JP2013089298A - Positive electrode active material for secondary battery and method for producing the same - Google Patents

Positive electrode active material for secondary battery and method for producing the same Download PDF

Info

Publication number
JP2013089298A
JP2013089298A JP2011225705A JP2011225705A JP2013089298A JP 2013089298 A JP2013089298 A JP 2013089298A JP 2011225705 A JP2011225705 A JP 2011225705A JP 2011225705 A JP2011225705 A JP 2011225705A JP 2013089298 A JP2013089298 A JP 2013089298A
Authority
JP
Japan
Prior art keywords
olivine
silicate compound
lithium
positive electrode
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011225705A
Other languages
Japanese (ja)
Other versions
JP5754808B2 (en
Inventor
Hiroki Yamashita
弘樹 山下
Shiho Ishihara
四穂 石原
Tsutomu Suzuki
務 鈴木
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan Public University Corp filed Critical Taiheiyo Cement Corp
Priority to JP2011225705A priority Critical patent/JP5754808B2/en
Publication of JP2013089298A publication Critical patent/JP2013089298A/en
Application granted granted Critical
Publication of JP5754808B2 publication Critical patent/JP5754808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an olivine type silicate compound such as LiFeSiO, exhibiting crystal orientation with extremely high uniformity and useful as a positive electrode active material for a secondary battery, and to provide a positive electrode active material for a secondary battery and a method for producing the positive electrode active material for a secondary battery.SOLUTION: An olivine type silicate compound is represented as LiMSiO(in the formula, M represents one or two or more kinds of elements selected from among Fe, Ni, Co and Mn), and has a peak intensity ratio of a (010) surface to a (011) surface of 0.6 times or more, in an X-ray diffraction pattern.

Description

本発明は、オリビン型シリケート化合物、二次電池用正極活物質及びその製造方法に関する。   The present invention relates to an olivine type silicate compound, a positive electrode active material for a secondary battery, and a method for producing the same.

リチウムイオン電池等の二次電池は、非水電解質電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン電池は、正極材料としてリチウム金属酸化物を用い、負極材料としてグラファイトなどの炭素材を用いるものが主流となっている。   A secondary battery such as a lithium ion battery is a kind of non-aqueous electrolyte battery, and is used in a wide range of fields such as a mobile phone, a digital camera, a notebook PC, a hybrid vehicle, and an electric vehicle. Lithium ion batteries mainly use lithium metal oxide as a positive electrode material and a carbon material such as graphite as a negative electrode material.

この正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMnO2)、リン酸鉄リチウム(LiFePO4)、ケイ酸鉄リチウム(Li2FeSiO4)等が知られている。このうち、LiFePO4やLi2FeSiO4等は、オリビン構造を有し、高容量のリチウムイオン電池用正極材料として有用である。なかでも、LiFePO4等のリン酸リチウム金属系正極材料は、得られる電池物性のさらなる向上を図るべく、X線回折において特定のピーク強度比を示す、均一な結晶配向性を有するものも知られている(特許文献1、2)。 As this positive electrode material, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium iron phosphate (LiFePO 4 ), lithium iron silicate (Li 2 FeSiO 4 ) and the like are known. Among these, LiFePO 4 and Li 2 FeSiO 4 have an olivine structure and are useful as a positive electrode material for a high capacity lithium ion battery. Among them, lithium phosphate metal-based positive electrode materials such as LiFePO 4 are known to have a uniform crystal orientation that exhibits a specific peak intensity ratio in X-ray diffraction in order to further improve the physical properties of the obtained battery. (Patent Documents 1 and 2).

一方、Li2FeSiO4等のケイ酸リチウム金属系正極材料の製造法としては、Li源、鉄(金属)源及びケイ酸源の混合物を粉砕し、500〜900℃で焼成するという固相法が一般的である(特許文献3、4)。しかし、固相法では、不活性ガス雰囲気での焼成と粉砕を行う必要があり、複雑な操作が必要であるとともに、粒径や結晶度を制御することが困難である。
これに対し、非特許文献1には、Li2Mn1-yFeySiO4(y=0〜1)を水熱合成で得られる旨の記載がある。
On the other hand, as a method for producing a lithium silicate metal positive electrode material such as Li 2 FeSiO 4 , a solid phase method in which a mixture of a Li source, an iron (metal) source and a silicate source is pulverized and fired at 500 to 900 ° C. Is common (Patent Documents 3 and 4). However, in the solid phase method, it is necessary to perform firing and pulverization in an inert gas atmosphere, which requires complicated operations and it is difficult to control the particle size and crystallinity.
On the other hand, Non-Patent Document 1 describes that Li 2 Mn 1-y Fe y SiO 4 (y = 0 to 1) can be obtained by hydrothermal synthesis.

特開2007−207637号公報JP 2007-207637 A 特表2008−541364号公報Special table 2008-541364 gazette 特開2001−266882号公報JP 2001-266882 A 特開2002−198050号公報JP 2002-198050 A

GS Yuasa Technical Report 2009年6月、第6巻、第1号、p21−26GS Yuasa Technical Report June 2009, Vol. 6, No. 1, p21-26

しかしながら、本発明者らによって、リチウム源、鉄源及びシリケート源の3者を水に混合し、その混合液をそのまま水熱反応に付しても、得られるLi2FeSiO4の結晶配向性を充分に制御することができず、二次電池用正極活物質として用いた際に電池物性の低下を招くおそれがあることが判明した。そのため、Li2FeSiO4等のケイ酸リチウム金属系正極材料については、制御された均一性の高い結晶配合性を有するものは未だ知られていないのが実情である。 However, even if the present inventors mix three of a lithium source, an iron source, and a silicate source with water and subject the mixture to a hydrothermal reaction as it is, the crystal orientation of Li 2 FeSiO 4 obtained can be improved. It was found that the battery physical properties could not be sufficiently controlled and the physical properties of the battery might be lowered when used as a positive electrode active material for a secondary battery. Therefore, as for the lithium metal silicate-based positive electrode material such as Li 2 FeSiO 4 , it is a fact that a controlled and highly uniform crystal compounding property is not yet known.

従って、本発明の課題は、非常に均一性の高い結晶配向性を示し、二次電池用正極活物質として有用なLi2FeSiO4等のオリビン型シリケート化合物、二次電池用正極活物質及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a highly uniform crystal orientation and an olivine-type silicate compound such as Li 2 FeSiO 4 useful as a positive electrode active material for a secondary battery, a positive electrode active material for a secondary battery and its It is to provide a manufacturing method.

そこで本発明者らは、X線回折図において特定のピーク強度比を示すオリビン型シリケート化合物が極めて均一性の高い結晶配合性を有し、二次電池用正極活物質として用いた際に優れた電池物性を有することを見出し、本発明を完成するに至った。   Therefore, the present inventors have an excellent olivine type silicate compound showing a specific peak intensity ratio in an X-ray diffraction diagram, which has an extremely high crystal compoundability and is excellent when used as a positive electrode active material for a secondary battery. The present inventors have found that the battery has physical properties and have completed the present invention.

すなわち、本発明は、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表され、かつ
X線回折図において、(011)面のピーク強度に対する(010)面のピーク強度が0.6倍以上であることを特徴とする、オリビン型シリケート化合物を提供するものである。
That is, the present invention is represented by Li 2 MSiO 4 (wherein M represents one or more selected from Fe, Ni, Co, or Mn), and in the X-ray diffraction diagram, (011) plane The olivine type silicate compound is characterized in that the peak intensity of the (010) plane with respect to the peak intensity is 0.6 times or more.

また、本発明は、MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩又は(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩を用い、リチウム化合物、ケイ酸化合物及び配向制御剤を含有する塩基性水分散液を水熱反応させることを特徴とする、上記オリビン型シリケート化合物の製造方法を提供するものである。
さらに、本発明は、上記オリビン型シリケート化合物を含有する二次電池用正極活物質を提供するものである。
Further, the present invention provides a transition metal sulfate represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn) or (R) 2 M (wherein R represents an organic acid residue). , M represents Fe, Ni, Co, or Mn), and a basic aqueous dispersion containing a lithium compound, a silicic acid compound and an alignment controller is subjected to a hydrothermal reaction using an organic acid transition metal salt represented by: The present invention provides a method for producing the above olivine-type silicate compound.
Furthermore, this invention provides the positive electrode active material for secondary batteries containing the said olivine type | mold silicate compound.

また、本発明は、MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩又は(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩を用い、リチウム化合物、ケイ酸化合物及び配向制御剤を含有する塩基性水分散液を水熱反応させ、水熱反応後、得られたオリビン型シリケート化合物にカーボン担持し、次いで焼成することを特徴とする、二次電池用正極活物質の製造方法を提供するものである。 Further, the present invention provides a transition metal sulfate represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn) or (R) 2 M (wherein R represents an organic acid residue). , M represents Fe, Ni, Co, or Mn), and a basic aqueous dispersion containing a lithium compound, a silicate compound, and an alignment controller is hydrothermally reacted to form water. The present invention provides a method for producing a positive electrode active material for a secondary battery, characterized in that after the thermal reaction, carbon is supported on the obtained olivine type silicate compound and then fired.

本発明のオリビン型シリケート化合物を正極材料として用いた二次電池は、優れた放電容量を有し、二次電池用正極材料として非常に有用である。   A secondary battery using the olivine-type silicate compound of the present invention as a positive electrode material has excellent discharge capacity and is very useful as a positive electrode material for a secondary battery.

実施例1及び比較例1で得られた凍結乾燥粉末のX線回析図を示す。The X-ray diffraction pattern of the lyophilized powder obtained in Example 1 and Comparative Example 1 is shown. 実施例1で得られた正極活物質を用いた電池の充放電曲線を示す。The charging / discharging curve of the battery using the positive electrode active material obtained in Example 1 is shown. 比較例1で得られた正極活物質を用いた電池の充放電曲線を示す。The charging / discharging curve of the battery using the positive electrode active material obtained by the comparative example 1 is shown.

以下、本発明について詳細に説明する。
本発明のオリビン型シリケート化合物は、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表される。当該オリビン型シリケート化合物の具体例としては、Li2FeSiO4、Li2NiSiO4、Li2CoSiO4、Li2MnSiO4、Li2(Fe)m(Mn)1-mSiO4(0<m<1である)等が挙げられる。このうち、原料コストの点からLi2FeSiO4、Li2MnSiO4が好ましく、Li2FeSiO4がより好ましい。
Hereinafter, the present invention will be described in detail.
The olivine-type silicate compound of the present invention is represented by Li 2 MSiO 4 (wherein M represents one or more selected from Fe, Ni, Co, or Mn). Specific examples of the olivine silicate compound include Li 2 FeSiO 4 , Li 2 NiSiO 4 , Li 2 CoSiO 4 , Li 2 MnSiO 4 , Li 2 (Fe) m (Mn) 1-m SiO 4 (0 <m < 1). Among these, Li 2 FeSiO 4 and Li 2 MnSiO 4 are preferable from the viewpoint of raw material cost, and Li 2 FeSiO 4 is more preferable.

本発明のLi2MSiO4で表されるオリビン型シリケート化合物のX線回折を測定した場合、得られる回折図において、(011)面のピーク強度に対する(010)面のピーク強度は0.6倍以上であり、好ましくは0.7〜5.0倍、より好ましくは1.0〜2.5倍である。なお、ピーク強度とは、特定のミラー指数の面に起因するピークが示す最高値を意味する。 When the X-ray diffraction of the olivine-type silicate compound represented by Li 2 MSiO 4 of the present invention is measured, the peak intensity of the (010) plane is 0.6 times the peak intensity of the (011) plane in the obtained diffraction diagram. It is above, Preferably it is 0.7 to 5.0 times, More preferably, it is 1.0 to 2.5 times. The peak intensity means the highest value indicated by a peak due to a specific Miller index surface.

このように、(011)面のピーク強度に対して、(010)面のピーク強度が0.6倍以上であると、結晶内部においてリチウムイオンが拡散しやすいオリビン型シリケート化合物の配向性が制御されるものと推定される。そして、リチウムイオン電池の充放電において、異方性のあるこうした特定の方向性をもったリチウムイオンの出入りが一段と容易になるため、極めて均一性の高い結晶配向性を有する正極活物質として該オリビン型シリケート化合物を用いることにより、優れた放電容量を有する二次電池が得られると考えられる。   Thus, when the peak intensity of the (010) plane is 0.6 times or more than the peak intensity of the (011) plane, the orientation of the olivine type silicate compound in which lithium ions easily diffuse inside the crystal is controlled. It is estimated that In addition, the charging and discharging of a lithium ion battery facilitates the entry and exit of lithium ions having such a specific direction having anisotropy. Therefore, the olivine is used as a positive electrode active material having extremely uniform crystal orientation. It is considered that a secondary battery having an excellent discharge capacity can be obtained by using the type silicate compound.

例えば、Li2MSiO4がLi2FeSiO4であり、空間群Pmn21で指数付けされる場合において、(011)面のピーク強度は2θ=24.6°に現れ、(010)面のピーク強度は2θ=16.7°に現れる。そのほか、(200)面のピーク強度は2θ=28.6°に、(210)面のピーク強度は2θ=33.2°に、(020)面のピーク強度は2θ=33.6°に、(002)面のピーク強度は2θ=36.3°に、(211)面のピーク強度は2θ=38.0°に現れる。結晶配向性の均一性をより高める点から、さらに(200)面のピーク強度に対する(011)面のピーク強度が、1.0〜2.5倍であるのが好ましく、1.1〜2.0倍であるのがより好ましい。 For example, when Li 2 MSiO 4 is Li 2 FeSiO 4 and is indexed by the space group Pmn2 1 , the peak intensity of the (011) plane appears at 2θ = 24.6 °, and the peak intensity of the (010) plane Appears at 2θ = 16.7 °. In addition, the peak intensity of the (200) plane is 2θ = 28.6 °, the peak intensity of the (210) plane is 2θ = 33.2 °, and the peak intensity of the (020) plane is 2θ = 33.6 °. The peak intensity of the (002) plane appears at 2θ = 36.3 °, and the peak intensity of the (211) plane appears at 2θ = 38.0 °. In view of further improving the uniformity of crystal orientation, the peak intensity of the (011) plane is preferably 1.0 to 2.5 times the peak intensity of the (200) plane, and 1.1 to 2. It is more preferably 0 times.

本発明のオリビン型シリケート化合物は、遷移金属(M)源として、MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩又は(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩を用い、リチウム化合物、ケイ酸化合物及び配向制御剤を含有する塩基性水分散液を水熱反応させることにより製造する。配向制御剤を用いることにより、極めて効果的にLi2MSiO4における結晶配向性の均一化を図ることができる。 The olivine-type silicate compound of the present invention has, as a transition metal (M) source, a transition metal sulfate represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn) or (R) 2 M ( In the formula, R represents an organic acid residue, M represents an organic acid transition metal salt represented by Fe, Ni, Co, or Mn), and a base containing a lithium compound, a silicate compound, and an alignment controller The aqueous dispersion is subjected to a hydrothermal reaction. By using the orientation control agent, the crystal orientation in Li 2 MSiO 4 can be made extremely effective.

リチウム化合物としては、水酸化リチウム(例えばLiOH・H2O)、炭酸リチウム(Li2CO3)、硫酸リチウム、酢酸リチウムが挙げられるが、水酸化リチウム、炭酸リチウムが特に好ましい。水分散液中のリチウム化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。 Examples of the lithium compound include lithium hydroxide (for example, LiOH.H 2 O), lithium carbonate (Li 2 CO 3 ), lithium sulfate, and lithium acetate, and lithium hydroxide and lithium carbonate are particularly preferable. The concentration of the lithium compound in the aqueous dispersion is preferably 0.30 to 3.00 mol / l, more preferably 1.00 to 1.50 mol / l.

ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)が好ましい。このうちNa4SiO4を用いた場合、水分散液が塩基性になるので、より好ましい。水分散液中のケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。 The silicic acid compound is not particularly limited as long as it is a reactive silica compound, and amorphous silica and Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O) are preferable. Of these, the use of Na 4 SiO 4 is more preferable because the aqueous dispersion becomes basic. The concentration of the silicate compound in the aqueous dispersion is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l.

配向制御剤としては、亜ジチオン酸イオン(S24 2-)を含有する化合物であれば特に限定されず、例えば、亜ジチオン酸ナトリウム(Na224)、亜ジチオン酸カリウム、亜ジチオン酸アンモニウム等が使用できる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。水分散液中の配向制御剤の含有量は、多量に添加するとオリビン型シリケート化合物の生成を抑制してしまうため、遷移金属に対してモル比で0.001〜1が好ましく、0.1〜0.8がさらに好ましい。 The alignment control agent is not particularly limited as long as it is a compound containing dithionite ion (S 2 O 4 2− ). For example, sodium dithionite (Na 2 S 2 O 4 ), potassium dithionite, Ammonium dithionite and the like can be used. These may be used alone or in combination of two or more. When the content of the alignment control agent in the aqueous dispersion is added in a large amount, the formation of the olivine-type silicate compound is suppressed, so 0.001-1 is preferable in terms of molar ratio to the transition metal. 0.8 is more preferable.

遷移金属源として遷移金属硫酸塩MSO4(式中、MはFe、Ni、Co又はMnを示す)を用いる場合、副反応を抑制する点から、遷移金属硫酸塩とは別に、リチウム化合物、ケイ酸化合物及び配向制御剤を含有する塩基性水分散液を予め調製しておくのが好ましい。この場合、該水分散液と遷移金属硫酸塩とを混合し、水熱反応に付す。該水分散液の調製にあたって、リチウム化合物、ケイ酸化合物及び配向制御剤の添加順序は特に限定されず、これらの3成分を水に添加してもよい。 When transition metal sulfate MSO 4 (wherein M represents Fe, Ni, Co, or Mn) is used as the transition metal source, a lithium compound, silica, and silica are separated from the transition metal sulfate from the viewpoint of suppressing side reactions. It is preferable to prepare in advance a basic aqueous dispersion containing an acid compound and an alignment controller. In this case, the aqueous dispersion and the transition metal sulfate are mixed and subjected to a hydrothermal reaction. In preparing the aqueous dispersion, the order of addition of the lithium compound, the silicate compound, and the alignment control agent is not particularly limited, and these three components may be added to water.

遷移金属硫酸塩MSO4の具体例としては、FeSO4、NiSO4、CoSO4又はMnSO4が挙げられ、これらは1種でも2種以上を混合して用いてもよい。これらのうち、FeSO4、MnSO4がより好ましく、FeSO4がさらに好ましい。遷移金属硫酸塩の添加量は、反応混合液中0.15〜1.50mol/lとなる量が好ましく、さらに0.50〜0.75mol/lとなる量が好ましい。
なお、この場合における反応混合液中のLiの含有量は、Mに対して2モル以上が好ましい。
Specific examples of the transition metal sulfate MSO 4 include FeSO 4 , NiSO 4 , CoSO 4, and MnSO 4 , and these may be used alone or in combination of two or more. Of these, FeSO 4 and MnSO 4 are more preferable, and FeSO 4 is more preferable. The amount of transition metal sulfate added is preferably 0.15 to 1.50 mol / l in the reaction mixture, and more preferably 0.50 to 0.75 mol / l.
In this case, the Li content in the reaction mixture is preferably 2 mol or more with respect to M.

遷移金属源として有機酸遷移金属塩(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)を用いる場合には、リチウム化合物、ケイ酸化合物及び配向制御剤を含有し、さらに有機酸遷移金属塩を含有する塩基性水分散液を調製する。この場合、リチウム化合物、ケイ酸化合物、配向制御剤及び有機酸遷移金属塩の添加順序は特に限定されない。また、大気条件下でもよい。通常、有機酸塩は固相法に用いられる原料であるが、水熱反応に用いることにより副反応を抑制することができる。
なお、この場合における反応混合液中のLiは、遷移金属に対してモル比で2倍以上用いることが好ましく、Li:Mが2.5:1〜3:1程度がより好ましい。
When using an organic acid transition metal salt (R) 2 M (wherein R represents an organic acid residue and M represents Fe, Ni, Co or Mn) as the transition metal source, a lithium compound, silicic acid A basic aqueous dispersion containing a compound and an orientation control agent and further containing an organic acid transition metal salt is prepared. In this case, the addition order of the lithium compound, the silicic acid compound, the alignment control agent, and the organic acid transition metal salt is not particularly limited. Moreover, atmospheric conditions may be sufficient. Usually, an organic acid salt is a raw material used in a solid phase method, but side reactions can be suppressed by using it in a hydrothermal reaction.
In this case, Li in the reaction mixture is preferably used in a molar ratio of 2 times or more with respect to the transition metal, and Li: M is more preferably about 2.5: 1 to 3: 1.

有機酸遷移金属塩(R)2MのRで示される有機酸としては、炭素数1〜20の有機酸が好ましく、炭素数2〜12の有機酸がより好ましい。より具体的な有機酸としては、シュウ酸、フマル酸等のジカルボン酸、乳酸等のヒドロキシカルボン酸、酢酸等の脂肪酸が挙げられる。 The organic acid represented by an organic acid transition metal salt (R) of 2 M R, preferably an organic acid having 1 to 20 carbon atoms, more preferably an organic acid having 2 to 12 carbon atoms. More specific organic acids include dicarboxylic acids such as oxalic acid and fumaric acid, hydroxycarboxylic acids such as lactic acid, and fatty acids such as acetic acid.

該水分散液は塩基性とするのが、副反応を防止し、ケイ酸化合物を溶解するうえで重要である。具体的には、該水分散液のpHが12.0〜13.5であるのが副反応(Fe34の生成)の防止、ケイ酸化合物の溶解性及び反応の進行の点で特に好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが特に好ましい。 Making the aqueous dispersion basic is important in preventing side reactions and dissolving the silicate compound. Specifically, the pH of the aqueous dispersion is 12.0 to 13.5, particularly in terms of preventing side reactions (formation of Fe 3 O 4 ), solubility of silicate compounds, and progress of the reaction. preferable. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is particularly preferable to use Na 4 SiO 4 as the silicate compound.

水熱反応は、100℃以上であればよく、130〜180℃が好ましく、さらに140〜160℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合この時の圧力は0.3〜0.9MPaとなり、140〜160℃で反応を行う場合の圧力は0.3〜0.4MPaとなる。水熱反応時間は1〜24時間が好ましく、さらに3〜12時間が好ましい。   The hydrothermal reaction should just be 100 degreeC or more, 130-180 degreeC is preferable and 140-160 degreeC is more preferable. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 to 180 ° C, the pressure at this time is 0.3 to 0.9 MPa, and the pressure when the reaction is performed at 140 to 160 ° C is 0. 3 to 0.4 MPa. The hydrothermal reaction time is preferably 1 to 24 hours, more preferably 3 to 12 hours.

当該水熱反応により、Li2MSiO4(Mは前記と同じ)が高収率で得られる。また、得られたLiMSiO4の平均粒径は10〜100nmとなり、その結晶度も高い。 By the hydrothermal reaction, Li 2 MSiO 4 (M is the same as above) is obtained in high yield. The obtained LiMSiO 4 has an average particle size of 10 to 100 nm and a high crystallinity.

得られたLi2MSiO4は、ろ過後、乾燥することにより単離できる。乾燥手段は、凍結乾燥、真空乾燥が用いられる。 The obtained Li 2 MSiO 4 can be isolated by drying after filtration. As the drying means, freeze drying or vacuum drying is used.

得られたLi2MSiO4は、カーボン担持し、次いで焼成することにより、リチウムイオン二次電池用正極活物質とすることができる。カーボン担持は、Li2MSiO4に常法により、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等の炭素源及び水を添加し、次いで焼成すればよい。焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。かかる処理によりLi2MSiO4表面にカーボンが担持された正極活物質とすることができる。炭素源の使用量は、Li2MSiO4 100質量部に対し、炭素源に含まれる炭素として3〜15質量部が好ましく、炭素源に含まれる炭素として5〜10質量部がさらに好ましい。 The obtained Li 2 MSiO 4 can be used as a positive electrode active material for a lithium ion secondary battery by carrying carbon and then firing it. Carbon support may be obtained by adding a carbon source such as glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethylcellulose, saccharose, starch, dextrin, citric acid, and water to Li 2 MSiO 4 and then baking. The firing conditions are 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours under an inert gas atmosphere or reducing conditions. By such treatment, a positive electrode active material in which carbon is supported on the surface of Li 2 MSiO 4 can be obtained. The amount of carbon source used is preferably 3 to 15 parts by mass as carbon contained in the carbon source and more preferably 5 to 10 parts by mass as carbon contained in the carbon source with respect to 100 parts by mass of Li 2 MSiO 4 .

得られた正極活物質は、放電容量の点で優れており、二次電池の正極材料として有用である。本発明の正極活物質を適用できる二次電池としては、リチウムイオン二次電池であればよく、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The obtained positive electrode active material is excellent in terms of discharge capacity, and is useful as a positive electrode material for a secondary battery. The secondary battery to which the positive electrode active material of the present invention can be applied may be a lithium ion secondary battery, and is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 type of these.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
LiOH・H2O 4.20g(0.1mol)、Na4SiO4・nH2O 6.99g(0.025mol)、Na224 4.35g(0.025mol)に超純水75cm3を加えて混合した(この時のpHは約12.5)。この水分散液にFeSO4・7H2O6.95g(0.025mol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で16hr水熱反応を行った。反応液をろ過後、凍結乾燥した。凍結乾燥(約12時間)して得られた粉末8.4gにグルコース(炭素濃度として10%)及び超純水10cm3を加え、還元雰囲気下で600℃で1hr焼成した。
[Example 1]
LiOH.H 2 O 4.20 g (0.1 mol), Na 4 SiO 4 .nH 2 O 6.99 g (0.025 mol), Na 2 S 2 O 4 4.35 g (0.025 mol) and ultrapure water 75 cm 3 was added and mixed (the pH at this time was about 12.5). To this aqueous dispersion, 6.95 g (0.025 mol) of FeSO 4 .7H 2 O was added and mixed. The obtained mixed liquid was put into an autoclave and subjected to a hydrothermal reaction at 150 ° C. for 16 hours. The reaction solution was filtered and then lyophilized. Glucose (carbon concentration: 10%) and ultrapure water (10 cm 3) were added to 8.4 g of the powder obtained by freeze-drying (about 12 hours), and calcined at 600 ° C. for 1 hr in a reducing atmosphere.

[比較例1]
Na224を加えなかった以外、実施例1と同様にして、凍結乾燥粉末を得た。
[Comparative Example 1]
A lyophilized powder was obtained in the same manner as in Example 1 except that Na 2 S 2 O 4 was not added.

[試験例1]
実施例1及び比較例1で得られた凍結乾燥粉末のX線回折を行った。このときのX線回折の測定はRINT−UltimaII(リガク社製)で行い、測定条件は、ターゲットCuKα、管電圧40 kV、管電流40 mA、走査範囲10〜80°(2θ)、ステップ幅0.02°、およびスキャンスピード2.00°/minとした。得られたX線回折図を図1に示す。図1から明らかなように、(011)面のピーク強度に対する(010)面のピーク強度は、比較例1で得られた粉末は0.5倍であったのに対し、実施例1で得られた粉末は1.3倍であり、ある特定の方向への結晶配向性を有するよう制御されているであろうことがわかる。なお、(200)面のピーク強度に対する(010)面のピーク強度は、比較例1では1.2倍であり、実施例1では3.4倍であった。
[Test Example 1]
X-ray diffraction of the lyophilized powder obtained in Example 1 and Comparative Example 1 was performed. The X-ray diffraction at this time is measured by RINT-Ultima II (manufactured by Rigaku Corporation). The measurement conditions are target CuKα, tube voltage 40 kV, tube current 40 mA, scanning range 10 to 80 ° (2θ), step width 0. 0.02 ° and a scan speed of 2.00 ° / min. The obtained X-ray diffraction pattern is shown in FIG. As is clear from FIG. 1, the peak intensity of the (010) plane relative to the peak intensity of the (011) plane was 0.5 times that of the powder obtained in Comparative Example 1, whereas that obtained in Example 1 was obtained. It can be seen that the resulting powder is 1.3 times and will be controlled to have crystal orientation in a certain direction. In addition, the peak intensity of the (010) plane with respect to the peak intensity of the (200) plane was 1.2 times in Comparative Example 1 and 3.4 times in Example 1.

[試験例2]
実施例1及び比較例1で得られた焼成物を用い、リチウムイオン二次電池の正極を作製した。実施例1及び比較例1で得られた焼成物、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
[Test Example 2]
Using the fired product obtained in Example 1 and Comparative Example 1, a positive electrode of a lithium ion secondary battery was produced. The fired product obtained in Example 1 and Comparative Example 1, ketjen black (conductive agent), and polyvinylidene fluoride (binding agent) were mixed at a mixing ratio of 75:15:10, and this was mixed with N-methyl. -2-Pyrrolidone was added and sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.

次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。 Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).

製造したリチウムイオン二次電池を用いて定電流密度での充放電を4サイクル行った。このときの充電条件は電流0.1CA(33mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件は電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。実施例1の正極材で構築した電池の充放電曲線を図2に、比較例1の正極材で構築した電池の充放電曲線を図3に示す。   Charging / discharging at a constant current density was performed for 4 cycles using the manufactured lithium ion secondary battery. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA (33 mA / g) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C. The charge / discharge curve of the battery constructed with the positive electrode material of Example 1 is shown in FIG. 2, and the charge / discharge curve of the battery constructed with the positive electrode material of Comparative Example 1 is shown in FIG.

図2〜3より、制御された均一性の高い本発明の正極材料を用いたリチウムイオン二次電池は、優れた電池物性を有することがわかる。   2 to 3, it can be seen that the lithium ion secondary battery using the controlled positive electrode material of the present invention having high uniformity has excellent battery properties.

Claims (13)

Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表され、かつ
X線回折図において、(011)面のピーク強度に対する(010)面のピーク強度が0.6倍以上であることを特徴とする、オリビン型シリケート化合物。
Li 2 MSiO 4 (wherein M represents one or more selected from Fe, Ni, Co, or Mn), and in the X-ray diffraction diagram, (0101) with respect to the peak intensity of the (011) plane ) An olivine type silicate compound having a peak intensity of 0.6 times or more.
Li2MSiO4が、Li2FeSiO4である請求項1に記載のオリビン型シリケート化合物。 The olivine-type silicate compound according to claim 1, wherein Li 2 MSiO 4 is Li 2 FeSiO 4 . 請求項1又は2に記載のオリビン型シリケート化合物を含有する二次電池用正極活物質。   The positive electrode active material for secondary batteries containing the olivine type | mold silicate compound of Claim 1 or 2. 請求項3に記載の二次電池用正極活物質を含む正極を有する二次電池。   The secondary battery which has a positive electrode containing the positive electrode active material for secondary batteries of Claim 3. MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩又は(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩を用い、リチウム化合物、ケイ酸化合物及び配向制御剤を含有する塩基性水分散液を水熱反応させることを特徴とする、請求項1又は2に記載のオリビン型シリケート化合物の製造方法。 Transition metal sulfate represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn) or (R) 2 M (wherein R represents an organic acid residue, M represents Fe, Ni And a basic aqueous dispersion containing a lithium compound, a silicic acid compound and an alignment controller is subjected to a hydrothermal reaction using an organic acid transition metal salt represented by: Co or Mn). A method for producing the olivine-type silicate compound according to 1 or 2. 配向制御剤が、亜ジチオン酸イオンを含有する化合物である請求項5に記載のオリビン型シリケート化合物の製造方法。   The method for producing an olivine-type silicate compound according to claim 5, wherein the orientation control agent is a compound containing dithionite ion. 塩基性水分散液中の配向制御剤の含有量が、遷移金属に対してモル比で0.001〜1である請求項5又は6に記載のオリビン型シリケート化合物の製造方法。   The method for producing an olivine-type silicate compound according to claim 5 or 6, wherein the content of the orientation control agent in the basic aqueous dispersion is 0.001 to 1 in terms of molar ratio to the transition metal. 塩基性水分散液と、MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩の1種又は2種以上とを混合し、得られた混合物を水熱反応させる請求項5〜7のいずれか1項に記載のオリビン型シリケート化合物の製造方法。 A basic aqueous dispersion and one or more transition metal sulfates represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn) are mixed, and the resulting mixture is obtained. The manufacturing method of the olivine type | mold silicate compound of any one of Claims 5-7 made to make a hydrothermal reaction. 塩基性水分散液が、さらに(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩を含有する請求項5〜7のいずれか1項に記載のオリビン型シリケート化合物の製造方法。 The basic aqueous dispersion further contains an organic acid transition metal salt represented by (R) 2 M (wherein R represents an organic acid residue and M represents Fe, Ni, Co or Mn). The manufacturing method of the olivine type | mold silicate compound of any one of Claims 5-7. リチウム化合物が、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、硫酸リチウムから選ばれるものである請求項5〜9のいずれか1項に記載のオリビン型シリケート化合物の製造法。   The method for producing an olivine-type silicate compound according to any one of claims 5 to 9, wherein the lithium compound is selected from lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, and lithium sulfate. ケイ酸化合物が、非晶質シリカ及びNa4SiO4から選ばれるものである請求項5〜10のいずれか1項に記載のオリビン型シリケート化合物の製造法。 The method for producing an olivine-type silicate compound according to any one of claims 5 to 10, wherein the silicic acid compound is selected from amorphous silica and Na 4 SiO 4 . 塩基性水分散液のpHが、12.0〜13.5である請求項5〜11のいずれか1項に記載のオリビン型シリケート化合物の製造法。   The method for producing an olivine-type silicate compound according to any one of claims 5 to 11, wherein the pH of the basic aqueous dispersion is 12.0 to 13.5. MSO4(式中、MはFe、Ni、Co又はMnを示す)で表される遷移金属硫酸塩又は(R)2M(式中、Rは有機酸残基を示し、MはFe、Ni、Co又はMnを示す)で表される有機酸遷移金属塩を用い、リチウム化合物、ケイ酸化合物及び配向制御剤を含有する塩基性水分散液を水熱反応させ、水熱反応後、得られたオリビン型シリケート化合物にカーボン担持し、次いで焼成することを特徴とする、請求項3に記載の二次電池用正極活物質の製造方法。 Transition metal sulfate represented by MSO 4 (wherein M represents Fe, Ni, Co or Mn) or (R) 2 M (wherein R represents an organic acid residue, M represents Fe, Ni Is obtained after hydrothermal reaction of a basic aqueous dispersion containing a lithium compound, a silicic acid compound and an alignment controller. 4. The method for producing a positive electrode active material for a secondary battery according to claim 3, wherein carbon is supported on the olivine-type silicate compound and then fired.
JP2011225705A 2011-10-13 2011-10-13 Positive electrode active material for secondary battery and method for producing the same Active JP5754808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225705A JP5754808B2 (en) 2011-10-13 2011-10-13 Positive electrode active material for secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225705A JP5754808B2 (en) 2011-10-13 2011-10-13 Positive electrode active material for secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013089298A true JP2013089298A (en) 2013-05-13
JP5754808B2 JP5754808B2 (en) 2015-07-29

Family

ID=48533039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225705A Active JP5754808B2 (en) 2011-10-13 2011-10-13 Positive electrode active material for secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5754808B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445174A (en) * 2017-07-18 2017-12-08 宁夏大学 A kind of anode material of lithium battery Li2FeSiO4And preparation method thereof
US11565941B2 (en) 2020-03-17 2023-01-31 Hagen Schray Composite with lithium silicate and method with a quenching step

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335325A (en) * 2006-06-16 2007-12-27 Kyushu Univ Cathode active material for nonaqueous electrolyte secondary battery and battery
JP2008218303A (en) * 2007-03-07 2008-09-18 Kyushu Univ Manufacturing method of positive electrode active material for secondary battery
JP2010517913A (en) * 2007-02-09 2010-05-27 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Mixed lithium silicate
JP2011181331A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Cathode active material substance, cathode, secondary battery and manufacturing methods for same positive electrode active material, positive electrode, secondary battery and manufacturing methods for them
JP2011249324A (en) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd Positive electrode active material for power storage device, power storage device, electrically propelled vehicle, and method of manufacturing power storage device
WO2011162348A1 (en) * 2010-06-25 2011-12-29 旭硝子株式会社 Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
JP2012193087A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery
JP2013086977A (en) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp Cathode active material for lithium ion battery and method for producing the same
JP2013206727A (en) * 2012-03-28 2013-10-07 Taiheiyo Cement Corp Method for producing positive electrode active material precursor for secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335325A (en) * 2006-06-16 2007-12-27 Kyushu Univ Cathode active material for nonaqueous electrolyte secondary battery and battery
JP2010517913A (en) * 2007-02-09 2010-05-27 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Mixed lithium silicate
JP2008218303A (en) * 2007-03-07 2008-09-18 Kyushu Univ Manufacturing method of positive electrode active material for secondary battery
JP2011181331A (en) * 2010-03-01 2011-09-15 Furukawa Electric Co Ltd:The Cathode active material substance, cathode, secondary battery and manufacturing methods for same positive electrode active material, positive electrode, secondary battery and manufacturing methods for them
JP2011249324A (en) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd Positive electrode active material for power storage device, power storage device, electrically propelled vehicle, and method of manufacturing power storage device
WO2011162348A1 (en) * 2010-06-25 2011-12-29 旭硝子株式会社 Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
JP2012193087A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery
JP2013086977A (en) * 2011-10-13 2013-05-13 Taiheiyo Cement Corp Cathode active material for lithium ion battery and method for producing the same
JP2013206727A (en) * 2012-03-28 2013-10-07 Taiheiyo Cement Corp Method for producing positive electrode active material precursor for secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445174A (en) * 2017-07-18 2017-12-08 宁夏大学 A kind of anode material of lithium battery Li2FeSiO4And preparation method thereof
US11565941B2 (en) 2020-03-17 2023-01-31 Hagen Schray Composite with lithium silicate and method with a quenching step

Also Published As

Publication number Publication date
JP5754808B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5804419B2 (en) Cathode active material for lithium ion battery and lithium ion battery
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5531298B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5901019B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5709134B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5842792B2 (en) Method for producing secondary battery positive electrode active material precursor
JP5725456B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP5531304B2 (en) Method for producing positive electrode active material for secondary battery
JP2019172510A (en) Molded body, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP2014096309A (en) Positive electrode for secondary battery and secondary battery using the same
JP5754808B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5557220B2 (en) Method for producing positive electrode material for secondary battery
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
JP2014096308A (en) Conductive composite particle, positive electrode active material, and secondary battery arranged by use thereof
JP2013054922A (en) Positive electrode active material for secondary battery
JP5665788B2 (en) Method for producing positive electrode active material precursor for secondary battery
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5825573B2 (en) Cathode active material for lithium ion battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140815

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140815

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150522

R150 Certificate of patent or registration of utility model

Ref document number: 5754808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250