加熱炉103で予備加熱された導体20の周囲に、押出機104により、PPS樹脂と水酸化アルミニウムとを含有する樹脂組成物を水酸化アルミニウムの脱水反応により発泡させた樹脂組成物を押出被覆して、発泡絶縁体30を形成する。 Next, around the conductor 20 preheated in the preheating furnace 103, the resin composition containing the PPS resin and aluminum hydroxide is foamed by the dehydration reaction of aluminum hydroxide by the extruder 104. Are extrusion coated to form the foamed insulation 30.

発泡絶縁体30の形成工程について、より詳しく説明する。押出機104へ、PPS樹脂と水酸化アルミニウムとを投入する。押出機104内の押出温度は、予備加熱温度よりもやや高い温度で、水酸化アルミニウムの脱水反応が十分に生じる温度、例えば300℃超とすることが好ましく、310℃以上330℃以下とすることがより好ましい。 The step of forming the foamed insulation 30 will be described in more detail. PPS resin and aluminum hydroxide are put into the extruder 104. The extrusion temperature in the extruder 104 is slightly higher than the preheating temperature, and is preferably a temperature at which a dehydration reaction of aluminum hydroxide sufficiently occurs, for example, more than 300° C., and 310° C. or more and 330° C. or less. Is more preferable.

水酸化アルミニウムの粒径は、1μm以下であることが好ましい。ここで「粒径」とは、レーザ回折・散乱法(JIS Z 8825:2013)に基づいて測定して得られる粒径分布から算出される平均粒径のことである。水酸化アルミニウムの脱水反応のピーク温度は、一般に、245℃、320℃、550℃の3つであるが、水酸化アルミニウムの粒径を1μm以下とすることにより、320℃でピークとなる脱水反応を選択的に生じさせることができる。 The particle size of aluminum hydroxide is preferably 1 μm or less. Here, the “particle size” is an average particle size calculated from a particle size distribution obtained by measurement based on a laser diffraction/scattering method (JIS Z 8825:2013). The peak temperature of the dehydration reaction of aluminum hydroxide is generally 245° C., 320° C., and 550° C. However, by setting the particle size of aluminum hydroxide to 1 μm or less, the dehydration reaction peaking at 320° C. Can be selectively generated.

押出機104内でPPS樹脂は溶融し、溶融したPPS樹脂と水酸化アルミニウムとが混練される。このとき、押出機104内の温度が例えば310℃〜330℃であるため、水酸化アルミニウムがアルミナ(Al)と水分(HO)とに分解される脱水反応が生じる。水酸化アルミニウムの粒径を1μm以下とすることで、245℃でピークとなる脱水反応を抑制でき、水酸化アルミニウムがPPS樹脂と十分に混練される前に脱水反応が進行してしまうことを抑制できる。つまり、水酸化アルミニウムがPPS樹脂と十分に混練された状態で脱水反応を生じさせて、効率的に樹脂組成物を発泡させることができる。 The PPS resin is melted in the extruder 104, and the melted PPS resin and aluminum hydroxide are kneaded. At this time, since the temperature inside the extruder 104 is, for example, 310° C. to 330° C., a dehydration reaction occurs in which aluminum hydroxide is decomposed into alumina (Al 2 O 3 ) and water (H 2 O). By setting the particle size of aluminum hydroxide to 1 μm or less, the dehydration reaction that peaks at 245° C. can be suppressed, and the dehydration reaction can be prevented from proceeding before the aluminum hydroxide is sufficiently kneaded with the PPS resin. it can. That is, it is possible to cause a dehydration reaction in a state where aluminum hydroxide is sufficiently kneaded with the PPS resin to efficiently foam the resin composition.

脱水反応で生成された水分が揮発することにより発泡領域31が形成され、アルミナがPPS樹脂中に含有された状態で、導体20の周囲に発泡絶縁体30が形成される。 The foamed region 31 is formed by volatilization of the water generated by the dehydration reaction, and the foamed insulator 30 is formed around the conductor 20 in a state where alumina is contained in the PPS resin.

なお、発泡絶縁体30中に含有されたアルミナの粒径は、脱水反応前の水酸化アルミニウムの粒径が1μm以下であることに対応して、1μm以下となっていると考えられる。 The particle size of alumina contained in the foamed insulator 30 is considered to be 1 μm or less corresponding to the particle size of aluminum hydroxide before the dehydration reaction being 1 μm or less.

発泡絶縁体30の発泡度は、30%以上80%以下とすることが好ましい。発泡絶縁体30の発泡度を30%以上80%以下とするために、脱水反応前の水酸化アルミニウムの含有量(添加量)は、例えば、PPS樹脂に対して0.3wt%以上1wt%以下とすることができる。なお、この条件は、発泡絶縁体30中のアルミナの含有量としては、水酸化アルミニウムに換算して、PPS樹脂に対して0.3wt%以上1wt%以下であるということができる。 The foaming degree of the foamed insulation 30 is preferably 30% or more and 80% or less. The content (addition amount) of aluminum hydroxide before the dehydration reaction is, for example, 0.3 wt% or more and 1 wt% or less with respect to the PPS resin in order to set the foaming degree of the foamed insulator 30 to 30% or more and 80% or less. Can be It should be noted that this condition can be said to be such that the content of alumina in the foamed insulator 30 is 0.3 wt% or more and 1 wt% or less with respect to the PPS resin in terms of aluminum hydroxide.

このように、発泡絶縁体30を形成する工程は(絶縁電線10を製造する工程は)、PPS樹脂と水酸化アルミニウムとを含有する樹脂組成物を水酸化アルミニウムの脱水反応により発泡させる工程と、発泡させたこの樹脂組成物を、導体20の周囲に押出し、発泡度が30%以上80%以下である発泡絶縁体30を形成する工程と、を有する。 In this way, the step of forming the foamed insulation 30 (the step of manufacturing the insulated wire 10) includes the step of foaming the resin composition containing the PPS resin and aluminum hydroxide by the dehydration reaction of aluminum hydroxide, The step of extruding the foamed resin composition around the conductor 20 to form the foamed insulator 30 having a foaming degree of 30% or more and 80% or less.

その後、発泡絶縁体30の形成された導体20を、水槽105により冷却し、引取機106を通じて巻取機107で巻き取る。このようにして、絶縁電線10を製造することができる。 After that, the conductor 20 on which the foamed insulator 30 is formed is cooled by the water tank 105 and wound by the winder 107 through the take-up machine 106. In this way, the insulated wire 10 can be manufactured.

上述のような実施形態により、例えば以下のような効果を得ることができる。 With the above-described embodiment, for example, the following effects can be obtained.

PPS樹脂を含有する樹脂組成物を水酸化アルミニウムの脱水反応により発泡させることで、発泡絶縁体30を得ることができる。ここで、水酸化アルミニウムの脱水反応を用いているため、発泡絶縁体30は、PPS樹脂とアルミナとを含有する樹脂組成物から形成(構成)されることとなる。 The foamed insulator 30 can be obtained by foaming the resin composition containing the PPS resin by the dehydration reaction of aluminum hydroxide. Since the dehydration reaction of aluminum hydroxide is used here, the foamed insulation 30 is formed (configured) from a resin composition containing a PPS resin and alumina.

発泡させた発泡絶縁体30を用いることで、絶縁電線10の部分放電開始電圧を高めることができる。発泡絶縁体30の発泡度は、30%以上80%以下とすることが好ましい。 By using the foamed insulation 30 that is foamed, the partial discharge inception voltage of the insulated wire 10 can be increased. The degree of foaming of the foamed insulation 30 is preferably 30% or more and 80% or less.

このように、不活性ガスの含浸を行うことなく、PPS樹脂を用いた発泡絶縁体30を得ることができ、絶縁電線10の部分放電開始電圧を高めることができる。 In this way, the foamed insulation 30 using the PPS resin can be obtained without impregnating with the inert gas, and the partial discharge inception voltage of the insulated wire 10 can be increased.

水酸化アルミニウムの粒径を1μm以下とすることにより、320℃でピークとなる脱水反応を選択的に生じさせることができ、融点が約280℃のPPS樹脂を含有する樹脂組成物の押出における発泡を、効率的に行うことができる。発泡が効率的に行われることで、水酸化アルミニウムの添加量を少なくすることができる。 By setting the particle size of aluminum hydroxide to 1 μm or less, a dehydration reaction that peaks at 320° C. can be selectively caused, and foaming in extrusion of a resin composition containing a PPS resin having a melting point of about 280° C. Can be efficiently performed. By performing the foaming efficiently, the amount of aluminum hydroxide added can be reduced.

また、後述のように、粒径が1μm以下の水酸化アルミニウムを用いることで、導体20と発泡絶縁体30との良好な密着性を得ることもできる。 Further, as will be described later, by using aluminum hydroxide having a particle size of 1 μm or less, good adhesion between the conductor 20 and the foamed insulation 30 can be obtained.

次に、実施例および比較例について説明する。ここでは、長辺が約3mmで短辺が約2mmの平角銅線を導体20として用い、PPS樹脂と水酸化アルミニウムとを含有する樹脂組成物を用いて発泡絶縁体30を形成することで、表1に示す通り、実施例1〜2および比較例1〜4の6通りの絶縁電線(発泡巻線)10を製造した。そして、これらの絶縁電線10を評価することにより、実施例による効果を実証した。

Figure 0006740642
Next, examples and comparative examples will be described. Here, a rectangular copper wire having a long side of about 3 mm and a short side of about 2 mm is used as the conductor 20, and the foamed insulator 30 is formed by using a resin composition containing a PPS resin and aluminum hydroxide. As shown in Table 1, six types of insulated electric wires (foamed windings) 10 of Examples 1 and 2 and Comparative Examples 1 to 4 were manufactured. Then, the effects of the examples were verified by evaluating these insulated electric wires 10.
Figure 0006740642

実施例1〜2および比較例1〜4について、導体20を予備加熱炉103に導入して窒素雰囲気中で約300℃に予備加熱し、押出機104により導体20の周囲に厚さ150μmの発泡絶縁体30を形成した。発泡絶縁体30の形成後、水槽105により発泡絶縁体30とともに導体20を常温まで冷却し、引取機106を通じて巻取機107により絶縁電線10を巻き取った。 Regarding Examples 1-2 and Comparative Examples 1-4, the conductor 20 was introduced into the preheating furnace 103 and preheated to about 300° C. in a nitrogen atmosphere, and the extruder 104 foamed the conductor 20 at a thickness of 150 μm. The insulator 30 was formed. After forming the foamed insulation 30, the conductor 20 was cooled to room temperature together with the foamed insulation 30 in the water tank 105, and the insulated wire 10 was wound up by the winder 107 through the winder 106.

[実施例1]
実施例1では、発泡絶縁体30を形成する樹脂組成物として、PPS樹脂と、粒径0.9μmでPPS樹脂に対して1wt%の水酸化アルミニウムとを含有するものを用い、押出温度を330℃とした。
[Example 1]
In Example 1, as the resin composition forming the foamed insulation 30, a resin composition containing PPS resin and 1 wt% aluminum hydroxide having a particle size of 0.9 μm with respect to the PPS resin was used, and the extrusion temperature was 330. ℃ was made.

[実施例2]
実施例2では、発泡絶縁体30を形成する樹脂組成物として、PPS樹脂と、粒径0.9μmでPPS樹脂に対して0.3wt%の水酸化アルミニウムとを含有するものを用い、押出温度を330℃とした。
[Example 2]
In Example 2, as the resin composition forming the foamed insulation 30, a resin composition containing PPS resin and aluminum hydroxide having a particle size of 0.9 μm and 0.3 wt% with respect to the PPS resin was used. Was set to 330°C.

[比較例1]
比較例1では、発泡絶縁体30を形成する樹脂組成物として、PPS樹脂と、粒径3.0μmでPPS樹脂に対して1wt%の水酸化アルミニウムとを含有するものを用い、押出温度を330℃とした。
[Comparative Example 1]
In Comparative Example 1, as the resin composition forming the foamed insulator 30, a resin composition containing PPS resin and 1 wt% aluminum hydroxide with a particle size of 3.0 μm with respect to the PPS resin was used, and the extrusion temperature was 330. ℃ was made.

[比較例2]
比較例2では、発泡絶縁体30を形成する樹脂組成物として、PPS樹脂と、粒径0.9μmでPPS樹脂に対して1wt%の水酸化アルミニウムとを含有するものを用い、押出温度を300℃とした。
[Comparative Example 2]
In Comparative Example 2, as the resin composition forming the foamed insulator 30, a resin composition containing PPS resin and 1 wt% of aluminum hydroxide having a particle size of 0.9 μm with respect to the PPS resin was used, and the extrusion temperature was 300. ℃ was made.

[比較例3]
比較例3では、発泡絶縁体30を形成する樹脂組成物として、PPS樹脂と、粒径0.9μmでPPS樹脂に対して3wt%の水酸化アルミニウムとを含有するものを用い、押出温度を330℃とした。
[Comparative Example 3]
In Comparative Example 3, as the resin composition for forming the foamed insulation 30, a resin composition containing PPS resin and aluminum hydroxide having a particle size of 0.9 μm and 3 wt% with respect to the PPS resin was used, and the extrusion temperature was 330. ℃ was made.

[比較例4]
比較例4では、発泡絶縁体30を形成する樹脂組成物として、PPS樹脂と、粒径0.9μmでPPS樹脂に対して0.2wt%の水酸化アルミニウムとを含有するものを用い、押出温度を330℃とした。
[Comparative Example 4]
In Comparative Example 4, as the resin composition forming the foamed insulation 30, a resin composition containing PPS resin and aluminum hydroxide having a particle size of 0.9 μm and 0.2 wt% with respect to the PPS resin was used. Was set to 330°C.

発泡絶縁体30の発泡度、導体20と発泡絶縁体30との密着性、および部分放電開始電圧(PDIV)を、次のようにして評価した。なお、外観についても評価した。 The degree of foaming of the foamed insulation 30, the adhesion between the conductor 20 and the foamed insulation 30, and the partial discharge inception voltage (PDIV) were evaluated as follows. The appearance was also evaluated.

[発泡度の評価方法]
絶縁電線10から切り取った発泡絶縁体30を液中ひょう量法により計測した密度ρ1と、発泡絶縁体30を形成する樹脂組成物に水酸化アルミニウムを添加していない状態の、PPS樹脂を含有する樹脂組成物を液中ひょう量法により計測した密度ρ2とから、次のようにして発泡度αを求めた。
α=(1−ρ1/ρ2)×100
このとき、水酸化アルミニウムの比重は極少ないので無視した。発泡度30%以上80%以下を合格「○」とした。発泡度30%未満は、部分放電開始電圧の高さが不十分となるため不合格「×」とし、発泡度80%超は、絶縁厚さが不安定となるため不合格「×」とした。
[Evaluation method of foaming degree]
The foamed insulation 30 cut out from the insulated wire 10 has a density ρ1 measured by a liquid weighing method, and contains a PPS resin in a state where aluminum hydroxide is not added to the resin composition forming the foamed insulation 30. From the density ρ2 of the resin composition measured by the liquid weighing method, the foaming degree α was determined as follows.
α=(1-ρ1/ρ2)×100
At this time, the specific gravity of aluminum hydroxide was extremely small and was ignored. The degree of foaming of 30% or more and 80% or less was evaluated as passing “◯”. If the foaming degree is less than 30%, the height of the partial discharge inception voltage is insufficient, and therefore the result is “Fail”, and if the foaming degree is more than 80%, the insulation thickness is unstable. ..

[密着性の評価方法]
急激伸長試験装置により、長さが約500mmである絶縁電線10を目標線間距離を200mmとして急激に伸長・断線させ、発泡絶縁体30における亀裂、導体20の露出、および被覆浮きの合計長さが7mm未満のものを合格「○」とし、7mm以上のものを不合格「×」とした。
[Adhesion evaluation method]
The insulated wire 10 having a length of about 500 mm was rapidly stretched and disconnected by a rapid extension test apparatus with a target line distance of 200 mm, and the total length of cracks in the foamed insulation 30, exposure of the conductor 20, and coating floating. Of less than 7 mm was evaluated as passing “◯”, and those of 7 mm or more were evaluated as unacceptable “x”.

[部分放電開始電圧の評価方法]
2本の絶縁電線10の長辺側の面同士を長さ150mmに亘って隙間が生じないように密着させたサンプルに対して、2本の導体20間に周波数が50Hzの交流電流を印加し、その電圧を毎秒10Vで昇圧させながら、50pCの部分放電が50回以上発生する電圧を測定し、その電圧が1550V以上であるものを合格「○」とし、1550V未満であるものを不合格「×」とした。
[Evaluation method of partial discharge inception voltage]
An alternating current having a frequency of 50 Hz was applied between the two conductors 20 to the sample in which the long-side surfaces of the two insulated wires 10 were adhered to each other over a length of 150 mm so that no gap was formed. While increasing the voltage at 10 V per second, the voltage at which 50 pC partial discharge is generated 50 times or more is measured, and if the voltage is 1550 V or more, the result is “OK”, and if it is less than 1550 V, the result is “Fail”. X".

[結果]
実施例1および実施例2は、全ての評価項目で合格し、発泡度、密着性、および部分放電開始電圧に優れていた。具体的には、発泡度は良好で部分放電開始電圧は高く、水酸化アルミニウムの粒径が0.9μmと小さかったため、導体20と発泡絶縁体30との密着性も良好であった。
[result]
Example 1 and Example 2 passed all the evaluation items, and were excellent in foaming degree, adhesiveness, and partial discharge inception voltage. Specifically, the degree of foaming was good, the partial discharge inception voltage was high, and the particle size of aluminum hydroxide was as small as 0.9 μm, so the adhesion between the conductor 20 and the foamed insulator 30 was also good.

比較例1は、水酸化アルミニウムの粒径が3.0μmと大きかったため、密着性が劣り、また、245℃での脱水反応が生じたためと思われるが、発泡度は低く、部分放電開始電圧の条件を満たさなかった。 In Comparative Example 1, since the particle size of aluminum hydroxide was as large as 3.0 μm, the adhesion was poor, and it is considered that the dehydration reaction occurred at 245° C., but the degree of foaming was low and the partial discharge inception voltage was The condition was not met.

比較例2は、押出温度が低かったため、十分発泡せず、部分放電開始電圧の条件を満たさなかった。 In Comparative Example 2, since the extrusion temperature was low, the foaming did not occur sufficiently and the condition of the partial discharge inception voltage was not satisfied.

比較例3は、水酸化アルミニウムの添加量が3wt%と多かったため、発泡度が80%を超え、発泡絶縁体30の膜厚がばらつき、部分放電開始電圧が測定不可となった。 In Comparative Example 3, since the amount of aluminum hydroxide added was as large as 3 wt %, the degree of foaming exceeded 80%, the film thickness of the foamed insulator 30 varied, and the partial discharge inception voltage could not be measured.

比較例4は、水酸化アルミニウムの添加量が0.2wt%と少なく、発泡度が不十分で部分放電開始電圧の条件を満たさなかった。 In Comparative Example 4, the addition amount of aluminum hydroxide was as small as 0.2 wt %, the degree of foaming was insufficient, and the condition of the partial discharge inception voltage was not satisfied.

なお、比較例2、比較例3、および比較例4では、水酸化アルミニウムの粒径が0.9μmと小さかったため、良好な密着性が得られた。水酸化アルミニウムの粒径を小さくすること、例えば1μm以下とすることで、導体20と発泡絶縁体30との良好な密着性を得ることができる。 In Comparative Example 2, Comparative Example 3, and Comparative Example 4, since the particle size of aluminum hydroxide was as small as 0.9 μm, good adhesion was obtained. By making the particle size of aluminum hydroxide small, for example, 1 μm or less, good adhesion between the conductor 20 and the foamed insulator 30 can be obtained.

実施例1および実施例2によれば、発泡度を30%以上80%以下とするための、水酸化アルミニウムの含有量(添加量)としては、PPS樹脂に対して0.3wt%以上1wt%以下とすることができる。 According to Example 1 and Example 2, the content (addition amount) of aluminum hydroxide for adjusting the foaming degree to 30% or more and 80% or less is 0.3 wt% or more and 1 wt% with respect to the PPS resin. It can be:

また、発泡度を30%以上80%以下とするための、水酸化アルミニウムの粒径としては、1μm以下とすることができる。 Further, the particle size of aluminum hydroxide for adjusting the foaming degree to 30% or more and 80% or less can be 1 μm or less.

以上、実施形態に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Although the present invention has been described with reference to the embodiments, the present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

以下、本発明の好ましい形態について付記する。 Hereinafter, the preferred embodiments of the present invention will be additionally described.

(付記1)
導体と、
前記導体の周囲に形成され、発泡領域を有する発泡絶縁体と、
を備え、
前記発泡絶縁体は、ポリフェニレンサルファイド樹脂とアルミナとを含有する樹脂組成物からなり、前記発泡絶縁体の発泡度は、30%以上80%以下である絶縁電線。
(Appendix 1)
A conductor,
A foamed insulator formed around the conductor and having a foamed region,
Equipped with
The foamed insulation is made of a resin composition containing a polyphenylene sulfide resin and alumina, and the foamed insulation has a foaming degree of 30% or more and 80% or less.

(付記2)
前記アルミナの含有量は、水酸化アルミニウムに換算して、前記ポリフェニレンサルファイド樹脂に対して0.3wt%以上1wt%以下である付記1に記載の絶縁電線。
(Appendix 2)
The insulated wire according to Appendix 1, wherein the content of the alumina is 0.3 wt% or more and 1 wt% or less with respect to the polyphenylene sulfide resin in terms of aluminum hydroxide.

(付記3)
前記アルミナの粒径は、1μm以下である付記1または2に記載の絶縁電線。
(Appendix 3)
The insulated wire according to appendix 1 or 2, wherein the particle size of the alumina is 1 μm or less.

(付記4)
導体と、
前記導体の周囲に形成され、発泡領域を有する発泡絶縁体と、
を備え、
前記発泡絶縁体は、ポリフェニレンサルファイド樹脂と水酸化アルミニウムとを含有する樹脂組成物を前記水酸化アルミニウムの脱水反応により発泡させた樹脂組成物からなり、前記発泡絶縁体の発泡度は、30%以上80%以下である絶縁電線。
(Appendix 4)
A conductor,
A foamed insulator formed around the conductor and having a foamed region,
Equipped with
The foamed insulation comprises a resin composition obtained by foaming a resin composition containing a polyphenylene sulfide resin and aluminum hydroxide by a dehydration reaction of the aluminum hydroxide, and the foamed insulation has a foaming degree of 30% or more. Insulated wire with 80% or less.

(付記5)
ポリフェニレンサルファイド樹脂と水酸化アルミニウムとを含有する樹脂組成物を前記水酸化アルミニウムの脱水反応により発泡させる工程と、
発泡させた前記樹脂組成物を、導体の周囲に押出し、発泡度が30%以上80%以下である発泡絶縁体を形成する工程と、
を有する絶縁電線の製造方法。
(Appendix 5)
A step of foaming a resin composition containing a polyphenylene sulfide resin and aluminum hydroxide by a dehydration reaction of the aluminum hydroxide,
A step of extruding the foamed resin composition around a conductor to form a foamed insulator having a foaming degree of 30% or more and 80% or less;
And a method for manufacturing an insulated electric wire.

(付記6)
前記水酸化アルミニウムの含有量は、前記ポリフェニレンサルファイド樹脂に対して0.3wt%以上1wt%以下である付記5に記載の絶縁電線の製造方法。
(Appendix 6)
6. The method for manufacturing an insulated wire according to appendix 5, wherein the content of the aluminum hydroxide is 0.3 wt% or more and 1 wt% or less with respect to the polyphenylene sulfide resin.

(付記7)
前記水酸化アルミニウムの粒径は、1μm以下である付記5または6に記載の絶縁電線の製造方法。
(Appendix 7)
The method for producing an insulated wire according to appendix 5 or 6, wherein the particle diameter of the aluminum hydroxide is 1 μm or less.

10 絶縁電線(発泡巻線)
20 導体
30 発泡絶縁体
31 発泡領域(発泡部分)
10 insulated wire (foamed wire)
20 Conductor 30 Foam Insulator 31 Foam Region (Foam Part)

Claims (3)

ポリフェニレンサルファイド樹脂と水酸化アルミニウムとを含有する樹脂組成物を前記水酸化アルミニウムの脱水反応により発泡させる工程と、
発泡させた前記樹脂組成物を、導体の周囲に押出し、発泡度が30%以上80%以下である発泡絶縁体を形成する工程と、
を有する絶縁電線の製造方法。
A step of foaming a resin composition containing a polyphenylene sulfide resin and aluminum hydroxide by a dehydration reaction of the aluminum hydroxide,
A step of extruding the foamed resin composition around a conductor to form a foamed insulator having a foaming degree of 30% or more and 80% or less;
And a method for manufacturing an insulated electric wire.
前記水酸化アルミニウムの含有量は、前記ポリフェニレンサルファイド樹脂に対して0.3wt%以上1wt%以下である請求項に記載の絶縁電線の製造方法。 The content of the aluminum hydroxide, the production method of the insulated wire according to the polyphenylene sulfide claim 1 or less 0.3 wt% or more 1 wt% based on the resin. 前記水酸化アルミニウムの粒径は、1μm以下である請求項1または2に記載の絶縁電線の製造方法。 The particle size of the aluminum hydroxide, the production method of the insulated wire according to claim 1 or 2 is 1μm or less.
JP2016041059A 2016-03-03 2016-03-03 Insulated wire manufacturing method Active JP6740642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016041059A JP6740642B2 (en) 2016-03-03 2016-03-03 Insulated wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016041059A JP6740642B2 (en) 2016-03-03 2016-03-03 Insulated wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2017157463A JP2017157463A (en) 2017-09-07
JP6740642B2 true JP6740642B2 (en) 2020-08-19

Family

ID=59809999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041059A Active JP6740642B2 (en) 2016-03-03 2016-03-03 Insulated wire manufacturing method

Country Status (1)

Country Link
JP (1) JP6740642B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102661175B1 (en) * 2018-09-03 2024-04-29 스미토모 세이카 가부시키가이샤 Laminates of conductors and insulating films, coils, rotating electrics, insulating paints, and insulating films
JP6567797B1 (en) * 2018-09-03 2019-08-28 住友精化株式会社 Laminated body of conductor and insulating film, coil, rotating electric machine, insulating paint, and insulating film
CN116157461A (en) 2020-08-03 2023-05-23 大金工业株式会社 Composition for foam molding, foam molded body, electric wire, method for producing foam molded body, and method for producing electric wire
CN114456705B (en) * 2022-03-10 2023-03-17 南通博联材料科技有限公司 Preparation method and application of polyamide acid varnish

Also Published As

Publication number Publication date
JP2017157463A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6740642B2 (en) Insulated wire manufacturing method
US9543058B2 (en) Insulated winding wire
KR101477878B1 (en) Foamed electrical wire and production method for same
US9324476B2 (en) Insulated winding wire
JP2013109874A (en) Insulated wire
US11615914B2 (en) Magnet wire with thermoplastic insulation
JP5699971B2 (en) Insulated wire
US20130032377A1 (en) Insulated wire and method of manufacturing the same
CN106062894A (en) Flat-type insulated wire, coil, and electric/electronic equipment
US10199138B2 (en) Insulated winding wire
CN103222016A (en) Improved polyamide electrical insulation for use in liquid filled transformers
JP2017027904A (en) Insulation wire
JP5454297B2 (en) Insulated wire
US20150243409A1 (en) Insulated winding wire containing semi-conductive layers
CN114664484A (en) High-heat-resistance and partial discharge-resistance insulated electromagnetic wire and wire drawing method
JP2014103045A (en) Insulation wire and its manufacturing method
JP2015138626A (en) Insulation wire and producing method thereof, and coil for electric device and producing method thereof
US20230083970A1 (en) Magnet wire with thermoplastic insulation
JP5516303B2 (en) Insulated wire and manufacturing method thereof
JP2017054754A (en) Insulation wire and manufacturing method therefor
US2717917A (en) High voltage insulated conductor and method of manufacturing the same
JP2017010613A (en) Insulation wire and manufacturing method therefor
JP6519231B2 (en) Winding and method of manufacturing the same
JP2023538532A (en) Magnet wire with thermoplastic insulation
JP6747154B2 (en) Fuse-insulated electric wire and method for manufacturing fusible insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6740642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350