JP4626303B2 - Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material - Google Patents

Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material Download PDF

Info

Publication number
JP4626303B2
JP4626303B2 JP2005000045A JP2005000045A JP4626303B2 JP 4626303 B2 JP4626303 B2 JP 4626303B2 JP 2005000045 A JP2005000045 A JP 2005000045A JP 2005000045 A JP2005000045 A JP 2005000045A JP 4626303 B2 JP4626303 B2 JP 4626303B2
Authority
JP
Japan
Prior art keywords
raw material
rod
jig
recharge
polycrystalline raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005000045A
Other languages
Japanese (ja)
Other versions
JP2006188376A (en
Inventor
志信 竹安
幸嗣 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2005000045A priority Critical patent/JP4626303B2/en
Publication of JP2006188376A publication Critical patent/JP2006188376A/en
Application granted granted Critical
Publication of JP4626303B2 publication Critical patent/JP4626303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チョクラルスキー法による単結晶製造装置の原料融液を有するルツボ内に、ロッド状(棒状)の多結晶原料を溶融して、多結晶原料をリチャージする方法およびこれに用いるリチャージ冶具に関する。   The present invention relates to a method for melting a rod-like (rod-like) polycrystalline material in a crucible having a raw material melt for a single crystal production apparatus by the Czochralski method, and to recharge the polycrystalline material, and a recharging jig used therefor About.

近年、半導体集積回路が世界的に波及し、かつその需要が増大するに伴い、半導体集積回路の基板として使用されるシリコン単結晶ウェーハは、高品質のものが大量かつ安定的に要求されるに至った。シリコン単結晶ウェーハは、例えばチョクラルスキー法(CZ法)によりシリコン単結晶を引上げて製造される。CZ法では、まず石英ルツボ内に原料の多結晶シリコン(多結晶原料)を充填し、石英ルツボを黒鉛ルツボで保持して、その外周にあるヒーターで加熱し、多結晶原料を溶融させる。次いで、種結晶を原料融液に浸して、絞り部を形成するかまたは無転位種付け法により無転位化した後、所望の直径と結晶品質を有する単結晶を育成する。   In recent years, with the spread of semiconductor integrated circuits worldwide and the increasing demand thereof, high-quality silicon single crystal wafers used as substrates for semiconductor integrated circuits are required in large quantities and stably. It came. A silicon single crystal wafer is manufactured by pulling up a silicon single crystal by, for example, the Czochralski method (CZ method). In the CZ method, first, a raw material polycrystalline silicon (polycrystalline raw material) is filled in a quartz crucible, the quartz crucible is held by a graphite crucible, and heated by a heater on the outer periphery thereof to melt the polycrystalline raw material. Next, the seed crystal is immersed in the raw material melt to form a narrowed portion or to be dislocation-free by a dislocation-free seeding method, and then a single crystal having a desired diameter and crystal quality is grown.

このCZ法において、シリコン単結晶の製造コストを低減するために、シリコン単結晶引上げに伴うルツボ内のシリコン融液の減少分を供給すべく、供給管を設けてルツボ内へ粒状の多結晶原料(粒状原料)を、原料融液の減少量に応じて供給する装置が知られている。この装置の一つとして、シリコン単結晶成長中のルツボ内の原料融液面に、連続的に粒状原料を供給しながら単結晶を成長させる、いわゆる連続チャージ(CCCZ)法があり、原理的には、単結晶の歩留りを著しく向上させて、その製造コストを大幅に低減できる。なお、多結晶原料を追加充填することをリチャージと称する。   In this CZ method, in order to reduce the manufacturing cost of the silicon single crystal, a granular polycrystalline raw material is provided in the crucible by providing a supply pipe so as to supply the reduced amount of the silicon melt in the crucible accompanying the pulling of the silicon single crystal. An apparatus for supplying (granular raw material) according to the amount of reduction of the raw material melt is known. One of these apparatuses is a so-called continuous charge (CCCZ) method in which a single crystal is grown while continuously supplying a granular raw material to a raw material melt surface in a crucible during silicon single crystal growth. Can significantly improve the yield of a single crystal and greatly reduce its manufacturing cost. Note that the additional filling of the polycrystalline material is referred to as recharging.

しかし、この方法では、シリコン単結晶成長量(通常は0.3g/秒〜1.0g/秒程度)と同量の粒状原料を少量づつ、ゆっくりと供給しなければならないが、ルツボ内への供給時に原料融液が飛び跳ねたり、または湯面振動を起こしたりなどの問題が発生することが多い。このため、シリコン単結晶成長途中でシリコン単結晶が有転位化してしまうことで、シリコン単結晶の成長続行ができなくなり、製造コストの低減ができないことがしばしば起こる。これを防止するために供給管の先端を絞り込んで供給速度をある程度抑制している。これにより供給速度が制限されて粒状原料の供給時間が長くなりすぎるという不都合があった。   However, in this method, it is necessary to slowly supply a small amount of granular raw material in the same amount as the silicon single crystal growth amount (usually about 0.3 g / second to 1.0 g / second). In many cases, the raw material melt jumps at the time of supply or a problem such as occurrence of molten metal surface vibration occurs. For this reason, when the silicon single crystal is dislocated during the growth of the silicon single crystal, it is often impossible to continue the growth of the silicon single crystal and the manufacturing cost cannot be reduced. In order to prevent this, the supply rate is suppressed to some extent by narrowing the tip of the supply pipe. This has the disadvantage that the supply speed is limited and the supply time of the granular raw material becomes too long.

この問題を解決するため、粒状原料の連続供給によってシリコン単結晶の成長が阻害されるのを防止するために二重構造のルツボを使用することがあるが、シリコン単結晶の界面が内側ルツボに接近しているので低酸素化できないという欠点があり、さらに構造が複雑となってルツボのコストが高くなり、操業性も悪化するという問題があった。   In order to solve this problem, a double-structure crucible may be used to prevent the growth of the silicon single crystal from being hindered by continuous supply of granular raw materials, but the interface of the silicon single crystal becomes the inner crucible. Since they are close, there is a drawback that the oxygen cannot be reduced. Further, the structure becomes complicated, the cost of the crucible increases, and the operability deteriorates.

また、従来のバッチ式で原料追加を行う方法として、マルチプーリング(あるいはリチャージ引上げ(RCCZ)法が知られている(非特許文献1参照)。この方法は、抵抗規格を満足する範囲のドーパント濃度を持つシリコン単結晶を引上げた後、引上げ重量分の棒(ロッド)状の多結晶原料(以下、ロッド状多結晶原料と称す)を吊下げて石英ルツボ内に残余している原料融液に浸しながら、徐々に溶融させて追加充填し、再度、同様のシリコン単結晶の引上げを繰り返すことで、一度しか使用できない石英ルツボから複数本のシリコン単結晶を製造し、製造歩留りを向上させると共に、石英ルツボのコストを低減させようとするものである。   Further, as a conventional method of adding raw materials in a batch system, a multi-pooling (or recharge pulling (RCCZ) method is known (see Non-Patent Document 1). This method has a dopant concentration in a range satisfying a resistance standard. After pulling up the silicon single crystal with a rod, the rod-shaped polycrystalline raw material (hereinafter referred to as rod-shaped polycrystalline raw material) is suspended to the raw material melt remaining in the quartz crucible. While immersing, gradually melting and additional filling, repeating the pulling of the same silicon single crystal again, manufacturing a plurality of silicon single crystals from a quartz crucible that can only be used once, improving the manufacturing yield, It is intended to reduce the cost of the quartz crucible.

具体的な方法として、特許文献1には、ロッド状多結晶原料を吊下げるためのリチャージ装置が開示されている。しかしながら、このようにロッド状多結晶原料を吊下げる方法では、ロッド状多結晶原料に微小クラック等が入っていた場合、ロッド状多結晶原料の溶融中に微小クラックの発生位置から破損して落下するとういう問題があった。このようなロッド状多結晶原料の落下は原料溶融の飛び跳ねによって単結晶化を阻害するという問題ばかりでなく、石英ルツボを破損し湯漏れを発生させるという危険もあった。   As a specific method, Patent Document 1 discloses a recharging device for suspending a rod-shaped polycrystalline material. However, in the method of suspending the rod-shaped polycrystalline material in this way, if the rod-shaped polycrystalline material has microcracks or the like, the rod-shaped polycrystalline material is broken and dropped from the position where the microcrack was generated during melting of the rod-shaped polycrystalline material. Then there was such a problem. Such dropping of the rod-shaped polycrystalline raw material not only has the problem of inhibiting single crystallization due to jumping of the raw material melting, but also has a risk of damaging the quartz crucible and causing hot water leakage.

一方、このリチャージ法として、シリコン単結晶を引上げた後、ルツボ内に残存したシリコン融液の表面を一度固化させた後、その表面に、リチャージ管により原料をルツボ内にリチャージする方法が開示されている(特許文献2参照)。この方法では原料融液表面を固化させる際、固化の進行状況によっては石英ルツボにダメージを与えて内壁の石英を剥離させてしまい、剥離した石英屑が成長中のシリコン単結晶に付着し、シリコン単結晶に転位が発生して多結晶化してしまうという問題があった。また、一旦原料融液の表面を固化させた後に溶融するのでリチャージに時間がかかるという問題もある。   On the other hand, as the recharging method, a method is disclosed in which after the silicon single crystal is pulled up, the surface of the silicon melt remaining in the crucible is solidified once, and then the raw material is recharged into the crucible by a recharge tube on the surface. (See Patent Document 2). In this method, when the surface of the raw material melt is solidified, depending on the progress of solidification, the quartz crucible is damaged and the quartz on the inner wall is peeled off, and the peeled quartz scraps adhere to the growing silicon single crystal, and silicon There has been a problem that dislocation occurs in the single crystal and polycrystallizes. Another problem is that recharging takes time because the surface of the raw material melt is once solidified and then melted.

特公平6−31193号公報Japanese Examined Patent Publication No. 6-31193 国際公開第WO2002/068732号パンフレットInternational Publication No. WO2002 / 068732 Pamphlet Fumio Shimura,Semiconductor Silicon Crystal Tecnology,p178−p179,1989Fumio Shimura, Semiconductor Silicon Crystal Technology, p178-p179, 1989

そこで、本発明は、上記問題点に鑑みてなされたものであって、本発明の目的は、多結晶原料の追加供給(リチャージ)を安全に行うことができ、リチャージ溶融中に石英ルツボにダメージを与えることもなく、短時間で溶融することができ、シリコン単結晶の生産性、歩留りを向上することができる、多結晶原料のリチャージ冶具および多結晶原料のリチャージ方法を提供することである。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to allow additional supply (recharge) of a polycrystalline raw material to be performed safely and damage the quartz crucible during recharge melting. It is an object to provide a polycrystalline raw material recharging jig and a polycrystalline raw material recharging method that can be melted in a short time without increasing the yield, and can improve the productivity and yield of silicon single crystals.

上記目的を達成するために、本発明によれば、チョクラルスキー法による単結晶の製造においてロッド状の多結晶原料を溶融する際に用いるリチャージ冶具であって、少なくとも、該ロッド状多結晶原料を支持する底体と、該底体の上部に連結する支持体と、該支持体に取り付けられた吊下げ部材とからなり、前記ロッド状多結晶原料を装填し、前記吊下げ部材で吊り下げられて単結晶製造装置内に導入され、石英ルツボ内の原料融液中に前記ロッド状多結晶原料とともに浸漬しながら、前記ロッド状多結晶原料を溶融するものであることを特徴とする多結晶原料のリチャージ冶具が提供される。 In order to achieve the above object, according to the present invention, there is provided a recharge jig used when melting a rod-shaped polycrystalline material in the production of a single crystal by the Czochralski method, and at least the rod-shaped polycrystalline material , A support connected to the top of the bottom, and a suspension member attached to the support. The rod-shaped polycrystalline raw material is loaded and suspended by the suspension member. The polycrystalline material is introduced into a single crystal manufacturing apparatus and melts the rod-shaped polycrystalline raw material while being immersed together with the rod-shaped polycrystalline raw material in a raw material melt in a quartz crucible. raw materials recharge jig of Ru are provided.

このように、前記底体と前記支持体と前記吊り下げ部材とからなるリチャージ冶具であって、前記ロッド状多結晶原料を装填し、前記吊下げ部材で吊り下げられて単結晶製造装置内に導入され、石英ルツボ内の原料融液中に前記ロッド状多結晶原料とともに浸漬しながら、前記ロッド状多結晶原料を溶融するものであれば、ロッド状多結晶原料に微小クラックが入っていたとしても、ロッド状多結晶原料の下端部を支えながら溶融することができるので、溶融中にロッド状多結晶原料が落下するのを防止することができる。また、多結晶原料のリチャージを安全に行うことができる。また、リチャージ溶融中のロッド状多結晶原料の落下によって、原料溶融が飛び跳ねることにより単結晶化が阻害されたり、石英ルツボが破損して液漏れが発生するという心配もない。さらに、ロッド状多結晶原料を原料融液に浸漬しながら溶融するので、リチャージ溶融中に、原料融液が固化しすぎることがないので、それによる石英ルツボへのダメージもなく、石英ルツボから剥離した石英屑が成長中のシリコン単結晶に付着してシリコン単結晶に転位が発生して多結晶化してしまうという心配もない。また、融液を固化させないので、ロッド状多結晶原料をすばやく溶融でき、短時間でリチャージを行うことができる。   Thus, a recharging jig comprising the bottom body, the support body and the suspension member, which is loaded with the rod-shaped polycrystalline raw material and suspended by the suspension member into the single crystal manufacturing apparatus. As long as the rod-shaped polycrystalline material is melted while being introduced and immersed in the raw material melt in the quartz crucible with the rod-shaped polycrystalline material, the rod-shaped polycrystalline material has a micro crack. Moreover, since it can melt | melt while supporting the lower end part of a rod-shaped polycrystalline raw material, it can prevent that a rod-shaped polycrystalline raw material falls during melting. Further, the polycrystalline raw material can be safely recharged. Further, there is no fear that the raw material melting jumps due to the dropping of the rod-shaped polycrystalline raw material during the recharge melting and the single crystallization is hindered, or the quartz crucible is broken and liquid leakage occurs. Furthermore, since the rod-shaped polycrystalline raw material is melted while being immersed in the raw material melt, the raw material melt is not excessively solidified during recharge melting, so that the quartz crucible is not damaged and peeled off from the quartz crucible. There is no concern that the quartz waste that has been deposited adheres to the growing silicon single crystal, causing dislocations in the silicon single crystal and polycrystallizing. Further, since the melt is not solidified, the rod-shaped polycrystalline material can be quickly melted and recharged in a short time.

このとき、前記支持体は、少なくとも、連結する前記底体の上部において垂直方向に伸びる複数の支柱と、該複数の支柱を相互に連結するとともに前記装填されるロッド状多結晶原料を囲むように配設された1本以上の支持部材とからなるものであることが好ましい。
これにより、リチャージ溶融中にロッド状多結晶原料が倒れないように支持することができる。このとき、前記複数の支柱は、溶融中にロッド状多結晶原料が倒れるの確実に防ぐため3本以上とするのがより好ましく、製造コストを小さくするため6本以下とするのが好ましい。
At this time, the support body includes at least a plurality of pillars extending in the vertical direction at the upper part of the bottom bodies to be coupled, and the plurality of pillars are connected to each other and surround the rod-shaped polycrystalline raw material to be loaded. it is not preferable is made of a one or more support members arranged.
Thereby, it can support so that a rod-shaped polycrystalline raw material may not fall during recharge melting. At this time, it is more preferable that the plurality of support columns be 3 or more in order to surely prevent the rod-shaped polycrystalline material from falling during melting, and 6 or less in order to reduce the manufacturing cost.

また、前記リチャージ冶具は、前記装填されるロッド状多結晶原料の直径より10〜40mm大きい内径を有するものであることが好ましい。
このように、前記リチャージ冶具は、前記装填されるロッド状多結晶原料の直径より10〜40mm大きい内径を有することにより、ロッド状多結晶原料を装填したリチャージ冶具を下降させる際にバランスを失ってロッド状多結晶原料がリチャージ冶具の支持体に当たったとしても、ロッド状多結晶原料とリチャージ冶具の内径の間隔が40mm以下と小さいため、衝撃を小さく抑えることができ、リチャージ冶具の破損を防止することができる。なお、ロッド状多結晶原料とリチャージ冶具の内径の間隔は10mm以上であるため、ロッド状多結晶原料のリチャージ冶具への装填を円滑に行うことが可能である。
Further, the recharge jig, it is not preferable is one having a 10~40mm inner diameter larger than the diameter of the rod-like polycrystalline raw material the loading.
As described above, the recharge jig has an inner diameter that is 10 to 40 mm larger than the diameter of the rod-shaped polycrystalline material to be loaded, and thus loses balance when the recharge jig loaded with the rod-shaped polycrystalline material is lowered. Even if the rod-shaped polycrystalline material hits the support of the recharge jig, the distance between the inner diameter of the rod-shaped polycrystalline material and the recharge jig is as small as 40 mm or less, so the impact can be kept small and damage to the recharge jig can be prevented. can do. In addition, since the space | interval of the internal diameter of a rod-shaped polycrystalline raw material and a recharge jig | tool is 10 mm or more, it is possible to load the rod-shaped polycrystalline raw material to the recharge jig smoothly.

さらに、前記リチャージ冶具は、石英製であることが好ましい。
このように、リチャージ冶具を石英製にすれば純度を高く保つことができるので、ロッド状多結晶原料と共に原料融液に浸漬したとしても原料融液への不純物汚染を抑えることができる。
Further, the recharge jig is not preferable to be made of quartz.
As described above, if the recharge jig is made of quartz, the purity can be kept high. Therefore, even if the recharge jig is immersed in the raw material melt together with the rod-shaped polycrystalline raw material, impurity contamination in the raw material melt can be suppressed.

また、前記底体が、前記支持体から取り外し可能なものであることが好ましい。
リチャージ冶具のうち原料融液に浸漬する部分は消耗するため、リチャージ冶具のうち底体のみを原料融液に浸漬する部分として、支持体から取り外し可能な構造とすれば、消耗する底体のみの交換で消耗部分の交換がすみ、リチャージ冶具のコストを低減することができる。
Further, the bottom body, it is not preferable are those removable from the support.
Since the portion of the recharge jig that is immersed in the raw material melt is consumed, if the structure is removable from the support as the portion of the recharge jig that is immersed in the raw material melt, only the consumable bottom body is consumed. The replacement of the consumable part is completed, and the cost of the recharge jig can be reduced.

さらに、本発明によれば、前記リチャージ冶具を用いて、多結晶原料のリチャージを行うことを特徴とする多結晶原料のリチャージ方法が提供される。
このように、本発明によれば、前記リチャージ冶具を用いて、多結晶原料のリチャージを行う多結晶原料のリチャージ方法が提供され、これにより、ロッド状の多結晶原料のリチャージを安全かつ短時間で行うことができ、リチャージ溶融中に石英ルツボにダメージを与えることもない。
Furthermore, according to the present invention, the recharging using jigs, polycrystalline recharge process of the polycrystalline raw material and performing recharge raw material Ru is provided.
As described above, according to the present invention, there is provided a polycrystalline raw material recharging method for recharging a polycrystalline raw material using the recharging jig, whereby the rod-shaped polycrystalline raw material can be recharged safely and in a short time. The quartz crucible is not damaged during recharge melting.

また、本発明によれば、チョクラルスキー法による単結晶の製造においてロッド状の多結晶原料を溶融するリチャージ方法であって、少なくとも、前記ロッド状多結晶原料を支持する底体と、該底体の上部に連結する支持体と、該支持体に取り付けられた吊下げ部材とからなるリチャージ冶具を用い、該リチャージ冶具に前記ロッド状多結晶原料を装填し、前記吊下げ部材で吊り下げて単結晶製造装置内に導入し、石英ルツボ内の原料融液中に前記リチャージ冶具の少なくとも底体を前記ロッド状多結晶原料とともに浸漬させながら、前記ロッド状多結晶原料を溶融することを特徴とする多結晶原料のリチャージ方法が提供される。 Further, according to the present invention, there is provided a recharging method for melting a rod-shaped polycrystalline material in the production of a single crystal by the Czochralski method, comprising at least a bottom body supporting the rod-shaped polycrystalline material, the bottom Using a recharge jig comprising a support connected to the upper part of the body and a suspension member attached to the support, the rod-shaped polycrystalline raw material is loaded into the recharge jig and suspended by the suspension member. The rod-shaped polycrystalline raw material is melted while being introduced into a single crystal manufacturing apparatus and immersing at least the bottom of the recharge jig together with the rod-shaped polycrystalline raw material in a raw material melt in a quartz crucible. recharge method of polycrystalline material which is Ru is provided.

これにより、ロッド状の多結晶原料のリチャージを安全かつ短時間で行うことができ、リチャージ溶融中に石英ルツボにダメージを与えることもない。さらに、リチャージ冶具のうち底体のみを原料融液に浸漬する部分とすれば、消耗する底体のみの交換で消耗部分の交換がすみ、リチャージ冶具のコストを低減することができる。   Thereby, the rod-shaped polycrystalline material can be recharged safely and in a short time, and the quartz crucible is not damaged during recharge melting. Furthermore, if only the bottom body is immersed in the raw material melt in the recharge jig, the consumable part can be replaced only by replacing the consumed bottom body, and the cost of the recharge jig can be reduced.

このとき、装填する前記ロッド状多結晶原料は、直径が支持体の内径より10〜40mm小さいものを用いることが好ましい。
このように、装填する前記ロッド状多結晶原料は、直径が支持体の内径より40mm以下に小さいものを用いることにより、ロッド状多結晶原料を装填したリチャージ冶具を下降させる際にバランスを失ってロッド状多結晶原料がリチャージ冶具の支持体に当たったとしても、ロッド状多結晶原料とリチャージ冶具の内径の間隔が40mm以下と小さいため、衝撃を小さく抑えることができ、リチャージ冶具の破損を防止することができる。なお、ロッド状多結晶原料とリチャージ冶具の内径の間隔は10mm以上であるため、ロッド状多結晶原料のリチャージ冶具への装填を円滑に行うことが可能である。
At this time, the rod-like polycrystalline raw material loading, have preferably be those in diameter 10~40mm smaller than the inner diameter of the support.
As described above, the rod-shaped polycrystalline material to be loaded loses balance when the recharge jig loaded with the rod-shaped polycrystalline material is lowered by using a rod-shaped polycrystalline material whose diameter is smaller than 40 mm from the inner diameter of the support. Even if the rod-shaped polycrystalline material hits the support of the recharge jig, the distance between the inner diameter of the rod-shaped polycrystalline material and the recharge jig is as small as 40 mm or less, so the impact can be kept small and damage to the recharge jig can be prevented. can do. In addition, since the space | interval of the internal diameter of a rod-shaped polycrystalline raw material and a recharge jig | tool is 10 mm or more, it is possible to load the rod-shaped polycrystalline raw material to the recharge jig smoothly.

本発明により、ロッド状の多結晶原料のリチャージを安全かつ短時間で行うことができ、リチャージ溶融中に石英ルツボにダメージを与えることもなく、シリコン単結晶の生産性、歩留りを向上することが可能となった。   According to the present invention, the rod-shaped polycrystalline material can be recharged safely and in a short time, and the productivity and yield of silicon single crystals can be improved without damaging the quartz crucible during recharge melting. It has become possible.

近年、シリコン単結晶ウェーハの需要増大に伴う、シリコン単結晶の高生産性、高歩留まりの要求に応えるべく、同一品質のシリコン単結晶を大量に得るために、マルチプーリング法が用いられている。   In recent years, the multi-pooling method has been used to obtain a large amount of silicon single crystals of the same quality in order to meet the demands for high productivity and high yield of silicon single crystals accompanying an increase in demand for silicon single crystal wafers.

このマルチプーリング法においては、従来、多結晶原料のリチャージは、ロッド状多結晶原料をリチャージ装置により吊り下げることにより行われる場合があった。しかしながら、このような方法では、ロッド状多結晶原料に微小クラック等が入っていた場合、ロッド状多結晶原料の溶融中に微小クラックの発生位置から落下するという危険があった。   In the multi-pooling method, conventionally, recharging of the polycrystalline raw material is sometimes performed by hanging the rod-shaped polycrystalline raw material with a recharging device. However, in such a method, when the rod-shaped polycrystalline material has microcracks or the like, there is a risk that the rod-shaped polycrystalline material falls from the position where the microcracks are generated during melting of the rod-shaped polycrystalline material.

そこで、本発明者等は、かかる落下の危険を防止して、ロッド状多結晶原料のリチャージを安全に行うために、鋭意検討および実験を行うことによって、本発明を為すに至った。
すなわち、本発明者等は、チョクラルスキー法による単結晶の製造においてロッド状の多結晶原料を溶融する際に用いるリチャージ方法であって、少なくとも、前記ロッド状多結晶原料を支持する底体と、該底体の上部に連結する支持体と、該支持体に取り付けられた吊下げ部材とからなるリチャージ冶具を用い、該リチャージ冶具に前記ロッド状多結晶原料を装填し、前記吊下げ部材で吊り下げて単結晶製造装置内に導入し、石英ルツボ内の原料融液中に前記リチャージ冶具の少なくとも底体を前記ロッド状多結晶原料とともに浸漬させながら、前記ロッド状多結晶原料を溶融することにより、前記ロッド状多結晶原料の下端部を支えながら溶融することができるので、前記ロッド状多結晶原料に微小クラックが入っていたとしても、リチャージ溶融中における前記ロッド状多結晶原料の落下の危険を防止することができ、多結晶原料のリチャージを安全かつ迅速に行うことができることを見出した。
Therefore, the present inventors have made the present invention by conducting intensive studies and experiments in order to prevent such a risk of dropping and to safely recharge the rod-shaped polycrystalline material.
That is, the present inventors are a recharging method used when melting a rod-shaped polycrystalline material in the production of a single crystal by the Czochralski method, and at least a bottom body that supports the rod-shaped polycrystalline material and A recharge jig comprising a support coupled to the upper part of the bottom body and a suspension member attached to the support, the rod-shaped polycrystalline material is loaded into the recharge jig, and the suspension member The rod-shaped polycrystalline raw material is melted while being suspended and introduced into the single crystal manufacturing apparatus, and immersing at least the bottom of the recharge jig together with the rod-shaped polycrystalline raw material in the raw material melt in the quartz crucible. Therefore, the rod-shaped polycrystalline material can be melted while supporting the lower end portion of the rod-shaped polycrystalline material. It is possible to prevent the risk of falling of the rod-like polycrystalline raw material in the chromatography di melt was found that the recharge of the polycrystalline material can be performed safely and quickly.

以下、図面を参照して、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
ここで、図1は、本発明に係る多結晶原料のリチャージ冶具の一例であって底体2が支持体1から取り外し可能なものを示す斜視図である。図2は、単結晶製造装置21において、本発明に係るリチャージ冶具29にロッド状多結晶原料30を充填して溶融している様子を示す断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
Here, FIG. 1 is a perspective view showing an example of a polycrystalline raw material recharge jig according to the present invention, in which the bottom body 2 is removable from the support body 1. FIG. 2 is a cross-sectional view showing a state in which the recharge jig 29 according to the present invention is filled with the rod-shaped polycrystalline raw material 30 and melted in the single crystal manufacturing apparatus 21.

本発明に係る多結晶原料のリチャージ冶具29は、チョクラルスキー法による単結晶の製造においてロッド状の多結晶原料30を溶融する際に用いるリチャージ冶具29であって、少なくとも、ロッド状多結晶原料30を支持する底体2と、底体2の上部に連結する支持体1と、支持体1に取り付けられた吊下げ部材3とからなるものであり、ロッド状多結晶原料30を装填し、吊下げ部材3で吊り下げられて単結晶製造装置21内に導入され、石英ルツボ23内の原料融液25中にロッド状多結晶原料30とともに浸漬しながら、ロッド状多結晶原料30を溶融するものである。   A polycrystalline material recharge jig 29 according to the present invention is a recharge jig 29 used when melting a rod-shaped polycrystalline material 30 in the production of a single crystal by the Czochralski method, and is at least a rod-shaped polycrystalline material. 30 is composed of a bottom body 2 that supports 30, a support body 1 that is connected to the top of the bottom body 2, and a suspension member 3 that is attached to the support body 1. The rod-shaped polycrystalline raw material 30 is melted while being suspended in the single crystal manufacturing apparatus 21 by being suspended by the suspension member 3 and immersed in the raw material melt 25 in the quartz crucible 23 together with the rod-shaped polycrystalline raw material 30. Is.

ここで、底体2は、ロッド状多結晶原料30を倒れないように安定して固定できる構造とし、例えば、図1のように支持棒8を複数本設けたものとする。この底体2の構造は、ロッド状多結晶原料30が倒れないように安定して固定できるものであれば、十字型、スリット型、網目型等どのような構造であってもよい。また、この底体2は、支持体1と連結して取り外すことができない一体構造のものとしてもよいが、リチャージ冶具29のうち原料融液25に浸漬する部分の消耗に対応するため、図1のように支持体1から取り外し可能な構造とすることが好ましい。これにより、消耗する底体2のみの交換を行うことができるため、リチャージ冶具29の製造コストの面において好ましい。この場合、支持体1と連結するための底体連結部7を設ける。   Here, the bottom body 2 has a structure capable of stably fixing the rod-shaped polycrystalline raw material 30 so as not to fall down. For example, a plurality of support bars 8 are provided as shown in FIG. The structure of the bottom body 2 may be any structure such as a cross shape, a slit shape, or a mesh shape as long as the rod-shaped polycrystalline raw material 30 can be stably fixed so as not to fall down. In addition, the bottom body 2 may be an integral structure that cannot be removed by being connected to the support body 1. However, in order to cope with the consumption of the portion of the recharge jig 29 that is immersed in the raw material melt 25, FIG. It is preferable that the structure be removable from the support 1 as described above. Thereby, only the worn bottom body 2 can be replaced, which is preferable in terms of the manufacturing cost of the recharge jig 29. In this case, the bottom body connection part 7 for connecting with the support body 1 is provided.

支持体1は、底体2の上部に連結するものであって、底体2が支持体1から取り外し可能な構造とした場合は、下端に支持体連結部6を有し、底体連結部7の凸部が支持体連結部6の溝に係止されることによって、底体2と連結される。また、支持体1は、少なくとも、連結する前記底体2の上部において垂直方向に伸びる複数の支柱4と、複数の支柱4を相互に連結するとともに、装填されるロッド状多結晶原料30を囲むように配設された1本以上の支持部材5とからなる籠状のものとし、これにより、ロッド状多結晶原料30の溶融中にロッド状多結晶原料30をリチャージ冶具29内に安定して保持することができる。   The support body 1 is connected to the upper part of the bottom body 2. When the bottom body 2 is structured to be removable from the support body 1, the support body 1 has a support body connection portion 6 at the lower end, and the bottom body connection portion. The convex portion 7 is engaged with the groove of the support connecting portion 6 to be connected to the bottom body 2. Further, the support 1 connects at least the plurality of support columns 4 extending vertically in the upper part of the bottom body 2 to be connected to each other, and surrounds the rod-shaped polycrystalline raw material 30 to be loaded. The rod-shaped polycrystalline raw material 30 is stably placed in the recharge jig 29 during the melting of the rod-shaped polycrystalline raw material 30. Can be held.

さらに、複数の支柱4は、3本以上であればより好ましく、製造コストの面から6本以下であるとさらに好ましい。また、支柱4の長さは、充填するロッド状多結晶原料30と同程度の長さとすれば、ロッド状多結晶原料30をリチャージ冶具29内に安定して収容することができる。   Furthermore, it is more preferable that the plurality of support columns 4 is three or more, and it is more preferable that the number is six or less from the viewpoint of manufacturing cost. Moreover, if the length of the support | pillar 4 is made into the length comparable as the rod-shaped polycrystalline raw material 30 with which it fills, the rod-shaped polycrystalline raw material 30 can be stably accommodated in the recharge jig 29.

さらに、各支柱4の間隔は、ロッド状多結晶原料30の直径よりも小さいのが好ましく、これにより、ロッド状多結晶原料30を全溶融工程に渡り、リチャージ冶具29内に確実に保持することができる。また、各支柱4は、円柱形状とする場合は直径が7〜15mm、角柱状とする場合は一辺が6〜25mmとすれば、装填するロッド状多結晶原料30として、その直径が70〜160mm、長さが200〜1100mm、重量が5〜50kgである大きなものを、溶融中にリチャージ冶具29内に確実に保持することができる強度を有する。   Furthermore, it is preferable that the interval between the columns 4 is smaller than the diameter of the rod-shaped polycrystalline raw material 30, thereby ensuring that the rod-shaped polycrystalline raw material 30 is held in the recharge jig 29 throughout the entire melting process. Can do. In addition, each column 4 has a diameter of 7 to 15 mm in the case of a cylindrical shape, and a diameter of 70 to 160 mm as a rod-shaped polycrystalline raw material 30 to be loaded if one side is 6 to 25 mm in the case of a prismatic shape. It has a strength capable of reliably holding a large one having a length of 200 to 1100 mm and a weight of 5 to 50 kg in the recharge jig 29 during melting.

さらに、支持部材5は、少なくとも1本以上で、複数の支柱4を相互に連結するとともに、装填されるロッド状多結晶原料30を囲むように配設されたものであれば、支持体の強度を向上させ、リチャージ溶融中にロッド状多結晶原料30を安定に支持することができるので好ましい。支持部材5は、例えば、図1のように環状に形成したものであって、支持体1の上端部、および中央部に各一本ずつ設けたものが好ましいが、さらに多く設けてもよいし、支持部材5として複数の棒状のものを用いて、複数の支柱4を梯子状になるように連結したものであってもよい。   Furthermore, the supporting member 5 is at least one, connects the plurality of support columns 4 to each other, and is provided so as to surround the rod-shaped polycrystalline raw material 30 to be loaded. This is preferable because the rod-shaped polycrystalline raw material 30 can be stably supported during recharge melting. For example, the support member 5 is formed in an annular shape as shown in FIG. 1, and one is preferably provided at each of the upper end portion and the center portion of the support 1, but more support members 5 may be provided. Alternatively, a plurality of rod-shaped members may be used as the support member 5 and a plurality of support columns 4 may be connected in a ladder shape.

なお、支持体1は、以上のような籠状のものに限られず、リチャージ溶融中にロッド状多結晶原料30を安定して支持できるとともに融液に接触できるものであれば、筒状のものであって側壁に貫通孔が設けられたもの等であってもよい。また、支持体1は、その水平断面の形状が環状であるものに限られず、多角形のものであってもよく、リチャージ溶融中にロッド状多結晶原料30を安定に支持するものであれば、水平断面の形状が垂直方向における位置によって異なるものであってもよい。   The support 1 is not limited to the bowl-shaped one as described above, and may be a cylindrical one as long as it can stably support the rod-shaped polycrystalline raw material 30 during recharge melting and can contact the melt. However, it may be one in which a side wall is provided with a through hole. Further, the support 1 is not limited to an annular shape in the horizontal cross section, and may be polygonal, as long as it stably supports the rod-shaped polycrystalline raw material 30 during recharge melting. The shape of the horizontal cross section may be different depending on the position in the vertical direction.

吊下げ部材3は、ワイヤあるいはシャフト等により、ロッド状多結晶原料30を装填したリチャージ装置29を吊り下げて単結晶製造装置21内に導入するために用いることができるものとし、支持体1と連結した構造のもの、例えば、図1のように支持部材5と連結した一体構造のもの、または支柱4と連結した一体構造のものとするのが好ましい。   The suspension member 3 can be used to suspend and introduce the recharge device 29 loaded with the rod-shaped polycrystalline raw material 30 into the single crystal production device 21 with a wire or a shaft. It is preferable to have a connected structure, for example, an integrated structure connected to the support member 5 as shown in FIG.

以上のように本発明に係るリチャージ冶具29は、上記のような底体2と支持体1と吊り下げ部材3からなる。このリチャージ冶具29の内径は、装填するロッド状多結晶原料30の直径より10〜40mm大きい内径であれば、ロッド状多結晶原料30は、溶融中に浮力によりバランスを失い、リチャージ冶具29の支持体1に接触したとしても、ロッド状多結晶原料30とリチャージ冶具29の内径の間隔が40mm以下と小さいため、衝撃を小さく抑えることができ、リチャージ冶具29の破損を防止することができる。なお、ロッド状多結晶原料30とリチャージ冶具29の内径の間隔を10mm以上とすることにより、ロッド状多結晶原料30のリチャージ冶具29への装填を円滑に行うことが可能である。   As described above, the recharge jig 29 according to the present invention includes the bottom body 2, the support body 1, and the suspension member 3 as described above. If the inner diameter of the recharge jig 29 is 10-40 mm larger than the diameter of the rod-shaped polycrystalline raw material 30 to be loaded, the rod-shaped polycrystalline raw material 30 loses its balance due to buoyancy during melting, and the recharge jig 29 is supported. Even if it comes into contact with the body 1, the distance between the inner diameters of the rod-shaped polycrystalline raw material 30 and the recharge jig 29 is as small as 40 mm or less, so that the impact can be kept small and damage to the recharge jig 29 can be prevented. In addition, the rod-shaped polycrystalline raw material 30 can be smoothly loaded into the recharging jig 29 by setting the interval between the inner diameters of the rod-shaped polycrystalline raw material 30 and the recharging jig 29 to 10 mm or more.

また、リチャージ冶具29を石英製とすることが好ましく、これにより純度を高く保つことができるので、ロッド状多結晶原料30と共に原料融液25に浸漬したとしても不純物汚染を抑えることができる。   In addition, it is preferable that the recharge jig 29 is made of quartz, and thereby the purity can be kept high. Therefore, even if the recharge jig 29 is immersed in the raw material melt 25 together with the rod-shaped polycrystalline raw material 30, impurity contamination can be suppressed.

本発明に係る多結晶原料のリチャージ冶具29は、以上のような構成であるが、以下、これを用いた本発明に係る多結晶原料のリチャージ方法について説明する。
図2に示すように、単結晶製造装置21の主チャンバー22内には原料融液25を収容する石英ルツボ23とその外側に黒鉛ルツボ24が配置されている。この黒鉛ルツボ24は上下動及び回転自在なルツボ支持軸26により支持されている。また、黒鉛ルツボ24の外周にはヒーター28が配置され、原料融液25を加熱している。ヒーター28の外周にはヒーター28からの輻射熱を直接主チャンバー22が受けないように断熱材27が配置されている。
The polycrystalline material recharging jig 29 according to the present invention has the above-described configuration. Hereinafter, a polycrystalline raw material recharging method according to the present invention using the jig will be described.
As shown in FIG. 2, a quartz crucible 23 containing a raw material melt 25 and a graphite crucible 24 are disposed outside the main chamber 22 of the single crystal manufacturing apparatus 21. The graphite crucible 24 is supported by a crucible support shaft 26 that can move up and down and rotate. A heater 28 is disposed on the outer periphery of the graphite crucible 24 to heat the raw material melt 25. A heat insulating material 27 is arranged on the outer periphery of the heater 28 so that the main chamber 22 does not receive radiant heat from the heater 28 directly.

初期チャージの多結晶原料を溶融後、種結晶を原料融液25に接触させ、種絞りを行った後、所定の直径まで拡径し、その後所定の引上げ速度で直胴部を形成する。そして直胴部が所望の長さに達したら徐々に縮径し、原料融液25から単結晶を切り離す。   After melting the polycrystalline raw material of the initial charge, the seed crystal is brought into contact with the raw material melt 25, and after seed drawing, the diameter is expanded to a predetermined diameter, and then the straight body portion is formed at a predetermined pulling speed. When the straight body reaches a desired length, the diameter is gradually reduced, and the single crystal is separated from the raw material melt 25.

この単結晶を引上げ装置から取り出した後、本発明に係るリチャージ冶具29にロッド状多結晶原料30を装填し、吊下げ部材3に吊り下げ用ワイヤ31を連結して吊り下げて単結晶製造装置21内に導入して、ワイヤ34を下降することにより、少なくとも底体2を原料融液25中に20mm〜50mm程度浸漬する。   After the single crystal is taken out from the pulling device, the recharge jig 29 according to the present invention is loaded with the rod-shaped polycrystalline raw material 30, and the suspension wire 31 is connected to the suspension member 3 and suspended to suspend the single crystal production device. 21 is introduced and the wire 34 is lowered, so that at least the bottom body 2 is immersed in the raw material melt 25 by about 20 mm to 50 mm.

このとき、リチャージ冶具29の上端の吊り下げ部材3には吊下げ用ワイヤ31の一端が固定されており、吊下げ用ワイヤ31の反対側は吊下げ用冶具32に固定されるような構造になっている。この吊下げ用冶具32はワイヤ34の先端に取り付けられているシードチャック33に係止され、ワイヤ34を上下に移動させることにより、リチャージ冶具29を上下に移動させることができる。なお、リチャージ冶具29を吊下げ部材3で吊り下げて単結晶製造装置21内に導入する方法は、ワイヤ34で吊下げる方法に限定されず、シャフト等の別の手段によって吊下げる方法であってもよい。   At this time, one end of the suspension wire 31 is fixed to the suspension member 3 at the upper end of the recharge jig 29, and the opposite side of the suspension wire 31 is fixed to the suspension jig 32. It has become. The hanging jig 32 is locked by a seed chuck 33 attached to the tip of the wire 34, and the recharging jig 29 can be moved up and down by moving the wire 34 up and down. Note that the method of suspending the recharge jig 29 with the suspension member 3 and introducing it into the single crystal manufacturing apparatus 21 is not limited to the method of suspending with the wire 34, and is a method of suspending by another means such as a shaft. Also good.

次に、リチャージ冶具29の少なくとも底体2をロッド状多結晶原料30とともに原料融液25中に20mm〜50mm程度浸漬させながら、ヒーター28により加熱して、前記ロッド状多結晶原料30を下端から溶融する。ここで、ロッド状多結晶原料30は常に下端が原料溶融25に浸漬しているため、溶融が進むとロッド状多結晶原料30は自重によりリチャージ冶具29内で徐々に沈み込むようになる。   Next, while at least the bottom body 2 of the recharge jig 29 is immersed in the raw material melt 25 together with the rod-shaped polycrystalline material 30 by about 20 mm to 50 mm, the rod-shaped polycrystalline material 30 is heated from the lower end by heating with the heater 28. Melt. Here, since the lower end of the rod-shaped polycrystalline raw material 30 is always immersed in the raw material melt 25, the rod-shaped polycrystalline raw material 30 gradually sinks in the recharge jig 29 due to its own weight as the melting proceeds.

また、溶融の進行に伴い原料融液25の深さが徐々に深くなるので、リチャージ冶具29及びロッド状多結晶原料30の浸漬の深さが20mm〜50mm程度になるように、また前記リチャージ冶具29の原料融液25に浸漬する部分が底体2のみになるように、溶融の進行に合わせて石英ルツボ23を下げるか、リチャージ冶具29を上げることが好ましい。さらに、このときヒーター28の発熱中心が原料融液25の表面近傍の位置になるよう調整することによりスムーズな溶融が可能となる。   Moreover, since the depth of the raw material melt 25 gradually increases with the progress of melting, the recharge jig 29 and the rod-shaped polycrystalline raw material 30 are immersed so that the immersion depth is about 20 mm to 50 mm. It is preferable to lower the quartz crucible 23 or raise the recharge jig 29 in accordance with the progress of melting so that only the bottom body 2 is immersed in the raw material melt 25. Further, at this time, by adjusting the heat generation center of the heater 28 to a position near the surface of the raw material melt 25, smooth melting is possible.

ロッド状多結晶原料30の溶融が完了した後、リチャージ冶具29を上昇させ融液から切り離した後に単結晶製造装置21より取り出し、次の単結晶の引上げを行う。このように、本発明により多結晶原料のリチャージを安全に行うことができ、融液表面の固化も行わないのでリチャージ溶融中に石英ルツボ23にダメージを与えることもなく、短時間で溶融することが出来、シリコン単結晶の生産性、歩留りを向上することができる。   After the melting of the rod-shaped polycrystalline raw material 30 is completed, the recharge jig 29 is raised and separated from the melt, then taken out from the single crystal manufacturing apparatus 21 and the next single crystal is pulled up. Thus, according to the present invention, the polycrystalline raw material can be safely recharged, and the melt surface is not solidified, so that the quartz crucible 23 is not damaged during recharge melting and can be melted in a short time. Thus, the productivity and yield of silicon single crystals can be improved.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
図1のように、ロッド状多結晶原料30を溶融する際に用いるリチャージ冶具29として、ロッド状多結晶原料30を直接支持する部分に直径15mmの円柱状の支持棒8を5本配設し、支持体1に連結させるための底体連結部7を有する底体2と、底体2の上部に支持体連結部6を介して連結する支持体1と、支持体1の上部に3箇所取り付けた吊り下げ部材3とからなる石英製の内径190mmのリチャージ冶具29を用いた。ここで、支持体1には、連結する底体2の上部において垂直方向に伸びる、直径15mm、長さ1200mmの円柱状の4本支柱4と、該4本の支柱4を相互に連結すると共に装填されるロッド状多結晶原料30を囲むように支柱4の中央部と上端部において環状に2本の支持部材5を配設した。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
As shown in FIG. 1, as a recharge jig 29 used for melting the rod-shaped polycrystalline raw material 30, five cylindrical support rods 8 having a diameter of 15 mm are arranged on the portion directly supporting the rod-shaped polycrystalline raw material 30. , A bottom body 2 having a bottom body coupling portion 7 for coupling to the support body 1, a support body 1 coupled to the upper portion of the bottom body 2 via a support body coupling portion 6, and three locations on the top of the support body 1 A recharge jig 29 made of quartz and having an inner diameter of 190 mm made of the attached suspension member 3 was used. Here, the support 1 is connected to the four pillars 4 having a columnar shape of 15 mm in diameter and 1200 mm in length extending in the vertical direction on the upper part of the bottom body 2 to be coupled to the four pillars 4. Two support members 5 were arranged in an annular shape at the center and upper end of the column 4 so as to surround the rod-shaped polycrystalline raw material 30 to be loaded.

このリチャージ冶具29の中に、直径150mm、長さ1000mm、重量41kgのロッド状多結晶原料30を充填し、吊り下げ部材3で吊り下げて、単結晶製造装置21内に導入した。口径550mm(22インチ)の石英ルツボ23内に収容してある29kgの原料融液25の表面から40mm程度、リチャージ冶具29の底体2をロッド状多結晶原料30の下端とともに浸漬しながら、ロッド状多結晶原料30を全量溶融した。この結果、溶融時間は1.8時間程度であった。溶融中は、ルツボ内の融液面の上昇に合せてルツボを下降させ、融液面位置を一定に保った。   The recharge jig 29 was filled with a rod-shaped polycrystalline raw material 30 having a diameter of 150 mm, a length of 1000 mm, and a weight of 41 kg, suspended by the suspension member 3 and introduced into the single crystal manufacturing apparatus 21. While immersing the bottom body 2 of the recharge jig 29 together with the lower end of the rod-shaped polycrystalline material 30 about 40 mm from the surface of a 29 kg raw material melt 25 accommodated in a quartz crucible 23 having a diameter of 550 mm (22 inches), the rod The whole amount of the polycrystalline material 30 was melted. As a result, the melting time was about 1.8 hours. During melting, the crucible was lowered in accordance with the rise of the melt surface in the crucible, and the melt surface position was kept constant.

本発明ではロッド状多結晶原料30が常に原料融液25中に浸漬していることとなったため、後述する比較例のように、ロッド状多結晶原料30が原料融液25の表面から切り離れてからロッド状多結晶原料30を浸漬させるという従来必要だった操作がなくなり、より短時間で溶融することができた。   In the present invention, since the rod-shaped polycrystalline raw material 30 is always immersed in the raw material melt 25, the rod-shaped polycrystalline raw material 30 is separated from the surface of the raw material melt 25 as in a comparative example described later. After that, the conventionally required operation of immersing the rod-shaped polycrystalline material 30 was eliminated, and the rod-shaped polycrystalline material 30 could be melted in a shorter time.

リチャージ冶具29の底体2がロッド状多結晶原料30を直接支持する支持棒8の1回のリチャージ溶融における直径の消耗量は、約0.1mm程度であった。これを15回繰り返し使用して直径が合計1.5mm消耗し、直径が13.5mmになったところで、底体2を交換した。   The consumption amount of the diameter in one recharge melting of the support rod 8 in which the bottom body 2 of the recharge jig 29 directly supports the rod-shaped polycrystalline raw material 30 was about 0.1 mm. This was repeated 15 times and the total diameter was consumed by 1.5 mm. When the diameter reached 13.5 mm, the bottom body 2 was replaced.

この溶融方法を150回繰り返し実施したが、リチャージ溶融中にロッド状多結晶原料30が落下するトラブルは発生しなかった。また、製造されたシリコン単結晶の結晶品質は従来と同等であった。このように、本発明により、多結晶原料のリチャージを安全に行うことができ、リチャージ溶融中に石英ルツボ23にダメージを与えることもなく、シリコン単結晶の生産性、歩留りを向上することができるが可能となった。   Although this melting method was repeated 150 times, there was no trouble that the rod-shaped polycrystalline raw material 30 dropped during recharge melting. Moreover, the crystal quality of the produced silicon single crystal was equivalent to the conventional one. As described above, according to the present invention, the polycrystalline raw material can be safely recharged, and the productivity and yield of the silicon single crystal can be improved without damaging the quartz crucible 23 during recharge melting. Became possible.

(比較例1)
直径150mm、長さ1000mm、重量41kgの実施例1で用いたものと同様のロッド状多結晶原料30(投入前にクラックのないものを選択して用いた。)を従来のリチャージ装置(特許文献1参照)で吊り下げることができるように上部に幅5〜10mm程、深さ5mm〜10mm程の溝を2箇所に設けた。
(Comparative Example 1)
A rod-shaped polycrystalline raw material 30 similar to that used in Example 1 having a diameter of 150 mm, a length of 1000 mm, and a weight of 41 kg (used with a crack-free material before being used) is used in a conventional recharging device (Patent Document) 1)), grooves having a width of about 5 to 10 mm and a depth of about 5 mm to 10 mm were provided in two places.

そして、口径550mm(22インチ)の石英ルツボ23内に収容してある29kgの原料融液25の表面からロッド状多結晶原料30を40mm程度浸漬させた。その後、ロッド状多結晶原料30が原料融液表面から切り離れたら、再度、ロッド状多結晶原料30を原料融液25表面から40mm程度浸漬させる操作を繰り返すことによってロッド状多結晶原料30を全量溶融した。   Then, the rod-shaped polycrystalline raw material 30 was immersed by about 40 mm from the surface of 29 kg of the raw material melt 25 accommodated in the quartz crucible 23 having a diameter of 550 mm (22 inches). Thereafter, when the rod-shaped polycrystalline raw material 30 is separated from the surface of the raw material melt, the rod-shaped polycrystalline raw material 30 is completely replenished by repeating the operation of immersing the rod-shaped polycrystalline raw material 30 from the surface of the raw material melt 25 by about 40 mm. Melted.

これを150回繰り返し実施した結果、5回の結晶落下が発生し、いずれもロッド状多結晶原料30の微小クラックがリチャージ溶融中に加熱により拡大したことが原因と推測された。このように、従来の方法での多結晶原料のリチャージは、危険で手間がかかり、ロッド状多結晶原料30の落下により原料融液25の飛び跳ねによって単結晶化を阻害するという問題ばかりでなく、石英ルツボ23を破損し湯漏れを発生させるという危険もあった。   As a result of repeating this 150 times, five crystal drops occurred, and it was speculated that all of them were caused by expansion of minute cracks in the rod-shaped polycrystalline raw material 30 by heating during recharge melting. As described above, the recharging of the polycrystalline raw material by the conventional method is dangerous and troublesome, and not only the problem of inhibiting the single crystallization by the jumping of the raw material melt 25 due to the dropping of the rod-shaped polycrystalline raw material 30, There was also a risk of damaging the quartz crucible 23 and causing hot water leakage.

しかも、比較例の方法では予め、クラックの無いものを選別しなければならず、使用できる原料ロッドが限定される上に、クラックの有無の判定は、実質上正確にはできない。これに対して、本発明では、ロッド状の多結晶原料であればクラックの有無にかかわらず使用できるので、原料の選別の必要性がなく、実用的価値がすこぶる高い。   In addition, in the method of the comparative example, it is necessary to select in advance those without cracks, and the usable material rods are limited. In addition, the presence or absence of cracks cannot be determined substantially accurately. On the other hand, in the present invention, any rod-shaped polycrystalline material can be used regardless of the presence or absence of cracks, so there is no need to select the material and the practical value is extremely high.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、単なる例示であり、本発明の特許請求の範囲に記載された技術思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is merely an example, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明に係る多結晶原料のリチャージ冶具の一例であって底体が支持体から取り外し可能なものを示す斜視図である。It is a perspective view which shows an example of the recharge jig of the polycrystalline raw material which concerns on this invention, and the bottom body can be removed from a support body. 単結晶製造装置において、本発明に係るリチャージ冶具にロッド状多結晶原料を充填して溶融している様子を示す断面図である。In a single crystal manufacturing apparatus, it is sectional drawing which shows a mode that the recharge jig which concerns on this invention is filled with the rod-shaped polycrystal raw material, and is fuse | melted.

符号の説明Explanation of symbols

1…支持体、 2…底体、 3…吊り下げ部材、 4…支柱、 5…支持部材、
6…支持体連結部、 7…底体連結部、 8…支持棒、
21…単結晶製造装置、 22…主チャンバー、 23…石英ルツボ、
24…黒鉛ルツボ、 25…原料融液、 26…ルツボ支持軸、 27…断熱材、
28…ヒータ、 29…リチャージ冶具、 30…ロッド状多結晶原料、
31…吊下げ用ワイヤ、 32…吊下げ用冶具、 33…シードチャック、
34…ワイヤ。
DESCRIPTION OF SYMBOLS 1 ... Support body, 2 ... Bottom body, 3 ... Hanging member, 4 ... Support | pillar, 5 ... Support member,
6 ... support body connection part, 7 ... bottom body connection part, 8 ... support rod,
21 ... Single crystal manufacturing equipment, 22 ... Main chamber, 23 ... Quartz crucible,
24 ... graphite crucible, 25 ... raw material melt, 26 ... crucible support shaft, 27 ... heat insulating material,
28 ... heater, 29 ... recharge jig, 30 ... rod-shaped polycrystalline raw material,
31 ... Hanging wire, 32 ... Hanging jig, 33 ... Seed chuck,
34 ... Wire.

Claims (7)

チョクラルスキー法による単結晶の製造においてロッド状の多結晶原料を溶融する際に用いるリチャージ冶具であって、少なくとも、該ロッド状多結晶原料を支持する底体と、該底体の上部に連結する支持体と、該支持体に取り付けられた吊下げ部材とからなり、前記底体が、前記支持体から取り外し可能なものであって、前記ロッド状多結晶原料を装填し、前記吊下げ部材で吊り下げられて単結晶製造装置内に導入され、石英ルツボ内の原料融液中に前記ロッド状多結晶原料とともに浸漬しながら、前記ロッド状多結晶原料を溶融するものであることを特徴とする多結晶原料のリチャージ冶具。 A recharging jig used for melting a rod-shaped polycrystalline raw material in the production of a single crystal by the Czochralski method, comprising at least a bottom body supporting the rod-shaped polycrystalline raw material and an upper portion of the bottom body And a suspension member attached to the support, wherein the bottom body is removable from the support, is loaded with the rod-shaped polycrystalline raw material, and the suspension member The rod-shaped polycrystalline raw material is melted while being dipped together with the rod-shaped polycrystalline raw material in a raw material melt in a quartz crucible. Recharge jig for polycrystalline raw material. 前記支持体は、少なくとも、連結する前記底体の上部において垂直方向に伸びる複数の支柱と、該複数の支柱を相互に連結するとともに前記装填されるロッド状多結晶原料を囲むように配設された1本以上の支持部材とからなるものであることを特徴とする請求項1に記載の多結晶原料のリチャージ冶具。   The support is disposed so as to surround at least a plurality of support pillars extending vertically in the upper part of the bottom body to be connected, and the rod-shaped polycrystalline material to be loaded while connecting the support pillars to each other. The polycrystalline raw material recharging jig according to claim 1, further comprising at least one supporting member. 前記リチャージ冶具は、前記装填されるロッド状多結晶原料の直径より10〜40mm大きい内径を有するものであることを特徴とする請求項1または請求項2に記載の多結晶原料のリチャージ冶具。   The recharge jig for polycrystalline raw materials according to claim 1 or 2, wherein the recharge jig has an inner diameter that is 10 to 40 mm larger than a diameter of the rod-shaped polycrystalline raw material to be loaded. 前記リチャージ冶具は、石英製であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の多結晶原料のリチャージ冶具。   The polycrystalline material recharging jig according to any one of claims 1 to 3, wherein the recharging jig is made of quartz. 請求項1ないし請求項4のいずれか1項に記載のリチャージ冶具を用いて、多結晶原料のリチャージを行うことを特徴とする多結晶原料のリチャージ方法。 A method for recharging a polycrystalline material, wherein the polycrystalline material is recharged using the recharging jig according to any one of claims 1 to 4 . チョクラルスキー法による単結晶の製造においてロッド状の多結晶原料を溶融するリチャージ方法であって、少なくとも、前記ロッド状多結晶原料を支持する底体と、該底体の上部に連結する支持体と、該支持体に取り付けられた吊下げ部材とからなり、前記底体が、前記支持体から取り外し可能なものであるリチャージ冶具を用い、該リチャージ冶具に前記ロッド状多結晶原料を装填し、前記吊下げ部材で吊り下げて単結晶製造装置内に導入し、石英ルツボ内の原料融液中に前記リチャージ冶具の少なくとも底体を前記ロッド状多結晶原料とともに浸漬させながら、前記ロッド状多結晶原料を溶融することを特徴とする多結晶原料のリチャージ方法。 A recharging method for melting a rod-shaped polycrystalline raw material in the production of a single crystal by the Czochralski method, comprising at least a bottom for supporting the rod-shaped polycrystalline raw material, and a support connected to the top of the bottom If, Ri Do and a hanging member which is attached to the support, the bottom body, using a recharge jig those removable from the support, loaded with the rod-like polycrystalline raw material to the recharge jig The rod-shaped multi-material is introduced into the single crystal manufacturing apparatus by being suspended by the suspension member, while immersing at least the bottom body of the recharge jig together with the rod-shaped polycrystalline raw material in the raw material melt in the quartz crucible. A method for recharging a polycrystalline raw material, comprising melting the crystalline raw material. 装填する前記ロッド状多結晶原料は、直径が支持体の内径より10〜40mm小さいものを用いることを特徴とする請求項6に記載の多結晶原料のリチャージ方法。 The method for recharging a polycrystalline raw material according to claim 6 , wherein the rod-shaped polycrystalline raw material to be loaded has a diameter smaller by 10 to 40 mm than the inner diameter of the support.
JP2005000045A 2005-01-04 2005-01-04 Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material Expired - Fee Related JP4626303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000045A JP4626303B2 (en) 2005-01-04 2005-01-04 Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000045A JP4626303B2 (en) 2005-01-04 2005-01-04 Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material

Publications (2)

Publication Number Publication Date
JP2006188376A JP2006188376A (en) 2006-07-20
JP4626303B2 true JP4626303B2 (en) 2011-02-09

Family

ID=36795924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000045A Expired - Fee Related JP4626303B2 (en) 2005-01-04 2005-01-04 Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material

Country Status (1)

Country Link
JP (1) JP4626303B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022882A1 (en) 2008-05-08 2009-11-05 Schott Ag Producing monocrystalline or polycrystalline semiconductor material using a vertical gradient freeze method, involves introducing lumpy semiconductor raw material into a melting crucible, melting there, and directionally solidifying
EP2072645B2 (en) 2007-12-19 2014-12-24 Schott AG Method for producing a monocrystalline or polycrystalline semiconductor material
CN103080387A (en) * 2010-06-16 2013-05-01 山特森西特股份有限公司 Process and apparatus for manufacturing polycrystalline silicon ingots
JP6112763B2 (en) * 2011-11-14 2017-04-12 株式会社トクヤマ Rod-shaped polycrystalline raw material supply jig and rod-shaped polycrystalline raw material supply method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840794A (en) * 1994-08-03 1996-02-13 Hitachi Ltd Recharging method in process for producing single crystal silicon
JPH09255467A (en) * 1996-03-22 1997-09-30 Sumitomo Sitix Corp Supply of raw material of single crystal and holding tool for the same material
JP2004083322A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Process and jig for supplying czochralski raw material
JP2004182569A (en) * 2002-12-05 2004-07-02 Konan Koki Kk Device for feeding raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840794A (en) * 1994-08-03 1996-02-13 Hitachi Ltd Recharging method in process for producing single crystal silicon
JPH09255467A (en) * 1996-03-22 1997-09-30 Sumitomo Sitix Corp Supply of raw material of single crystal and holding tool for the same material
JP2004083322A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Process and jig for supplying czochralski raw material
JP2004182569A (en) * 2002-12-05 2004-07-02 Konan Koki Kk Device for feeding raw material

Also Published As

Publication number Publication date
JP2006188376A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
CN107429421B (en) Apparatus and method for introducing volatile dopants into a melt
JP2009292659A (en) Method for forming shoulder in growing silicon single crystal
KR20150107241A (en) Method for manufacturing ingot and apparatus for the same
JP2000327477A (en) Method and apparatus for pulling up single crystal
JP4626303B2 (en) Recharge jig for polycrystalline raw material and method for recharging polycrystalline raw material
JP5272247B2 (en) Method for melting polycrystalline silicon raw material in CZ method
JP6112763B2 (en) Rod-shaped polycrystalline raw material supply jig and rod-shaped polycrystalline raw material supply method
JP5051033B2 (en) Method for producing silicon single crystal
US6908509B2 (en) CZ raw material supply method
JP6708173B2 (en) Recharge tube and method for manufacturing single crystal
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP5167942B2 (en) Method for producing silicon single crystal
JP2007284324A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP2009274920A (en) Production method of silicon single crystal
JP4563951B2 (en) Solid material recharging equipment
WO2003042435A1 (en) System for increasing charge size for single crystal silicon production
KR101023318B1 (en) Method for melting solid raw material for single crystal growth
JP2010006646A (en) Manufacturing process of silicon single crystal and silicon single crystal
JP5053426B2 (en) Silicon single crystal manufacturing method
JP5034259B2 (en) Single crystal manufacturing equipment
JP2013507313A (en) Crystal growth apparatus and crystal growth method
JPH0733584A (en) Recharging method in pulling up semiconductor single crystal
JP4273820B2 (en) Single crystal pulling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees