JP2013103859A - Tool for feeding rod-shaped polycrystalline raw material, and method for feeding rod-shaped polycrystalline raw material - Google Patents

Tool for feeding rod-shaped polycrystalline raw material, and method for feeding rod-shaped polycrystalline raw material Download PDF

Info

Publication number
JP2013103859A
JP2013103859A JP2011248700A JP2011248700A JP2013103859A JP 2013103859 A JP2013103859 A JP 2013103859A JP 2011248700 A JP2011248700 A JP 2011248700A JP 2011248700 A JP2011248700 A JP 2011248700A JP 2013103859 A JP2013103859 A JP 2013103859A
Authority
JP
Japan
Prior art keywords
rod
raw material
shaped polycrystalline
shaped
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248700A
Other languages
Japanese (ja)
Other versions
JP6112763B2 (en
Inventor
Takeshi Yasumura
健 安村
Shoji Tachibana
昇二 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2011248700A priority Critical patent/JP6112763B2/en
Publication of JP2013103859A publication Critical patent/JP2013103859A/en
Application granted granted Critical
Publication of JP6112763B2 publication Critical patent/JP6112763B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a tool for feeding a rod-shaped polycrystalline raw material, with which not only breakage of the feeding tool itself substantially does not occur and which can be used a plurality of times, but also solidification and contamination of the melt and inhibition of single crystal growth caused by mixing-in of splinters do not occur, furthermore, with which a high-quality single crystal is stably grown by preventing damage to apparatuses such as a crucible and spattering of the melt caused by falling down of the crystal raw material, and contamination of the melt from the feeding tool.SOLUTION: The feeding tool of the rod-shaped polycrystalline raw material for feeding the raw material in a standing condition to the crucible includes: a bottom member 40 to support an end of the rod-shaped polycrystalline raw material; a cylindrical guide member 60 with a cylindrical- or cylindrical cage-shape to control movement of the rod-shaped polycrystalline raw material in a lateral direction; a coupling member 50 to connect the cylindrical guide member and the bottom member; and a suspending member 70 attached on the upper part of the cylindrical guide member, wherein the cylindrical guide member is composed of a high-melting point material such as molybdenum, and the bottom member and the coupling member are composed of the same element as the raw material, that is a single crystal silicon or a polycrystalline silicon.

Description

本発明は、単結晶材を育成する際に、坩堝内に多結晶原料、特にロッド状の多結晶原料を供給するために使用されるロッド状多結晶原料供給治具、並びにこれを用いたロッド状多結晶原料の供給方法に関する。   The present invention relates to a rod-shaped polycrystalline material supply jig used for supplying a polycrystalline material, particularly a rod-shaped polycrystalline material, into a crucible when growing a single crystal material, and a rod using the same. The present invention relates to a method for supplying a polycrystalline raw material.

半導体集積回路や太陽電池の基板として使用される単結晶シリコンの製法としては、高品質のものを大量、且つ、安定的に供給する観点から、現在、チョコラルスキー法(以下、CZ法という)と称される単結晶育成引き上げ法(以下、引き上げ法ともいう)による製造方法が主流である。
上記CZ法において、製造コストを低減するため様々な観点から検討されている。その一つとして結晶原料の供給方法の改善が挙げられ、連続して結晶原料を供給(「連続チャージ」と称される)しながら長尺の単結晶シリコンを製造する方法、初期チャージの原料を溶融させた後さらに結晶原料を供給(「追いチャージ」と称される)する方法、或いは、引き上げ後の高温状態で結晶原料を供給(「リチャージ」と称される)した後再度引き上げを行う方法が開発されている。何れの原料供給方法も、単結晶育成炉を一旦冷却することなく効率的に生産しエネルギーコストを低減させる、更に高価な坩堝の熱履歴による破損を防ぎ坩堝の使用頻度を上げて坩堝コストを低減させることなどで製造コストを引き下げることを目的とするものである。
As a manufacturing method of single crystal silicon used as a substrate of a semiconductor integrated circuit or a solar cell, from the viewpoint of stably supplying a large amount of high-quality products, there is currently a chocolate ski method (hereinafter referred to as CZ method) A so-called single crystal growth pulling method (hereinafter also referred to as pulling method) is the mainstream.
The CZ method has been studied from various viewpoints in order to reduce manufacturing costs. One example is the improvement of the method for supplying the crystal raw material. A method for producing long single crystal silicon while supplying the crystal raw material continuously (referred to as “continuous charge”), and the raw material for the initial charge. A method of supplying a crystal raw material after melting (referred to as “recharge”), or a method of supplying a crystal raw material at a high temperature after the pulling (referred to as “recharge”) and then performing a pull-up again. Has been developed. Both raw material supply methods efficiently produce the single crystal growth furnace without cooling it once, reduce energy costs, prevent damage due to heat history of expensive crucibles, increase crucible usage frequency and reduce crucible costs The purpose is to reduce the manufacturing cost.

前記リチャージ法などの原料供給方法は、単結晶引き上げ後に坩堝内に残存する融液に結晶原料を供給するものであり、単結晶の育成に直接影響を与えない点で有利な方法である。
結晶原料として粒塊状の多結晶シリコンを用いたリチャージ法が開発されている(特許文献1)。しかしながら、粒塊状の多結晶シリコンを使用する場合には、ロッド状多結晶シリコンを粒塊状に破砕する際に汚染が避けられない、粒塊状に破砕する工程が必要であり、また、粒塊状の多結晶シリコンが融液に落下した際に融液が飛び散る等の問題を抱えている。
The raw material supply method such as the recharge method is an advantageous method in that the crystal raw material is supplied to the melt remaining in the crucible after pulling the single crystal and does not directly affect the growth of the single crystal.
A recharge method using agglomerated polycrystalline silicon as a crystal raw material has been developed (Patent Document 1). However, in the case of using agglomerated polycrystalline silicon, a process of crushing rod-shaped polycrystalline silicon into agglomerated particles is inevitable, and contamination is inevitable. When polycrystalline silicon falls into the melt, there is a problem that the melt is scattered.

昨今、粒塊状の多結晶シリコンに代えて、多結晶シリコンの製造工程で得られたロッド状多結晶シリコンをそのままリチャージ結晶原料として使用する方法が開発されている。例えば、ロッド状多結晶シリコンをそのまま吊下げて融液中に浸漬して供給する方法が開示されている(特許文献2)。このロッド状多結晶シリコンの上部を直接支持して吊下げる方法では、ロッド状多結晶シリコンに微小クラックが入ってその破片が融液中に落下して融液が飛び跳ね周囲の部材の寿命を短くする、更にひどい場合は、坩堝(石英製)が破損して融液が漏れる危険性があった。そのため、高品質なロッド状多結晶シリコンが必要となる、掴みの部分の加工費がかかる、掴みシロの部分は最後まで溶かせないなどの問題も有った。   Recently, a method has been developed in which rod-shaped polycrystalline silicon obtained in the polycrystalline silicon manufacturing process is used as it is as a recharge crystal raw material in place of the granular lump-shaped polycrystalline silicon. For example, a method is disclosed in which rod-shaped polycrystalline silicon is suspended as it is and immersed in a melt to be supplied (Patent Document 2). In this method of directly supporting and suspending the upper part of the rod-shaped polycrystalline silicon, micro cracks are formed in the rod-shaped polycrystalline silicon, the fragments fall into the melt, and the melt jumps to shorten the life of surrounding members. However, in a worse case, there was a risk that the crucible (made of quartz) was damaged and the melt leaked. For this reason, high-quality rod-shaped polycrystalline silicon is required, the processing cost of the grip part is high, and the grip part cannot be melted to the end.

上記問題を解決するために、ロッド状多結晶原料を収納し、収納した状態で融液中に浸漬して結晶原料だけを溶融する籠状のリチャージ治具が提案されている(特許文献3)。この治具は、高融点材料(特許文献3では石英製)で作られている取り外し可能な底体が特徴である。しかし、石英が融液中に浸っている際に融液と反応して石英自体や、石英中の金属不純物が融液中に溶け出し単結晶の育成や品質に悪影響を及ぼす場合もあった。そのため、使用される石英は高純度のものが使われている。また、一度シリコン融液に底体を浸けると、底体の周囲にシリコンが固着して冷却過程において石英とシリコンの熱膨張率の差で石英の底体に亀裂やひび割れが生じ、再利用が困難となる。そのため底体は頻繁に廃棄し、新しいものと交換しなければならないという問題を有していた。
更に、場合によっては、底体が破損して融液内に落下することもある。その場合、坩堝に大量の融液を抱えたまま冷却せざるを得えなくなり、冷却途中で坩堝が割れて融液の一部が炉内に流れ出し、その融液が水冷チャンバー部まで達する可能性がある。最悪の場合は、チャンバーが破損し炉内に冷却水が噴出し、水蒸気爆発が起こる。
上記方法において、治具が、石英に代えてモリブデンやステンレス鋼などの高融点金属から作られている場合は、結晶原料が溶融し終わるまで冶具を原料融液中に存在させておく必要があるため、その間、該金属と原料融液との接触により原料融液が金属成分で汚染される問題がより大きくなる。かかる金属不純物による汚染は、半導体回路や太陽電池の性能を低下させるため好ましくない。
In order to solve the above problem, a rod-shaped recharge jig has been proposed in which a rod-shaped polycrystalline material is accommodated and immersed in the melt in the accommodated state to melt only the crystal material (Patent Document 3). . This jig is characterized by a removable bottom body made of a high melting point material (made of quartz in Patent Document 3). However, when quartz is immersed in the melt, it reacts with the melt and the quartz itself or metal impurities in the quartz melt into the melt, which may adversely affect the growth and quality of the single crystal. Therefore, high-purity quartz is used. In addition, once the bottom body is immersed in the silicon melt, silicon adheres to the periphery of the bottom body, and during the cooling process, cracks and cracks occur in the quartz bottom body due to the difference in thermal expansion coefficient between quartz and silicon. It becomes difficult. For this reason, the bottom body has to be frequently discarded and replaced with a new one.
Further, in some cases, the bottom body may be damaged and fall into the melt. In such a case, the crucible must be cooled while holding a large amount of melt, and the crucible may break during cooling, and a part of the melt may flow into the furnace, and the melt may reach the water-cooled chamber. There is. In the worst case, the chamber is damaged and cooling water is ejected into the furnace, resulting in a steam explosion.
In the above method, when the jig is made of a refractory metal such as molybdenum or stainless steel instead of quartz, the jig needs to be present in the raw material melt until the crystal raw material is completely melted. Therefore, the problem that the raw material melt is contaminated with the metal component due to the contact between the metal and the raw material melt is further increased. Such contamination by metal impurities is not preferable because it degrades the performance of semiconductor circuits and solar cells.

特開2004−83322号JP 2004-83322 A 特開平06−31193号JP 06-31193 A 特許4626303号Japanese Patent No. 4626303

本願発明者らは、上記従来の技術の問題点に鑑み鋭意検討した結果、ロッド状多結晶原料をほぼ垂直に立てた状態で安定的に坩堝内に供給し、供給と並行して多結晶原料全量の溶融を行って原料融液の調製を行うことができ、しかも、融液の汚染がなく高品質の単結晶を安定して育成することができる多結晶原料供給治具、並びに多結晶原料の供給方法を完成するに到った。   As a result of intensive investigations in view of the above-mentioned problems of the conventional technology, the inventors of the present application stably supplied the rod-shaped polycrystalline raw material into the crucible in an upright state, and in parallel with the supply, the polycrystalline raw material Polycrystalline raw material supply jig that can prepare a raw material melt by melting the whole amount, and can stably grow a high-quality single crystal without contamination of the melt, and a polycrystalline raw material To complete the supply method.

即ち、本発明により、ロッド状多結晶原料を起立した状態で坩堝に供給するためのロッド状多結晶原料供給治具であって、ロッド状多結晶原料の端部を支持する底部材、ロッド状多結晶原料の横方向の動きを規制して起立状態に維持する筒状ガイド部材、筒状ガイド部材と底部材を連結する連結部材、および筒状ガイド部材の上部に取り付けられた吊下げ部材を含み、筒状ガイド部材が高融点材料からなり、底部材および連結部材がロッド状多結晶原料と同じ元素の結晶材料からなることを特徴とする前記ロッド状多結晶原料供給治具が提供される。
上記ロッド状多結晶原料供給治具の発明において、
1)筒状ガイド部材が、少なくとも、ロッド状多結晶原料の周囲に垂直方向に設置される複数の支柱、当該複数の支柱を相互に連結する1個以上の支持部材により構成されること2)筒状ガイド部材が、少なくともその内側に、ロッド状多結晶原料との接触を防止する接触防止部材を備えること
3)接触防止部材が石英であり、高融点材料がモリブデン金属であること
4)ロッド状多結晶原料が、多結晶シリコンロッドであること
が好適である。
更に、本発明により、上記多結晶原料供給治具を用いて、当該治具内にロッド状多結晶原料を収納したのち、該治具を降下させて原料融液が充填された坩堝の底部に着地させ、底部材、連結部材並びにロッド状多結晶原料を原料融液と接触させて溶融を行うことを特徴とするロッド状多結晶原料の供給方法が提供される。
上記ロッド状多結晶原料の供給方法の発明において、ロッド状多結晶原料が、多結晶シリコンロッドであることが好ましい。
That is, according to the present invention, a rod-shaped polycrystalline material supply jig for supplying a rod-shaped polycrystalline material to a crucible in an upright state, the bottom member supporting the end of the rod-shaped polycrystalline material, a rod-shaped material A cylindrical guide member that regulates the lateral movement of the polycrystalline raw material and maintains the standing state, a connecting member that connects the cylindrical guide member and the bottom member, and a suspension member attached to the upper portion of the cylindrical guide member The rod-shaped polycrystalline raw material supply jig is provided, wherein the cylindrical guide member is made of a high melting point material, and the bottom member and the connecting member are made of a crystalline material of the same element as the rod-shaped polycrystalline raw material. .
In the invention of the rod-shaped polycrystalline raw material supply jig,
1) The cylindrical guide member is composed of at least a plurality of support columns installed in the vertical direction around the rod-shaped polycrystalline raw material, and one or more support members that interconnect the plurality of support columns 2) The cylindrical guide member is provided with a contact prevention member for preventing contact with the rod-shaped polycrystalline raw material at least on the inside thereof. 3) The contact prevention member is quartz and the high melting point material is molybdenum metal. 4) Rod It is preferable that the polycrystalline raw material is a polycrystalline silicon rod.
Further, according to the present invention, after the rod-shaped polycrystalline material is stored in the jig using the polycrystalline material supply jig, the jig is lowered to the bottom of the crucible filled with the raw material melt. There is provided a method for supplying a rod-shaped polycrystalline raw material characterized in that the material is landed and melted by bringing the bottom member, the connecting member and the rod-shaped polycrystalline raw material into contact with the raw material melt.
In the invention of the method for supplying the rod-shaped polycrystalline material, the rod-shaped polycrystalline material is preferably a polycrystalline silicon rod.

本発明のロッド状多結晶原料供給治具(以下、供給治具ともいう)は、ロッド状多結晶原料の落下による坩堝等の装置の損傷や坩堝が割れることによる融液漏れの危険性が生じない。更に、その一部にロッド状多結晶原料と同元素の結晶材料を使用しているので、供給治具材料からの融液の汚染も生じず、高品質の単結晶を安定して育成することができる。
更にまた、ロッド状多結晶原料と同元素の結晶材料として、ロッド状多結晶或いは円柱状単結晶から切り出された端材を利用できるので、これら結晶材料の有効利用が可能となり、引いては各々の製造コストの低減に寄与することができる。
当該供給治具を使用すれば、坩堝にロッド状多結晶原料を効率的、且つ、安全に再供給でき、しかも、坩堝を一度冷却することなく繰り返して使用できるので、単結晶の生産効率の向上に寄与し、その工業的価値は極めて高いものがある。
本発明の供給治具並びに供給方法は、具体的に例示された単結晶シリコンの製造だけでなく、他の無機単結晶材料の製造の際にも広く応用が可能であり、その適用範囲が広い。なお、単結晶シリコンの製造に適用した場合、底部材および連結部材としてロッド状多結晶シリコンと同じ元素からなる単結晶シリコンを使用することができるため好ましい。何故なら、単結晶シリコンは他の無機単結晶材料と比較して適度な機械的強度を有し、且つ、加工が容易であるからである。
The rod-shaped polycrystalline raw material supply jig of the present invention (hereinafter also referred to as a supply jig) has a risk of damage to a crucible or the like due to dropping of the rod-shaped polycrystalline raw material or a risk of melt leakage due to cracking of the crucible. Absent. In addition, since a crystal material of the same element as the rod-shaped polycrystalline raw material is used for a part thereof, the contamination of the melt from the supply jig material does not occur, and a high-quality single crystal can be stably grown. Can do.
Furthermore, as the crystal material of the same element as the rod-shaped polycrystalline material, since the end material cut from the rod-shaped polycrystal or the columnar single crystal can be used, these crystal materials can be used effectively. This can contribute to a reduction in manufacturing costs.
By using the supply jig, the rod-shaped polycrystalline material can be efficiently and safely re-supplied to the crucible, and the crucible can be used repeatedly without having to be cooled once, thus improving the production efficiency of single crystals. And its industrial value is extremely high.
The supply jig and the supply method of the present invention can be widely applied not only to the production of specifically exemplified single crystal silicon but also to the production of other inorganic single crystal materials, and the application range is wide. . Note that when applied to the manufacture of single crystal silicon, single crystal silicon made of the same element as rod-shaped polycrystalline silicon can be used as the bottom member and the connecting member, which is preferable. This is because single crystal silicon has an appropriate mechanical strength as compared with other inorganic single crystal materials and is easily processed.

ロッド状多結晶原料供給治具の一例を示す概略図である。It is the schematic which shows an example of a rod-shaped polycrystalline raw material supply jig. 筒状ガイド部材の他の例を示すロッド状多結晶原料供給治具の概略図である。It is the schematic of the rod-shaped polycrystalline raw material supply jig | tool which shows the other example of a cylindrical guide member. 底部材と接合部材との接合態様を示す部分拡大図である。It is a partial enlarged view which shows the joining aspect of a bottom member and a joining member. 底部材と接合部材との他の接合態様を示す部分拡大図である。It is the elements on larger scale which show the other joining aspect of a bottom member and a joining member. 接触防止部材の代表的な態様を示す部分拡大図である。It is the elements on larger scale which show the typical aspect of a contact prevention member. 支柱と、支持部材および接触防止部材との係止状態を示す断面図であるIt is sectional drawing which shows the latching state of a support | pillar, a supporting member, and a contact prevention member. ロッド状多結晶原料供給治具を用いた原料の供給方法の概念図である。It is a conceptual diagram of the raw material supply method using the rod-shaped polycrystalline raw material supply jig. 実施例1で使用した本発明のロッド状多結晶原料供給治具の概略図である。1 is a schematic view of a rod-shaped polycrystalline raw material supply jig of the present invention used in Example 1. FIG.

〔ロッド状多結晶原料供給治具〕
本発明の供給治具は、その内部にロッド状多結晶原料を収納し、坩堝内に降下させてロッド状多結晶原料を起立状態で融液と接触させ、溶融させる補助治具である。
該供給治具は、ロッド状多結晶原料の端部を支持する底部材、ロッド状多結晶原料の横方向の動きを規制して起立状態に維持する筒状ガイド部材、筒状ガイド部材と底部材を連結する連結部材、および筒状ガイド部材の上部に取り付けられ当該治具を吊下げるための吊下げ部材から基本構成される。
ロッド状多結晶原料供給治具の好適な例を図1、図2、および図8に示す。構成部材の詳細については後述する。
ロッド状多結晶原料を収納した該供給治具は、吊下げ部材を介して単結晶製造装置内に吊下げ、治具の下端部が坩堝底に着地するまで徐々に降下させる。そして、後述するように、底部材並びに連結部材が順次溶解しながら、起立状態でのロッド状多結晶原料の溶融による沈み込みを補助する。ロッド状多結晶原料の所定量が溶融した後は、吊下げ部材、筒状ガイド部材、および溶融し残った連結部材を引き上げる。その後、新たな連結部材および底部材を使用して再度該供給治具を組み立て、次の供給操作に使用する。
[Rod-shaped polycrystalline material supply jig]
The supply jig of the present invention is an auxiliary jig that houses a rod-shaped polycrystalline material therein, lowers it into a crucible, contacts the rod-shaped polycrystalline material with the melt in an upright state, and melts it.
The supply jig includes a bottom member that supports an end portion of the rod-shaped polycrystalline raw material, a cylindrical guide member that regulates the lateral movement of the rod-shaped polycrystalline raw material and maintains the standing state, and the cylindrical guide member and the bottom portion. It is basically composed of a connecting member for connecting materials and a hanging member attached to the upper part of the cylindrical guide member for hanging the jig.
A suitable example of the rod-shaped polycrystalline raw material supply jig is shown in FIGS. 1, 2, and 8. Details of the constituent members will be described later.
The supply jig containing the rod-shaped polycrystalline raw material is suspended in the single crystal manufacturing apparatus via a suspension member, and gradually lowered until the lower end of the jig reaches the bottom of the crucible. Then, as will be described later, the bottom member and the connecting member are sequentially melted to assist subsidence due to melting of the rod-shaped polycrystalline raw material in the standing state. After the predetermined amount of the rod-shaped polycrystalline raw material is melted, the suspension member, the cylindrical guide member, and the molten and remaining connecting member are pulled up. Thereafter, the supply jig is assembled again using a new connecting member and bottom member, and used for the next supply operation.

〔底部材〕
底部材は、ロッド状多結晶原料の端部を支持するための部材であり、その形状は特に制限されない。その形状は筒状ガイド部材の水平断面形状や連結部材との接合方法によって任意に設計されるものであり、円板状、四角板状、或いは図3に示すように、接合部材が嵌め込められるように切り込みを入れた形状等が例示される。育成引き上げした円柱状の単結晶の上部(トップともいう)や下部(テイルともいう)を水平に切り取り、その水平部分を上あるいは下にして底部材として使用することもできる。水平部分を上にするか、下にするかは連結部材との接合方法による。後述するような図4に示すピンを差し込んで底部材を載せる方法では、ピンが外れにくいように水平部分を下にする方が好ましい。
当該底部材の上面の表面状態も特に限定されず、必ずしも水平な表面を有する必要はない。ロッド状多結晶原料との滑りを無くすために表面に微細な凹凸を施しても良い。厚みはロッド状多結晶原料の重さに応じて適宜設計されるが、通常は2〜10mm程度であれば強度的に十分である。
当該底部材は、後述するように連結部材と連結させて使用する。連結方法としては、連結部材と底部材側面に複数の孔を開け、その孔にピンを差し込んで両者を連結する方法や、図4に示すように連結部材に差し込んだピンの上に底部材を載せる方法が挙げられる。後者の方法は、底部材を加工する必要がないため好ましい方法である。
[Bottom member]
The bottom member is a member for supporting the end of the rod-shaped polycrystalline raw material, and its shape is not particularly limited. The shape is arbitrarily designed according to the horizontal cross-sectional shape of the cylindrical guide member and the joining method with the connecting member, and the joining member can be fitted as shown in FIG. Examples of such a shape with a cut are illustrated. The upper part (also referred to as the top) and the lower part (also referred to as the tail) of the columnar single crystal grown and pulled up can be cut horizontally and used as a bottom member with the horizontal part up or down. Whether the horizontal portion is up or down depends on the joining method with the connecting member. In the method of inserting the pin shown in FIG. 4 and placing the bottom member as described later, it is preferable to set the horizontal portion downward so that the pin is not easily detached.
The surface state of the upper surface of the bottom member is not particularly limited, and does not necessarily have a horizontal surface. In order to eliminate slippage with the rod-shaped polycrystalline raw material, fine irregularities may be provided on the surface. The thickness is appropriately designed according to the weight of the rod-shaped polycrystalline raw material, but usually about 2 to 10 mm is sufficient in strength.
The bottom member is used by being connected to a connecting member as will be described later. As a connecting method, a plurality of holes are formed in the connecting member and the side surface of the bottom member, and a pin is inserted into the hole to connect both, or the bottom member is placed on the pin inserted into the connecting member as shown in FIG. The method of putting is mentioned. The latter method is a preferable method because it is not necessary to process the bottom member.

底部材は、供給治具を降下させて坩堝内の融液と接触した後、ただちに溶融が始まる。その後、該治具が坩堝底に着地して、底部材は完全に溶融して消失する。底部材が溶融して消失したあと、収納されているロッド状多結晶原料が、溶融しながら自重により下降して坩堝底に着地する。このため、底部材はロッド状多結晶原料と同じ元素の結晶材料からなることが必要である。同じ元素の結晶材料であれば、ロッド状多結晶原料と同じ品質の多結晶原料であっても、多結晶材料から育成された単結晶材料であっても良い。後者の単結晶材料の場合、結晶欠陥が非常に少ないため機械的強度が高く、坩堝に供給する際に割れたりすることがないので、底部材として大変有用である。また単結晶材料の場合、育成後のロッド状単結晶から所定の製品を切り出した後の残りの端材を使用することができるため、単結晶製品の製造コストの低減に寄与する。
無機単結晶材料が単結晶シリコンである場合は、その用途が太陽電池であれば、太陽電池用ウェハ作製過程で生じる捨てシロ部分をそのまま底部材に利用できるので大変好ましい。太陽電池用ウェハは、一旦ブロック状に一次加工した後、マルチワイヤソーでスライスして太陽電池用ウェハとする。その際、ワイヤのブレをなくし、歩留まりを上げるために通常ブロックの両端に捨てシロ部分を設ける。その捨てシロ部分はすでに当該発明の底部材として好適な形状と厚さを有しているため再加工なしでそのまま使用できる。
The bottom member begins to melt immediately after the supply jig is lowered and comes into contact with the melt in the crucible. Thereafter, the jig lands on the crucible bottom, and the bottom member melts completely and disappears. After the bottom member melts and disappears, the stored rod-shaped polycrystalline raw material descends by its own weight while melting, and lands on the crucible bottom. For this reason, the bottom member needs to be made of a crystal material of the same element as the rod-shaped polycrystalline material. As long as it is a crystal material of the same element, it may be a polycrystalline material having the same quality as the rod-shaped polycrystalline material, or a single crystal material grown from the polycrystalline material. The latter single crystal material is very useful as a bottom member because it has a high mechanical strength because it has very few crystal defects and does not crack when supplied to a crucible. In the case of a single crystal material, since the remaining end material after a predetermined product is cut out from the grown rod-shaped single crystal can be used, it contributes to a reduction in manufacturing cost of the single crystal product.
In the case where the inorganic single crystal material is single crystal silicon, if the application is a solar cell, the waste white portion generated in the process of manufacturing the solar cell wafer can be used as it is for the bottom member, which is very preferable. The solar cell wafer is first processed into a block shape, and then sliced with a multi-wire saw to obtain a solar cell wafer. At that time, in order to eliminate the blurring of the wire and increase the yield, a normal white portion is provided at both ends of the block. Since the discarded white portion already has a shape and thickness suitable for the bottom member of the present invention, it can be used as it is without rework.

〔連結部材〕
連結部材は、前記底部材と後述する筒状ガイド部材とを連結するための部材で有り、底部材同様、融液が入った坩堝に供給治具を着地させるのと前後して溶融する必要があるために、ロッド状多結晶原料と同じ元素の結晶材料からなることが必須である。同じ元素の結晶材料であれば、多結晶原料で有っても、単結晶材料であっても良いが、底部材と同じ理由により単結晶材料が好ましい。
連結材料の形状は特に制限がなく、底部材やと筒状ガイドの接合方法、或いは端材の形状などにより任意の形状が採用され、具体的には角板状や蒲鉾状などが例示される。特に太陽電池用の単結晶シリコンの場合、一次加工によって円柱状の単結晶から断面が正方形になるように周りの4面が縦方向に切り落とされる。そのとき発生する蒲鉾状の端材を孔開け加工のみで、連結部材として使えるため経済的である。
連結材料の縦方向の長さも特に限定されない。ロッド状多結晶原料を坩堝底に安定的に着地させ溶融を補助する目的と、円筒状ガイド部材が融液と接触しないだけの十分な距離を確保する機能を勘案すれば、30〜400mm程度が好適である。その使用本数も特に制限されず、供給治具として必要な強度、下記底部材との連結方法、或いは後出の筒状ガイド部材との連結方法などによって適宜決定される。通常3〜6個である。
(Connecting member)
The connecting member is a member for connecting the bottom member and a cylindrical guide member, which will be described later. Like the bottom member, the connecting member needs to be melted before and after landing the supply jig on the crucible containing the melt. For this reason, it is essential to be made of a crystal material of the same element as the rod-shaped polycrystalline material. A crystalline material of the same element may be a polycrystalline material or a single crystal material, but a single crystal material is preferable for the same reason as the bottom member.
The shape of the connecting material is not particularly limited, and any shape can be adopted depending on the joining method of the bottom member and the cylindrical guide, or the shape of the end material, and specifically, a square plate shape, a saddle shape, etc. are exemplified. . In particular, in the case of single crystal silicon for solar cells, the four surrounding surfaces are cut off in the vertical direction so that the cross section becomes a square from the cylindrical single crystal by primary processing. The hook-shaped end material generated at that time can be used as a connecting member only by drilling, which is economical.
The length of the connecting material in the longitudinal direction is not particularly limited. Considering the purpose of stably landing the rod-shaped polycrystalline raw material on the bottom of the crucible and assisting the melting, and the function of ensuring a sufficient distance that the cylindrical guide member does not contact the melt, about 30 to 400 mm Is preferred. The number used is not particularly limited, and is appropriately determined depending on the strength required for the supply jig, the connecting method with the following bottom member, or the connecting method with the cylindrical guide member described later. Usually 3-6.

連結部材と底部材との連結方法は特に限定されない。以下、代表的な方法で説明する。
図3示す方法は、底部材と連結部材とに、互いの形状に合わせ各々に切り込みを入れ、立体的に嵌め込む方法である。係止具なしで、底部材と連結部材とだけで固定できるので簡便な方法である。図2に示す方法は、連結部材の下方位置に複数の孔を空け、該孔に、ロッド状多結晶原料と同じ元素の結晶材料からなるピンを通し、該ピンの上に底部材を載せ保持するものである。収納するロッド状多結晶原料の重量に合わせて、ピンの数を増減させたり、対向する連結部材を一部同一のピンで保持する態様も採用される。ピンの断面は円形でも矩形でもよい。なお、ピンは有頭であっても無頭であってもよいが、加工の手間がないことから無頭が好ましい。
このピンとしては、単結晶育成初期に形成されるネック部を、再加工がほとんどいらずに再利用することができる。ベルジャーと呼ばれる釣鐘状の析出炉(反応器)内に塩素化シランガスやモノシランガスと水素を所定の混合比で送り、高純度のシリコンで作った棒状の芯線に電流を流して加熱し、芯線表面にシリコンを析出させる、いわゆるベルジャー法による多結晶シリコンの製造において得られる多結晶シリコンは、当該発明のロッド状多結晶原料に好適に使用される。あわせて、得られた高純度の多結晶シリコンを棒状の芯線に加工する際に出てくる短い端材は、前記ピンとして使用することができ有用である。連結部材と筒状ガイド部材との連結方法については後述する。
The connection method of a connection member and a bottom member is not specifically limited. Hereinafter, a typical method will be described.
The method shown in FIG. 3 is a method in which a bottom member and a connecting member are cut in accordance with the shape of each other and are three-dimensionally fitted. This is a simple method because it can be fixed only by the bottom member and the connecting member without a locking tool. In the method shown in FIG. 2, a plurality of holes are formed below the connecting member, a pin made of a crystal material of the same element as the rod-shaped polycrystalline material is passed through the hole, and a bottom member is placed on the pin and held. To do. A mode in which the number of pins is increased or decreased according to the weight of the rod-shaped polycrystalline raw material to be stored, or the facing connecting members are partially held by the same pins is also adopted. The cross section of the pin may be circular or rectangular. The pin may be headed or headless, but headless is preferable because it does not require processing.
As this pin, the neck portion formed at the initial stage of single crystal growth can be reused with almost no rework. In a bell-shaped precipitation furnace (reactor) called bell jar, chlorinated silane gas or monosilane gas and hydrogen are sent at a predetermined mixing ratio, and current is passed through a rod-shaped core wire made of high-purity silicon to heat it. Polycrystalline silicon obtained in the production of polycrystalline silicon by the so-called bell jar method in which silicon is deposited is suitably used for the rod-shaped polycrystalline raw material of the present invention. In addition, a short end material that is produced when the obtained high-purity polycrystalline silicon is processed into a rod-shaped core wire can be used as the pin and is useful. A method for connecting the connecting member and the cylindrical guide member will be described later.

〔筒状ガイド部材〕
筒状ガイド部材は、ロッド状多結晶原料の横方向の動きを規制して、底部材上に起立
した状態に維持するものである。具体的には、ロッド状多結晶材料が傾いた状態で底部材上に起立し、当該筒状ガイド部材の一部とロッド状多結晶材料の一部が接触して起立状態が維持される態様、或いは、ロッド状多結晶材料が、当該筒状ガイド部材とは接触しないで底部材上に自立している態様があり、何れも本発明においては、起立した状態と云う。
筒状ガイド部材は、供給治具の降下時、更には坩堝内でロッド状多結晶原料が下部から溶融して沈み込む際に起立状態を維持して坩堝内に供給する働きをなす。該筒状ガイド部材は、前出の連結部材と連結され供給治具の一部を構成するが、基本的には、坩堝内の融液と接触することはない。しかしながら、融液が入った坩堝近傍の高温域で使用するので、耐熱性の観点から高融点の材料からなるものであることが必要である。
従って、高融点材料は、原料融液の種類により異なる。例えば、多結晶原料が多結晶シリコンである場合、融点は1414℃であるので、高融点材料としては、モリブデン(溶融温度2623℃)、タングステン(溶融温度3422℃)、石英(軟化点1600℃)などが用いられる。特に、機械的強度が高いこと、加工の容易性の観点からモリブデンが好ましい。
上記機能を発揮する限り、その形状は特に限定されず、例えば、図2に示す円筒状、その他三角筒、四角筒等の多角筒、或いは図1に示す籠状の形状が採用される。該筒状ガイド部材の垂直方向の長さは、収納するロッド状多結晶原料の長径に合わせて適宜決定されるが、通常200〜1500mm程度である。筒状ガイド部材の内部の大きさ(水平断面積)は、ロッド状多結晶原料が円滑に収納できる限り特に制限はない。好ましくは、ロッド状多結晶原料の収納時の円滑性、溶融時の自重による沈み込みの容易性、および起立時の傾き度合いの観点から、該原料の最大水平断面積の1.1〜1.7倍の断面積を有する形状に設計される。
(Cylindrical guide member)
The cylindrical guide member regulates the lateral movement of the rod-shaped polycrystalline raw material and keeps it standing on the bottom member. Specifically, an aspect in which the rod-like polycrystalline material stands on the bottom member in a tilted state, and a part of the cylindrical guide member and a part of the rod-like polycrystalline material are in contact with each other to maintain the standing state. Alternatively, there is a mode in which the rod-shaped polycrystalline material is self-supporting on the bottom member without being in contact with the cylindrical guide member, and both are said to be standing in the present invention.
The cylindrical guide member serves to maintain an upright state and supply the crucible to the crucible when the supply jig is lowered, and further when the rod-shaped polycrystalline material melts and sinks from the lower part in the crucible. The cylindrical guide member is connected to the connecting member described above and constitutes a part of the supply jig, but basically does not come into contact with the melt in the crucible. However, since it is used in a high temperature region near the crucible containing the melt, it is necessary to be made of a material having a high melting point from the viewpoint of heat resistance.
Therefore, the high melting point material differs depending on the type of raw material melt. For example, when the polycrystalline raw material is polycrystalline silicon, the melting point is 1414 ° C., and as the high melting point material, molybdenum (melting temperature 2623 ° C.), tungsten (melting temperature 3422 ° C.), quartz (softening point 1600 ° C.) Etc. are used. In particular, molybdenum is preferable from the viewpoint of high mechanical strength and ease of processing.
The shape is not particularly limited as long as the above function is exhibited. For example, a cylindrical shape shown in FIG. 2, a polygonal cylinder such as a triangular cylinder or a square cylinder, or a bowl-like shape shown in FIG. The length of the cylindrical guide member in the vertical direction is appropriately determined according to the long diameter of the rod-shaped polycrystalline raw material to be stored, but is usually about 200 to 1500 mm. The internal size (horizontal cross-sectional area) of the cylindrical guide member is not particularly limited as long as the rod-shaped polycrystalline material can be smoothly stored. Preferably, from the viewpoint of smoothness during storage of the rod-shaped polycrystalline raw material, ease of subsidence due to its own weight during melting, and a degree of inclination during standing, 1.1 to 1. It is designed to have a shape having a cross-sectional area of 7 times.

籠状の場合は、通常、少なくとも、ロッド状多結晶原料の周囲に垂直方向に設置される複数の支柱と、当該複数の支柱を相互に連結する1個以上の支持部材とにより構成される。
支柱は、設計される供給治具の垂直方向の長さに応じた棒状の高融点材料である。この支柱の複数本が、支柱同士を相互に連結する高融点材料からなる支持部材により連結されて籠形状を形成するものである。支持部材がリング状であれば円筒状の籠になり、支持部材が、多角環状板で有れば、その板の形状に合わせて三角筒、四角筒などの多角形の筒状籠になる。多角環状板に代えて、複数の棒状または板状の支持部材を組み合わせて多角形の筒状籠を作製することもできる。
支柱の数は特に制限はなく、供給治具の強度や各支柱の間隔等から決定される。好適には3〜12本である。各支柱の間隔は、ロッド状多結晶原料を確実に保持することができるように、好ましくは、該結晶原料の直径より小さくする。支柱の形状は、円柱状や角柱状などから、支持部材との連結方式を勘案して決定される。
支持部材の数も特に制限はなく、強度及び製造コストの観点から、2〜4本とするのが好ましい。当該支柱と支持部材とは、通常支柱にネジを切ってボルト・ナット形式で連結される。図5に、リング状支持部材と支柱とを用いた場合の代表的な連結状態を示す。
前出の連結部材と当該筒状ガイド部材との連結方法は特に制限されない。例えば、図1に示すように、筒状ガイド部材の籠を構成する支柱の坩堝側の末端部分をL字形状にして外向きに配置し、連結部材に設けられた孔と嵌合させる方法が挙げられる。その他、棒、ボルト、ワイヤ等の係止具を用いて連結させる方法も採用される。
In the case of a bowl-like shape, it is usually composed of at least a plurality of support columns installed in the vertical direction around the rod-shaped polycrystalline raw material and one or more support members that interconnect the plurality of support columns.
The support column is a bar-shaped high melting point material corresponding to the vertical length of the supply jig to be designed. A plurality of the columns are connected by a supporting member made of a high melting point material that connects the columns to each other to form a bowl shape. If the support member is ring-shaped, it becomes a cylindrical ridge, and if the support member is a polygonal annular plate, it becomes a polygonal cylindrical ridge such as a triangular cylinder or a square cylinder according to the shape of the plate. Instead of the polygonal annular plate, a polygonal cylindrical basket can be produced by combining a plurality of rod-like or plate-like support members.
The number of struts is not particularly limited, and is determined from the strength of the supply jig, the spacing between the struts, and the like. The number is preferably 3-12. The interval between the pillars is preferably smaller than the diameter of the crystal raw material so that the rod-shaped polycrystalline raw material can be reliably held. The shape of the column is determined from a columnar shape, a prismatic shape, or the like in consideration of the connection method with the support member.
The number of supporting members is not particularly limited, and is preferably 2 to 4 from the viewpoint of strength and manufacturing cost. The support column and the support member are usually connected to the support column in the form of bolts and nuts by cutting screws. FIG. 5 shows a typical connection state when a ring-shaped support member and a support are used.
A method for connecting the above-described connecting member and the cylindrical guide member is not particularly limited. For example, as shown in FIG. 1, there is a method in which a crucible-side end portion of a column that constitutes a rod of a cylindrical guide member is L-shaped and arranged outwardly and fitted with a hole provided in a connecting member. Can be mentioned. In addition, a connection method using a locking tool such as a rod, bolt, or wire is also employed.

〔接触防止部材〕
前記筒状ガイド部材は、底部材上に起立状態で支持されたロッド状多結晶原料が直接筒状ガイド部材に接触するのを防ぐ働きをなす。ロッド状多結晶原料が筒状ガイド部材と接触することにより該筒状ガイド部材の成分或いは不純物が原料に付着して、原料融液が汚染されることを防止するものである。この問題を解決するために、筒状ガイド部材の少なくとも内側に、接触防止部材を配設することが好ましい。この接触防止部材の材料としては、石英、シリコンなどが挙げられるが、加工の容易性の観点から石英が好適である。
接触防止部材の配置形態は特に限定されない。例えば、図5に示す如く、高融点材料からなる支柱を石英管で覆う方法、図6(a)に示す如く、リング状の石英筒を筒状ガイド部材の内側に水平に配設する方法、図6(b)に示すように、棒状の石英棒を筒状ガイド部材の内側に垂直に配設する方法などが挙げられる。
[Contact prevention member]
The cylindrical guide member serves to prevent the rod-shaped polycrystalline raw material supported in an upright state on the bottom member from directly contacting the cylindrical guide member. When the rod-shaped polycrystalline raw material comes into contact with the cylindrical guide member, components or impurities of the cylindrical guide member are prevented from adhering to the raw material and contaminating the raw material melt. In order to solve this problem, it is preferable to arrange a contact preventing member at least inside the cylindrical guide member. Examples of the material for the contact prevention member include quartz and silicon. Quartz is preferable from the viewpoint of ease of processing.
The arrangement form of the contact preventing member is not particularly limited. For example, as shown in FIG. 5, a method of covering a column made of a high melting point material with a quartz tube, as shown in FIG. 6A, a method of arranging a ring-shaped quartz tube horizontally inside a cylindrical guide member, As shown in FIG. 6B, there is a method in which a rod-shaped quartz rod is disposed vertically inside the cylindrical guide member.

〔吊下げ部材〕
吊下げ部材は、ワイヤやシャフトを介して単結晶製造装置内に供給治具を吊下げるものであり、筒状ガイド部材の上端部に設置される。具体的には、筒状ガイド部材が籠状である場合は、支柱或いは支持部材に連結して設けることができる。吊下げ部材の形状、大きさ、数は特に制限なく、供給治具および収納するロッド状多結晶原料の重量を勘案し、筒状ガイド部材の形状や上端部の構造に応じて任意に設計される。当該吊下げ部材の材料は特に制限はないが、耐熱性の観点から筒状ガイド部材と同じ材質の高融点材料を使用するが好ましい。
(Hanging member)
The suspension member suspends the supply jig in the single crystal manufacturing apparatus via a wire or a shaft, and is installed at the upper end of the cylindrical guide member. Specifically, when the cylindrical guide member is bowl-shaped, it can be connected to a support or a support member. The shape, size, and number of the suspension members are not particularly limited, and are arbitrarily designed according to the shape of the cylindrical guide member and the structure of the upper end, taking into account the weight of the supply jig and the rod-shaped polycrystalline material to be stored. The The material of the suspension member is not particularly limited, but it is preferable to use a high melting point material made of the same material as the cylindrical guide member from the viewpoint of heat resistance.

〔ロッド状多結晶原料の供給方法〕
本発明の多結晶原料供給治具は、単結晶の育成を目的として原料の多結晶材料の溶融操作時に使用するものであるが、使用される坩堝、ヒータ、断熱材、坩堝昇降機等の装備は、単結晶の育成引き上げ装置に使用されるものを何ら制限なく利用できる。
また、本発明のロッド状多結晶原料の供給方法は、溶融した多結晶原料が坩堝に存在する状態で、ロッド状多結晶原料をその融液に接触せしめて供給する方法であり、前記リチャージ、追いチャージ等の公知の供給方法を全て含むものである。本発明のロッド状多結晶原料の供給方法は、かかる原料供給方法において、前記本発明の多結晶原料供給治具を用いることに最大の特徴がある。
具体的には、坩堝に融液がある状態で本発明の多結晶原料供給治具内にロッド状多結晶原料を収納し、吊下げ部材を通して単結晶育成引き上げ装置内に吊下げて、該治具を坩堝内に導入する。次いで、該治具を降下させて残存原料融液が含まれる坩堝の底部に着地させる。残存原料融液と接触後直ちに、融液と同じ材料からなる底部材および連結部材は溶融を始める。少なくとも底部材が完全に溶融した後、ロッド状多結晶原料の下端部が一部は溶融しながら、自重により融液内に徐々に沈み込んでいく。その後、ロッド状多結晶原料は下部から溶融して原料融液となる。
[Method of supplying rod-shaped polycrystalline material]
The polycrystalline raw material supply jig of the present invention is used at the time of melting operation of a raw material polycrystalline material for the purpose of growing a single crystal, but the equipment such as a crucible, a heater, a heat insulating material, a crucible elevator, etc. Those used in the single crystal growth and pulling apparatus can be used without any limitation.
The rod-shaped polycrystalline material supply method of the present invention is a method of supplying the rod-shaped polycrystalline material in contact with the melt while the molten polycrystalline material is present in the crucible, the recharging, All known supply methods such as follow-up charging are included. The supply method of the rod-shaped polycrystalline raw material of the present invention is most characterized by the use of the polycrystalline raw material supply jig of the present invention in the raw material supply method.
Specifically, the rod-like polycrystalline raw material is stored in the polycrystalline raw material supply jig of the present invention with the melt in the crucible, and is suspended in the single crystal growth and pulling apparatus through the suspension member. The tool is introduced into the crucible. Next, the jig is lowered to land on the bottom of the crucible containing the remaining raw material melt. Immediately after contact with the remaining raw material melt, the bottom member and the connecting member made of the same material as the melt start to melt. After at least the bottom member is completely melted, the lower end portion of the rod-shaped polycrystalline raw material gradually sinks into the melt by its own weight while partially melting. Thereafter, the rod-shaped polycrystalline raw material is melted from the lower part to form a raw material melt.

底部材と坩堝底とは、図3に示すように接合部材が下方に突き出ている場合は、通常、5〜20mm程度の空隙を有しているが、この程度の空隙であれば、自重で沈み込むロッド状多結晶原料が坩堝底と衝突して坩堝が破損したり、融液が飛び散ることは起こらない。ロッド状多結晶原料は、融液中では連結部材で囲まれて輻射熱が遮られているので、当該原料に比べて連結部材が先に溶融するが、連結部材の筒状ガイドとの接合上端部は、融液に浸漬しないので残存する。
供給時の温度は、多結晶材料の融点以上の温度、好ましくは多結晶原料供給治具が着地するまでに底部材が溶融消失してロッド状多結晶原料が融液内を落下しないように温度制御する必要がある。例えば多結晶シリコン材料の場合は、通常1420〜1550℃に維持される。供給時の雰囲気は、水分や酸素の混入を防ぐために、結晶育成と同じ雰囲気、例えば単結晶シリコンの場合、アルゴンなどの不活性ガス雰囲気下、或いは窒素、真空などの非酸化性雰囲気下とすることが好ましい。
ロッド状多結晶原料を筒状ガイド部材で倒れ防止する必要がなくなるまで溶融した後、供給治具を引き上げて、単結晶育成引き上げ装置から取り出す。
上記一連の操作を繰り返して、所定の量までロッド状多結晶原料を供給する。
When the joining member protrudes downward as shown in FIG. 3, the bottom member and the crucible bottom usually have a gap of about 5 to 20 mm. The rod-like polycrystalline raw material that sinks does not collide with the crucible bottom and the crucible is broken or the melt does not scatter. Since the rod-shaped polycrystalline raw material is surrounded by the connecting member in the melt and the radiant heat is blocked, the connecting member melts earlier than the raw material, but the joint upper end of the connecting member with the cylindrical guide Remains because it is not immersed in the melt.
The temperature at the time of supply is a temperature equal to or higher than the melting point of the polycrystalline material, preferably such that the bottom member does not melt and disappear before the polycrystalline raw material supply jig lands, and the rod-shaped polycrystalline raw material falls within the melt. Need to control. For example, in the case of a polycrystalline silicon material, it is normally maintained at 1420 to 1550 ° C. The atmosphere at the time of supply is the same atmosphere as crystal growth, for example, in the case of single crystal silicon, in an inert gas atmosphere such as argon, or in a non-oxidizing atmosphere such as nitrogen or vacuum in order to prevent moisture and oxygen from being mixed. It is preferable.
After melting the rod-shaped polycrystalline material until it is no longer necessary to prevent the cylindrical guide member from collapsing, the supply jig is pulled up and taken out from the single crystal growth pulling apparatus.
By repeating the above series of operations, the rod-shaped polycrystalline material is supplied up to a predetermined amount.

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, not all combinations of features described in the embodiments are essential to the solution means of the present invention.

実施例1
図8に示す本発明の供給治具を、以下に示す手順で作製した。筒状ガイド部材60は内径137mm、高さ1.2mですべてモリブデン製である。支柱61は直径5mmで等間隔で12本並んでおり、支柱61の上部は内径137mm、外形154mmのリング状の板を支持部材62として使用して支柱61とナット63で固定した。また下部の支持部材62は内形が137mmの円形状、外形が正方形をしており、外側面に直径5mmの棒を水平方向に一辺当たり2本差し込んだ構造とした。なお、接触防止部材80として内径6mm、厚さ1.5mmの高純度石英管中に支柱61を通した構造とした。
吊り下げ部材70として、モリブデン製の棒状の板を十字形に組み、単結晶育成引き上げ装置の引き上げワイヤの先端の治具に接合した。なお、十字型に組んだ棒状の板で上部の支持部材62を挟み込むようにして接合した。
連結部材50として、直径203mmの単結晶シリコンの側面を縦方向に切り落とした際に発生した蒲鉾状の板を使用した。幅は115mm、長さは400mm、厚さは18mm(最大部)で、上部と下部にそれぞれ6mmの穴を2箇所ずつ開けた。前述の下部の支持部材62へ差し込んだ2本の棒に蒲鉾状の連結部材50をはめ込んで、連結させた。
底部材40は、直径203mmの単結晶シリコンをブロック状に一次加工した後、マルチワイヤソーでスライスした際に発生した捨てシロ部分、すなわち厚さ5mm、一辺が156mmの略正方形状の板(角が丸い形状)を使用した。ピンは単結晶育成後、不要となった直径5〜6mmのネック部を長さ20mmに切断したものを使用した。前述の連結部材50の下部の2箇所の孔にそのピンを半分程度さし込み、その上に底部材40を載せた。
Example 1
The supply jig of the present invention shown in FIG. 8 was produced by the following procedure. The cylindrical guide member 60 has an inner diameter of 137 mm and a height of 1.2 m, and is all made of molybdenum. Twelve struts 61 are arranged at equal intervals with a diameter of 5 mm, and a ring-shaped plate having an inner diameter of 137 mm and an outer diameter of 154 mm is used as the support member 62 on the upper portion of the strut 61 and fixed with the strut 61 and the nut 63. The lower support member 62 has a circular shape with an inner shape of 137 mm and a square outer shape, and has a structure in which two bars with a diameter of 5 mm are inserted into the outer surface per side in the horizontal direction. The contact preventing member 80 has a structure in which a support 61 is passed through a high-purity quartz tube having an inner diameter of 6 mm and a thickness of 1.5 mm.
As the suspending member 70, a bar-shaped plate made of molybdenum was assembled in a cross shape and joined to a jig at the tip of the pulling wire of the single crystal growth pulling apparatus. The upper support member 62 was sandwiched between rod-shaped plates assembled in a cross shape and joined.
As the connecting member 50, a bowl-shaped plate generated when a side surface of single crystal silicon having a diameter of 203 mm was cut off in the vertical direction was used. The width was 115 mm, the length was 400 mm, the thickness was 18 mm (maximum part), and two 6 mm holes were drilled in the upper and lower parts. The hook-shaped connecting member 50 was fitted into the two rods inserted into the lower support member 62 and connected.
The bottom member 40 is a waste white portion generated when a single-crystal silicon having a diameter of 203 mm is first processed into a block shape and then sliced with a multi-wire saw, that is, a substantially square plate having a thickness of 5 mm and a side of 156 mm. Round shape) was used. The pin used what cut | disconnected the neck part with a diameter of 5-6 mm which became unnecessary after single crystal growth to 20 mm in length. About half of the pin was inserted into the two holes at the bottom of the connecting member 50 described above, and the bottom member 40 was placed thereon.

上記供給治具にロッド状多結晶原料30として、直径130mm、長さ1200mm、重量約37kgを充填し、吊り上げて単結晶育成引き上げ装置内に導入した。なお、装置内の坩堝(口径約500mm)には単結晶シリコン1本を引上げた後の融液約5kgが残存していた。このときシリコンの液面から坩堝底面までの深さはおよそ40mmであった。吊り下げたロッド状多結晶原料30を徐々に下げ、坩堝に投入し、全量溶融した。同じ供給操作を2回繰り返し、合計約90kgの融液を確保した。その後、種結晶を取り付け、単結晶シリコンを引き上げた。
上記供給方法を繰り返し実施して、50本の単結晶シリコンを引き上げたが、供給操作中に供給治具が破損して落下するトラブルは発生しなかった。
The supply jig was filled with rod-shaped polycrystalline raw material 30 having a diameter of 130 mm, a length of 1200 mm, and a weight of about 37 kg, and was lifted and introduced into a single crystal growth and pulling apparatus. In addition, about 5 kg of the melt after pulling up one single crystal silicon remained in the crucible (about 500 mm in diameter) in the apparatus. At this time, the depth from the silicon surface to the bottom of the crucible was about 40 mm. The suspended rod-shaped polycrystalline raw material 30 was gradually lowered, put into a crucible, and melted in its entirety. The same feeding operation was repeated twice to secure a total of about 90 kg of melt. Thereafter, a seed crystal was attached, and the single crystal silicon was pulled up.
The above supply method was repeated and 50 single crystal silicons were pulled up, but there was no trouble that the supply jig was damaged and dropped during the supply operation.

比較例1
連結部材および底部材以外は実施例1と同様に、筒状ガイド部材60、支柱61、上部と下部の支持部材62、接触防止部材80、吊り下げ部材70を作製し、供給治具を構成した。
連結部材50として高純度石英製の板を使用した。幅は115mm、長さは400mm、厚さは10mmで、上部と下部にそれぞれ6mmの穴を2箇所ずつ開けた。前述の下部の支持部材62へ差し込んだ2本の棒に連結部材50をはめ込んで、連結させた。底部材40として厚さ10mm、一辺が156mmの正方形状且つ高純度石英製の板を使用した。ピンは直径5.5mm、長さ20mmの高純度石英製の丸棒を使用した。前述の連結部材50の下部の2箇所の孔にそのピンを半分程度さし込み、その上に底部材40を載せた。
Comparative Example 1
Except for the connecting member and the bottom member, the cylindrical guide member 60, the support column 61, the upper and lower support members 62, the contact preventing member 80, and the suspension member 70 were produced in the same manner as in Example 1 to constitute the supply jig. .
A high purity quartz plate was used as the connecting member 50. The width was 115 mm, the length was 400 mm, the thickness was 10 mm, and two 6 mm holes were drilled at the top and bottom. The connecting member 50 was fitted and connected to the two rods inserted into the lower support member 62 described above. As the bottom member 40, a square and high-purity quartz plate having a thickness of 10 mm and a side of 156 mm was used. As the pin, a round bar made of high purity quartz having a diameter of 5.5 mm and a length of 20 mm was used. About half of the pin was inserted into the two holes at the bottom of the connecting member 50 described above, and the bottom member 40 was placed thereon.

この供給治具にロッド状多結晶原料30として、直径130mm、長さ1200mm、重量約37kgを充填し、吊り上げて単結晶育成引き上げ装置内に導入した。なお、装置内の坩堝(口径約500mm)には単結晶シリコン1本を引上げた後の融液約5kgが残存していた。このときシリコンの液面から坩堝底面までの深さはおよそ40mmであった。吊り下げたロッド状多結晶原料30を徐々に下げ、坩堝に投入し、全量溶融した。その後、供給治具を融液から引き上げたところ、底部材、連結部材の下部、およびピンにシリコンが固着した様子が単結晶育成引き上げ装置ののぞき窓から観察された。さらに供給治具を引き上げ、装置内から取り出したところ、底部材、連結部材の下部、およびピンのシリコンが固着した箇所およびその周辺部にひび割れが生じていた。
この供給治具に再度ロッド状多結晶原料約37kgを載せたところ、底部材、連結部材およびピンが破損し、再利用はできなかった。そこで、底部材、連結部材およびピンを交換し、ロッド状多結晶原料約37kgを載せて単結晶育成引き上げ装置内に導入し、ロッド状多結晶原料を全て溶融した。その後、種結晶を取り付け、単結晶シリコンを引き上げた。
This supply jig was filled with rod-shaped polycrystalline material 30 having a diameter of 130 mm, a length of 1200 mm, and a weight of about 37 kg, and was lifted and introduced into a single crystal growth and pulling apparatus. In addition, about 5 kg of the melt after pulling up one single crystal silicon remained in the crucible (about 500 mm in diameter) in the apparatus. At this time, the depth from the silicon surface to the bottom of the crucible was about 40 mm. The suspended rod-shaped polycrystalline raw material 30 was gradually lowered, put into a crucible, and melted in its entirety. Thereafter, when the supply jig was lifted from the melt, it was observed from the observation window of the single crystal growth pulling apparatus that silicon was fixed to the bottom member, the lower portion of the connecting member, and the pin. Further, when the supply jig was pulled up and taken out from the apparatus, the bottom member, the lower part of the connecting member, the portion where the silicon of the pin was fixed, and the periphery thereof were cracked.
When about 37 kg of rod-shaped polycrystalline raw material was again placed on the supply jig, the bottom member, the connecting member, and the pin were damaged and could not be reused. Therefore, the bottom member, the connecting member, and the pin were replaced, and about 37 kg of the rod-shaped polycrystalline material was placed and introduced into the single crystal growth and pulling apparatus, and all the rod-shaped polycrystalline material was melted. Thereafter, a seed crystal was attached, and the single crystal silicon was pulled up.

比較例2
比較例1と全く同様の供給治具を用い、同じ供給操作にて6回繰り返したが、全て底部材、連結部材の下部、およびピンにシリコンが固着し、ひび割れが生じた。そのうち1回は、供給治具を融液から取り出して引き上げ中に、シリコンがピンに固着したことによりピンが折れて底部材が外れて融液内に落下した。幾度か融液表面に浮いた底部材を回収しようと試みたが不可能であった。そのため、坩堝に大量の融液を抱えたまま冷却せざるを得えなかった。冷却後、装置内を開放したところ、坩堝が割れて融液の一部が炉内に流れ出していた。融液は水冷チャンバーまで達しておらず、最悪の状態である水蒸気爆発は免れたものの、カーボン製炉材のほとんどを交換せざるを得なかった。
Comparative Example 2
Using the same supply jig as in Comparative Example 1 and repeating the same supply operation 6 times, silicon adhered to the bottom member, the lower part of the connecting member, and the pin, and cracks occurred. At one time, while the supply jig was taken out from the melt and pulled up, the silicon was fixed to the pin, so that the pin was broken and the bottom member was detached and dropped into the melt. Several attempts to recover the bottom member that floated on the melt surface were impossible. Therefore, the crucible must be cooled while holding a large amount of melt. After cooling, when the inside of the apparatus was opened, the crucible was broken and a part of the melt flowed into the furnace. The melt did not reach the water-cooled chamber, and although the worst-case steam explosion was avoided, most of the carbon furnace material had to be replaced.

比較例3
比較例1において、連結部材50として幅110mm、長さ400mm、厚さ5mmのモリブデン製の板(上部と下部にそれぞれ6mmの穴を2箇所ずつ開けたもの)、および底部材40として厚さ5mm、一辺が156mmの正方形状且つモリブデン製の板を使用した以外は、全て同様にして供給治具を構成した。
この供給治具にロッド状多結晶原料30として、直径130mm、長さ1200mm、重量約37kgを充填し、吊り上げて単結晶育成引き上げ装置内に導入した。なお、装置内の坩堝(口径約500mm)には単結晶シリコン1本を引上げた後の融液約5kgが残存していた。このときシリコンの液面から坩堝底面までの深さはおよそ40mmであった。吊り下げたロッド状多結晶原料30を徐々に下げ、坩堝に投入し、全量溶融した。その後、供給治具を取り出したところ、底部材、連結部材、およびピンのうち、融液に浸漬していた部分が全て溶融してなくなっており、再利用ができなかった。モリブデンは高融点材料であるが、シリコンとの反応性が高いため短時間で溶融したものと推測される。
Comparative Example 3
In Comparative Example 1, a connecting plate 50 made of molybdenum having a width of 110 mm, a length of 400 mm, and a thickness of 5 mm (having two 6 mm holes in the upper and lower portions) and a bottom member 40 having a thickness of 5 mm The supply jig was configured in the same manner except that a square and molybdenum plate having a side of 156 mm was used.
This supply jig was filled with rod-shaped polycrystalline material 30 having a diameter of 130 mm, a length of 1200 mm, and a weight of about 37 kg, and was lifted and introduced into a single crystal growth and pulling apparatus. In addition, about 5 kg of the melt after pulling up one single crystal silicon remained in the crucible (about 500 mm in diameter) in the apparatus. At this time, the depth from the silicon surface to the bottom of the crucible was about 40 mm. The suspended rod-shaped polycrystalline raw material 30 was gradually lowered, put into a crucible, and melted in its entirety. Thereafter, when the supply jig was taken out, all the parts immersed in the melt of the bottom member, the connecting member, and the pin were not melted and could not be reused. Molybdenum is a high melting point material, but it is presumed that it melted in a short time because of its high reactivity with silicon.

10 坩堝
20 ヒータ
30 ロッド状多結晶原料
40 底部材
50 連結部材
60 筒状ガイド部材
61 支柱
62 支持部材
63 ナット
70 吊下げ部材
80 接触防止部材
90 ピン
100 原料融液
110 吊下げ具
DESCRIPTION OF SYMBOLS 10 Crucible 20 Heater 30 Rod-shaped polycrystalline raw material 40 Bottom member 50 Connecting member 60 Cylindrical guide member 61 Strut 62 Support member 63 Nut 70 Suspension member 80 Contact prevention member 90 Pin 100 Raw material melt 110 Suspension tool

Claims (7)

ロッド状多結晶原料を起立した状態で坩堝に供給するためのロッド状多結晶原料供給治具であって、
ロッド状多結晶原料の端部を支持する底部材、ロッド状多結晶原料の横方向の動きを規制して起立状態に維持する筒状ガイド部材、筒状ガイド部材と底部材を連結する連結部材、および筒状ガイド部材の上部に取り付けられた吊下げ部材を含み、
筒状ガイド部材が高融点材料からなり、底部材および連結部材がロッド状多結晶原料と同じ元素の結晶材料からなることを特徴とする前記ロッド状多結晶原料供給治具。
A rod-shaped polycrystalline material supply jig for supplying a rod-shaped polycrystalline material to a crucible in an upright state,
A bottom member that supports the end of the rod-shaped polycrystalline material, a cylindrical guide member that regulates the lateral movement of the rod-shaped polycrystalline material and maintains the standing state, and a connecting member that connects the cylindrical guide member and the bottom member And a suspension member attached to the upper part of the cylindrical guide member,
The rod-shaped polycrystalline raw material supply jig, wherein the cylindrical guide member is made of a high melting point material, and the bottom member and the connecting member are made of a crystalline material of the same element as the rod-shaped polycrystalline raw material.
筒状ガイド部材が、少なくとも、ロッド状多結晶原料の周囲に垂直方向に設置される複数の支柱、当該複数の支柱を相互に連結する1個以上の支持部材により構成されることを特徴とする請求項1に記載のロッド状多結晶原料供給治具。   The cylindrical guide member is composed of at least a plurality of support columns installed in the vertical direction around the rod-shaped polycrystalline raw material, and one or more support members that connect the plurality of support columns to each other. The rod-shaped polycrystalline raw material supply jig according to claim 1. 筒状ガイド部材が、少なくともその内側に、ロッド状多結晶原料との接触を防止する接触防止部材を備えることを特徴とする請求項1または2に記載のロッド状多結晶原料供給治具。   The rod-shaped polycrystalline raw material supply jig according to claim 1 or 2, wherein the cylindrical guide member includes a contact preventing member for preventing contact with the rod-shaped polycrystalline raw material at least inside thereof. 接触防止部材が石英であり、高融点材料がモリブデン金属であることを特徴とする請求項3に記載のロッド状多結晶原料供給治具。   4. The rod-shaped polycrystalline raw material supply jig according to claim 3, wherein the contact preventing member is quartz and the high melting point material is molybdenum metal. ロッド状多結晶原料が、多結晶シリコンロッドであることを特徴とする請求項1〜4のいずれか一項に記載のロッド状多結晶原料供給治具。   The rod-shaped polycrystalline material supply jig according to any one of claims 1 to 4, wherein the rod-shaped polycrystalline material is a polycrystalline silicon rod. 請求項1〜5のいずれか一項に記載のロッド状多結晶原料供給治具を用いて、当該治具内にロッド状多結晶原料を収納したのち、該治具を降下させて原料融液が充填された坩堝の底部に着地させ、底部材、連結部材並びにロッド状多結晶原料を原料融液と接触させて溶融を行うことを特徴とするロッド状多結晶原料の供給方法。   Using the rod-shaped polycrystalline raw material supply jig according to any one of claims 1 to 5, after storing the rod-shaped polycrystalline raw material in the jig, the jig is lowered to melt the raw material melt. A method for supplying a rod-shaped polycrystalline raw material, comprising: landing at the bottom of a crucible filled with bismuth, and bringing the bottom member, the connecting member and the rod-shaped polycrystalline raw material into contact with the raw material melt. ロッド状多結晶原料が、多結晶シリコンロッドであることを特徴とする請求項6に記載のロッド状多結晶原料の供給方法。   The rod-shaped polycrystalline material supply method according to claim 6, wherein the rod-shaped polycrystalline material is a polycrystalline silicon rod.
JP2011248700A 2011-11-14 2011-11-14 Rod-shaped polycrystalline raw material supply jig and rod-shaped polycrystalline raw material supply method Expired - Fee Related JP6112763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248700A JP6112763B2 (en) 2011-11-14 2011-11-14 Rod-shaped polycrystalline raw material supply jig and rod-shaped polycrystalline raw material supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248700A JP6112763B2 (en) 2011-11-14 2011-11-14 Rod-shaped polycrystalline raw material supply jig and rod-shaped polycrystalline raw material supply method

Publications (2)

Publication Number Publication Date
JP2013103859A true JP2013103859A (en) 2013-05-30
JP6112763B2 JP6112763B2 (en) 2017-04-12

Family

ID=48623690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248700A Expired - Fee Related JP6112763B2 (en) 2011-11-14 2011-11-14 Rod-shaped polycrystalline raw material supply jig and rod-shaped polycrystalline raw material supply method

Country Status (1)

Country Link
JP (1) JP6112763B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119952A (en) * 2016-09-15 2016-11-16 保定爱廸新能源股份有限公司 A kind of single crystal growing furnace secondary charging method
CN109778306A (en) * 2019-03-25 2019-05-21 中国恩菲工程技术有限公司 Secondary charging device for single crystal furnace
CN113784919A (en) * 2019-05-21 2021-12-10 株式会社德山 Carrying-out jig, carrying-out method, and method for manufacturing silicon rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795891A (en) * 1980-12-05 1982-06-14 Toshiba Mach Co Ltd Recharger for semiconductor crystal pulling up machine
JPS5795892A (en) * 1980-12-05 1982-06-14 Toshiba Mach Co Ltd Recharger for semiconductor crystal pulling up machine
JP2004083322A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Process and jig for supplying czochralski raw material
JP2006188376A (en) * 2005-01-04 2006-07-20 Shin Etsu Handotai Co Ltd Tool and method for recharging polycrystalline raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795891A (en) * 1980-12-05 1982-06-14 Toshiba Mach Co Ltd Recharger for semiconductor crystal pulling up machine
JPS5795892A (en) * 1980-12-05 1982-06-14 Toshiba Mach Co Ltd Recharger for semiconductor crystal pulling up machine
JP2004083322A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Process and jig for supplying czochralski raw material
JP2006188376A (en) * 2005-01-04 2006-07-20 Shin Etsu Handotai Co Ltd Tool and method for recharging polycrystalline raw material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119952A (en) * 2016-09-15 2016-11-16 保定爱廸新能源股份有限公司 A kind of single crystal growing furnace secondary charging method
CN109778306A (en) * 2019-03-25 2019-05-21 中国恩菲工程技术有限公司 Secondary charging device for single crystal furnace
CN113784919A (en) * 2019-05-21 2021-12-10 株式会社德山 Carrying-out jig, carrying-out method, and method for manufacturing silicon rod

Also Published As

Publication number Publication date
JP6112763B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
US8845805B2 (en) Device and method for producing crystalline bodies by directional solidification
JP3053958B2 (en) Crystal production equipment by the floating zone melting method
JP6112763B2 (en) Rod-shaped polycrystalline raw material supply jig and rod-shaped polycrystalline raw material supply method
JP5272247B2 (en) Method for melting polycrystalline silicon raw material in CZ method
EP2143833A1 (en) Silicon crystal material and method for manufacturing fz silicon single crystal by using the same
JP4957385B2 (en) Method for producing silicon single crystal
JP5741163B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
US7871590B2 (en) Mass of silicon solidified from molten state and process for producing the same
JP6708173B2 (en) Recharge tube and method for manufacturing single crystal
JP4626303B2 (en) Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material
JP2009274928A (en) Segmentation-type heater and apparatus and method for pulling single crystal using the same
US6875269B2 (en) System for increasing charge size for single crystal silicon production
KR101892107B1 (en) Silicone single crystal growing apparatus and siclicone single crystal growing method using the apparatus
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
KR20020070312A (en) Crystal growth apparatus
JP2009249262A (en) Method of manufacturing silicon single crystal
JP2011057460A (en) Method for growing silicon single crystal
JP2008087972A (en) Method for manufacturing silicon single crystal
JP2008156185A (en) Raw material for manufacturing silicon single crystal, method for manufacturing the same, and method for manufacturing silicon single crystal
JP2010006657A (en) Silicon single crystal production apparatus and silicon single crystal production method
JP4273820B2 (en) Single crystal pulling method
JP5488519B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP2009249231A (en) Crystal raw material for manufacturing single crystal silicon and manufacturing method of single crystal silicon ingot
JP2015051884A (en) Production method of sapphire single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6112763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees