JP2013098277A - Substrate holder and vacuum processing apparatus - Google Patents
Substrate holder and vacuum processing apparatus Download PDFInfo
- Publication number
- JP2013098277A JP2013098277A JP2011238342A JP2011238342A JP2013098277A JP 2013098277 A JP2013098277 A JP 2013098277A JP 2011238342 A JP2011238342 A JP 2011238342A JP 2011238342 A JP2011238342 A JP 2011238342A JP 2013098277 A JP2013098277 A JP 2013098277A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- holder
- grounding
- shaft
- conductor wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 122
- 238000012545 processing Methods 0.000 title claims description 12
- 239000004020 conductor Substances 0.000 claims description 22
- 230000003068 static effect Effects 0.000 claims description 14
- 238000005192 partition Methods 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 11
- 238000007667 floating Methods 0.000 claims description 5
- 238000006386 neutralization reaction Methods 0.000 claims 1
- 230000006835 compression Effects 0.000 abstract description 15
- 238000007906 compression Methods 0.000 abstract description 15
- 238000001179 sorption measurement Methods 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 230000008030 elimination Effects 0.000 description 12
- 238000003379 elimination reaction Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本発明は、静電吸着装置を備える基板ホルダー及びこのような基板ホルダーを備えた真空処理装置に関する。 The present invention relates to a substrate holder including an electrostatic adsorption device and a vacuum processing apparatus including such a substrate holder.
基板ホルダーに設けられる静電吸着装置は、静電吸着板に電圧を印加することにより静電吸着板と基板に電荷を発生させ、基板を静電吸着板に吸着させる装置である。また、基板ホルダー内にヒーターを備える一方、吸着された基板と静電吸着板の隙間には一定圧力のガスを封止し、このガスを介して基板の温度を調整することができる。 The electrostatic adsorption device provided in the substrate holder is an apparatus that generates a charge on the electrostatic adsorption plate and the substrate by applying a voltage to the electrostatic adsorption plate, and adsorbs the substrate to the electrostatic adsorption plate. In addition, while a heater is provided in the substrate holder, a gas at a constant pressure is sealed in the gap between the adsorbed substrate and the electrostatic adsorption plate, and the temperature of the substrate can be adjusted via this gas.
ところで、静電吸着板に印加している電圧を切っただけでは、静電吸着板と基板に発生した電荷を十分に除電できず残留電荷を生じることがある。この残留電荷によっても基板と静電吸着板の間には吸着力が発生するため、基板を静電吸着板から脱離するときにリフターピン等の機構と干渉するおそれがあった。リフターピンを基板に押し当てて物理的に基板をはがす構造(例えば、特許文献1−3参照)では、リフターピンと干渉により基板の損傷や基板の位置ズレなどが生じることがあった。 By the way, if the voltage applied to the electrostatic chucking plate is simply turned off, the charges generated on the electrostatic chucking plate and the substrate cannot be sufficiently removed, and a residual charge may be generated. This residual charge also generates an attracting force between the substrate and the electrostatic chucking plate, which may interfere with a mechanism such as a lifter pin when the substrate is detached from the electrostatic chucking plate. In a structure in which the lifter pin is pressed against the substrate and physically peeled off (see, for example, Patent Documents 1-3), the substrate may be damaged or the substrate may be displaced due to interference with the lifter pin.
特許文献1−3に開示された技術では、リフターピンの押し当てによる基板への物理的ダメージや基板と静電吸着板の擦れによるゴミの発生、逆電圧、プラズマによる基板への電気的ダメージが生じる懸念がある。 In the technology disclosed in Patent Documents 1-3, physical damage to the substrate due to the pressing of the lifter pins, generation of dust due to rubbing between the substrate and the electrostatic chuck, reverse voltage, and electrical damage to the substrate due to plasma are caused. There are concerns that arise.
また、リフターピンを使う方法は、基板処理時間以外に除電シーケンスの実施時間(リフターピン微接触動作時間,ガス充填時間,放電時間,逆電圧印加時間)が必要となるため、半導体製造装置で重要視されるスループットが低下するおそれがあった。 In addition to the substrate processing time, the method using a lifter pin requires time to perform a static elimination sequence (lifter pin fine contact operation time, gas filling time, discharge time, reverse voltage application time), which is important in semiconductor manufacturing equipment. There was a risk that the throughput seen would be reduced.
上記問題を解決すべく、基板と静電吸着板表面に接するアース切替え装置を設けることにより、静電吸着板表面の電位をフローティング若しくはアースに切替えられる構造が開示されている(例えば、特許文献4参照)。特許文献4の技術によれば、加熱/冷却処理中はアース切替え装置をフローティングの状態にし、電荷を基板と静電吸着板表面に留め吸着を維持し、加熱/冷却処理を終えた後はアース切替え装置をアースの状態にし、基板と静電吸着板表面の電荷を瞬時にアースに逃がし基板の脱離を行うことができる。 In order to solve the above problem, a structure is disclosed in which the potential of the surface of the electrostatic chucking plate can be switched to floating or ground by providing a ground switching device in contact with the substrate and the surface of the electrostatic chucking plate (for example, Patent Document 4). reference). According to the technique of Patent Document 4, the ground switching device is set in a floating state during the heating / cooling process, the charge is held on the surface of the substrate and the electrostatic chuck plate, and the suction is maintained. When the switching device is in a ground state, the charges on the surface of the substrate and the electrostatic chucking plate can be instantaneously released to the ground and the substrate can be detached.
特許文献4の静電吸着装置技術によれば、誘電体板の表面に導体配線が設けられた構造で、導体配線には基板と静電吸着板表面の電荷を真空側から大気側に逃がす導体軸がねじ込まれ、導体軸の大気側はアース切替え装置に繋がれている。導体配線からアース切替え装置までの電位を同電位にしている。この機構により、基板脱離方法で問題となった物理的ダメージや電気的ダメージを払拭できる。 According to the electrostatic adsorption device technique of Patent Document 4, a conductor wiring is provided on the surface of a dielectric plate, and the conductor wiring is a conductor that releases the charges on the surface of the substrate and the electrostatic adsorption plate from the vacuum side to the atmosphere side. The shaft is screwed, and the atmosphere side of the conductor shaft is connected to a ground switching device. The potential from the conductor wiring to the earth switching device is the same. With this mechanism, it is possible to wipe off physical damage and electrical damage that are problematic in the substrate detachment method.
しかしながら、特許文献4に開示された構造では、高温域の加熱処理を行うと熱が導電軸に伝わるため導電軸の熱膨張が避けられない。導電軸の熱膨張は導体配線との接合部分に強い負荷をかけることがあり、熱膨張量が設計の許容量を超える場合には導体配線との接合部分にダメージを受けたり、導体配線が誘電体板から剥離したりするおそれがある。そのため、加熱温度の上限を定めるなどして使用温度域を制限していたが、使用できる温度域の拡大が望まれている。 However, in the structure disclosed in Patent Document 4, when heat treatment is performed in a high temperature range, heat is transferred to the conductive shaft, and thus thermal expansion of the conductive shaft is inevitable. The thermal expansion of the conductive shaft may place a strong load on the joint with the conductor wiring. If the thermal expansion exceeds the design tolerance, the joint with the conductor wiring may be damaged, or the conductor wiring may become dielectric. There is a risk of peeling from the body plate. Therefore, although the use temperature range was limited by setting the upper limit of the heating temperature or the like, it is desired to expand the usable temperature range.
本発明の目的は、上述した問題点に鑑み、静電吸着装置を備える基板ホルダーから基板を脱離する操作において他の要素による物理的接触を伴わずに静電吸着板表面と基板の電荷を同時に除電が可能でありながら、使用できる温度帯を広げることができる基板ホルダー、及び半導体製造装置を提供することにある。 In view of the above-described problems, the object of the present invention is to charge the surface of the electrostatic chuck plate and the substrate without physical contact by other elements in the operation of removing the substrate from the substrate holder equipped with the electrostatic chuck. It is an object of the present invention to provide a substrate holder and a semiconductor manufacturing apparatus that can widen the usable temperature range while being capable of discharging at the same time.
本発明に係る基板ホルダーは、一端部が基板支持面に導通する軸部と、軸部の他端部に接続され、軸部を接地電位に切替え可能な切替え部と、軸部の一端部側を基板支持面に当接する方向に付勢する付勢手段と、ホルダー側と接地部側に、付勢手段の付勢方向で狭持される封止部材と、軸部の他端部側が内側に配置される隔壁部と、を備えることを特徴とする。
或いは、本発明に係る基板ホルダーは、基板支持面に支持される基板を吸着するための電圧が印加される静電吸着板及び基板支持面に支持される基板と導通する導体配線を少なくとも備えるホルダー本体部と、ホルダー本体部を支持するホルダー支持部と、導体配線を接地状態に切替えることができる除電部と、を有する基板ホルダーであって、除電部は、一端部が導体配線と当接する接地部と、接地部の他端部に接続され、接地部を介して導体配線を接地状態とフローティング状態とに切替える切替え部と、接地部を導体配線に当接する方向に付勢する付勢手段と、ホルダー側と接地部側に、付勢手段の付勢方向で狭持される封止部材と、を備えることを特徴とする基板ホルダー。
The substrate holder according to the present invention includes a shaft portion whose one end portion is connected to the substrate support surface, a switching portion connected to the other end portion of the shaft portion and capable of switching the shaft portion to a ground potential, and one end portion side of the shaft portion. Urging means for urging the substrate in contact with the substrate support surface, a sealing member sandwiched in the urging direction of the urging means on the holder side and the grounding side, and the other end side of the shaft portion on the inner side The partition part arrange | positioned in this, It is characterized by the above-mentioned.
Alternatively, the substrate holder according to the present invention includes at least an electrostatic attraction plate to which a voltage for attracting the substrate supported on the substrate support surface is applied and a conductor wiring that is electrically connected to the substrate supported on the substrate support surface. A substrate holder having a main body part, a holder support part for supporting the holder main body part, and a static elimination part capable of switching the conductor wiring to a grounded state, wherein the static elimination part is grounded with one end in contact with the conductor wiring. A switching unit that is connected to the other end of the grounding unit and switches the conductor wiring between a grounding state and a floating state via the grounding unit, and a biasing unit that biases the grounding unit in a direction to contact the conductor wiring. A substrate holder comprising: a sealing member sandwiched between the holder side and the grounding portion side in the biasing direction of the biasing means.
本発明によれば、静電吸着装置を備える基板ホルダーから基板を脱離する操作においてリフターピンなどによる物理的接触を伴わずに静電吸着板表面と基板の電荷を同時に除電が可能でありながら、広域温度帯における基板の脱離操作の信頼性を向上した基板ホルダー、及び、高い良品率と装置稼働率を実現する真空処理装置を提供することができる。 According to the present invention, in the operation of detaching the substrate from the substrate holder provided with the electrostatic adsorption device, it is possible to simultaneously remove the charge on the surface of the electrostatic adsorption plate and the substrate without physical contact with a lifter pin or the like. In addition, it is possible to provide a substrate holder that improves the reliability of the substrate detachment operation in a wide temperature range, and a vacuum processing apparatus that realizes a high yield rate and a high device operation rate.
以下に説明する部材、配置等は発明を具体化した一例であって本発明を限定するものではなく、本発明の趣旨に沿って各種改変できることは勿論である。なお、図面の煩雑化を防ぐため一部を除いて省略している。以下の実施形態においては真空処理装置としてスパッタリング成膜装置に適用された基板ホルダーについて説明するが、CVD装置などの静電吸着装置を有する基板ホルダーを備える真空処理装置に本発明を適用できることはもちろんである。 The members, arrangements, and the like described below are examples embodying the present invention and do not limit the present invention, and it goes without saying that various modifications can be made within the spirit of the present invention. In order to prevent complication of the drawing, the illustration is omitted except for a part. In the following embodiments, a substrate holder applied to a sputtering film forming apparatus will be described as a vacuum processing apparatus, but it goes without saying that the present invention can be applied to a vacuum processing apparatus including a substrate holder having an electrostatic adsorption device such as a CVD device. It is.
図1乃至3は本発明の第1実施形態に係る真空処理装置若しくは基板ホルダーについての図であり、図1はスパッタ成膜装置の断面概略図、図2は除電部の真空側端部の拡大図、図3は除電部の大気側端部の拡大図である。 1 to 3 are views of a vacuum processing apparatus or a substrate holder according to the first embodiment of the present invention, FIG. 1 is a schematic cross-sectional view of a sputtering film forming apparatus, and FIG. FIG. 3 and FIG. 3 are enlarged views of the end portion on the atmosphere side of the charge removal portion.
(第1実施形態)
図1は、本発明に係るスパッタリング装置(真空処理装置)の断面概略図である。
スパッタリング装置1は、内部を真空排気できる真空容器11、真空容器11の上部に取り付けられるターゲット電極12、被成膜材料を有するターゲット18、ターゲット電極12と対向して基板Wを支持できる基板ホルダー13を有している。なお、図1において、基板搬送装置、搬入/搬出ゲート、リフトピンなどは省略されている。
(First embodiment)
FIG. 1 is a schematic sectional view of a sputtering apparatus (vacuum processing apparatus) according to the present invention.
The sputtering apparatus 1 includes a vacuum container 11 that can be evacuated inside, a target electrode 12 that is attached to the top of the vacuum container 11, a target 18 that has a film-forming material, and a substrate holder 13 that can support the substrate W while facing the target electrode 12. have. In FIG. 1, a substrate transfer device, a carry-in / carry-out gate, a lift pin, and the like are omitted.
真空容器11はステンレスやアルミニウム合金などの金属部材を用いて構成され、接地されている。また、真空容器11は、ガス導入装置19及び排気装置20に接続されている。ターゲット電極12は、絶縁材17を介して真空容器11に取り付けられている。また、ターゲット18はバッキングプレート(不図示)に被成膜材料がボンディングされて形成されており、被成膜材料がプラズマ形成空間に面するようにターゲット電極12に取り付けられている。ターゲット電極12は不図示のマッチングボックスを介して高周波電源16に接続されている。 The vacuum vessel 11 is configured using a metal member such as stainless steel or aluminum alloy, and is grounded. The vacuum vessel 11 is connected to a gas introduction device 19 and an exhaust device 20. The target electrode 12 is attached to the vacuum vessel 11 via an insulating material 17. The target 18 is formed by bonding a film forming material to a backing plate (not shown), and is attached to the target electrode 12 so that the film forming material faces the plasma forming space. The target electrode 12 is connected to the high frequency power supply 16 through a matching box (not shown).
ターゲット電極12には、ターゲット18の温度上昇を防止するための冷却機構及び、ターゲット表面に磁場を形成する磁石ユニットが備えられている。高周波電源16としては、13.56MHzのものが工業的に利用しやすいが、他の周波数を用いることや高周波に直流を重畳することもできる。 The target electrode 12 is provided with a cooling mechanism for preventing the temperature of the target 18 from rising and a magnet unit that forms a magnetic field on the target surface. As the high-frequency power supply 16, a 13.56-MHz one is industrially easy to use, but other frequencies can be used and direct current can be superimposed on the high frequency.
基板ホルダー13は、基板Wを支持するホルダー本体部21と、真空容器11を貫通して配設され、真空容器11内でホルダー本体部21に接続されているホルダー支持部22とを有している。ホルダー本体部21は、基板Wを加熱する基板加熱装置24の上部(ターゲット側)に基板Wを支持する静電吸着装置26が配置されて構成されている。 The substrate holder 13 includes a holder main body portion 21 that supports the substrate W, and a holder support portion 22 that is disposed through the vacuum vessel 11 and is connected to the holder main body portion 21 in the vacuum vessel 11. Yes. The holder main body 21 is configured such that an electrostatic adsorption device 26 that supports the substrate W is disposed on the upper side (target side) of the substrate heating device 24 that heats the substrate W.
まず、基板加熱装置24について説明する。基板加熱装置24は静電吸着装置26を支持する下部筐体31と下部筐体31内に設けられたヒーター電極33(加熱部)を主要な構成部材として備えている。ヒーター電極33は、螺旋形状若しくは蛇行形状などの電極パターンを有して構成されている。この電極パターンに電源(不図示)を接続し、直流または交流の電力を印加することでヒーター電極33に電流が流れ、発生したジュール熱により基板温度を制御することができる。本実施形態ではヒーター電極33としてグラファイト製を用いているが、タングステン製、若しくはPG/PBNヒーターなどを用いてもよい。 First, the substrate heating device 24 will be described. The substrate heating device 24 includes a lower casing 31 that supports the electrostatic chuck 26 and a heater electrode 33 (heating unit) provided in the lower casing 31 as main components. The heater electrode 33 has an electrode pattern such as a spiral shape or a meandering shape. By connecting a power source (not shown) to this electrode pattern and applying DC or AC power, a current flows through the heater electrode 33, and the substrate temperature can be controlled by the generated Joule heat. In the present embodiment, graphite is used as the heater electrode 33, but tungsten, PG / PBN heater, or the like may be used.
また、基板加熱装置に替えて基板冷却装置を備えるものであってもよい。この場合は、ヒーター電極33の代わりに液体窒素や液体ヘリウムなどの冷媒が流通する冷却管が下部筐体31に内蔵される構造が望ましい。もちろん、下部筐体31にヒーター電極33と冷却管をいずれも備えるものであってもよい。 Further, a substrate cooling device may be provided instead of the substrate heating device. In this case, a structure in which a cooling pipe through which a refrigerant such as liquid nitrogen or liquid helium flows is incorporated in the lower housing 31 instead of the heater electrode 33 is desirable. Of course, the lower housing 31 may be provided with both the heater electrode 33 and the cooling pipe.
静電吸着装置26について説明する。静電吸着装置26は、誘電体層35、静電吸着板37、除電部40、ガス導入部(不図示)を有して構成されている。誘電体層35は、静電吸着装置26の筐体を構成している部材であり、誘電体材料から構成されている。誘電体層35の表面には、エンボス加工が施された基板支持面45が形成されている。基板支持面45のエンボス加工は複数の凸部46で基板の裏面を支持する形状であり、凸部46以外の部分と基板Wの裏面には所定の高さの隙間が形成される。 The electrostatic adsorption device 26 will be described. The electrostatic adsorption device 26 includes a dielectric layer 35, an electrostatic adsorption plate 37, a static elimination unit 40, and a gas introduction unit (not shown). The dielectric layer 35 is a member constituting the housing of the electrostatic adsorption device 26, and is made of a dielectric material. An embossed substrate support surface 45 is formed on the surface of the dielectric layer 35. The embossing of the substrate support surface 45 has a shape in which the back surface of the substrate is supported by a plurality of convex portions 46, and a gap with a predetermined height is formed between the portion other than the convex portions 46 and the back surface of the substrate W.
さらに、基板支持面45には、導電性の膜状材料からなるメタルコート43(導体配線)が形成されている。メタルコート43は、凸部46の表面を通過するようにパターンが形成されている。すなわち、基板Wは凸部46表面のメタルコート43に接した状態で基板ホルダー13に支持される。 Furthermore, a metal coat 43 (conductor wiring) made of a conductive film-like material is formed on the substrate support surface 45. The metal coat 43 has a pattern formed so as to pass through the surface of the convex portion 46. That is, the substrate W is supported by the substrate holder 13 while being in contact with the metal coat 43 on the surface of the convex portion 46.
静電吸着板37は、基板支持面45と平行に誘電体層35内部に配置されている電極であり、螺旋状若しくは蛇行状、放射状などの形状に構成されている。この静電吸着板37は直流電源回路に接続されており、直流電源回路(Ea,Eb)から所定の電圧を印加することで静電吸着装置26の基板支持面45に基板Wを静電吸着することができる。本実施形態の静電吸着板37は、誘電体層35内部に正負の電圧を印加するための一対の電極から構成されている双極電極の構造である。もちろん、本発明は単極電極構造の静電吸着板に適用することもできる。 The electrostatic attraction plate 37 is an electrode disposed inside the dielectric layer 35 in parallel with the substrate support surface 45, and is configured in a spiral shape, a meandering shape, a radial shape, or the like. The electrostatic chucking plate 37 is connected to a DC power supply circuit, and the substrate W is electrostatically chucked to the substrate support surface 45 of the electrostatic chucking device 26 by applying a predetermined voltage from the DC power supply circuit (Ea, Eb). can do. The electrostatic attraction plate 37 of the present embodiment has a bipolar electrode structure composed of a pair of electrodes for applying positive and negative voltages inside the dielectric layer 35. Of course, the present invention can also be applied to an electrostatic attraction plate having a monopolar electrode structure.
ガス導入部は、ヒーター電極33からの熱を効率よく基板に伝えるために基板Wと基板支持面45の隙間にガスを導入する機構であり、基板支持面45に形成されたガス導入孔からArやHeなどのガスを導入するように構成されている。なお、基板支持面45に形成されたエンボス加工の凸部46によって、基板Wと基板支持面45の隙間が形成された状態で基板Wは支持される。 The gas introduction unit is a mechanism that introduces gas into the gap between the substrate W and the substrate support surface 45 in order to efficiently transfer the heat from the heater electrode 33 to the substrate, and Ar is introduced from the gas introduction hole formed in the substrate support surface 45. Or a gas such as He is introduced. The substrate W is supported in a state where a gap is formed between the substrate W and the substrate support surface 45 by the embossed convex portions 46 formed on the substrate support surface 45.
図2、3はそれぞれ除電部40の部分断面図であり、図2は除電部40の真空側端部の拡大図、図3は除電部40の大気側端部の拡大図である。除電部40は、基板支持面45のメタルコート43と電気的に接続される導電端子(キャップ)51と、導電端子と一体に設けられる接地軸53(接地部又は軸部)と、終端リング55と、ベローズ57と、圧縮コイルばね59とを有して構成されている。また、接地軸53は、接地軸53の電位状態をフローティング状態と接地状態に切替えできるリレー回路61に接続されている。なお、接地軸53の大気側の端部(真空側端部)には、終端リング55と同様な円板状部材(フランジ部56)が一体に設けられている。 2 and 3 are partial cross-sectional views of the charge removal unit 40, FIG. 2 is an enlarged view of the vacuum side end of the charge removal unit 40, and FIG. 3 is an enlarged view of the atmosphere side end of the charge removal unit 40. The static eliminator 40 includes a conductive terminal (cap) 51 that is electrically connected to the metal coat 43 on the substrate support surface 45, a ground shaft 53 (ground portion or shaft) that is provided integrally with the conductive terminal, and a termination ring 55. And a bellows 57 and a compression coil spring 59. The ground shaft 53 is connected to a relay circuit 61 that can switch the potential state of the ground shaft 53 between a floating state and a ground state. In addition, a disk-like member (flange portion 56) similar to the termination ring 55 is integrally provided at the atmosphere-side end (vacuum-side end) of the ground shaft 53.
図2に基づいて、除電部40の真空側の端部について説明する。基板ホルダー13には、ホルダー本体部21とホルダー支持部22とを重力方向に貫通した貫通孔52が形成されている。接地軸53は、貫通孔52に挿通されて配置されているステンレス製の軸状部材である。接地軸53のうち、真空容器内に配置されている部分(一端部側)は真空雰囲気中に位置している。接地軸53の真空側の端部(一端部)は導電端子51(キャップ)と螺合されており、導電端子51を介して基板支持面45のメタルコート43と電気的に接続されている。 Based on FIG. 2, the end portion on the vacuum side of the static elimination unit 40 will be described. The substrate holder 13 is formed with a through hole 52 that penetrates the holder main body 21 and the holder support 22 in the direction of gravity. The ground shaft 53 is a stainless steel shaft-like member that is inserted through the through hole 52. A portion (one end side) of the ground shaft 53 disposed in the vacuum vessel is located in a vacuum atmosphere. An end (one end) on the vacuum side of the ground shaft 53 is screwed into a conductive terminal 51 (cap), and is electrically connected to the metal coat 43 on the substrate support surface 45 via the conductive terminal 51.
なお、導電端子51は、基板支持面45に形成された窪み45aの高さよりも低い寸法に形成されており、且つ、貫通孔52の内径よりも大きい直径である。そのため、接地軸53を下方に付勢すると、基板ホルダー13に載置された基板Wに導電端子51が接触することを避けることできる。また、導電端子51とメタルコート43を当接させるとこで、導電端子51を介して接地軸53とメタルコート43との導通を確保することができる。 The conductive terminal 51 is formed in a size lower than the height of the recess 45 a formed in the substrate support surface 45 and has a diameter larger than the inner diameter of the through hole 52. Therefore, when the grounding shaft 53 is urged downward, the conductive terminal 51 can be prevented from coming into contact with the substrate W placed on the substrate holder 13. In addition, when the conductive terminal 51 and the metal coat 43 are brought into contact with each other, conduction between the ground shaft 53 and the metal coat 43 can be ensured via the conductive terminal 51.
図3に基づいて、除電部40の大気側の端部について説明する。接地軸53の大気側の端部(他端部)はシール構造であり、リレー回路61に電気的に接続されている。具体的には、接地軸53の大気側の端部には円板状のフランジ部56が一体に設けられており、フランジ部56にはベローズ57(弾性隔壁部又は第2付勢手段)が気密に接続されている。ベローズ57はフランジ部56の真空側端部側(他端部側)に取り付けられるため、接地軸53はベローズ57内側の真空側に配置される。 Based on FIG. 3, an end portion on the atmosphere side of the static elimination unit 40 will be described. The end (other end) on the atmosphere side of the ground shaft 53 has a seal structure and is electrically connected to the relay circuit 61. Specifically, a disk-shaped flange portion 56 is integrally provided at an end of the ground shaft 53 on the atmosphere side, and a bellows 57 (elastic partition wall portion or second urging means) is provided on the flange portion 56. Airtight connection. Since the bellows 57 is attached to the vacuum side end side (the other end side) of the flange portion 56, the ground shaft 53 is disposed on the vacuum side inside the bellows 57.
なお、圧縮コイルばね59はベローズ57の外側と内側のいずれにも配置することができる。しかし、ベローズ57の外側に圧縮コイルばね59を配置することで、真空側に配置される部材の表面積の増大を抑えることができる。そのため、真空排気に要する時間を短縮できる。また、ベローズ57のフランジ部56とは逆側にはリング状の終端リング55が気密に接続されている。 The compression coil spring 59 can be arranged on either the outside or the inside of the bellows 57. However, by disposing the compression coil spring 59 outside the bellows 57, an increase in the surface area of the member disposed on the vacuum side can be suppressed. Therefore, the time required for evacuation can be shortened. A ring-shaped end ring 55 is airtightly connected to the opposite side of the bellows 57 from the flange portion 56.
封止部材としてのOリング63を終端リング55とホルダー支持部22の間に挟んだ状態で支持(狭持)することによって、フランジ部56とベローズ57の内側を真空に保持することができる。ベローズ57の内側の空間は真空容器11内の空間と貫通孔52を介して連通している。なお、封止部材としては、フッ素ゴムからなるOリング63が好適に用いられるが、他の樹脂や金属性の封止部材を使用することができるものとする。 By supporting (holding) the O-ring 63 serving as a sealing member between the terminal ring 55 and the holder support portion 22, the inside of the flange portion 56 and the bellows 57 can be held in a vacuum. The space inside the bellows 57 communicates with the space in the vacuum vessel 11 through the through hole 52. As the sealing member, an O-ring 63 made of fluororubber is preferably used, but other resins and metallic sealing members can be used.
ベローズ57(弾性隔壁部又は第2付勢手段)は、軸方向に伸縮する弾性を有しており、フランジ部56と終端リング55の間に位置している。そのため、ベローズ57の長さ若しくは接地軸53の長さを調整することによって、接地軸53を下方に付勢する弾性力(付勢力)をフランジ部56に付与することができる。 The bellows 57 (elastic partition wall or second urging means) has elasticity that expands and contracts in the axial direction, and is located between the flange portion 56 and the terminal ring 55. Therefore, by adjusting the length of the bellows 57 or the length of the grounding shaft 53, an elastic force (biasing force) that biases the grounding shaft 53 downward can be applied to the flange portion 56.
接地軸53を下方に付勢することで、導電端子51をメタルコート43に押し付けることができ、これらの部材の間での確実な導通を確保することができる。
つまり、接地軸53や誘電体層35などの基板ホルダー13を構成する部材が熱により膨張/収縮しても、導電端子51を所定の圧力でメタルコート43に押圧することができるため、導電端子51とメタルコート43の導通を十分に確保することができる。
By urging the ground shaft 53 downward, the conductive terminal 51 can be pressed against the metal coat 43, and reliable conduction between these members can be ensured.
That is, even if the members constituting the substrate holder 13 such as the ground shaft 53 and the dielectric layer 35 expand / shrink due to heat, the conductive terminal 51 can be pressed against the metal coat 43 with a predetermined pressure. Sufficient conduction between 51 and the metal coat 43 can be ensured.
なお、接地軸53を上方に付勢して導電端子51をメタルコート43に押圧する構造にも本発明の構成を適用することができる。例えば、基板ホルダーの裏側(ターゲットの逆側)まで延設したメタルコート43に導電端子51を押圧してもよい。つまり、付勢手段が導電端子51を付勢する方向は、導電端子51をメタルコート43に押し付ける方向である。 Note that the configuration of the present invention can also be applied to a structure in which the grounding shaft 53 is urged upward to press the conductive terminal 51 against the metal coat 43. For example, the conductive terminal 51 may be pressed against the metal coat 43 extending to the back side of the substrate holder (the opposite side of the target). That is, the direction in which the urging means urges the conductive terminal 51 is a direction in which the conductive terminal 51 is pressed against the metal coat 43.
圧縮コイルばね59は、接地軸53を下方に付勢する付勢力を強くするための部材である。圧縮コイルばね59によってベローズ57よりも強い付勢力を得ることができ、導電端子51とメタルコート43の導通をより確実にすることができる。本実施形態では付勢手段として主に圧縮コイルばね59を用いているが、ベローズ57も付勢力を有しているため付勢手段として機能させることができる。すなわち、ベローズ57は真空隔壁の機能に加えて、付勢手段としての機能を併せ有している。なお、ベローズ57の付勢力が十分強ければ、圧縮コイルばね59を用いないで付勢手段を構成することも可能である。 The compression coil spring 59 is a member for increasing the biasing force that biases the ground shaft 53 downward. An urging force stronger than that of the bellows 57 can be obtained by the compression coil spring 59, and conduction between the conductive terminal 51 and the metal coat 43 can be further ensured. In the present embodiment, the compression coil spring 59 is mainly used as the urging means, but the bellows 57 also has an urging force, so that it can function as the urging means. That is, the bellows 57 has a function as an urging means in addition to the function of the vacuum partition. If the urging force of the bellows 57 is sufficiently strong, the urging means can be configured without using the compression coil spring 59.
付勢手段により、導電端子51とメタルコート43の導通を確実にすることができる。そのため、スパッタ成膜処理などの真空処理が終了した後に、リレー回路61を切替えて、基板Wの裏面と接しているメタルコート43を接地電位にすることで、基板Wの静電吸着を速やかに解除することができる。すなわち、基板Wの交換が従来よりも迅速且つ確実にできる。 The conduction between the conductive terminal 51 and the metal coat 43 can be ensured by the biasing means. Therefore, after the vacuum process such as the sputter film forming process is completed, the relay circuit 61 is switched, and the metal coat 43 in contact with the back surface of the substrate W is set to the ground potential, so that the electrostatic adsorption of the substrate W is promptly performed. It can be canceled. That is, the substrate W can be replaced more quickly and reliably than in the past.
Oリング63は上述のように、接地軸53の付勢方向で2つの部材(終端リング55とフランジ部56)に挟み込まれて配置されている。Oリング63は接地軸53と接触しない構造であるため、メンテナンスなどで接地軸53を交換してもOリング63が捩れることがない。従って、より確実にシールを維持することができる。また、Oリング63の交換寿命を長くできるためメンテナンス間隔を延ばすことができる。 As described above, the O-ring 63 is disposed so as to be sandwiched between two members (the terminal ring 55 and the flange portion 56) in the biasing direction of the ground shaft 53. Since the O-ring 63 has a structure that does not come into contact with the ground shaft 53, the O-ring 63 will not be twisted even if the ground shaft 53 is replaced for maintenance or the like. Therefore, the seal can be maintained more reliably. Further, since the replacement life of the O-ring 63 can be extended, the maintenance interval can be extended.
(第2実施形態)
図4は、本発明の第2実施形態に係る基板ホルダーについての図であり、除電部の大気側端部の拡大図である。本実施形態に係る基板ホルダーの除電部の真空側端部は上述した第1実施形態と同様の構成である。また、第1実施形態と同様の部材については同一の符号を付してその詳細な説明を省略する。
(Second Embodiment)
FIG. 4 is a view of a substrate holder according to the second embodiment of the present invention, and is an enlarged view of an end portion on the atmosphere side of the charge removal portion. The vacuum side end of the charge removal portion of the substrate holder according to the present embodiment has the same configuration as that of the first embodiment described above. The same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
本実施形態に係る基板ホルダーの大気側の端部は、接地軸53の端部が端部ケース67(隔壁部)の内側に配置されている。端部ケース67はステンレス製であり、フランジ部56や圧縮コイルばね59などを内側に配置できるように分割可能に構成されている。なお、本実施形態における接地部は、接地軸の端部と端部ケースを含んで構成されている。また、端部ケース67のOリングとのシール面が形成される部分には終端リング55が設けられている。また、圧縮コイルばね59は、接地軸53に形成されたフランジ部56と終端リング55のシール面の逆側面との間に配置されている。 As for the end of the substrate holder according to the present embodiment on the atmosphere side, the end of the ground shaft 53 is disposed inside the end case 67 (partition wall). The end case 67 is made of stainless steel, and is configured to be separable so that the flange portion 56, the compression coil spring 59, and the like can be disposed inside. In addition, the grounding part in this embodiment is comprised including the edge part and end part case of a grounding shaft. Further, a terminal ring 55 is provided at a portion where the sealing surface with the O-ring of the end case 67 is formed. The compression coil spring 59 is disposed between the flange portion 56 formed on the ground shaft 53 and the opposite side surface of the sealing surface of the terminal ring 55.
接地軸53は圧縮コイルばね59と端部ケース67を介してリレー回路61に電気的に接続される。なお、接地軸53とリレー回路61との導通を確実にするために、接地軸53(フランジ部56)と端部ケース67の間を銅線などで接続しても良い。また、図5に示すように、圧縮コイルばね59を、接地軸53に形成されたフランジ部56とホルダー支持部22の端部との間に配置してもよい。 The ground shaft 53 is electrically connected to the relay circuit 61 via the compression coil spring 59 and the end case 67. In order to ensure conduction between the ground shaft 53 and the relay circuit 61, the ground shaft 53 (flange portion 56) and the end case 67 may be connected by a copper wire or the like. As shown in FIG. 5, the compression coil spring 59 may be disposed between the flange portion 56 formed on the ground shaft 53 and the end portion of the holder support portion 22.
本発明によれば、静電吸着装置を備える基板ホルダーから基板を脱離する操作において他の要素による物理的接触を伴わずに静電吸着板表面と基板の電荷を同時に除電が可能でありながら、広域温度帯における基板の脱離操作の信頼性を向上した基板ホルダー、及び、高い良品率と装置稼働率を実現する真空処理装置を提供することができる。 According to the present invention, in the operation of detaching the substrate from the substrate holder provided with the electrostatic adsorption device, it is possible to simultaneously remove the charge on the surface of the electrostatic adsorption plate and the substrate without physical contact by other elements. In addition, it is possible to provide a substrate holder that improves the reliability of the substrate detachment operation in a wide temperature range, and a vacuum processing apparatus that realizes a high yield rate and a high device operation rate.
具体的には、本発明に係る基板ホルダーを用いることで、0℃以下から500℃以上の広い範囲での除電の信頼性を大幅に向上することが可能となった。そのため、基板一枚あたり30〜60秒、スループットを短縮できる半導体製造装置を実現できる。それにより、高い良品率と装置稼働率を実現する真空処理装置を提供することができる。 Specifically, by using the substrate holder according to the present invention, it has become possible to greatly improve the reliability of static elimination in a wide range from 0 ° C. or lower to 500 ° C. or higher. Therefore, it is possible to realize a semiconductor manufacturing apparatus capable of reducing the throughput for 30 to 60 seconds per substrate. Thereby, the vacuum processing apparatus which implement | achieves a high non-defective rate and an apparatus operation rate can be provided.
1 スパッタリング装置
11 真空容器
12 ターゲット電極
13 基板ホルダー
16 高周波電源
18 ターゲット
19 ガス導入装置
20 排気装置
21 ホルダー本体部
22 ホルダー支持部
24 基板加熱装置
26 静電吸着装置
31 下部筐体
33 ヒーター電極
35 誘電体層
37 静電吸着板
40 除電部
43 メタルコート
45 基板支持面
46 凸部
51 導電端子
52 貫通孔
53 接地軸
55 終端リング
56 フランジ部
57 ベローズ(第2付勢手段、又は隔壁部)
59 圧縮コイルばね(付勢手段)
61 リレー回路
63 Oリング(封止部材)
67 端部ケース(隔壁部)
DESCRIPTION OF SYMBOLS 1 Sputtering apparatus 11 Vacuum container 12 Target electrode 13 Substrate holder 16 High frequency power supply 18 Target 19 Gas introduction apparatus 20 Exhaust apparatus 21 Holder main body part 22 Holder support part 24 Substrate heating apparatus 26 Electrostatic adsorption apparatus 31 Lower housing 33 Heater electrode 35 Dielectric Body layer 37 Electrostatic adsorption plate 40 Static elimination part 43 Metal coat 45 Substrate support surface 46 Convex part 51 Conductive terminal 52 Through hole 53 Ground shaft 55 Termination ring 56 Flange part 57 Bellows (second urging means or partition part)
59 Compression coil spring (biasing means)
61 Relay circuit 63 O-ring (sealing member)
67 End case (partition wall)
Claims (6)
前記軸部の他端部に接続され、前記軸部を接地電位に切替え可能な切替え部と、
前記軸部の一端部側を前記基板支持面に当接する方向に付勢する付勢手段と、
前記ホルダー側と前記接地部側に、前記付勢手段の付勢方向で狭持される封止部材と、
前記軸部の他端部側が内側に配置される隔壁部と、を備えることを特徴とする基板ホルダー。 A shaft portion with one end conducting to the substrate support surface;
A switching unit that is connected to the other end of the shaft and is capable of switching the shaft to a ground potential;
An urging means for urging one end portion side of the shaft portion in a direction in contact with the substrate support surface;
A sealing member sandwiched in the biasing direction of the biasing means on the holder side and the grounding portion side;
A substrate holder, comprising: a partition portion disposed on an inner side of the other end portion of the shaft portion.
前記ホルダー本体部を支持するホルダー支持部と、
前記導体配線を接地状態に切替えることができる除電部と、を有する基板ホルダーであって、
前記除電部は、
一端部が前記導体配線と当接する接地部と、
前記接地部の他端部に接続され、前記接地部を介して前記導体配線を接地状態とフローティング状態とに切替える切替え部と、
前記接地部を前記導体配線に当接する方向に付勢する付勢手段と、
前記ホルダー側と前記接地部側に、前記付勢手段の付勢方向で狭持される封止部材と、を備えることを特徴とする基板ホルダー。 An electrostatic chucking plate to which a voltage for adsorbing the substrate supported by the substrate support surface is applied, and a holder main body portion including at least a conductor wiring electrically connected to the substrate supported by the substrate support surface;
A holder support part for supporting the holder body part;
A neutralization unit capable of switching the conductor wiring to a grounded state, and a substrate holder,
The static eliminator is
A grounding portion whose one end is in contact with the conductor wiring;
A switching unit that is connected to the other end of the grounding unit and switches the conductor wiring between a grounding state and a floating state via the grounding unit;
An urging means for urging the grounding portion in a direction in contact with the conductor wiring;
A substrate holder comprising: a sealing member sandwiched in the biasing direction of the biasing means on the holder side and the grounding portion side.
前記付勢手段は、前記隔壁部の内側に配置され、
前記封止部材は、前記ホルダー支持部と前記隔壁部に狭持されることを特徴とする請求項2に記載の基板ホルダー。 The grounding portion is inserted into a through hole formed in the holder support portion, and is connected to the holder support portion so as to seal the shaft portion that contacts the conductor wiring at one end portion and one end portion of the through hole. The other end portion side of the shaft portion is disposed on the inner side, and
The biasing means is disposed inside the partition wall,
The substrate holder according to claim 2, wherein the sealing member is held between the holder support part and the partition part.
前記隔壁部はベローズであり、
前記ベローズは前記付勢手段を兼ねていることを特徴とする請求項2に記載の基板ホルダー。 The grounding portion is inserted into a through hole formed in the holder support portion, and is connected to the holder support portion so as to seal the shaft portion that contacts the conductor wiring at one end portion and one end portion of the through hole. The other end portion side of the shaft portion is disposed on the inner side, and
The partition wall is a bellows,
The substrate holder according to claim 2, wherein the bellows also serves as the biasing unit.
前記ホルダー本体部は前記真空容器内に配置されるとともに、前記ホルダー支持部は前記真空容器の真空隔壁を貫通して配置されており、
前記隔壁部の内側は前記真空容器の内部と前記貫通孔を介して連通していることを特徴とする真空処理装置。
A vacuum processing apparatus comprising at least the substrate holder according to claim 1 and a vacuum vessel,
The holder body is disposed in the vacuum container, and the holder support is disposed through the vacuum partition of the vacuum container,
The inside of the said partition part is connected to the inside of the said vacuum vessel via the said through-hole, The vacuum processing apparatus characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011238342A JP6016349B2 (en) | 2011-10-31 | 2011-10-31 | Substrate holder and vacuum processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011238342A JP6016349B2 (en) | 2011-10-31 | 2011-10-31 | Substrate holder and vacuum processing apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013098277A true JP2013098277A (en) | 2013-05-20 |
JP2013098277A5 JP2013098277A5 (en) | 2014-11-20 |
JP6016349B2 JP6016349B2 (en) | 2016-10-26 |
Family
ID=48619945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011238342A Active JP6016349B2 (en) | 2011-10-31 | 2011-10-31 | Substrate holder and vacuum processing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6016349B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015135960A (en) * | 2013-12-20 | 2015-07-27 | ラム リサーチ コーポレーションLam Research Corporation | Electrostatic chuck including declamping electrode and method of declamping |
KR101619814B1 (en) | 2014-10-29 | 2016-05-12 | 주식회사 케이씨텍 | Surface contact unit and atomic layer deposition apparatus having the same |
CN110053289A (en) * | 2019-05-14 | 2019-07-26 | 苏州美图半导体技术有限公司 | Vacuum glue bonder |
JP2020021769A (en) * | 2018-07-30 | 2020-02-06 | 東京エレクトロン株式会社 | Mounting table mechanism, processing apparatus, and operation method of mounting table mechanism |
CN111448646A (en) * | 2017-12-11 | 2020-07-24 | 应用材料公司 | Cryogenically cooled rotatable electrostatic chuck |
CN112442672A (en) * | 2019-08-30 | 2021-03-05 | 佳能特机株式会社 | Vacuum device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020524898A (en) * | 2017-06-22 | 2020-08-20 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Electrostatic carrier for die-bonding applications |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000183146A (en) * | 1998-12-18 | 2000-06-30 | Ibiden Co Ltd | Electrostatic chuck |
JP2001274231A (en) * | 1999-11-08 | 2001-10-05 | Applied Materials Inc | Apparatus for controlling temperature in semiconductor processing system |
JP2004022889A (en) * | 2002-06-18 | 2004-01-22 | Anelva Corp | Electrostatic chuck |
JP2004022888A (en) * | 2002-06-18 | 2004-01-22 | Anelva Corp | Electrostatic chuck |
JP2005063991A (en) * | 2003-08-08 | 2005-03-10 | Sumitomo Electric Ind Ltd | Semiconductor manufacturing equipment |
WO2006049085A1 (en) * | 2004-11-04 | 2006-05-11 | Ulvac, Inc. | Electrostatic chuck apparatus |
JP2007281166A (en) * | 2006-04-06 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Bonding method and bonder and bonded substrate |
JP2009164620A (en) * | 2009-02-13 | 2009-07-23 | Canon Anelva Corp | Sputtering apparatus |
-
2011
- 2011-10-31 JP JP2011238342A patent/JP6016349B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000183146A (en) * | 1998-12-18 | 2000-06-30 | Ibiden Co Ltd | Electrostatic chuck |
JP2001274231A (en) * | 1999-11-08 | 2001-10-05 | Applied Materials Inc | Apparatus for controlling temperature in semiconductor processing system |
JP2004022889A (en) * | 2002-06-18 | 2004-01-22 | Anelva Corp | Electrostatic chuck |
JP2004022888A (en) * | 2002-06-18 | 2004-01-22 | Anelva Corp | Electrostatic chuck |
JP2005063991A (en) * | 2003-08-08 | 2005-03-10 | Sumitomo Electric Ind Ltd | Semiconductor manufacturing equipment |
WO2006049085A1 (en) * | 2004-11-04 | 2006-05-11 | Ulvac, Inc. | Electrostatic chuck apparatus |
JP2007281166A (en) * | 2006-04-06 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Bonding method and bonder and bonded substrate |
JP2009164620A (en) * | 2009-02-13 | 2009-07-23 | Canon Anelva Corp | Sputtering apparatus |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015135960A (en) * | 2013-12-20 | 2015-07-27 | ラム リサーチ コーポレーションLam Research Corporation | Electrostatic chuck including declamping electrode and method of declamping |
KR101619814B1 (en) | 2014-10-29 | 2016-05-12 | 주식회사 케이씨텍 | Surface contact unit and atomic layer deposition apparatus having the same |
CN111448646A (en) * | 2017-12-11 | 2020-07-24 | 应用材料公司 | Cryogenically cooled rotatable electrostatic chuck |
JP2021506136A (en) * | 2017-12-11 | 2021-02-18 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Rotatable electrostatic chuck cooled to very low temperature |
JP7317013B2 (en) | 2017-12-11 | 2023-07-28 | アプライド マテリアルズ インコーポレイテッド | Cryogenically cooled rotatable electrostatic chuck |
JP2020021769A (en) * | 2018-07-30 | 2020-02-06 | 東京エレクトロン株式会社 | Mounting table mechanism, processing apparatus, and operation method of mounting table mechanism |
CN110783242A (en) * | 2018-07-30 | 2020-02-11 | 东京毅力科创株式会社 | Mounting table apparatus, processing apparatus, and method of operating mounting table apparatus |
CN110783242B (en) * | 2018-07-30 | 2023-08-11 | 东京毅力科创株式会社 | Stage device, processing device, and method for operating stage device |
CN110053289A (en) * | 2019-05-14 | 2019-07-26 | 苏州美图半导体技术有限公司 | Vacuum glue bonder |
CN110053289B (en) * | 2019-05-14 | 2024-04-16 | 苏州美图半导体技术有限公司 | Vacuum adhesive bonding machine |
CN112442672A (en) * | 2019-08-30 | 2021-03-05 | 佳能特机株式会社 | Vacuum device |
CN112442672B (en) * | 2019-08-30 | 2023-09-22 | 佳能特机株式会社 | Vacuum device |
Also Published As
Publication number | Publication date |
---|---|
JP6016349B2 (en) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6016349B2 (en) | Substrate holder and vacuum processing apparatus | |
CN111226309B (en) | Electrostatic chuck assembly, electrostatic chuck and focusing ring | |
TWI233658B (en) | Electrostatic absorbing apparatus | |
JP3911787B2 (en) | Sample processing apparatus and sample processing method | |
JP4010541B2 (en) | Electrostatic adsorption device | |
JP4354983B2 (en) | Substrate processing equipment | |
JP4418032B2 (en) | Electrostatic chuck | |
JP4061131B2 (en) | Electrostatic adsorption device | |
CN111108589A (en) | Electrostatic chuck device | |
KR20090081717A (en) | Electrostatic chuck, method of manufacturing the same and apparatus for processing a substrate including the same | |
KR20070072571A (en) | Electrostatic chuck apparatus | |
KR19980024679A (en) | Electrostatic chuck and sample processing method and apparatus using the same | |
JP2021510010A (en) | Lift pin system for wafer operation | |
JP2010021510A (en) | Substrate support device and plasma processing apparatus | |
JP2009302508A (en) | Substrate holding apparatus | |
JP5851131B2 (en) | Electrostatic chuck, vacuum processing equipment | |
WO2012090430A1 (en) | Electrostatic adsorption apparatus | |
JP2013098276A (en) | Substrate holder and vacuum processing apparatus | |
JP2013157640A (en) | Electrostatic chuck and substrate processing apparatus | |
KR100979915B1 (en) | Electrostatic chuck and heater | |
JP2003282692A (en) | Substrate carrying tray and substrate processing apparatus using this tray | |
JP2016136552A (en) | Plasma processing apparatus | |
JP4338376B2 (en) | Electrostatic chuck device | |
CN115552589A (en) | Electrostatic chuck device | |
JP2009088558A (en) | Electrostatic chuck device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141002 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6016349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |