JP2013101608A - 非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラム - Google Patents
非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラム Download PDFInfo
- Publication number
- JP2013101608A JP2013101608A JP2012238201A JP2012238201A JP2013101608A JP 2013101608 A JP2013101608 A JP 2013101608A JP 2012238201 A JP2012238201 A JP 2012238201A JP 2012238201 A JP2012238201 A JP 2012238201A JP 2013101608 A JP2013101608 A JP 2013101608A
- Authority
- JP
- Japan
- Prior art keywords
- matrix
- decomposition
- calculation
- time step
- triangular matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 277
- 238000004458 analytical method Methods 0.000 title claims abstract description 204
- 239000011159 matrix material Substances 0.000 claims abstract description 900
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 248
- 238000012545 processing Methods 0.000 claims abstract description 84
- 238000006467 substitution reaction Methods 0.000 claims abstract description 57
- 238000013500 data storage Methods 0.000 claims description 155
- 238000000034 method Methods 0.000 claims description 107
- 230000008569 process Effects 0.000 claims description 89
- 230000008859 change Effects 0.000 claims description 68
- 230000000704 physical effect Effects 0.000 claims description 62
- 238000012916 structural analysis Methods 0.000 claims description 44
- 239000002131 composite material Substances 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 abstract description 37
- 230000001133 acceleration Effects 0.000 abstract description 25
- 238000012937 correction Methods 0.000 abstract description 20
- 230000006399 behavior Effects 0.000 description 111
- 230000014509 gene expression Effects 0.000 description 35
- 238000007726 management method Methods 0.000 description 27
- 239000013598 vector Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 11
- 230000003542 behavioural effect Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000002940 Newton-Raphson method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Landscapes
- Complex Calculations (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
【解決手段】挙動解析装置20の制御部21は、縁付きブロック対角行列の縁部分を除いた各ブロック対角行列について、時間ステップのループ外でLU分解処理を実行して、下三角行列及び上三角行列を算出する。制御部21は、時間ステップのループ内で、接触がある場合には、接触条件を満足する縁部分の行列の生成処理を実行する。制御部21は、生成した縁部分の行列のLU分解による要素l(i),u(i)を特定し、下三角行列及び上三角行列のそれぞれと合成して、処理対象の行列を生成する。制御部21は、処理対象の行列から、前進代入、後退代入を用いて速度修正量を算出し、変位{U}、速度{V}及び加速度{A}を更新することを繰り返して、この時間ステップの変位{U}、速度{V}及び加速度{A}を算出する。
【選択図】図1
Description
本発明は、上記問題点を解決するためになされたものであり、非線形構造体の解析を効率的に計算するための非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラムを提供することにある。
請求項1,4,6に記載の発明によれば、制御手段が、物性値データを用いて、解析対象系の各解析対象要素の平衡方程式を示すブロック行列を生成し、第2部分のブロック行列を対角要素として配置するとともに、第1部分のブロック行列を縁部分として配置した縁付きブロック対角行列を生成する。制御手段が、縁付きブロック対角行列の縁部分以外の各ブロック行列を、時間ステップループの外側においてLU分解して、分解行列データ記憶手段に記録する。制御手段が、時間ステップループの内側において、各ブロック行列に対応する上三角行列及び下三角行列を、分解行列データ記憶手段から抽出し、上三角行列及び下三角行列を配置して生成した縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列を生成し、第1部分に応じた平衡方程式を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、縁部分の行列をLU分解したLU分解要素を、縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列に、それぞれ合成して合成上三角行列及び合成下三角行列を生成し、生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、解析対象の計算値として算出する算出処理を実行し、算出処理において算出した計算値が収束するまで算出処理を繰り返して、この時間ステップにおける計算値を算出し、時間ステップループの内側の処理を終了時間まで繰り返して算出した計算値を出力する。これにより、非線形解析に必要な行列の変化に対し、変化しない第2部分のLU分解については、時間ステップループの外側で予め算出できるので、時間ステップループの内側において毎回計算する必要がない。このため、演算量を少なくして、効率的に非線形構造解析について計算を行なうことができる。
以下、本発明の非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラムを具体化した第1の実施形態を図1〜図7に基づいて説明する。本実施形態では、複数配置された構造体の挙動を解析するための挙動解析システムについて説明する。本実施形態では、挙動を解析する対象の構造体は、隣接する構造体と予め定めた部分を介して接触し、他と接触しない限り独立した構造体として挙動する。この構造体の詳細については、後述する。
LU分解手段212は、対角行列分解手段として機能し、対角行列分解段階を実行する。このLU分解手段212は、構造体の挙動を表す方程式についてLU分解処理を実行する。この方程式についてのLU分解処理及びLU分解の行列の解の算出についての詳細は、後述する。
次に、挙動を解析するための構造体のモデル化及びその方程式について詳述する。
本実施形態では、各構造体を節点で示す有限要素法によってモデル化する。図2に表示されたすべての黒丸が、モデル化した各節点を表している。ここで、図2(a)及び図2(c)は平面図における節点の配置図であり、図2(b)は垂直面における節点の配置図である。図2(a)に示す平面上では、各構造体を、六角柱の側面を表す6つの節点と、中心を表す1つの節点とでモデル化する。また、側面の節点と中心の節点とは、図2(c)に示すように、バネ要素及びダッシュポット要素によって連結されているとしてモデル化する。
また、図2(b)に示すように、各構造体を、垂直面上では、中心軸方向に一列に整列する節点としてモデル化する。
そして、このモデル化においては、構造体毎に、順次、各構造体に含まれる節点に対して、ナンバリングを行なう。具体的には、まず、1つの構造体における節点において、隣接する節点が連番となるようにナンバリングを行なう。この場合、各構造体について、同じルールを用いてナンバリングを行なう。ここでは、各構造体において隣接する節点が連番となるように、節点のナンバリングを行なう。例えば、上面から同一平面について連番が終了した後に、その下の節点についてナンバリングを行なう。そして、1つの構造体についてのナンバリングを完了した後で、その続き番号を用いて他の構造体のナンバリングを、同じルールを用いて行なう。
このようにモデル化した構造体の挙動を示す方程式について、図3及び図4を用いて説明する。
接触による拘束条件がある場合、ラグランジュの未定乗数{Λ}を用いて、この拘束条件を導入することにより、平衡方程式(空間方向に離散した半離散式)を算出できる。ここで、{Λ}はラグランジュの未定乗数を並べたベクトルを表している。具体的には、まず、歪みエネルギー密度を使用したポテンシャルエネルギーVを示す方程式と、運動エネルギーKを示す方程式を用いて、拘束条件を{G(U)}=0とした場合のラグランジアンを算出する。
次に、接触による拘束条件がある構造体の挙動の方程式の算出方法について、図4、図5(a)及び図5(b)を用いて説明する。ここでは、図4の式(1−14)の左辺の行列は、行列を表す大括弧やベクトルを表す中括弧の記号を省略し、拘束条件の係数ベクトル{h(i)}をまとめると、式(2−1)の左辺の全体行列Aで表せる。
ただし、全体行列Aは拘束条件に対応する縁が存在するため、正定値にならない。
[性質2]rank(H(1)・・・H(N) )=Mi
{Vn+1,(i+1)}={Vn+1,(i)}+{dVn+1,(i+1)} …(3−4)
{An+1,(i+1)}={An+1,(i)}+{dAn+1,(i+1)} …(3−5)
次に、この挙動解析装置20を用いて、構造体の挙動を解析する処理について、図6を用いて説明する。
そして、計算管理手段211は、現在の時間ステップとして「0」を、時間ステップ計算手段213のメモリに記憶する。
そして、制御部21は、以下のステップS19,S20の処理をスキップする。
(1)本実施形態では、挙動解析装置20の制御部21は、全体行列Aの縁部分を除いたブロック対角行列A’を構成する各ブロック行列A(i)について、時間ステップのループの外側で、LU分解処理を実行する(ステップS15)。制御部21は、時間ステップループ内において、接触がある場合には、接触条件を満足する縁部分の行列H(i)の生成処理を実行する(ステップS19)。制御部21は、縁部分の行列H(i)のLU分解による要素l(i),u(i) Tと行列L’、U’とを、ブロック対角行列A’に対応する行列L,Uに加えて、処理対象の全体行列L'''、U'''を特定し、変位{U}、速度{V}及び加速度{A}を更新することを繰り返して、この時間ステップの変位{U}、速度{V}及び加速度{A}を算出する。これにより、時間ステップ内においては、ブロック行列A(i)に対応するLU分解は行わず、縁部分に対応するLU分解のみを行なうので、演算量を少なくして、効率的に解析を行なうことができる。
次に、図8を用いて、本発明の第2実施形態について説明する。本実施形態においては、隣接する節点のめり込み量に応じて時間刻み幅を変更する構成であり、上記第1実施形態と同様な部分については、同一の符号を付し、その詳細な説明は省略する。
本実施形態の挙動解析装置20では、時間刻み幅Δtを変更可能とする。本実施形態では、以下の時間刻み幅Δtに変更可能な場合を想定する。
・標準(=dt)
・標準の1/10(=dt×0.1)
・標準の1/100(=dt×0.01)
・標準の1/1000(=dt×0.001)
・標準の1/10000(=dt×0.0001)
更に、本実施形態の制御部21の時間ステップ計算手段213は、現在の時間ステップループにおいて用いる時間刻み幅を記憶するメモリ(時間刻み幅定義データ記憶手段)を備える。
次に、図8を用いて構造体の挙動を解析する処理について説明する。
まず、挙動解析装置20の制御部21は、第1実施形態と同様に、入力データの読込処理、ナンバリング処理、種類毎の構造体マトリクスの生成処理及び縁付きマトリクスの生成処理を実行する(ステップS11〜S14)。この縁付きマトリクスの生成処理において、挙動解析装置20の制御部21は、設定した各時間刻み幅Δtに応じた全体行列Aを生成する。
そして、計算管理手段211は、現在の時間ステップの「0」とともに、現在の時間刻み幅Δt(ここでは「標準」)を特定するデータを、時間ステップ計算手段213のメモリに記憶する。
ここで、接触なしの場合(ステップS32において「NO」の場合)には、制御部21は、後述するステップS33〜S36の処理をスキップする。
更に、LU分解手段212は、下三角全体行列L'''と上三角全体行列U'''とを生成して、これらを算出処理対象と特定する。
(4)本実施形態では、挙動解析装置20の制御部21は、LU分解処理(ステップS15)において、算出した各下三角行列L(i)と各上三角行列U(i)とを各時間刻み幅Δtに関連付けて対角行列LU分解データ記憶部26に記憶する。更に、制御部21は、各時間刻み幅Δtに関連付けて、算出した要素l(i)と要素u(i)とを、縁部分LU分解データ記憶部27に記憶する。そして、接触ありの場合(ステップS32において「YES」の場合)、制御部21は、めり込み量に応じた時間刻み幅Δtを特定し、特定した時間刻み幅Δtをメモリに記憶する(ステップS33,S34)。そして、制御部21は、縁部分の行列H(i)のLU分解処理(ステップS36)において、メモリに記憶した時間刻み幅Δtに関連付けられた各下三角行列L(i)と上三角行列U(i)を抽出し、下三角全体行列Lと上三角全体行列Uとを生成し、下三角全体行列L'''と上三角全体行列U'''とを生成して、これらを算出処理対象と特定する。これにより、めり込み量に応じて時間刻み幅Δtを変更させるとともに、時間ステップループの内側での演算量を抑制して、効率的に解析を行なうことができる。
・ 上記第2実施形態においては、挙動解析装置20の制御部21は、変更可能な時間刻み幅Δtとして、標準、標準の1/10,1/100,1/1000,1/10000の5段階の等比数列の値を用いた。設定可能な時間刻み幅Δtは、複数の値で設定することが可能であり、これに限定されるものではない。例えば、公比は、「1/10」に限られるものではなく、標準、標準の1/2,1/4,1/8,1/16等の5段階を用いることも可能である。また、段階数も5段階に限られるものではない。更に、ユーザが予め任意に設定した値を、制御部21に保持させるようにしてもよい。
・ 上記第2の実施形態においては、挙動解析装置20の制御部21は、時間刻み幅Δtを特定する場合(ステップS33)、めり込み量に対応する時間刻み幅変更閾値に関連付けられた時間刻み幅Δtを特定した。時間刻み幅の特定方法は、これに限られない。例えば、めり込み量が閾値を超えた時間ステップの回数が予め定めた回数を超えたときに他の時間刻み幅Δtに変更してもよい。具体的には、時間刻み幅変更閾値及び規定回数に対応させて時間刻み幅Δtを記憶させておく。そして、制御部21は、めり込み量が、時間刻み幅閾値を規定回数超えた場合に、これに対応する時間刻み幅Δtに変更する。更に、時間刻み幅Δtは、めり込み量に基づいて変更したが、時間刻み幅Δtの変更を判定するための値(時間刻み幅変更判定値)は、めり込み量に限定されるものではない。例えば、接触時の反力を計算し、この大きさに基づいて変更するようにしてもよい。
[性質a]系全体の中で時々刻々と非線形的に変化する部分(第1部分)が限定されている。
[性質b]系全体の中から上述の第1部分を取り除くと、残りは「変化しない部分(第2部分)」又は「第1部分よりも変化が少なく予め計算可能な部分(第2部分)」から構成される。
これらの性質を有する系では、全体の未知自由度を、以下の2つの自由度に分解することができる。
・時間経過に応じて非線形的に変化する自由度
・変化しない自由度(又は非線形的に変化する部分よりも変化が少なく予め計算可能な範囲で変化する自由度)
この場合、上記自由度の分解に応じて系全体の状態を記述する行列をブロックに分割できる。
性質aと性質bとを満たす系の全体は、図9の式(5−1)のように表現することができる。式(5−1)において、A(tp)は現在時刻tpにおける系の性質、x(tp)は現在時刻tpにおける系の状態、b(tp)は現在時刻tpにおける系の外部からの入力である。このとき、性質aと性質bとに従って、系の状態x(tp)を独立した小部分に相当する自由度x'(tp)と、時々刻々と変化し得る部分に相当する自由度x''(tp)に分割して、式(5−2)と表す。この分割に対応して系の性質を表現すると、A(tp)は、式(5−3)のようになる。
例えば、上記実施形態のような接触問題において適用できる。具体的には、非線形挙動をする要素がすべて非線形状態にあると仮定した方程式から構成される行列を、時間に依存しない行列とおくことができる。そして、各時間において、実際に非線形挙動によって接触した部分の方程式から構成されるバイナリ行列を用いれば、行要素L'(tp)と列要素U'(tp)の積を予め算出することができる。そこで、時間ステップループの外側で、行要素L'(tp)及び列要素U'(tp)を算出して縁部分分解要素データ記憶手段に記録し、時間ステップループの内側では、縁部分分解要素データ記憶手段から行要素L'(tp)と列要素U'(tp)を取得することにより、時間ステップループ内の計算時間を更に削減することができる。
時間ステップ計算手段213は、各時間ステップ内における算出処理を管理しながら、LU分解した行列等を用いて、解析結果の計算値を算出する処理を実行する。
対角行列LU分解データ記憶部26には、上記実施形態と同様に、ブロック行列A(i)をLU分解したことによって得られる下三角行列L(i)と、上三角行列U(i)とに関するデータが記憶されている。
挙動解析値データ記憶部28には、上記実施形態と同様に、挙動解析によって算出される各節点の算出値に関するデータを記憶する。
<一般的な接触問題>
上記各実施形態において説明したように、接触する可能性がある節点群(接触部分)を予め限定することができる構造解析に適用可能である。また、一般的な接触問題のように、対象物において接触部分を予め正確に規定できない場合であっても、所定の範囲で接触を予想することができる場合が多い。例えば、立体物を対象とした場合、少なくとも対象物の表面でしか接触は起こり得ない。従って、解析対象の系を示す平衡方程式を、接触が予想される第1部分の方程式と、それ以外の第2部分の方程式とに分解する。そして、時間ステップループの内側においては、接触が予想される第1部分において実際に接触した場合の拘束条件を考慮した方程式のみを計算することによって、時間ステップループの内側で処理すべき行列処理を減らすことができる。
コネクタ要素とは、例えばピン結合やヒンジ結合等、二つの対象物をジョイント(接続)するための特殊な要素であり、ジョイントされた二つの解析対象の構造物の相対的な運動を拘束する働きを持つものである。ジョイントされた各構造体の変形が小さい場合、各構造体は局所座標系において線形に振る舞う。一方、ジョイントによる拘束条件は、時間的及び空間的に非線形的に変化したり、相対的な運動(回転)に伴って荷重項が時間的及び空間的に非線形的に変化したりすることがある。従って、解析対象の系を示す平衡方程式を、時間的に依存する拘束条件を有するコネクタ要素(第1部分)についての方程式と、この部分以外の解析対象の構造物を構成する要素(時間的に依存しない第2部分)についての方程式とに分解する。この場合、第2部分の構成要素は、局所座標系で表す。
次に、制御手段の計算管理手段211は、コネクタ要素以外の構成要素を局所座標系で表した第2部分のブロック行列を対角要素として配置するとともに、コネクタ要素の拘束条件のブロック行列を縁部分として配置した縁付き対角行列を生成する。
その後、制御手段の時間ステップ計算手段213は、各時間ステップループの内側において、この時間ステップにおける第2部分のブロック行列に対応する上三角行列及び下三角行列を、対角行列LU分解データ記憶部26から抽出する。
そして、時間ステップ計算手段213は、この時間ステップにおける拘束条件を満足する縁部分の行列を生成し、この縁部分の行列をLU分解する。
そして、制御手段の時間ステップ計算手段213は、生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、解析対象の計算値として算出する。
材料非線形問題は、弾塑性材料のように、応力と歪みの関係が線形的ではない材料の応力解析で現れる。例えば、弾性材料の場合、外力として加える荷重が大きくても対象物(解析対象の構造物)の変形は荷重に比例する。一方、弾塑性材料の場合には、荷重の大きさがある閾値を超えると、荷重の大きさと対象物の変形は比例せず、更に、荷重をゼロにしても元の状態には戻らない。しかし、実際にこのような塑性状態が起きるのは応力集中が起きる部分に限定される場合が多く、応力集中が起きる部分は亀裂部分の周辺等のようにある程度予想可能である場合が多い。従って、解析対象の系を示す平衡方程式を、応力集中が予想される「範囲」(時間的に依存する第1部分)についての方程式と、これ以外の構造体(時間的に依存しない第2部分)についての方程式とに分解する。
次に、制御手段の計算管理手段211は、応力集中の影響を受けている第1部分についてのブロック行列を、第2部分のブロック行列を対角要素として配置した行列に対して、縁部分として配置することにより、縁付き対角行列を生成する。
その後、制御手段の時間ステップ計算手段213は、各時間ステップループの内側において、各ブロック行列に対応する上三角行列及び下三角行列を、対角行列LU分解データ記憶部26から抽出する。
そして、時間ステップ計算手段213は、拘束条件を満足する縁部分の行列を生成し、この縁部分の行列をLU分解する。
そして、制御手段の時間ステップ計算手段213は、生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、解析対象の計算値として算出する。
(ア)複数配置される構造体の物性値に関するデータを記憶する物性値データ記憶手段と、
構造体の配置に関するデータを記憶する配置データ記憶手段と、
隣接する構造体との初期ギャップに関するデータを記憶するギャップデータ記憶手段と、
各構造体の平衡方程式を示すブロック対角行列をLU分解した上三角行列及び下三角行列を記憶する分解行列データ記憶手段と、
隣接する構造体の一部分と接触する場合がある構造体の挙動を解析する制御手段とを備えたシステムであって、
前記制御手段が、
各構造体の物性値データを用いて各構造体の平衡方程式を示すブロック行列を生成し、生成したブロック行列を構造体の配置データに応じた対角要素として配置するとともに、接触条件を縁部分として配置した縁付きブロック対角行列を生成する手段と、
この縁付きブロック対角行列の縁部分以外の前記各ブロック行列を、時間ステップループの外側においてLU分解して、前記分解行列データ記憶手段に記録する対角行列分解手段と、
時間ステップループ内において、
初期ギャップ分移動したか否かによって接触の有無を判定する接触判定処理を実行し、
接触がないと判定した場合には、前記各ブロック行列に対応する上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、これらを前記構造体の配置に応じて並べることにより生成した前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列の解を、前進代入及び後退代入を用いて、構造体の挙動解析値として算出する第1算出処理を実行し、
接触があると判定した場合には、接触条件を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、
前記縁部分の行列をLU分解したLU分解要素を、前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列に合成して合成上三角行列及び合成下三角行列を生成し、
生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、構造体の挙動解析値として算出する第2算出処理を実行し、
算出した挙動解析値が収束するまで前記接触判定処理、前記第1算出処理及び前記第2算出処理を繰り返して、この時間ステップにおける挙動解析値を算出する手段と、
前記時間ステップループ内の処理を終了時間まで繰り返して算出した挙動解析値を出力する手段とを備えたことを特徴とする挙動解析システム。
前記物性値データ記憶手段には、種類毎に、構造体の物性値に関するデータが記憶されており、
前記対角行列分解手段は、構造体の種類毎に、ブロック対角行列をLU分解した上三角行列及び下三角行列を前記分解行列データ記憶手段に記録し、
前記制御手段は、前記第1算出処理及び前記第2算出処理において、前記配置データ記憶手段から、各構造体の種類を特定し、特定した種類のブロック対角行列に対応する上三角行列及び下三角行列を前記分解行列データ記憶手段から抽出し、前記構造体の配置に応じて並べることにより、縁部分がないブロック対角行列の上三角行列及び下三角行列を生成することを特徴とする(ア)に記載の挙動解析システム。
前記制御手段は、
時間ステップループの外側において、構造体において接触する可能性があるすべての節点が接触した場合の条件を示した平衡方程式を縁付きブロック対角行列の縁部分として生成し、この縁部分の行列と、ブロック対角行列に対応する上三角行列及び下三角行列とを用いて算出した下三角行列の行要素及び上三角行列の列要素を、対応する平衡方程式に対応付けて前記縁部分分解要素データ記憶手段に記憶し、
前記時間ステップループ内において、接触があると判定した場合には、接触があると判定した節点が接触した場合の条件を示した平衡方程式に対応する下三角行列の行要素及び上三角行列の列要素を、前記縁部分分解要素データ記憶手段から取得して、これらを合成することにより行列を生成し、この行列をLU分解した縁部分上三角行列及び縁部分下三角行列を生成し、前記抽出した下三角行列の行要素及び上三角行列の列要素と、前記縁部分上三角行列及び縁部分下三角行列とを、縁部分がないブロック対角行列に対応する上三角行列及び下三角行列に合成して、前記合成上三角行列及び前記合成下三角行列を生成することを特徴とする(ア)又は(イ)に記載の挙動解析システム。
前記制御手段は、時間刻み幅変更判定値を用いた接触条件に対応する時間刻み幅を記憶した時間刻み幅定義データ記憶手段に接続されており、
前記対角行列分解手段は、
変更可能な各時間刻み幅に応じたブロック対角行列を、時間ステップループの外側においてLU分解し、このLU分解した上三角行列及び下三角行列を、時間刻み幅及びブロック対角行列に関連付けて記録し、
前記制御手段は、
時間ステップループ内において、接触があると判定した場合には、隣接する構造体の時間刻み幅変更判定値を算出し、この時間刻み幅変更判定値を用いた接触条件に対応した時間刻み幅を、これ以降に用いる時間刻み幅として特定する手段を更に備え、
前記第1算出処理において、特定した時間刻み幅及び前記各ブロック行列に対応する上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、
前記第2算出処理において、特定した時間刻み幅に関連付けた上三角行列及び下三角行列を、前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列として特定し、これら上三角行列及び下三角行列に、前記縁部分の行列をLU分解したLU分解要素を合成して合成上三角行列及び合成下三角行列を生成することを特徴とする(ア)〜(ウ)のいずれか1項に記載の挙動解析システム。
Claims (7)
- 時間経過に応じて、非線形的に変化する第1部分と、変化しない第2部分とを有した解析対象系についての非線形構造解析を計算する制御手段と、
前記第1部分及び前記第2部分の平衡方程式に用いる前記解析対象系の物性値に関するデータを記憶する物性値データ記憶手段と、
前記平衡方程式を示すブロック対角行列をLU分解した上三角行列及び下三角行列を記憶する分解行列データ記憶手段とを備えた非線形構造解析計算装置であって、
前記制御手段が、
前記物性値データを用いて、前記解析対象系の各解析対象要素の平衡方程式を示すブロック行列を生成し、
前記第2部分のブロック行列を対角要素として配置するとともに、前記第1部分のブロック行列を縁部分として配置した縁付きブロック対角行列を生成する手段と、
前記縁付きブロック対角行列の縁部分以外の各ブロック行列を、時間ステップループの外側においてLU分解して、前記分解行列データ記憶手段に記録する対角行列分解手段と、
時間ステップループの内側において、
前記各ブロック行列に対応する上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、前記上三角行列及び下三角行列を配置して生成した前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列を生成し、
前記第1部分に応じた平衡方程式を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、
前記縁部分の行列をLU分解したLU分解要素を、前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列に、それぞれ合成して合成上三角行列及び合成下三角行列を生成し、
前記生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、前記解析対象の計算値として算出する算出処理を実行し、
前記算出処理において算出した計算値が収束するまで前記算出処理を繰り返して、この時間ステップにおける計算値を算出する時間ステップ計算値算出手段と、
前記時間ステップループの内側の処理を終了時間まで繰り返して算出した前記計算値を出力する手段とを備えたことを特徴とする非線形構造解析計算装置。 - 時間経過に応じて、非線形的に変化する第1部分と、前記第1部分よりも変化が少なく予め計算可能に変化する第2部分とを有した解析対象系についての非線形構造解析を計算する制御手段と、
前記第1部分及び前記第2部分の平衡方程式に用いる前記解析対象系の物性値に関するデータを記憶する物性値データ記憶手段と、
前記平衡方程式を示すブロック対角行列をLU分解した上三角行列及び下三角行列を記憶する分解行列データ記憶手段とを備えた非線形構造解析計算装置であって、
前記制御手段が、
前記物性値データを用いて、前記解析対象系の各解析対象要素の平衡方程式を示すブロック行列を生成し、
前記第2部分のブロック行列を対角要素として配置するとともに、前記第1部分のブロック行列を縁部分として配置した縁付きブロック対角行列を、前記第2部分の変化毎に生成する手段と、
前記縁付きブロック対角行列の縁部分以外の各ブロック行列を、時間ステップループの外側においてLU分解して、前記第2部分の各変化に対応付けて、前記分解行列データ記憶手段に記録する対角行列分解手段と、
時間ステップループの内側において、
この時間ステップにおける前記第2部分の変化に対応する前記各ブロック行列の上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、
これらを配置することにより生成した前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列を生成し、
前記第1部分に応じた平衡方程式を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、
前記縁部分の行列をLU分解したLU分解要素を、前記縁付きブロック対角行列において縁部分を除いた行列であって、この時間ステップにおける前記第2部分の変化に対応する上三角行列及び下三角行列に、それぞれ合成して合成上三角行列及び合成下三角行列を生成し、
前記生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、前記解析対象の計算値として算出する算出処理を実行し、
前記算出処理において算出した計算値が収束するまで前記算出処理を繰り返して、この時間ステップにおける計算値を算出する時間ステップ計算値算出手段と、
前記時間ステップループの内側の処理を終了時間まで繰り返して算出した前記計算値を出力する手段とを備えたことを特徴とする非線形構造解析計算装置。 - 第1部分の平衡方程式に対応付けて、上三角行列の行要素及び下三角行列の列要素を記憶する縁部分分解要素データ記憶手段を更に備え、
前記制御手段は、
時間ステップループの外側において、
前記第1部分の平衡方程式から、前記第1部分の時間に依存しない行列を縁付きブロック対角行列の縁部分として生成し、
この縁部分の行列と、ブロック対角行列に対応する上三角行列及び下三角行列とを用いて算出した下三角行列の行要素及び上三角行列の列要素を、対応する平衡方程式に対応付けて前記縁部分分解要素データ記憶手段に記憶し、
前記時間ステップループの内側において、
この時間ステップにおいて実際に非線形挙動をしている自由度に対応したバイナリ行列に対応する下三角行列の行要素及び上三角行列の列要素を、前記縁部分分解要素データ記憶手段から取得して、これらを合成することにより行列を生成し、
前記行列をLU分解した縁部分上三角行列及び縁部分下三角行列を生成し、
前記生成した下三角行列の行要素及び上三角行列の列要素と、前記縁部分上三角行列及び縁部分下三角行列とを、縁部分がないブロック対角行列に対応する上三角行列及び下三角行列に合成して、前記合成上三角行列及び前記合成下三角行列を生成することを特徴とする請求項1又は2に記載の非線形構造解析計算装置。 - 時間経過に応じて、非線形的に変化する第1部分と、変化しない第2部分とを有した解析対象系についての非線形構造解析を計算する制御手段と、
前記第1部分及び前記第2部分の平衡方程式に用いる前記解析対象系の物性値に関するデータを記憶する物性値データ記憶手段と、
前記平衡方程式を示すブロック対角行列をLU分解した上三角行列及び下三角行列を記憶する分解行列データ記憶手段とを備えた計算装置を用いて、非線形構造体の解析計算を行なう方法であって、
前記制御手段が、
前記物性値データを用いて、前記解析対象系の各解析対象要素の平衡方程式を示すブロック行列を生成し、
前記第2部分のブロック行列を対角要素として配置するとともに、前記第1部分のブロック行列を縁部分として配置した縁付きブロック対角行列を生成する段階と、
前記縁付きブロック対角行列の縁部分以外の各ブロック行列を、時間ステップループの外側においてLU分解して、前記分解行列データ記憶手段に記録する対角行列分解段階と、
時間ステップループの内側において、
前記各ブロック行列に対応する上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、前記上三角行列及び下三角行列を配置して生成した前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列を生成し、
前記第1部分に応じた平衡方程式を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、
前記縁部分の行列をLU分解したLU分解要素を、前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列に、それぞれ合成して合成上三角行列及び合成下三角行列を生成し、
前記生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、前記解析対象の計算値として算出する算出処理を実行し、
前記算出処理において算出した計算値が収束するまで前記算出処理を繰り返して、この時間ステップにおける計算値を算出する時間ステップ計算値算出段階と、
前記時間ステップループの内側の処理を終了時間まで繰り返して算出した前記計算値を出力する段階とを実行することを特徴とする非線形構造解析計算方法。 - 時間経過に応じて、非線形的に変化する第1部分と、前記第1部分よりも変化が少なく予め計算可能に変化する第2部分とを有した解析対象系についての非線形構造解析を計算する制御手段と、
前記第1部分及び前記第2部分の平衡方程式に用いる前記解析対象系の物性値に関するデータを記憶する物性値データ記憶手段と、
前記平衡方程式を示すブロック対角行列をLU分解した上三角行列及び下三角行列を記憶する分解行列データ記憶手段とを備えた計算装置を用いて、非線形構造体の解析計算を行なう方法であって、
前記制御手段が、
前記物性値データを用いて、前記解析対象系の各解析対象要素の平衡方程式を示すブロック行列を生成し、
前記第2部分のブロック行列を対角要素として配置するとともに、前記第1部分のブロック行列を縁部分として配置した縁付きブロック対角行列を、前記第2部分の変化毎に生成する段階と、
前記縁付きブロック対角行列の縁部分以外の各ブロック行列を、時間ステップループの外側においてLU分解して、前記第2部分の各変化に対応付けて、前記分解行列データ記憶手段に記録する対角行列分解段階と、
時間ステップループの内側において、
この時間ステップにおける前記第2部分の変化に対応する前記各ブロック行列の上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、
これらを配置することにより生成した前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列を生成し、
前記第1部分に応じた平衡方程式を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、
前記縁部分の行列をLU分解したLU分解要素を、前記縁付きブロック対角行列において縁部分を除いた行列であって、この時間ステップにおける前記第2部分の変化に対応する上三角行列及び下三角行列に、それぞれ合成して合成上三角行列及び合成下三角行列を生成し、
前記生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、前記解析対象の計算値として算出する算出処理を実行し、
前記算出処理において算出した計算値が収束するまで前記算出処理を繰り返して、この時間ステップにおける計算値を算出する時間ステップ計算値算出段階と、
前記時間ステップループの内側の処理を終了時間まで繰り返して算出した前記計算値を出力する段階とを実行することを特徴とする非線形構造解析計算方法。 - 時間経過に応じて、非線形的に変化する第1部分と、変化しない第2部分とを有した解析対象系についての非線形構造解析を計算する制御手段と、
前記第1部分及び前記第2部分の平衡方程式に用いる前記解析対象系の物性値に関するデータを記憶する物性値データ記憶手段と、
前記平衡方程式を示すブロック対角行列をLU分解した上三角行列及び下三角行列を記憶する分解行列データ記憶手段とを備えた計算装置を用いて、非線形構造体の解析計算を行なうプログラムであって、
前記制御手段を、
前記物性値データを用いて、前記解析対象系の各解析対象要素の平衡方程式を示すブロック行列を生成し、
前記第2部分のブロック行列を対角要素として配置するとともに、前記第1部分のブロック行列を縁部分として配置した縁付きブロック対角行列を生成する手段、
前記縁付きブロック対角行列の縁部分以外の各ブロック行列を、時間ステップループの外側においてLU分解して、前記分解行列データ記憶手段に記録する対角行列分解手段、
時間ステップループの内側において、
前記各ブロック行列に対応する上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、前記上三角行列及び下三角行列を配置して生成した前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列を生成し、
前記第1部分に応じた平衡方程式を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、
前記縁部分の行列をLU分解したLU分解要素を、前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列に、それぞれ合成して合成上三角行列及び合成下三角行列を生成し、
前記生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、前記解析対象の計算値として算出する算出処理を実行し、
前記算出処理において算出した計算値が収束するまで前記算出処理を繰り返して、この時間ステップにおける計算値を算出する時間ステップ計算値算出手段、
前記時間ステップループの内側の処理を終了時間まで繰り返して算出した前記計算値を出力する手段として機能させることを特徴とする非線形構造解析計算プログラム。 - 時間経過に応じて、非線形的に変化する第1部分と、前記第1部分よりも変化が少なく予め計算可能に変化する第2部分とを有した解析対象系についての非線形構造解析を計算する制御手段と、
前記第1部分及び前記第2部分の平衡方程式に用いる前記解析対象系の物性値に関するデータを記憶する物性値データ記憶手段と、
前記平衡方程式を示すブロック対角行列をLU分解した上三角行列及び下三角行列を記憶する分解行列データ記憶手段とを備えた計算装置を用いて、非線形構造体の解析計算を行なうプログラムであって、
前記制御手段を、
前記物性値データを用いて、前記解析対象系の各解析対象要素の平衡方程式を示すブロック行列を生成し、
前記第2部分のブロック行列を対角要素として配置するとともに、前記第1部分のブロック行列を縁部分として配置した縁付きブロック対角行列を、前記第2部分の変化毎に生成する手段、
前記縁付きブロック対角行列の縁部分以外の各ブロック行列を、時間ステップループの外側においてLU分解して、前記第2部分の各変化に対応付けて、前記分解行列データ記憶手段に記録する対角行列分解手段、
時間ステップループの内側において、
この時間ステップにおける前記第2部分の変化に対応する前記各ブロック行列の上三角行列及び下三角行列を、前記分解行列データ記憶手段から抽出し、
これらを配置することにより生成した前記縁付きブロック対角行列において縁部分を除いた行列に対する上三角行列及び下三角行列を生成し、
前記第1部分に応じた平衡方程式を満足する縁部分の行列を生成し、この縁部分の行列をLU分解し、
前記縁部分の行列をLU分解したLU分解要素を、前記縁付きブロック対角行列において縁部分を除いた行列であって、この時間ステップにおける前記第2部分の変化に対応する上三角行列及び下三角行列に、それぞれ合成して合成上三角行列及び合成下三角行列を生成し、
前記生成した合成上三角行列及び合成下三角行列の解を、前進代入及び後退代入を用いて、前記解析対象の計算値として算出する算出処理を実行し、
前記算出処理において算出した計算値が収束するまで前記算出処理を繰り返して、この時間ステップにおける計算値を算出する時間ステップ計算値算出手段、
前記時間ステップループの内側の処理を終了時間まで繰り返して算出した前記計算値を出力する手段として機能させることを特徴とする非線形構造解析計算プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012238201A JP5782008B2 (ja) | 2011-10-17 | 2012-10-29 | 非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラム |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011228242 | 2011-10-17 | ||
JP2011228242 | 2011-10-17 | ||
JP2012238201A JP5782008B2 (ja) | 2011-10-17 | 2012-10-29 | 非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラム |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012225386A Division JP5405641B2 (ja) | 2011-10-17 | 2012-10-10 | 挙動解析システム、挙動解析方法及び挙動解析プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013101608A true JP2013101608A (ja) | 2013-05-23 |
JP5782008B2 JP5782008B2 (ja) | 2015-09-24 |
Family
ID=48622137
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012225386A Active JP5405641B2 (ja) | 2011-10-17 | 2012-10-10 | 挙動解析システム、挙動解析方法及び挙動解析プログラム |
JP2012238201A Active JP5782008B2 (ja) | 2011-10-17 | 2012-10-29 | 非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラム |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012225386A Active JP5405641B2 (ja) | 2011-10-17 | 2012-10-10 | 挙動解析システム、挙動解析方法及び挙動解析プログラム |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5405641B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105023236A (zh) * | 2015-07-14 | 2015-11-04 | 鲁东大学 | 一种基于矩阵lu分解的双彩色图像盲水印方法 |
JP2019091316A (ja) * | 2017-11-15 | 2019-06-13 | 三菱重工業株式会社 | 熱交換器の解析方法 |
CN111125625A (zh) * | 2019-11-29 | 2020-05-08 | 北京遥测技术研究所 | 一种基于嵌入式系统的光谱基线计算方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103327608B (zh) * | 2013-07-02 | 2015-12-02 | 哈尔滨工程大学 | 一种稀疏化节点定位算法 |
CN115081148B (zh) * | 2022-07-20 | 2022-11-15 | 上海索辰信息科技股份有限公司 | 一种基于势能理论的加筋板等效参数确定方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0916640A (ja) * | 1995-06-10 | 1997-01-17 | Fujitsu Ltd | 回路シミュレータ及びブロック緩和反復シミュレーション方法 |
JP2004240541A (ja) * | 2003-02-04 | 2004-08-26 | Hitachi Ltd | 並列分散環境におけるネットワーク回路のシミュレーション方法および装置 |
JP2005202354A (ja) * | 2003-12-19 | 2005-07-28 | Toudai Tlo Ltd | 信号解析方法 |
WO2007110910A1 (ja) * | 2006-03-27 | 2007-10-04 | Fujitsu Limited | 回路シミュレータ |
JP2010072711A (ja) * | 2008-09-16 | 2010-04-02 | Hitachi Ltd | 高速磁場解析方法、高速磁場解析プログラム、および記録媒体 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007133710A (ja) * | 2005-11-11 | 2007-05-31 | Hitachi Ltd | 連立一次方程式反復解法における前処理方法および行列リオーダリング方法 |
-
2012
- 2012-10-10 JP JP2012225386A patent/JP5405641B2/ja active Active
- 2012-10-29 JP JP2012238201A patent/JP5782008B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0916640A (ja) * | 1995-06-10 | 1997-01-17 | Fujitsu Ltd | 回路シミュレータ及びブロック緩和反復シミュレーション方法 |
JP2004240541A (ja) * | 2003-02-04 | 2004-08-26 | Hitachi Ltd | 並列分散環境におけるネットワーク回路のシミュレーション方法および装置 |
JP2005202354A (ja) * | 2003-12-19 | 2005-07-28 | Toudai Tlo Ltd | 信号解析方法 |
WO2007110910A1 (ja) * | 2006-03-27 | 2007-10-04 | Fujitsu Limited | 回路シミュレータ |
JP2010072711A (ja) * | 2008-09-16 | 2010-04-02 | Hitachi Ltd | 高速磁場解析方法、高速磁場解析プログラム、および記録媒体 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105023236A (zh) * | 2015-07-14 | 2015-11-04 | 鲁东大学 | 一种基于矩阵lu分解的双彩色图像盲水印方法 |
CN105023236B (zh) * | 2015-07-14 | 2017-11-10 | 鲁东大学 | 一种基于矩阵lu分解的双彩色图像盲水印方法 |
JP2019091316A (ja) * | 2017-11-15 | 2019-06-13 | 三菱重工業株式会社 | 熱交換器の解析方法 |
JP7005304B2 (ja) | 2017-11-15 | 2022-01-21 | 三菱重工業株式会社 | 熱交換器の解析方法 |
CN111125625A (zh) * | 2019-11-29 | 2020-05-08 | 北京遥测技术研究所 | 一种基于嵌入式系统的光谱基线计算方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5782008B2 (ja) | 2015-09-24 |
JP2013101598A (ja) | 2013-05-23 |
JP5405641B2 (ja) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Corigliano et al. | Model order reduction and domain decomposition strategies for the solution of the dynamic elastic–plastic structural problem | |
Sifakis et al. | FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction | |
Menezes et al. | Three-dimensional numerical simulation of the deep-drawing process using solid finite elements | |
Hu et al. | Cross-model cross-mode method for model updating | |
JP6608637B2 (ja) | モード動的解析におけるラグランジュ乗数を回復するシステムおよび方法 | |
JP2017117458A (ja) | 物理座標におけるモーダル減衰を用いた構造動力学問題を効果的に解くこと | |
Abdi et al. | Topology optimization of geometrically nonlinear structures using an evolutionary optimization method | |
JP5782008B2 (ja) | 非線形構造解析計算装置、非線形構造解析計算方法及び非線形構造解析計算プログラム | |
Al-Taie et al. | Structure-preserving model reduction for spatially interconnected systems with experimental validation on an actuated beam | |
Lv et al. | An efficient collocation approach for piezoelectric problems based on the element differential method | |
Weber et al. | Deformation simulation using cubic finite elements and efficient p-multigrid methods | |
Huang et al. | A new approach for stochastic model updating using the hybrid perturbation-Garlekin method | |
Naets et al. | Multi‐expansion modal reduction: A pragmatic semi–a priori model order reduction approach for nonlinear structural dynamics | |
Kim et al. | Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system | |
Fritzen et al. | Space–time model order reduction for nonlinear viscoelastic systems subjected to long-term loading | |
Wen et al. | A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker | |
Comellas et al. | Optimization method for the determination of material parameters in damaged composite structures | |
JPH0921720A (ja) | 構造振動解析方法 | |
Li et al. | A novel reduced basis method for adjoint sensitivity analysis of dynamic topology optimization | |
JP5782604B2 (ja) | 情報処理装置及びプログラム | |
Demoures et al. | A multisymplectic integrator for elastodynamic frictionless impact problems | |
Khaji et al. | Uncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element method | |
Buljak et al. | Proper orthogonal decomposition and radial basis functions for fast simulations | |
Yu et al. | Efficient numerical solution method for large deformation analyses of structures based on the updated lagrangian formulation | |
Iglesias Ibáñez et al. | Galerkin meshfree methods applied to the nonlinear dynamics of flexible multibody systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150701 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5782008 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |