JP2013098278A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2013098278A
JP2013098278A JP2011238357A JP2011238357A JP2013098278A JP 2013098278 A JP2013098278 A JP 2013098278A JP 2011238357 A JP2011238357 A JP 2011238357A JP 2011238357 A JP2011238357 A JP 2011238357A JP 2013098278 A JP2013098278 A JP 2013098278A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
emitting device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011238357A
Other languages
Japanese (ja)
Inventor
Tadahisa Inui
忠久 乾
Shoichi Tanaka
彰一 田中
Tetsuo Muramatsu
哲雄 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011238357A priority Critical patent/JP2013098278A/en
Publication of JP2013098278A publication Critical patent/JP2013098278A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PROBLEM TO BE SOLVED: To solve the problem in a conventional light-emitting device that because a light-emitting element is mounted in a concavity provided on a wiring board and is encapsulated while a transparent epoxy resin is bulged so as to cover the element, a thick portion of the epoxy resin covering the light-emitting element makes it difficult to further reduce the height of the device.SOLUTION: To solve the above problem, a light-emitting device of the present invention comprises a substrate and a light-emitting element. The substrate includes a concavity and wiring. The concavity consists of a bottom face and side faces connected to the bottom face. Part of the wiring is a bond area, part of the other sections of the wiring is an external connection electrode. The light-emitting element is disposed in the concavity, and the bottom face of the light-emitting element and the bond area are electrically connected by a bump. A filler is filled between the bottom face of the concavity and the lower face of the light-emitting element and between the side faces of the concavity and the side faces of the light-emitting element, the top face of the light-emitting element being exposed from the filler.

Description

本発明は、発光ダイオード(LED:Light emitting diode)等の発光素子から出射された光を外部に取り出す発光装置に関するものであり、特に、電子ディスプレイ用のバックライト電源や、蛍光ランプに好適に用いられる発光装置に関する。   The present invention relates to a light emitting device that extracts light emitted from a light emitting element such as a light emitting diode (LED) to the outside, and is particularly suitable for a backlight power source for an electronic display and a fluorescent lamp. The present invention relates to a light emitting device.

近年、発光装置はより小型化・薄型化が望まれている。このような要望を満たすため、特許文献1には、配線基板102に設けられた凹部に発光素子101を実装した発光装置が記載されている(図11)。発光素子101が凹部にボンディングされる分、発光装置の厚さは薄くなる。   In recent years, there has been a demand for smaller and thinner light emitting devices. In order to satisfy such a demand, Patent Document 1 describes a light emitting device in which a light emitting element 101 is mounted in a recess provided in a wiring board 102 (FIG. 11). As the light emitting element 101 is bonded to the recess, the thickness of the light emitting device is reduced.

特開平11−186590号公報JP 11-186590 A

しかしながら、特許文献1に記載の従来の発光装置では、透明なエポキシ樹脂106が発光素子101を覆うように盛り上がった状態で封止されている。このような状態では、発光素子101を覆うエポキシ樹脂の厚みの分、薄型化が阻まれるという課題があった。   However, in the conventional light emitting device described in Patent Document 1, the transparent epoxy resin 106 is sealed in a raised state so as to cover the light emitting element 101. In such a state, the thickness of the epoxy resin covering the light emitting element 101 is reduced, so that there is a problem that thinning is prevented.

従来の課題を解決するために、本発明の発光装置は、基板と発光素子を備えた発光装置であって、基板は、凹部と、配線とを備え、凹部は、底面と底面に接続された側面とからなり、配線の一部は、ボンドエリアであり、配線の他の一部は、外部接続電極であり、凹部内には発光素子が配置され、発光素子の下面と前記ボンドエリアはバンプにより電気的に接続されており、凹部の底面と発光素子の下面との間、及び凹部の側面と発光素子の側面との間には充填材が充填されており、発光素子の上面は充填材から露出することを特徴とする。   In order to solve the conventional problems, a light-emitting device of the present invention is a light-emitting device including a substrate and a light-emitting element. The substrate includes a recess and a wiring, and the recess is connected to the bottom surface and the bottom surface. A part of the wiring is a bond area, the other part of the wiring is an external connection electrode, a light emitting element is disposed in the recess, and the lower surface of the light emitting element and the bond area are bumps The filler is filled between the bottom surface of the recess and the bottom surface of the light emitting element, and between the side surface of the recess and the side surface of the light emitting element, and the top surface of the light emitting element is filled with the filler. It is exposed from.

また、凹部の側面と接続された基板の上面、充填材の上面及び発光素子の上面は面一となっていてもよい。   In addition, the upper surface of the substrate connected to the side surface of the recess, the upper surface of the filler, and the upper surface of the light emitting element may be flush with each other.

また、充填材は、発光素子の下面と凹部の底面との間に配置された第1の充填層と、発光素子の側面と凹部の側面との間に配置された第2の充填層からなってもよい。   The filler includes a first filling layer disposed between the lower surface of the light emitting element and the bottom surface of the recess, and a second filling layer disposed between the side surface of the light emitting element and the side surface of the recess. May be.

また、第1の充填層は、波長変換層であってもよい。   Further, the first filling layer may be a wavelength conversion layer.

また、波長変換層には、半導体蛍光微粒子が含まれてもよい。   The wavelength conversion layer may contain semiconductor fluorescent fine particles.

また、第2の充填層は、樹脂であってもよい。   The second filling layer may be a resin.

また、第2の充填層は、発光素子よりも光透過率が高くてもよい。   The second filling layer may have a higher light transmittance than the light emitting element.

また、第2の充填層は、発光素子側面から凹部の側面に至るにつれ、光透過率が高くなっていてもよい。   Further, the second filling layer may have a higher light transmittance from the side surface of the light emitting element to the side surface of the recess.

また、基板は、発光素子の下方に放熱板を備え、放熱板は充填材と接していてもよい。   Moreover, the board | substrate is equipped with the heat sink under the light emitting element, and the heat sink may be in contact with the filler.

以上のように、本発明の発光装置によると、発光素子の上面は充填材から露出した構成となっているため、充填材が発光素子を覆うように盛り上がることが無く、従来の発光素子と比較し、さらに薄型化できる。   As described above, according to the light emitting device of the present invention, since the upper surface of the light emitting element is exposed from the filler, the filler does not rise so as to cover the light emitting element, which is compared with the conventional light emitting element. Furthermore, it can be made thinner.

(a)は実施例1の発光装置を示す概略断面図、(b)は実施例1の発光装置を示す概略上面図(A) is schematic sectional drawing which shows the light-emitting device of Example 1, (b) is a schematic top view which shows the light-emitting device of Example 1. 実施例1の発光装置の変形例を示す概略断面図Schematic sectional view showing a modification of the light emitting device of Example 1 実施例1の発光装置の変形例を示す概略断面図Schematic sectional view showing a modification of the light emitting device of Example 1 実施例1の発光装置の変形例を示す概略断面図Schematic sectional view showing a modification of the light emitting device of Example 1 (a)は実施例1の発光装置を示す概略断面図、(b)は実施例1の発光装 置の一部断面拡大図、(c)は実施例1の発光装置の各位置での光透過率を示すグラフ(A) is schematic sectional drawing which shows the light-emitting device of Example 1, (b) is a partial cross-sectional enlarged view of the light-emitting device of Example 1, (c) is the light in each position of the light-emitting device of Example 1. Graph showing transmittance (a)は実施例2の発光装置を示す概略断面図、(b)は実施例2の発光装置の一部断面拡大図、(c)は実施例2の発光装置の各位置での光透過率を示すグラフ(A) is schematic sectional drawing which shows the light-emitting device of Example 2, (b) is a partial cross-sectional enlarged view of the light-emitting device of Example 2, (c) is light transmission in each position of the light-emitting device of Example 2. Chart showing rate (a)は実施例3の発光装置を示す概略断面図、(b)は実施例3の発光装置の一部断面拡大図、(c)は実施例3の発光装置の各位置での光透過率を示すグラフ(A) is schematic sectional drawing which shows the light-emitting device of Example 3, (b) is a partial cross-sectional enlarged view of the light-emitting device of Example 3, (c) is light transmission in each position of the light-emitting device of Example 3. Chart showing rate (a)は実施例4の発光装置を示す概略断面図、(b)は実施例4の発光装置を示す概略上面図(A) is schematic sectional drawing which shows the light-emitting device of Example 4, (b) is a schematic top view which shows the light-emitting device of Example 4. (a)は実施例5の発光装置を示す概略断面図、(b)は実施例5の発光装置を示す概略上面図(A) is schematic sectional drawing which shows the light-emitting device of Example 5, (b) is a schematic top view which shows the light-emitting device of Example 5. (a)〜(e)は、実施例6の発光装置の製造方法を示す概略断面図(A)-(e) is schematic sectional drawing which shows the manufacturing method of the light-emitting device of Example 6. FIG. 従来技術の発光装置の概略断面図Schematic sectional view of a prior art light emitting device

以下、本発明の実施例における発光装置について、図面を参照しながら説明する。   Hereinafter, light emitting devices according to examples of the present invention will be described with reference to the drawings.

(実施例1)
本発明の実施例1における発光装置の構成について、図1を用いて説明する。図1(b)は本実施例の発光装置の上面図である。図1(a)は図1(b)におけるAA’線の概略断面図である。なお、図1(b)では簡略化のために、一部の構成を省略している。
Example 1
The structure of the light emitting device in Example 1 of the present invention will be described with reference to FIG. FIG. 1B is a top view of the light emitting device of this example. FIG. 1A is a schematic cross-sectional view taken along line AA ′ in FIG. In FIG. 1B, a part of the configuration is omitted for simplification.

図1に示すように、本実施例の発光装置は、基板2を備え、基板2は凹部2aを有する。凹部2aは凹部底面2b及び凹部底面2bと接続された凹部側面2cとから構成される。基板2はさらに凹部側面2cと接続された上面2dを有する。基板2はさらに配線3を備える。配線3の上面の一部は基板2の凹部底面2bから露出し、ボンドエリア3aとして機能している。配線3の下面の一部は基板2の下面から露出し、外部接続電極3bとして機能している。発光素子1は基板2の凹部2a内に配置され、発光素子1の下面と配線3のボンドエリア3aはバンプ5により電気的に接続されている。いわゆるフリップチップ実装である。また基板2の凹部側面2cは、発光素子1を囲うように設けられている。また図1(b)に示すように、基板凹部2aの平面内形状は略四角形である。また、基板2の凹部底面2b及び凹部側面2cと、発光素子1との間には充填材6が充填されている。ここで、発光素子1の上面(基板2に対して反対側の面)は充填材6から露出した構成となっている。   As shown in FIG. 1, the light-emitting device of the present embodiment includes a substrate 2, and the substrate 2 has a recess 2a. The recess 2a includes a recess bottom surface 2b and a recess side surface 2c connected to the recess bottom surface 2b. The substrate 2 further has an upper surface 2d connected to the concave side surface 2c. The substrate 2 further includes wiring 3. A part of the upper surface of the wiring 3 is exposed from the concave bottom surface 2b of the substrate 2 and functions as a bond area 3a. A part of the lower surface of the wiring 3 is exposed from the lower surface of the substrate 2 and functions as the external connection electrode 3b. The light emitting element 1 is disposed in the recess 2 a of the substrate 2, and the lower surface of the light emitting element 1 and the bond area 3 a of the wiring 3 are electrically connected by bumps 5. This is so-called flip chip mounting. Further, the concave side surface 2 c of the substrate 2 is provided so as to surround the light emitting element 1. Further, as shown in FIG. 1B, the in-plane shape of the substrate recess 2a is a substantially square shape. In addition, a filler 6 is filled between the bottom surface 2 b and the side surface 2 c of the concave portion of the substrate 2 and the light emitting element 1. Here, the upper surface of the light emitting element 1 (surface opposite to the substrate 2) is exposed from the filler 6.

発光素子1としては、例えば、GaN系の青色LEDを用いることができるが、これに限られず、他の材料からなる青色LEDや他の色の発光をするLEDや有機EL等のLED以外の発光素子を用いてもよい。   For example, a GaN-based blue LED can be used as the light-emitting element 1, but is not limited to this, and light emission other than LEDs such as blue LEDs made of other materials, LEDs emitting other colors, and organic ELs can be used. An element may be used.

本発明の発光装置によると、発光素子1の上面は充填材6から露出した構成となっているため、従来の発光装置と比較し、さらに薄型化できるという効果を発揮する。   According to the light emitting device of the present invention, since the upper surface of the light emitting element 1 is exposed from the filler 6, the light emitting device 1 exhibits an effect that it can be made thinner as compared with the conventional light emitting device.

また、基板2の凹部側面2cは上方に広角となるリフレクターであることが好ましい。凹部側面2cをリフレクターとすることで、発光装置の指向性をより高めることができる。   Moreover, it is preferable that the recessed part side surface 2c of the board | substrate 2 is a reflector which becomes a wide angle upward. By using the concave side surface 2c as a reflector, the directivity of the light emitting device can be further enhanced.

また、図1に示すように、発光素子1上面と充填材6上面と基板2の上面2dが面一となることが好ましい。発光装置の上面方向に表記した矢印は光の進行方向を示している。発光素子1からの光の一部は上方(基板2に対して反対方向)に進行し、一部は下方に進行する。下方に進行した光は、基板2で反射し、上方に進行する。基板2で反射した光の一部は充填材6を透過して充填材6上面から発光装置外部へ進行する。充填材6上面が面一となることにより、後述の充填材6上面が山形形状であったり、谷形形状であったりする場合と比較し、発光素子1上面からの出射光と充填材6上面からの出射光の方向性のばらつきを抑えることができる。また、発光装置運搬時や使用時での欠け等を防ぐことができる。   Moreover, as shown in FIG. 1, it is preferable that the upper surface of the light emitting element 1, the upper surface of the filler 6, and the upper surface 2d of the substrate 2 are flush with each other. An arrow written in the upper surface direction of the light emitting device indicates the traveling direction of light. Part of the light from the light emitting element 1 travels upward (in the opposite direction to the substrate 2), and part travels downward. The light traveling downward is reflected by the substrate 2 and travels upward. Part of the light reflected by the substrate 2 passes through the filler 6 and travels from the upper surface of the filler 6 to the outside of the light emitting device. Since the upper surface of the filler 6 is flush, the emitted light from the upper surface of the light emitting element 1 and the upper surface of the filler 6 are compared with the case where the upper surface of the filler 6 described later has a mountain shape or a valley shape. The variation in the directionality of the emitted light from can be suppressed. Further, chipping or the like during transportation or use of the light emitting device can be prevented.

なお、発光素子1と基板2の電気的接続のためには、配線3は少なくとも2本備わっていれば良い。また、図1(b)に示すように、配線3は発光素子1の外周を囲うように複数本形成されていてもよい。この際、少なくとも2本の配線3以外は、電気的接続に用いないダミー配線でもよい。このような構成とすれば、発光素子1を基板2により物理的に安定して搭載することができる。   In order to electrically connect the light emitting element 1 and the substrate 2, it is sufficient that at least two wirings 3 are provided. Further, as shown in FIG. 1B, a plurality of wirings 3 may be formed so as to surround the outer periphery of the light emitting element 1. At this time, dummy wirings that are not used for electrical connection may be used except for at least two wirings 3. With such a configuration, the light emitting element 1 can be physically and stably mounted on the substrate 2.

尚、図2に示すように、充填材6上面を発光素子1上面位置より高い位置で山形に盛り上った形状としてもよい。このような構成とすれば、充填材6上面からの出射光を拡散させることができる。   As shown in FIG. 2, the upper surface of the filler 6 may be formed in a mountain shape at a position higher than the position of the upper surface of the light emitting element 1. With such a configuration, the emitted light from the upper surface of the filler 6 can be diffused.

尚、図3に示すように、充填材6上面を発光素子1上面位置より低い位置で谷形形状としてもよい。このような構成とすれば、充填材6上面からの出射光を集光させることができる。   As shown in FIG. 3, the upper surface of the filler 6 may have a valley shape at a position lower than the upper surface position of the light emitting element 1. With such a configuration, the emitted light from the upper surface of the filler 6 can be condensed.

また、充填材6は、発光素子1の底面と基板2の凹部底面2bとの間に配置された第1の充填層7と、発光素子1の側面と基板2の凹部側面2cとの間に配置された第2の充填層8からなることが好ましい。   The filler 6 is formed between the first filling layer 7 disposed between the bottom surface of the light emitting element 1 and the concave bottom surface 2 b of the substrate 2, and between the side surface of the light emitting element 1 and the concave side surface 2 c of the substrate 2. It is preferable that the second packing layer 8 is arranged.

また、第1の充填層7は、波長変換層であることが好ましい。   Moreover, it is preferable that the 1st filling layer 7 is a wavelength conversion layer.

従来、発光装置の分野では、発光素子から発光される光そのものの色とは異なる色を得たいという要望があった。これらの要望を満たすために、従来は発光素子の上面に発光素子からの光を波長変換するための層を設けるという構成をとっていた。これに対し、本実施例に示すように発光素子1の底面と基板2との間に配置された第1の充填層7を波長変換層とすることで、本願発明においても、発光素子から発光される光そのものの色とは異なる色を得ることができる。すなわち、発光素子1は、図1に示すように、発光素子1の中心点Pから上方向(発光素子1上面方向)及び下方向(基板2方向)に向かって発光する。この下方向に向かって発光する光を波長変換層7に通すことで、波長変換を行う。そして、波長変換層7を通した光を反射によって上方向(発光素子1上面方向)に取り出す。このように、波長変換された光と波長変換されない光とを混合して放出することにより、発光素子1そのものの光とは異なる色の光を出す発光装置を提供することができる。ここで、基板2は反射率の高い材質からなることが好ましい。もしくは、後述のように放熱板4を波長変換層7に接する構成とするならば、放熱板4自体が反射率の高い材質を用いることが好ましい。もしくは、図4に示すように、基板2の凹部2a上に反射層10を設けることが好ましい。   Conventionally, in the field of light emitting devices, there has been a desire to obtain a color different from the color of light itself emitted from a light emitting element. In order to satisfy these demands, conventionally, a configuration has been adopted in which a layer for converting the wavelength of light from the light emitting element is provided on the upper surface of the light emitting element. On the other hand, as shown in this embodiment, the first filling layer 7 disposed between the bottom surface of the light emitting element 1 and the substrate 2 is used as a wavelength conversion layer. A color different from the color of the light itself can be obtained. That is, the light emitting element 1 emits light from the center point P of the light emitting element 1 upward (toward the upper surface of the light emitting element 1) and downward (toward the substrate 2), as shown in FIG. Wavelength conversion is performed by passing light emitted in the downward direction through the wavelength conversion layer 7. Then, the light passing through the wavelength conversion layer 7 is extracted upward (upper surface direction of the light emitting element 1) by reflection. In this way, a light emitting device that emits light of a color different from the light of the light emitting element 1 itself can be provided by mixing and emitting the light subjected to wavelength conversion and the light not subjected to wavelength conversion. Here, the substrate 2 is preferably made of a highly reflective material. Alternatively, if the heat radiating plate 4 is in contact with the wavelength conversion layer 7 as will be described later, it is preferable that the heat radiating plate 4 itself be made of a material having high reflectivity. Alternatively, as shown in FIG. 4, it is preferable to provide the reflective layer 10 on the recess 2 a of the substrate 2.

また、波長変換層7には、バンド端光吸収・発光を直接利用することで高い量子効率を実現する半導体蛍光微粒子を含むことが好ましい。特に、直径が数nmから数十nmの微粒子からなるいわゆる量子ドット蛍光体を含むことが好ましい。量子ドット蛍光体は、量子サイズ効果によって同一材料の微粒子でも粒子径を制御することで可視光線領域において所望の波長帯の蛍光スペクトルを得ることが出来る。また、バンド端による光吸収・蛍光であるため、90%程度の高い外部量子効率を示すことから、高効率・高演色性を有する発光装置を提供することができる。   Moreover, it is preferable that the wavelength conversion layer 7 contains semiconductor fluorescent fine particles that realize high quantum efficiency by directly using band edge light absorption and light emission. In particular, it is preferable to include a so-called quantum dot phosphor composed of fine particles having a diameter of several nanometers to several tens of nanometers. The quantum dot phosphor can obtain a fluorescence spectrum in a desired wavelength band in the visible light region by controlling the particle diameter even with fine particles of the same material by the quantum size effect. Further, since light absorption / fluorescence is caused by the band edge, and high external quantum efficiency of about 90% is exhibited, a light-emitting device having high efficiency and high color rendering can be provided.

量子ドット蛍光体の材料としては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTeのようなII−VI族化合物半導体ナノ結晶、GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAsのようなIII−V族化合物半導体ナノ結晶、およびこれらの混合物よりなる群から選択されることが好ましい。また、前記混合物は、例えばCdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTeおよびHgZnSTeよりなる群から選択されるか、またはGaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAsおよびInAlPAsよりなる群から選択されることが好ましい。   Examples of the material of the quantum dot phosphor include II-VI group compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, AlN, AlP, It is preferably selected from the group consisting of III-V compound semiconductor nanocrystals such as AlAs, InN, InP, InAs, and mixtures thereof. In addition, the mixture includes, for example, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, ZnDe, CdZnSe, CdZnSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe. , CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, or selected from the group consisting of GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNPs, GaAlNAs, GaAlPAs, GaAlPAs InAlNP, InAlNA And it is preferably selected from the group consisting InAlPAs.

例として、発光素子1としてGaN系の青色LEDを、波長変換層7に含まれる半導体蛍光微粒子としてCdS、CdSe、CdTe、ZnS、ZnSe、ZnTeのようなII−VI族化合物半導体ナノ結晶、GaN、GaP、AlN、AlP、AlAs、InN、InPのようなIII−V族化合物半導体ナノ結晶を用いた場合には、高輝度な白色光を得られる発光装置を実現できる。   As an example, a GaN-based blue LED is used as the light-emitting element 1, and a semiconductor fluorescent fine particle contained in the wavelength conversion layer 7 is a II-VI group compound semiconductor nanocrystal such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, When III-V group compound semiconductor nanocrystals such as GaP, AlN, AlP, AlAs, InN, and InP are used, a light emitting device that can obtain white light with high luminance can be realized.

ここで、量子ドット蛍光体は粒子径が小さいため、微粒子の表面を占める原子の割合が多くなることから、化学的安定性の低いものが多く、特に大気開放・高温環境下での励起蛍光においては、量子ドット蛍光体表面の酸化反応が進行し、急激な発光効率の低下を引き起こすという課題を有する。   Here, since the quantum dot phosphor has a small particle diameter, the proportion of atoms occupying the surface of the fine particles increases, so many of them have low chemical stability, especially in the case of excited fluorescence in an open atmosphere / high temperature environment. Has a problem that the oxidation reaction on the surface of the quantum dot phosphor proceeds, causing a rapid decrease in luminous efficiency.

よって、波長変換層7に量子ドット蛍光体が含まれる場合は、発光素子1の下方であって、波長変換層7の下層に放熱板4を設け、放熱板4下面が基板2から外部に露出することが好ましい。発光装置の動作時、発光素子1から発する熱は波長変換層7へ放熱されるが、放熱板4下面が外部に露出しているため、積極的に外部へ放熱し波長変換層7に含有される量子ドット蛍光体の温度上昇を防止することができる。   Therefore, when the wavelength conversion layer 7 includes a quantum dot phosphor, the heat radiating plate 4 is provided below the light emitting element 1 and below the wavelength conversion layer 7, and the lower surface of the heat radiating plate 4 is exposed to the outside from the substrate 2. It is preferable to do. During operation of the light emitting device, heat generated from the light emitting element 1 is radiated to the wavelength conversion layer 7, but since the lower surface of the heat radiating plate 4 is exposed to the outside, the heat is actively radiated to the outside and contained in the wavelength conversion layer 7. Temperature rise of the quantum dot phosphor can be prevented.

また、発光素子1の側面と基板2の凹部側面2cとの間に配置された第2の充填層8は、樹脂であることが好ましい。特に酸素を透過しにくいガスバリア樹脂であることが好ましい。具体的には、ナイロン(Ny)類、ポリビニルアルコール(PVA)、エチレン/ビニルアルコール共重合樹脂(EVOH)、ポリ塩化ビニリデン(PVDC)等を用いても良い。このような構成とすることで、波長変換層7に耐酸化性の低い半導体微粒子蛍光体を用いる場合であっても、波長変換層7は、基板2の凹部底面2b及び発光素子1の底面及び基板2の凹部側面2c及びガスバリア樹脂8によって外気から密閉されるので、波長変換層7の酸化を効率的に抑えることができる。   Moreover, it is preferable that the 2nd filling layer 8 arrange | positioned between the side surface of the light emitting element 1 and the recessed part side surface 2c of the board | substrate 2 is resin. In particular, a gas barrier resin that hardly permeates oxygen is preferable. Specifically, nylon (Ny), polyvinyl alcohol (PVA), ethylene / vinyl alcohol copolymer resin (EVOH), polyvinylidene chloride (PVDC), or the like may be used. With such a configuration, even when a semiconductor fine particle phosphor having low oxidation resistance is used for the wavelength conversion layer 7, the wavelength conversion layer 7 includes the concave bottom surface 2 b of the substrate 2, the bottom surface of the light emitting element 1, and Since the concave side surface 2c of the substrate 2 and the gas barrier resin 8 are sealed from the outside air, the oxidation of the wavelength conversion layer 7 can be efficiently suppressed.

次に、図5を用いて本願発明における発光素子1の側面周辺での光の進行原理を説明する。   Next, the principle of light travel around the side surface of the light emitting device 1 according to the present invention will be described with reference to FIG.

図5(a)は本願発明の発光装置の概略断面図である。各構成については図1と同じであるため説明を省略する。図5(a)の破線部を拡大した図が図5(b)である。   FIG. 5A is a schematic cross-sectional view of the light emitting device of the present invention. Since each configuration is the same as that shown in FIG. FIG. 5B is an enlarged view of the broken line part of FIG.

図5(b)で表記した矢印は光の進行方向と光量の大小を模式的に示し、矢印が大きい場合は光量が大きく、矢印が小さい場合は光量が小さいことを示す。   The arrows shown in FIG. 5B schematically indicate the traveling direction of the light and the magnitude of the light amount. When the arrow is large, the light amount is large, and when the arrow is small, the light amount is small.

ここで、発光素子1の主たる素材としては、赤色LEDならGaAs、緑色LEDならGaP、青色LEDならサファイアかGaNが想定され、第2の充填層8は発光素子1より透過性の高い樹脂が用いられている。   Here, the main material of the light emitting element 1 is assumed to be GaAs for a red LED, GaP for a green LED, and sapphire or GaN for a blue LED, and the second filling layer 8 is made of a resin having higher transparency than the light emitting element 1. It has been.

図中に表記したH1は第1の充填層7上面のZ軸方向(基板2から発光素子1に向かう方向)の位置を示し、H2は発光素子1上面及び第2の充填層8上面及び基板2の上面2dのZ軸方向の位置を示す。また、Aは発光素子1が存在するX軸方向(発光素子1の平面中心から基板2の凹部側面2cに向かう方向)の位置を示し、Bは発光素子1と第2の充填層8の境界に当たるX軸方向の位置を示し、Cは基板2の凹部側面2cと第1の充填層7上面と第2の充填層8下面の境界に当たるX軸方向の位置を示し、Dは基板2の上面2dと第2の充填層8上面に当たるX軸方向の位置を示す。   H1 shown in the drawing indicates the position of the top surface of the first filling layer 7 in the Z-axis direction (direction from the substrate 2 toward the light emitting element 1), and H2 indicates the top surface of the light emitting element 1, the top surface of the second filling layer 8, and the substrate. 2 shows the position of the upper surface 2d of 2 in the Z-axis direction. A indicates the position in the X-axis direction where the light emitting element 1 exists (the direction from the center of the light emitting element 1 toward the concave side surface 2c of the substrate 2), and B indicates the boundary between the light emitting element 1 and the second filling layer 8. X indicates the position in the X-axis direction, C indicates the position in the X-axis direction corresponding to the boundary between the concave side surface 2c of the substrate 2, the upper surface of the first filling layer 7 and the lower surface of the second filling layer 8, and D indicates the upper surface of the substrate 2 A position in the X-axis direction corresponding to 2d and the upper surface of the second filling layer 8 is shown.

図5(c)は、図5(b)に示す各X軸方向の位置での、発光素子1または第2の充填層8における光透過率を示すグラフである。図5(c)で示すように、光透過率は発光素子1の配置部位では小さく、第2の充填層8の配置部位では大きい。よって、図5(b)に示すように、第1の充填層7上面のZ軸方向(基板2から発光素子1に向かう方向)の位置H1において、仮にX軸方向のどの位置でも上方への光量が一定であるとすると、発光素子1上面及び第2の充填層8上面及び基板2の上面2dのZ軸方向の位置H2において、X軸方向のB〜CではA〜Bよりも多くの光量を発することとなる。   FIG. 5C is a graph showing the light transmittance in the light emitting element 1 or the second filling layer 8 at each X-axis direction position shown in FIG. As shown in FIG. 5C, the light transmittance is small at the arrangement site of the light emitting element 1 and large at the arrangement site of the second filling layer 8. Therefore, as shown in FIG. 5B, at the position H1 in the Z-axis direction (the direction from the substrate 2 toward the light emitting element 1) on the upper surface of the first filling layer 7, it is assumed that any position in the X-axis direction is upward. Assuming that the amount of light is constant, at positions H2 in the Z-axis direction on the upper surface of the light emitting element 1, the upper surface of the second filling layer 8, and the upper surface 2d of the substrate 2, the B-C in the X-axis direction is more than AB. It emits light.

(実施例2)
本発明の実施例2における発光装置の構成について、図6を用いて説明する。
(Example 2)
The structure of the light emitting device in Example 2 of the present invention will be described with reference to FIG.

図6(a)は実施例2における発光装置の概略断面図である。図5(a)に示す実施例1とは、第2の充填層8の材料が異なることが特徴である。その他の構成については図5(a)と同じであるため説明を省略する。   FIG. 6A is a schematic cross-sectional view of the light emitting device in the second embodiment. The second embodiment is different from the first embodiment shown in FIG. 5A in that the material of the second filling layer 8 is different. Other configurations are the same as those in FIG.

図6(b)は図6(a)における破線部の断面拡大図である。図中に表記した矢印は光の進行方向と光量の大小を示し、矢印が大きい場合は光量が大きく、矢印が小さい場合は光量が小さいことを示す。   FIG. 6B is an enlarged cross-sectional view of the broken line portion in FIG. The arrows shown in the figure indicate the traveling direction of light and the magnitude of the light quantity. When the arrow is large, the light quantity is large, and when the arrow is small, the light quantity is small.

また、図中に表記したH1は蛍光体を含有した第1の充填層7上面のZ軸方向(基板2から発光素子1に向かう方向)の位置を示し、H2は発光素子1上面または第2の充填層8上面及び基板2の上面2dのZ軸方向の位置を示す。また、Aは発光素子1が存在するX軸方向(発光素子1の平面中心から基板2の凹部側面2cに向かう方向)の位置を示し、Bは発光素子1と第2の充填層8の境界に当たるX軸方向の位置を示し、Cは基板2の凹部側面2cと第1の充填層7上面と第2の充填層8下面の境界に当たるX軸方向の位置を示し、Dは基板2の上面2dと第2の充填層8上面に当たるX軸方向の位置を示す。   Further, H1 shown in the drawing indicates the position of the upper surface of the first filling layer 7 containing the phosphor in the Z-axis direction (the direction from the substrate 2 toward the light emitting element 1), and H2 indicates the upper surface of the light emitting element 1 or the second surface. The positions of the upper surface of the filling layer 8 and the upper surface 2d of the substrate 2 in the Z-axis direction are shown. A indicates the position in the X-axis direction where the light emitting element 1 exists (the direction from the center of the light emitting element 1 toward the concave side surface 2c of the substrate 2), and B indicates the boundary between the light emitting element 1 and the second filling layer 8. X indicates the position in the X-axis direction, C indicates the position in the X-axis direction corresponding to the boundary between the concave side surface 2c of the substrate 2, the upper surface of the first filling layer 7 and the lower surface of the second filling layer 8, and D indicates the upper surface of the substrate 2 A position in the X-axis direction corresponding to 2d and the upper surface of the second filling layer 8 is shown.

本実施例においては、発光素子1の主たる素材としては、赤色LEDならGaAs、緑色LEDならGaP、青色LEDならサファイアかGaNが想定され、第2の充填層8は発光素子1と同等の透過性を有する樹脂が用いられていることが特徴である。   In this embodiment, the main material of the light-emitting element 1 is assumed to be GaAs for a red LED, GaP for a green LED, sapphire or GaN for a blue LED, and the second filling layer 8 has the same transparency as the light-emitting element 1. It is the characteristic that the resin which has is used.

図6(c)は図6(b)に示すX軸方向の位置での、発光素子1または第2の充填層8の光透過率を示すグラフである。図6(c)で示すように、光透過率はX軸方向のA〜Dにかけて均等である。よって、図6(b)に示すように、第1の充填層7上面のZ軸方向(基板2から発光素子1に向かう方向)の位置H1において、仮にX軸方向のどの位置でも上方への光量が一定であるとすると、発光素子1上面及び第2の充填層8上面及び基板2の上面2dのZ軸方向の位置H2において、X軸方向のB〜CとA〜Bは同等の光量を発することとなる。   FIG. 6C is a graph showing the light transmittance of the light emitting element 1 or the second filling layer 8 at the position in the X-axis direction shown in FIG. As shown in FIG. 6C, the light transmittance is uniform from A to D in the X-axis direction. Therefore, as shown in FIG. 6B, at any position in the X-axis direction at the position H1 in the Z-axis direction (the direction from the substrate 2 toward the light emitting element 1) on the upper surface of the first filling layer 7, it is assumed to be upward. Assuming that the amount of light is constant, at positions H2 in the Z-axis direction on the upper surface of the light emitting element 1, the upper surface of the second filling layer 8, and the upper surface 2d of the substrate 2, B to C and A to B in the X axis direction are equivalent amounts of light. Will be issued.

ゆえに、本実施例では、実施例1と比較し、X軸方向のBの位置で(すなわち発光素子1と第2の充填層8の界面で)光量の差がほとんどなく、発光装置上面に発する光量において斑を失くすことができるという効果を発揮する。   Therefore, in this example, compared with Example 1, there is almost no difference in the amount of light at the position B in the X-axis direction (that is, at the interface between the light emitting element 1 and the second filling layer 8), and the light is emitted on the upper surface of the light emitting device. The effect is that the spots can be lost in the amount of light.

(実施例3)
本発明の実施例3における発光装置の構成について、図7を用いて説明する。
(Example 3)
The configuration of the light emitting device in Example 3 of the present invention will be described with reference to FIG.

図7(a)は実施例3における発光装置の概略断面図である。   FIG. 7A is a schematic cross-sectional view of the light emitting device in Example 3.

図6(a)に示す実施例とは、第2の充填層8が異なることが特徴である。その他の構成については図6(a)と同じであるため説明を省略する。   The second filling layer 8 is different from the embodiment shown in FIG. Since other configurations are the same as those in FIG.

図7(b)は図7(a)における破線部の断面拡大図である。図中に表記した矢印は光の進行方向と光量の大小を示し、矢印が大きい場合は光量が大きく、矢印が小さい場合は光量が小さいことを示す。   FIG. 7B is an enlarged cross-sectional view of a broken line portion in FIG. The arrows shown in the figure indicate the traveling direction of light and the magnitude of the light quantity. When the arrow is large, the light quantity is large, and when the arrow is small, the light quantity is small.

また、図中に表記したH1は蛍光体を含有した第1の充填層7上面のZ軸方向(基板2から発光素子1に向かう方向)の位置を示し、H2は発光素子1上面または第2の充填層8上面及び基板2の上面2dのZ軸方向の位置を示す。また、Aは発光素子1が存在するX軸方向(発光素子1の平面中心から基板2の凹部側面2cに向かう方向)の位置を示し、Bは発光素子1と第2の充填層8の境界に当たるX軸方向の位置を示し、Cは基板2の凹部側面2cと第1の充填層7上面と第2の充填層8下面の境界に当たるX軸方向の位置を示し、Dは基板2の上面2dと第2の充填層8上面に当たるX軸方向の位置を示す。   Further, H1 shown in the drawing indicates the position of the upper surface of the first filling layer 7 containing the phosphor in the Z-axis direction (the direction from the substrate 2 toward the light emitting element 1), and H2 indicates the upper surface of the light emitting element 1 or the second surface. The positions of the upper surface of the filling layer 8 and the upper surface 2d of the substrate 2 in the Z-axis direction are shown. A indicates the position in the X-axis direction where the light emitting element 1 exists (the direction from the center of the light emitting element 1 toward the concave side surface 2c of the substrate 2), and B indicates the boundary between the light emitting element 1 and the second filling layer 8. X indicates the position in the X-axis direction, C indicates the position in the X-axis direction corresponding to the boundary between the concave side surface 2c of the substrate 2, the upper surface of the first filling layer 7 and the lower surface of the second filling layer 8, and D indicates the upper surface of the substrate 2 A position in the X-axis direction corresponding to 2d and the upper surface of the second filling layer 8 is shown.

本実施例においては、発光素子1の主たる素材としては、赤色LEDならGaAs、緑色LEDならGaP、青色LEDならサファイアかGaNが想定され、第2の充填層8は発光素子1と比較し、X軸方向のB〜Dにかけて光透過性が低くなるような樹脂構成としていることが特徴である。   In the present embodiment, the main material of the light-emitting element 1 is assumed to be GaAs for a red LED, GaP for a green LED, sapphire or GaN for a blue LED, and the second filling layer 8 is compared with the light-emitting element 1 as X The resin configuration is such that the light transmittance decreases from B to D in the axial direction.

図7(c)は図7(b)に示す各X軸方向の位置での、発光素子1または第2の充填層8の光透過率を示すグラフである。第2の充填層8は樹脂8a及び樹脂8a上に設けられた樹脂8bからなる。樹脂8bの膜厚の調整は、樹脂8aの形状に依存し、樹脂8a硬化時に基板2の凹部側面2cの各辺に追従して傾斜させることにより、樹脂8aと樹脂8bの界面に勾配を形成することが可能である。図7(c)で示すように、光透過率は発光素子1の配置部位(X軸方向のA〜B)では大きく、第2の充填層8の配置部位(X軸方向のB〜D)では発光素子1側面近傍から基板2の凹部側面2cに至るにつれ次第に増加する傾向である。よって、図7(b)に示すように、第1の充填層7上面のZ軸方向(基板2から発光素子1に向かう方向)の位置H1において、仮にX軸方向のどの位置でも上方への光量が一定であるとすると、発光素子1上面及び第2の充填層8上面及び基板2の上面2dのZ軸方向の位置H2において、X軸方向のBからCに向けて徐々に多くの光量を発することとなる。   FIG. 7C is a graph showing the light transmittance of the light-emitting element 1 or the second filling layer 8 at each X-axis direction position shown in FIG. The second filling layer 8 is composed of a resin 8a and a resin 8b provided on the resin 8a. The adjustment of the film thickness of the resin 8b depends on the shape of the resin 8a, and a gradient is formed at the interface between the resin 8a and the resin 8b by inclining following each side of the concave side surface 2c of the substrate 2 when the resin 8a is cured. Is possible. As shown in FIG. 7C, the light transmittance is large at the arrangement site of the light emitting element 1 (A to B in the X axis direction), and the arrangement site of the second filling layer 8 (B to D in the X axis direction). Then, it tends to increase gradually from the vicinity of the side surface of the light emitting element 1 to the concave side surface 2c of the substrate 2. Therefore, as shown in FIG. 7B, at any position in the X-axis direction at the position H1 in the Z-axis direction (the direction from the substrate 2 toward the light-emitting element 1) on the upper surface of the first filling layer 7, it is assumed to be upward. Assuming that the amount of light is constant, the amount of light gradually increases from B to C in the X-axis direction at the position H2 in the Z-axis direction of the upper surface of the light emitting element 1, the upper surface of the second filling layer 8, and the upper surface 2d of the substrate 2. Will be issued.

なお、実施例2及び3において、第2の充填層8の光透過率の調整は比重の差異による、硬化時の沈降作用により可能である。よって、第2の充填層8としてのガスバリア樹脂には、上述の通り、ナイロン(Ny)類、ポリビニルアルコール(PVA)、エチレン/ビニルアルコール共重合樹脂(EVOH)、ポリ塩化ビニリデン(PVDC)等を用いることが想定されるが、これらに不純物を含有させることにより光透過性を調整することができる。   In Examples 2 and 3, the light transmittance of the second filling layer 8 can be adjusted by a sedimentation action during curing due to a difference in specific gravity. Therefore, as described above, nylon (Ny), polyvinyl alcohol (PVA), ethylene / vinyl alcohol copolymer resin (EVOH), polyvinylidene chloride (PVDC), etc. are used as the gas barrier resin as the second filling layer 8. Although it is assumed to be used, the light transmittance can be adjusted by adding impurities to these.

(実施例4)
本発明の実施例4における発光装置の構成について、図8を用いて説明する。図1に示す実施例1とは、基板凹部2aの平面内形状が異なることが特徴である。その他の構成については図1に示す実施例1と同じであるため説明を省略する。
Example 4
The structure of the light emitting device in Example 4 of the present invention will be described with reference to FIG. The first embodiment shown in FIG. 1 is characterized in that the in-plane shape of the substrate recess 2a is different. Other configurations are the same as those of the first embodiment shown in FIG.

図8(b)は本実施例の発光装置の上面図である。   FIG. 8B is a top view of the light emitting device of this example.

図8(a)は図8(b)におけるAA’線の発光装置の概略断面図である。   FIG. 8A is a schematic cross-sectional view of the light emitting device taken along the line AA ′ in FIG.

図8(b)で示すように、基板凹部2aの平面内形状が略円形である。本実施例の発光装置によれば、実施例1〜3の発光装置と比較し、基板凹部2aの平面内形状から角部をなくすことができ、角部における充填材6の未充填などをより確実に防ぐことができる。   As shown in FIG. 8B, the in-plane shape of the substrate recess 2a is substantially circular. According to the light emitting device of this embodiment, compared with the light emitting devices of Embodiments 1 to 3, the corner portion can be eliminated from the in-plane shape of the substrate recess 2a, and the filling material 6 in the corner portion is more unfilled. It can be surely prevented.

なお、実施例2〜3についても、同様に基板凹部2aの平面内形状を略円形にしてもよい。   In the second to third embodiments, the in-plane shape of the substrate recess 2a may be substantially circular.

(実施例5)
本発明の実施例5における発光装置の構成について、図9を用いて説明する。図1に示す実施例1とは、基板凹部2aの平面内形状及び基板2の平面外形状が異なることが特徴である。その他の構成については図1に示す実施例1と同じであるため説明を省略する。
(Example 5)
The structure of the light emitting device in Example 5 of the present invention will be described with reference to FIG. The first embodiment shown in FIG. 1 is characterized in that the in-plane shape of the substrate recess 2a and the out-of-plane shape of the substrate 2 are different. Other configurations are the same as those of the first embodiment shown in FIG.

図9(b)は本実施例の発光装置の上面図である。   FIG. 9B is a top view of the light emitting device of this example.

図9(a)は図9(b)におけるAA’線の発光装置の概略断面図である。   FIG. 9A is a schematic cross-sectional view of the light emitting device taken along the line AA ′ in FIG.

図9(b)で示すように、本実施例では、基板凹部2aの平面内形状が略円形であり、基板2の平面外形状も円形である。本実施例の発光装置によれば、例えば実施例1〜4よりも発光装置外形を小さくし、更に高密度実装が可能となる。   As shown in FIG. 9B, in this embodiment, the in-plane shape of the substrate recess 2a is substantially circular, and the out-of-plane shape of the substrate 2 is also circular. According to the light emitting device of the present embodiment, the outer shape of the light emitting device can be made smaller than that of, for example, Embodiments 1 to 4, and further high-density mounting can be achieved.

なお、実施例2〜3についても、同様に基板凹部2aの平面内形状を略円形にしてもよい。   In the second to third embodiments, the in-plane shape of the substrate recess 2a may be substantially circular.

(実施例6)
本発明の実施例は、具体的には実施例1で説明した発光装置を製造する方法であり、図10を用いて説明する。
(Example 6)
The embodiment of the present invention is specifically a method of manufacturing the light emitting device described in Embodiment 1, and will be described with reference to FIG.

まず図10(a)に示すように、凹部2aを有する基板2を用意する。凹部2aは凹部底面2b及び凹部底面2bと接続された凹部側面2cとから構成される。基板2はさらに凹部側面2cと接続された上面2dを有する。基板2はさらに配線3を備える。配線3の上面の一部は基板2の凹部底面2bから露出し、ボンドエリア3aとして機能している。配線3の下面の一部は基板2の下面から露出し、外部接続電極3bとして機能している。   First, as shown in FIG. 10A, a substrate 2 having a recess 2a is prepared. The recess 2a includes a recess bottom surface 2b and a recess side surface 2c connected to the recess bottom surface 2b. The substrate 2 further has an upper surface 2d connected to the concave side surface 2c. The substrate 2 further includes wiring 3. A part of the upper surface of the wiring 3 is exposed from the concave bottom surface 2b of the substrate 2 and functions as a bond area 3a. A part of the lower surface of the wiring 3 is exposed from the lower surface of the substrate 2 and functions as the external connection electrode 3b.

また、基板2の凹部側面2cは上方に広角となるリフレクターであることが好ましい。側面2cをリフレクターとすることで、発光装置の指向性をより高めることができる。   Moreover, it is preferable that the recessed part side surface 2c of the board | substrate 2 is a reflector which becomes a wide angle upward. By using the side surface 2c as a reflector, the directivity of the light emitting device can be further increased.

また、基板2は放熱板4を備えることが好ましい。また、放熱板4の上面は、基板2の凹部底面2bから露出することが好ましい。また、放熱板4の底面は、基板2の下面から露出することが好ましい。また、放熱板4自体が反射率の高い材質を用いることが好ましい。もしくは基板2の凹部2a上に反射層10を設けることが好ましい。   The substrate 2 preferably includes a heat sink 4. Further, the upper surface of the heat sink 4 is preferably exposed from the bottom surface 2 b of the recess of the substrate 2. The bottom surface of the heat sink 4 is preferably exposed from the lower surface of the substrate 2. Moreover, it is preferable to use a material with high reflectivity for the heat sink 4 itself. Alternatively, the reflective layer 10 is preferably provided on the concave portion 2 a of the substrate 2.

次に図10(b)に示すように、発光素子1は基板2の凹部2a内に配置し、発光素子1と配線3のボンドエリア3aをバンプ5により電気的に接続する。いわゆるフリップチップ実装である。また、基板2の凹部側面2cは、発光素子1を囲うように設けられていることが好ましい。また、発光素子1と基板2の凹部底面2bの間に第1の充填層7を充填することが好ましい。第1の充填層7は、波長変換層であることが好ましい。第1の充填層7を波長変換層とすることで、発光素子から発光される光そのものの色とは異なる色を発光させることができる。また、波長変換層7には、バンド端光吸収・発光を直接利用することで高い量子効率を実現する半導体蛍光微粒子を含むことが好ましい。特に、直径が数nmから数十nmの微粒子からなるいわゆる量子ドット蛍光体を含むことが好ましい。量子ドット蛍光体は、量子サイズ効果によって同一材料の微粒子でも粒子径を制御することで可視光線領域において所望の波長帯の蛍光スペクトルを得ることが出来る。また、バンド端による光吸収・蛍光であるため、90%程度の高い外部量子効率を示すことから、高効率・高演色性を有する発光装置を提供することができる。   Next, as shown in FIG. 10B, the light emitting element 1 is disposed in the recess 2 a of the substrate 2, and the light emitting element 1 and the bond area 3 a of the wiring 3 are electrically connected by the bumps 5. This is so-called flip chip mounting. In addition, the concave side surface 2 c of the substrate 2 is preferably provided so as to surround the light emitting element 1. Further, it is preferable to fill the first filling layer 7 between the light emitting element 1 and the bottom surface 2 b of the concave portion of the substrate 2. The first filling layer 7 is preferably a wavelength conversion layer. By using the first filling layer 7 as a wavelength conversion layer, a color different from the color of the light itself emitted from the light emitting element can be emitted. Moreover, it is preferable that the wavelength conversion layer 7 contains semiconductor fluorescent fine particles that realize high quantum efficiency by directly using band edge light absorption and light emission. In particular, it is preferable to include a so-called quantum dot phosphor composed of fine particles having a diameter of several nanometers to several tens of nanometers. The quantum dot phosphor can obtain a fluorescence spectrum in a desired wavelength band in the visible light region by controlling the particle diameter even with fine particles of the same material by the quantum size effect. Further, since light absorption / fluorescence is caused by the band edge, and high external quantum efficiency of about 90% is exhibited, a light-emitting device having high efficiency and high color rendering can be provided.

量子ドット蛍光体の材料としては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTeのようなII−VI族化合物半導体ナノ結晶、GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAsのようなIII−V族化合物半導体ナノ結晶、およびこれらの混合物よりなる群から選択されることが好ましい。また、前記混合物は、例えばCdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTeおよびHgZnSTeよりなる群から選択されるか、またはGaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAsおよびInAlPAsよりなる群から選択されることが好ましい。   Examples of the material of the quantum dot phosphor include II-VI group compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, AlN, AlP, It is preferably selected from the group consisting of III-V compound semiconductor nanocrystals such as AlAs, InN, InP, InAs, and mixtures thereof. In addition, the mixture includes, for example, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, ZnDe, CdZnSe, CdZnSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe, CdHgSe. , CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, or selected from the group consisting of GaNP, GaNAs, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNPs, GaAlNAs, GaAlPAs, GaAlPAs InAlNP, InAlNA And it is preferably selected from the group consisting InAlPAs.

例として、発光素子1としてGaN系の青色LEDを、波長変換層7に含まれる半導体蛍光微粒子としてCdS、CdSe、CdTe、ZnS、ZnSe、ZnTeのようなII−VI族化合物半導体ナノ結晶、GaN、GaP、AlN、AlP、AlAs、InN、InPのようなIII−V族化合物半導体ナノ結晶を用いた場合には、高輝度な白色光を得られる発光装置を実現できる。   As an example, a GaN-based blue LED is used as the light-emitting element 1, and a semiconductor fluorescent fine particle contained in the wavelength conversion layer 7 is a II-VI group compound semiconductor nanocrystal such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, GaN, When III-V group compound semiconductor nanocrystals such as GaP, AlN, AlP, AlAs, InN, and InP are used, a light emitting device that can obtain white light with high luminance can be realized.

また、放熱板4を波長変換層7に接することが好ましい。量子ドット蛍光体は粒子径が小さいため、微粒子の表面を占める原子の割合が多くなることから、化学的安定性の低いものが多く、特に高温環境下での励起蛍光においては、量子ドット蛍光体表面の酸化反応が進行し、急激な発光効率の低下を引き起こすという課題を有する。よって、波長変換層7に量子ドット蛍光体が含まれる場合は、波長変換層7の下層に放熱板4を設け、放熱板4下面が基板2から外部に露出することが好ましい。発光装置の動作時、発光素子1から発する熱は波長変換層7へ放熱されるが、放熱板4下面が外部に露出しているため、積極的に外部へ放熱し波長変換層7に含有される量子ドット蛍光体の温度上昇を防止することができる。   Moreover, it is preferable that the heat sink 4 is in contact with the wavelength conversion layer 7. Quantum dot phosphors have a small particle size, so the proportion of atoms occupying the surface of the fine particles increases, so many of them have low chemical stability, especially in excitation fluorescence in a high temperature environment. There is a problem that the oxidation reaction on the surface proceeds, causing a rapid decrease in luminous efficiency. Therefore, when the wavelength conversion layer 7 includes a quantum dot phosphor, it is preferable that the heat sink 4 is provided below the wavelength conversion layer 7 and the lower surface of the heat sink 4 is exposed from the substrate 2 to the outside. During operation of the light emitting device, heat generated from the light emitting element 1 is radiated to the wavelength conversion layer 7, but since the lower surface of the heat radiating plate 4 is exposed to the outside, the heat is actively radiated to the outside and contained in the wavelength conversion layer 7. Temperature rise of the quantum dot phosphor can be prevented.

次に図10(c)に示すように、発光素子1の側面と基板2の凹部側面2cとの間に第2の充填層8を充填する。ここで、第2の充填層8は、樹脂であることが好ましい。特に酸素を透過しにくいガスバリア樹脂であることが好ましい。具体的には、ナイロン(Ny)類、ポリビニルアルコール(PVA)、エチレン/ビニルアルコール共重合樹脂(EVOH)、ポリ塩化ビニリデン(PVDC)等を用いても良い。このような構成とすることで、波長変換層7に耐酸化性の低い半導体微粒子蛍光体を用いる場合であっても、波長変換層7は、基板2の凹部底面2b及び発光素子1の底面及び基板2の凹部側面2c及びガスバリア樹脂8によって外気から密閉されるので、波長変換層7の酸化を効率的に抑えることができる。なお第2の充填層8は注入時には液体である為、表面張力により、その上面は発光素子1上面位置より高い位置で山形に盛り上った形状となり、硬化により形状を維持することとなる。また確実に第2の充填層8を発光素子1の側面と基板2の凹部側面2cとの間に充填させるために、基板2の上面2dは発光素子1の上面よりも上方に配置することが好ましい。   Next, as shown in FIG. 10C, the second filling layer 8 is filled between the side surface of the light emitting element 1 and the concave side surface 2 c of the substrate 2. Here, the second filling layer 8 is preferably a resin. In particular, a gas barrier resin that hardly permeates oxygen is preferable. Specifically, nylon (Ny), polyvinyl alcohol (PVA), ethylene / vinyl alcohol copolymer resin (EVOH), polyvinylidene chloride (PVDC), or the like may be used. With such a configuration, even when a semiconductor fine particle phosphor having low oxidation resistance is used for the wavelength conversion layer 7, the wavelength conversion layer 7 includes the concave bottom surface 2 b of the substrate 2, the bottom surface of the light emitting element 1, and Since the concave side surface 2c of the substrate 2 and the gas barrier resin 8 are sealed from the outside air, the oxidation of the wavelength conversion layer 7 can be efficiently suppressed. Since the second filling layer 8 is a liquid at the time of injection, the upper surface of the second filling layer 8 is raised in a mountain shape at a position higher than the upper surface position of the light emitting element 1, and the shape is maintained by curing. In order to reliably fill the second filling layer 8 between the side surface of the light emitting element 1 and the concave side surface 2 c of the substrate 2, the upper surface 2 d of the substrate 2 may be disposed above the upper surface of the light emitting element 1. preferable.

次に図10(d)に示すように、発光素子1上面と第2の充填層8上面と基板2の上面2dを上方から砥石9で一括して研磨する。研磨により、発光素子1の上面は第2の充填層8から露出する。このようにして図10(e)に示す発光装置を製造する。本発明の発光装置の製造方法によると、従来の発光装置の製造方法と比較し、さらに発光装置の薄型化ができるという効果を発揮する。なお、発光素子1上面と第2の充填層8上面と基板2の上面2dを面一にすることによって、発光装置運搬時や使用時での欠け等を防ぐことができる。また発光素子1と第2の充填層8上面が面一となることにより、発光素子1上面からの出射光と充填材6上面からの出射光の方向性のばらつきを抑えることができる。また研磨という製造方法を取ることによって、発光素子1単体では製造時に取り扱いが困難だった厚み(例えば発光素子厚:150μm以下)への加工が可能となる。   Next, as shown in FIG. 10D, the upper surface of the light emitting element 1, the upper surface of the second filling layer 8, and the upper surface 2d of the substrate 2 are collectively polished with a grindstone 9 from above. By polishing, the upper surface of the light emitting element 1 is exposed from the second filling layer 8. In this way, the light emitting device shown in FIG. According to the method for manufacturing a light emitting device of the present invention, it is possible to further reduce the thickness of the light emitting device as compared with the conventional method for manufacturing a light emitting device. Note that, by making the upper surface of the light emitting element 1, the upper surface of the second filling layer 8, and the upper surface 2 d of the substrate 2 flush, chipping or the like during transportation or use of the light emitting device can be prevented. Further, since the light emitting element 1 and the upper surface of the second filling layer 8 are flush with each other, it is possible to suppress variation in the directionality of the emitted light from the upper surface of the light emitting element 1 and the emitted light from the upper surface of the filler 6. Further, by adopting a manufacturing method called polishing, it becomes possible to process the light-emitting element 1 to a thickness that is difficult to handle at the time of manufacture (for example, the light-emitting element thickness: 150 μm or less).

なお、実施例2〜5で説明した発光装置についても、同様の方法で製造することができる。   Note that the light-emitting devices described in Examples 2 to 5 can be manufactured by the same method.

また、発明の趣旨を逸脱しない範囲で、複数の実施例における各構成要素を任意に組み合わせても良い。   Moreover, you may combine each component in a several Example arbitrarily in the range which does not deviate from the meaning of invention.

本発明は、発光素子などを用いた発光装置、特に、PC、照明、薄型テレビ、モバイル携帯機器、携帯電話などに用いられる光や映像の受信、光発信などに用いられる発光装置に関するものである。   The present invention relates to a light-emitting device using a light-emitting element, and more particularly to a light-emitting device used for receiving light or video, transmitting light, and the like used for PCs, lighting, flat-screen TVs, mobile portable devices, mobile phones and the like. .

1 発光素子
2 基板
2a 基板凹部
2b 凹部底面
2c 凹部側面
2d 基板上面
3 配線
3a ボンドエリア
3b 外部接続電極
4 放熱板
5 バンプ
6 充填材
7 第1の充填層(波長変換層)
8 第2の充填層(ガスバリア樹脂)
8a 樹脂
8b 樹脂
9 砥石
10 反射層
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Substrate 2a Substrate recessed part 2b Concave bottom face 2c Concave side face 2d Substrate upper surface 3 Wiring 3a Bond area 3b External connection electrode 4 Heat sink 5 Bump 6 Filler 7 First filling layer (wavelength conversion layer)
8 Second packed bed (gas barrier resin)
8a Resin 8b Resin 9 Whetstone 10 Reflective layer

Claims (9)

基板と発光素子を備えた発光装置であって、
前記基板は、凹部と、配線とを備え、
前記凹部は、底面と前記底面に接続された側面とからなり、
前記配線の一部は、ボンドエリアであり、
前記配線の他の一部は、外部接続電極であり、
前記凹部内には前記発光素子が配置され、
前記発光素子の下面と前記ボンドエリアはバンプにより電気的に接続されており、
前記凹部の底面と前記発光素子の下面との間、及び前記凹部の側面と前記発光素子の側面との間には充填材が充填されており、
前記発光素子の上面は前記充填材から露出することを特徴とする発光装置。
A light emitting device including a substrate and a light emitting element,
The substrate includes a recess and a wiring,
The recess comprises a bottom surface and a side surface connected to the bottom surface,
A part of the wiring is a bond area,
Another part of the wiring is an external connection electrode,
The light emitting element is disposed in the recess,
The lower surface of the light emitting element and the bond area are electrically connected by a bump,
Filler is filled between the bottom surface of the recess and the lower surface of the light emitting element, and between the side surface of the recess and the side surface of the light emitting element,
The light emitting device, wherein an upper surface of the light emitting element is exposed from the filler.
前記凹部の側面と接続された前記基板の上面、前記充填材の上面及び前記発光素子の上面は面一となっていることを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein an upper surface of the substrate connected to a side surface of the recess, an upper surface of the filler, and an upper surface of the light emitting element are flush with each other. 前記充填材は、前記発光素子の下面と前記凹部の底面との間に配置された第1の充填層と、前記発光素子の側面と前記凹部の側面との間に配置された第2の充填層からなることを特徴とする請求項1または2に記載の発光装置。 The filler includes a first filling layer disposed between the lower surface of the light emitting element and the bottom surface of the recess, and a second filling disposed between the side surface of the light emitting element and the side surface of the recess. The light emitting device according to claim 1, comprising a layer. 前記第1の充填層は、波長変換層であることを特徴とする請求項3に記載の発光装置。 The light emitting device according to claim 3, wherein the first filling layer is a wavelength conversion layer. 前記波長変換層には、半導体蛍光微粒子が含まれることを特徴とする請求項4に記載の発光装置。 The light emitting device according to claim 4, wherein the wavelength conversion layer includes semiconductor fluorescent fine particles. 前記第2の充填層は、樹脂であることを特徴とする請求項3から5のいずれか1項に記載の発光装置。 The light emitting device according to claim 3, wherein the second filling layer is a resin. 前記第2の充填層は、前記発光素子よりも光透過率が高いことを特徴とする請求項3から6のいずれか1項に記載の発光装置。 The light emitting device according to claim 3, wherein the second filling layer has a light transmittance higher than that of the light emitting element. 前記第2の充填層は、前記発光素子側面から前記凹部の側面に至るにつれ、光透過率が高くなることを特徴とする請求項7に記載の発光装置。 The light emitting device according to claim 7, wherein the second filling layer has a light transmittance that increases from a side surface of the light emitting element to a side surface of the recess. 前記基板は、前記発光素子の下方に放熱板を備え、
前記放熱板は前記充填材と接していることを特徴とする請求項1から8のいずれか1項に記載の発光装置。
The substrate includes a heat dissipation plate below the light emitting element,
The light-emitting device according to claim 1, wherein the heat radiating plate is in contact with the filler.
JP2011238357A 2011-10-31 2011-10-31 Light-emitting device Pending JP2013098278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238357A JP2013098278A (en) 2011-10-31 2011-10-31 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238357A JP2013098278A (en) 2011-10-31 2011-10-31 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2013098278A true JP2013098278A (en) 2013-05-20

Family

ID=48619946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238357A Pending JP2013098278A (en) 2011-10-31 2011-10-31 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2013098278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103461A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit and liquid crystal display device
JP6567241B1 (en) * 2018-06-12 2019-08-28 三菱電機株式会社 Power semiconductor module and power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103461A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit and liquid crystal display device
JP6567241B1 (en) * 2018-06-12 2019-08-28 三菱電機株式会社 Power semiconductor module and power conversion device

Similar Documents

Publication Publication Date Title
US8513872B2 (en) Light emitting apparatus and method for manufacturing thereof
JP5889646B2 (en) Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate
KR101726807B1 (en) Light Emitting Device
US8926114B2 (en) Light emitting device package, light source module, backlight unit, display apparatus, television set, and illumination apparatus
US9360204B2 (en) Light-emitting device
KR100982991B1 (en) Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same
CN102918667B (en) Optics and use its LED package, and back lighting device
TWI479703B (en) Light emitting device package using quantum dot, illumination apparatus and display apparatus
KR100982992B1 (en) Light emitting device comprising quantum dot wavelength conversion sheet, and quantum dot wavelength conversion sheet
US20150171290A1 (en) Light emitting device package using quantum dot, illumination apparatus and display apparatus
JP2013033833A (en) Wavelength conversion film and light emitting device and lighting device which use the same
KR20130015847A (en) Light emitting device, backlight unit and display apparatus using the same, and manufacturing method of the same
US20130193837A1 (en) Phosphor plate, light emitting device and method for manufacturing phosphor plate
KR101942042B1 (en) Moisture-resistant chip scale packaging light-emitting device
JP2014082416A (en) Light-emitting device
KR20120135999A (en) Light emitting device package
WO2013024684A1 (en) Light emitting device, phosphor sheet, backlight system, and method of producing phosphor sheet
JP2013172041A (en) Light-emitting device
US10600940B2 (en) Display device
JP5231609B2 (en) Light emitting device and manufacturing method thereof
JP2013098278A (en) Light-emitting device
JP2013093495A (en) Light emitting device
KR20120140053A (en) Light emitting device package
KR102531370B1 (en) Lighting device
JP2012195552A (en) Light-emitting device and manufacturing method therefor