JP2013088087A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2013088087A
JP2013088087A JP2011231233A JP2011231233A JP2013088087A JP 2013088087 A JP2013088087 A JP 2013088087A JP 2011231233 A JP2011231233 A JP 2011231233A JP 2011231233 A JP2011231233 A JP 2011231233A JP 2013088087 A JP2013088087 A JP 2013088087A
Authority
JP
Japan
Prior art keywords
temperature
energy saving
saving mode
set temperature
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011231233A
Other languages
Japanese (ja)
Inventor
亮一 ▲高▼藤
Ryoichi Takafuji
Satomi Tokita
悟己 時田
Hiroshi Yamazaki
洋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011231233A priority Critical patent/JP2013088087A/en
Publication of JP2013088087A publication Critical patent/JP2013088087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that makes a user feel comfortable while limiting power consumption during maximum use and saving electric power.SOLUTION: An energy-saving mode can be selected in a cooling operation and in a heating operation, respectively. When the time when the energy-saving mode is executed is set at a timer setting part in advance, an operation is carried out in an energy-saving transition mode from a predetermined time before the energy-saving mode is started. When the energy-saving mode is selected in a cooling operation, change to raise a set temperature is made and when the energy-saving mode is selected in a heating operation, change to lower the set temperature is made. The maximum value of the capacity of a compressor is limited to a predetermined value in a high-load operation, and when the high-load operation is changed to a low-load operation, the rotating speed of a blower is lowered. When the energy-saving mode is selected in a cooling operation in the energy-saving transition mode, change to raise the set temperature to a temperature lower than the set temperature of the energy-saving mode is made, and when the energy-saving mode is selected in the heating operation in the operation in the energy-saving transition mode, change to raise the set temperature to a temperature higher than the set temperature of the energy-saving mode is made.

Description

本発明は空気調和機の省エネ運転制御に関する。   The present invention relates to energy-saving operation control of an air conditioner.

電力負荷の平準化を目的として、電流値の上限を下げることで、最大使用時の電流値を制限する空気調和機の運転制御が提案されている。また、最大使用時の電流値を制限するとともに、エネルギー消費量を抑える空気調和機の運転制御が提案されている。   For the purpose of leveling the electric load, operation control of an air conditioner that limits the current value during maximum use by lowering the upper limit of the current value has been proposed. Moreover, while controlling the electric current value at the maximum use, the operation control of the air conditioner which suppresses energy consumption is proposed.

特許文献1は、電力会社からの電力制御信号を受信することなく、GPSの位置情報からあらかじめ定められた地域別の運転制限条件を適用することで、電力抑制を行う空気調和機について開示している。特許文献2は、設定温度を変えることで運転能力を低下させるとともに、抑制手段により最大使用時の電流値を制限する空気調和機について開示している。特許文献3は、設定温度を変えることで運転能力を低下させるとともに、温冷感の指標に基づいて風量を変えることで快適性を維持する空気調和機について開示している。   Patent Literature 1 discloses an air conditioner that performs power suppression by applying a region-specific operation restriction condition determined in advance from GPS position information without receiving a power control signal from an electric power company. Yes. Patent Document 2 discloses an air conditioner that reduces the driving ability by changing the set temperature and restricts the current value during maximum use by the suppression means. Patent Document 3 discloses an air conditioner that reduces the driving ability by changing the set temperature and maintains the comfort by changing the air volume based on the index of thermal sensation.

特開2008−304087号公報JP 2008-304087 A 特許第4056146号公報Japanese Patent No. 4056146 特開2009−270764号公報JP 2009-270764 A

しかしながら、特許文献1は最大使用時の消費電力を抑制するものの、必ずしもエネルギー消費電力の抑制になるとは限らない。また、特許文献2や特許文献3は、運転開始時などの最大使用時から室温が設定温度に近づいた状態である安定運転時へ運転が切り替わる際などに、吹出空気温度が大きく変化し、快適感が損なわれる場合がある。   However, although patent document 1 suppresses the power consumption at the time of maximum use, it does not necessarily become suppression of energy power consumption. In Patent Document 2 and Patent Document 3, when the operation is switched from the maximum use at the start of operation or the like to the stable operation in which the room temperature is close to the set temperature, the temperature of the blown air changes greatly, and the comfort is increased. A feeling may be spoiled.

本発明の目的は、最大使用時の電流値の制限および節電を図りつつ、快適性を維持する空気調和機を提供することにある。   The objective of this invention is providing the air conditioner which maintains comfort, limiting the electric current value at the time of maximum use, and saving power.

上記の目的を達成するために本発明は、室内へ空調した空気を吹出す送風機と、圧縮機と、吹出空気温度を算出する吹出温度算出部と、予め設定された時刻に省エネモードによる運転を行うタイマ設定部と、を備え、空気調和機の運転は、室内の温度を設定温度に近づける高負荷運転と、室内の温度を設定温度に維持する低負荷運転とから構成され、冷房運転時および暖房運転時にそれぞれ省エネモードを選択可能であり、タイマ設定部で省エネモードを行う時刻を予め設定された場合、省エネモードより所定の時間前から省エネ移行モードによる運転を行い、省エネモードは、冷房運転時に省エネモードを選択すると、設定温度を上げる変更を行い、暖房運転時に省エネモードを選択すると、設定温度を下げる変更を行い、高負荷運転時に圧縮機の能力の最大値を所定の値に制限し、高負荷運転時から低負荷運転に切り替わる際、前記送風機の回転数を下げ、省エネ移行モードは、冷房運転時に省エネモードを選択すると、省エネモードにおける設定温度よりも低い温度に設定温度を上げる変更を行い、暖房運転時に省エネモードを選択すると、省エネモードにおける設定温度よりも高い温度に設定温度を下げる変更を行う。   In order to achieve the above object, the present invention provides a blower that blows out air conditioned into a room, a compressor, a blowout temperature calculation unit that calculates a blown air temperature, and an operation in an energy saving mode at a preset time. A timer setting unit that performs the operation of the air conditioner, and includes a high-load operation that brings the room temperature close to the set temperature and a low-load operation that maintains the room temperature at the set temperature. Energy saving mode can be selected for each heating operation, and when the time for energy saving mode is set in advance in the timer setting section, operation in energy saving transition mode is performed from a predetermined time before energy saving mode. If the energy saving mode is selected at the time, the setting temperature will be raised. If the energy saving mode is selected during the heating operation, the setting temperature will be lowered. When the maximum capacity of the compressor is limited to a predetermined value and when switching from high-load operation to low-load operation, the rotation speed of the blower is reduced, and the energy-saving transition mode is selected when the energy-saving mode is selected during cooling operation. If the setting temperature is changed to a temperature lower than the setting temperature in the mode and the energy saving mode is selected during the heating operation, the setting temperature is changed to a temperature higher than the setting temperature in the energy saving mode.

本発明によれば、最大使用時の電流値の制限および節電を図りつつ、快適性を維持する空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which maintains comfort can be provided, limiting the electric current value at the time of maximum use, and saving power.

空気調和機の構成図。The block diagram of an air conditioner. 空気調和機室内機の断面図。Sectional drawing of an air conditioner indoor unit. 室内機の正面図。The front view of an indoor unit. 室内機の制御部ブロック図。The control part block diagram of an indoor unit. 従来の空気調和機における冷房運転時の消費電力の時間変化。Time change of power consumption during cooling operation in a conventional air conditioner. あらかじめ定められた2つの異なる削減率の制限モードの設定テーブル。A setting table of restriction modes for two different reduction rates determined in advance. 空気調和機における冷房運転時の消費電力の時間変化。Time change of power consumption during cooling operation in air conditioner. 空気調和機における冷房運転時の室内温度の時間変化。Changes in room temperature over time during cooling operation in an air conditioner. 空気調和機における冷房運転時の吹出空気温度の時間変化。The time change of the blown air temperature during the cooling operation in the air conditioner. 空気調和機における冷房運転時の圧縮機の回転数の時間変化。The time change of the rotation speed of the compressor at the time of cooling operation in an air conditioner. 空気調和機における冷房運転時の吹出空気温度の時間変化。The time change of the blown air temperature during the cooling operation in the air conditioner. 空気調和機における冷房運転時の室内送風機の回転数の時間変化。The time change of the rotation speed of the indoor air blower at the time of cooling operation in an air conditioner. 活動内容と活動量の関係を示す図。The figure which shows the relationship between activity content and activity amount. 温度シフト値の例。Example of temperature shift value. 風量シフト値の例。An example of airflow shift value. 時刻・タイマ設定部63に記憶される設定テーブル。A setting table stored in the time / timer setting unit 63.

以下、本発明に係る空気調和機について、壁掛型の空気調和機を例にして説明する。まず、空気調和機の全体構成について図1〜図3を用いて説明する。図1は空気調和機の構成図である。図2は空気調和機室内機の断面図である。図3は室内機の正面図である。   Hereinafter, an air conditioner according to the present invention will be described by taking a wall-mounted air conditioner as an example. First, the whole structure of an air conditioner is demonstrated using FIGS. 1-3. FIG. 1 is a configuration diagram of an air conditioner. FIG. 2 is a cross-sectional view of the air conditioner indoor unit. FIG. 3 is a front view of the indoor unit.

図1に示す空気調和機1は、室内機2と室外機3とを接続配管4で接続して構成される。室内機2は、別体のリモートコントローラ(以下「リモコン」という。)5からの赤外線の操作信号を受信する室内送受信部16を備える。   The air conditioner 1 shown in FIG. 1 is configured by connecting an indoor unit 2 and an outdoor unit 3 with a connection pipe 4. The indoor unit 2 includes an indoor transmission / reception unit 16 that receives an infrared operation signal from a separate remote controller (hereinafter referred to as “remote controller”) 5.

図2に示すように、室内機2は、筐体ベース6の中央部に熱交換器7を備える。熱交換器7の下流には熱交換器7の幅と略等しい長さの軸流ファン方式の室内送風機8を配置する。また、熱交換器7の下方には露受皿9を配置する。熱交換器7及び室内送風機8等は、化粧枠10で覆われるとともに、化粧枠10の前面にはフロントパネル11が取り付けられる。   As shown in FIG. 2, the indoor unit 2 includes a heat exchanger 7 at the center of the housing base 6. An axial fan type indoor blower 8 having a length substantially equal to the width of the heat exchanger 7 is disposed downstream of the heat exchanger 7. A dew tray 9 is disposed below the heat exchanger 7. The heat exchanger 7 and the indoor blower 8 are covered with a decorative frame 10, and a front panel 11 is attached to the front surface of the decorative frame 10.

室内機2の上面には、室内空気を吸込む空気吸込口12を備える。室内機2の下面には、温度が調整された空気を吹出す空気吹出口13を備える。室内送風機8により、空気吸込口12から吸込まれた室内空気は、熱交換器7及び室内送風機8を通って室内送風機8の長さに略等しい幅の吹出風路8aに流れ込む。その後、吹出風路8aの空気は、吹出風路8aに位置する左右風向板14により左右方向が偏向され、空気吹出口13に位置する上下風向板15により上下方向が偏向されて、空気吹出口13から室内に吹出される。図3に示すように上下風向板15の奥には、焦電型赤外線センサ17、サーモパイルを使用した輻射センサ18、及びマイクロフォン等を使用した音センサ19を搭載する。   The upper surface of the indoor unit 2 is provided with an air inlet 12 for sucking room air. The lower surface of the indoor unit 2 includes an air outlet 13 that blows out air whose temperature is adjusted. The indoor air sucked from the air suction port 12 by the indoor blower 8 flows through the heat exchanger 7 and the indoor blower 8 into the blowout air passage 8 a having a width substantially equal to the length of the indoor blower 8. Thereafter, the air in the blowout air passage 8a is deflected in the left-right direction by the left and right airflow direction plates 14 located in the blowout airway 8a, and the vertical direction is deflected by the up-and-down airflow direction plate 15 located in the air blowout port 13. 13 is blown into the room. As shown in FIG. 3, a pyroelectric infrared sensor 17, a radiation sensor 18 using a thermopile, and a sound sensor 19 using a microphone or the like are mounted behind the up-and-down wind direction plate 15.

次に、本発明の空気調和機の制御の概要について、図4を用いて説明する。図4は室内機の制御部ブロック図である。図4において、空気調和機1は内部に制御部20を備え、各種センサからの情報やリモコン5からの指示に応じて、室内機2及び室外機3を制御する。室内900、室外901からの情報は、室温センサ25、湿度センサ26、輻射センサ18、リモコン周囲温度センサ27、リモコン位置センサ28、焦電型赤外線センサ17、音センサ19、全電流センサ60、外温センサ61等により制御部20内部のマイコン(図示せず)に取込まれる。これらのマイコンに取込まれた情報に基づいて、空気調和機1が制御される。焦電型赤外線センサ17及び音センサ19の情報から、活動量判定部35は、在室者の活動量を多段階に区分して、温度シフト値設定部36a、風量シフト値設定部36bに伝える。温度シフト値設定部36aは、活動量判定部35からの活動量情報の他、上述の各種センサや制御部20内部に備えられたカレンダー情報29からの情報に基づいて温度シフト値を演算し、目標室温設定部37に伝える。目標室温設定部37は、温度シフト値設定部36からの温度シフト値情報と室温設定部38からの設定室温情報に基づいて目標室温を演算し、空調能力制御部45に伝える。風量シフト値設定部36bは、活動量判定部35からの活動量情報の他、上述の各種センサや制御部20内部に備えられたカレンダー情報29からの情報に基づいて風量シフト値を演算し、直接空調能力制御部45に伝える。全電流センサ60及び外温センサ61の情報から、電力シフト設定部62は、あらかじめ定められている圧縮機の上限回転数および電流値の上限電流を制限モードに応じて一定割合で上限値を下げて設定し、室外負荷に応じて電力制限運転時における室外回転数シフト値を演算し、直接空調能力制御部45に伝える。空調能力制御部45は、目標室温設定部37からの目標室温や室温センサ25からの吸込空気温度情報、風量シフト設定部や電力シフト設定部等から、圧縮機回転数設定部46、室内送風機回転数設定部47、室外送風機回転数設定部48で圧縮機回転数、室内送風機回転数、室外送風機回転数を設定し、圧縮機、室内送風機8、室外送風機56を制御する。   Next, the outline of the control of the air conditioner of the present invention will be described with reference to FIG. FIG. 4 is a block diagram of the control unit of the indoor unit. In FIG. 4, the air conditioner 1 includes a control unit 20 inside, and controls the indoor unit 2 and the outdoor unit 3 in accordance with information from various sensors and instructions from the remote controller 5. Information from the room 900 and the outdoor 901 includes room temperature sensor 25, humidity sensor 26, radiation sensor 18, remote control ambient temperature sensor 27, remote control position sensor 28, pyroelectric infrared sensor 17, sound sensor 19, total current sensor 60, outside The temperature sensor 61 and the like are taken into a microcomputer (not shown) inside the control unit 20. The air conditioner 1 is controlled based on the information captured by these microcomputers. From the information of the pyroelectric infrared sensor 17 and the sound sensor 19, the activity amount determination unit 35 divides the activity amount of the occupant into multiple stages and transmits the activity amount to the temperature shift value setting unit 36a and the air volume shift value setting unit 36b. . The temperature shift value setting unit 36a calculates a temperature shift value based on information from the above-described various sensors and calendar information 29 provided in the control unit 20 in addition to the activity amount information from the activity amount determination unit 35, Tell the target room temperature setting unit 37. The target room temperature setting unit 37 calculates the target room temperature based on the temperature shift value information from the temperature shift value setting unit 36 and the set room temperature information from the room temperature setting unit 38 and transmits the target room temperature to the air conditioning capability control unit 45. The air volume shift value setting unit 36b calculates the air volume shift value based on the information from the calendar information 29 provided in the various sensors and the control unit 20 in addition to the activity amount information from the activity amount determination unit 35, Directly communicate to the air conditioning capability control unit 45. From the information of the total current sensor 60 and the external temperature sensor 61, the power shift setting unit 62 reduces the upper limit value of the upper limit rotation speed of the compressor and the upper limit current of the current value at a constant rate according to the limit mode. The outdoor rotational speed shift value during the power limited operation is calculated according to the outdoor load, and is directly transmitted to the air conditioning capability control unit 45. The air conditioning capacity control unit 45 receives the target room temperature from the target room temperature setting unit 37, the intake air temperature information from the room temperature sensor 25, the air volume shift setting unit, the power shift setting unit, etc., and the compressor rotation speed setting unit 46, the indoor fan rotation. The number setting unit 47 and the outdoor fan rotation number setting unit 48 set the compressor rotation number, the indoor fan rotation number, and the outdoor fan rotation number, and control the compressor, the indoor fan 8, and the outdoor fan 56.

まず、運転開始時などの空調負荷が大きい領域で電力制限を行うピークシフト運転について具体例を挙げ説明する。図5に横軸を経過時間、縦軸を消費電力とした、従来の空気調和機における冷房運転時の消費電力の時間変化の一例を示す。グラフより運転開始時から一定期間の空調負荷が大きい領域では、目標とする室温と実際の室温の差が大きいため、消費電力が大きい。この運転開始時から一定期間での消費電力を削減することで電力使用ピーク時の消費電力を大きく削減できる。   First, a specific example will be described for peak shift operation in which power is limited in a region where the air conditioning load is large, such as at the start of operation. FIG. 5 shows an example of temporal change in power consumption during cooling operation in a conventional air conditioner with the elapsed time on the horizontal axis and the power consumption on the vertical axis. From the graph, in the region where the air conditioning load for a certain period from the start of operation is large, the difference between the target room temperature and the actual room temperature is large, so the power consumption is large. By reducing the power consumption in a certain period from the start of the operation, the power consumption at the peak power usage can be greatly reduced.

本実施例では、全電流センサ60により検出される電流値と、圧縮機の回転数の上限を制限することで消費電力を削減する。図6はあらかじめ定められた2つの異なる削減率の制限モードの設定テーブルを示す。これらの制限モードはリモコンの特定のボタンに割り当てられ、ユーザは好みのモードを選択することができる。   In the present embodiment, power consumption is reduced by limiting the current value detected by the total current sensor 60 and the upper limit of the rotation speed of the compressor. FIG. 6 shows a setting table for two different reduction rate limit modes determined in advance. These restricted modes are assigned to specific buttons on the remote control, and the user can select a preferred mode.

ここで制限モードにおける具体的な制御について説明する。例えば図6に示すように最大電力削減率15%の制限Aモードでは、圧縮機の上限回転数を通常の回転数の85%にする。加えて、全電流センサ60により検出される電流値の上限電流を通常の電流上限の85%にする。ここで、圧縮機の上限回転数および電流値の上限電流はあらかじめ内外風量や外気温度などにより変化する空気調和機の負荷に応じて設定されている。制限された圧縮機の上限回転数で圧縮機が動作している場合に、電流値が上限電流を超えてしまう場合には、優先して電流値が制限され上限電流値になるように圧縮機の回転数が制御される。このように、空気調和機の負荷に応じて設定されている圧縮機あるいは全電流値の上限を一定割合で制限することで少なくとも運転開始時などの空調負荷の高い領域で消費電力の多い際に確実に消費電力を削減できる。   Here, specific control in the restriction mode will be described. For example, as shown in FIG. 6, in the limited A mode with a maximum power reduction rate of 15%, the upper limit rotational speed of the compressor is set to 85% of the normal rotational speed. In addition, the upper limit current of the current value detected by the total current sensor 60 is set to 85% of the normal current upper limit. Here, the upper limit rotation speed of the compressor and the upper limit current of the current value are set in advance according to the load of the air conditioner that changes depending on the inside / outside air volume, the outside air temperature, and the like. If the current value exceeds the upper limit current when the compressor is operating at the upper limit speed of the limited compressor, the compressor is set so that the current value is preferentially limited to the upper limit current value. The number of rotations is controlled. In this way, by limiting the upper limit of the compressor or the total current value set according to the load of the air conditioner at a certain rate, at least when the power consumption is high in a high air conditioning load area such as at the start of operation Power consumption can be reliably reduced.

次に、図7に通常の冷房運転100、冷房運転時に設定温度を上昇させた省エネ冷房運転101、冷房運転時に設定温度を上昇させ、且つ、最大消費電力を制限した省エネピークカット冷房運転102の経過時間に対する消費電力の変化を示す。図8に通常の冷房運転100、省エネ冷房運転101、省エネピークカット冷房運転102の経過時間に対する室内温度の変化を示す。図9に通常の冷房運転100、省エネ冷房運転101、省エネピークカット冷房運転102の経過時間に対する吹出空気温度の変化を示す。図10に通常の冷房運転100、省エネ冷房運転101、省エネピークカット冷房運転102の経過時間に対する圧縮機の回転数の変化を示す。   Next, FIG. 7 shows a normal cooling operation 100, an energy saving cooling operation 101 in which the set temperature is increased during the cooling operation, an energy saving peak cut cooling operation 102 in which the set temperature is increased during the cooling operation and the maximum power consumption is limited. The change of power consumption with respect to elapsed time is shown. FIG. 8 shows changes in the room temperature with respect to the elapsed time of the normal cooling operation 100, the energy saving cooling operation 101, and the energy saving peak cut cooling operation 102. FIG. 9 shows changes in the blown air temperature with respect to the elapsed time of the normal cooling operation 100, the energy saving cooling operation 101, and the energy saving peak cut cooling operation 102. FIG. 10 shows changes in the rotational speed of the compressor with respect to the elapsed time of the normal cooling operation 100, the energy saving cooling operation 101, and the energy saving peak cut cooling operation 102.

通常の冷房運転100、及び、省エネ冷房運転101は、最大消費電力を制限していないため、運転開始直後に最大消費電力で運転している。最大消費電力で運転する分、図9に示すように室内吹出口13から吹出す空気の温度は低くなる。そして、省エネ冷房運転101は、通常の冷房運転100に比べて、早く設定温度104付近に到達する。そのため、省エネ冷房運転101は最大消費電力で運転する時間が、通常の冷房運転100に比べて短い。そして、通常の冷房運転100、及び、省エネ冷房運転101は、ともに設定温度に到達した後は安定運転へとシフトしていく。   Since the normal cooling operation 100 and the energy-saving cooling operation 101 do not limit the maximum power consumption, the operation is performed with the maximum power consumption immediately after the start of the operation. As shown in FIG. 9, the temperature of the air blown out from the indoor outlet 13 is lowered by the amount of operation with the maximum power consumption. Then, the energy-saving cooling operation 101 reaches the set temperature 104 near earlier than the normal cooling operation 100. Therefore, the energy-saving cooling operation 101 has a shorter operating time with the maximum power consumption than the normal cooling operation 100. The normal cooling operation 100 and the energy-saving cooling operation 101 both shift to a stable operation after reaching the set temperature.

ここで、省エネ冷房運転101の安定運転時の消費電力は、通常の冷房運転100の安定運転時の消費電力よりも低い値となっており、室内吹出口13から吹出す空気の温度も高い値となる。省エネ冷房運転101のほうが設定温度を維持するのに必要な電力が少ないからである。そのため、省エネ冷房運転101は、通常の冷房運転100に比べて、最大消費電力での運転時の吹出空気温度と安定運転時の吹出空気温度との温度差が大きく、快適性が損なわれる運転となる可能性がある。   Here, the power consumption during the stable operation of the energy-saving cooling operation 101 is lower than the power consumption during the stable operation of the normal cooling operation 100, and the temperature of the air blown from the indoor outlet 13 is also a high value. It becomes. This is because the energy-saving cooling operation 101 requires less power to maintain the set temperature. Therefore, in the energy-saving cooling operation 101, compared with the normal cooling operation 100, the temperature difference between the blown air temperature during the operation with the maximum power consumption and the blown air temperature during the stable operation is large, and the comfort is impaired. There is a possibility.

一方、省エネピークカット冷房運転102は、最大消費電力を制限しているため、通常の冷房運転100及び省エネ冷房運転101に比べて、運転開始直後における消費電力が抑えられている。最大消費電力が抑えられている分、室内吹出口13から吹出す空気の温度は低温になりづらい。その分、省エネピークカット冷房運転102は、省エネ冷房運転101に比べて、消費電力が高い値で運転する時間が長くなる。   On the other hand, since the energy saving peak cut cooling operation 102 limits the maximum power consumption, the power consumption immediately after the start of operation is suppressed compared to the normal cooling operation 100 and the energy saving cooling operation 101. Since the maximum power consumption is suppressed, the temperature of the air blown out from the indoor air outlet 13 is unlikely to be low. Accordingly, the energy-saving peak cut cooling operation 102 takes longer time to operate at a higher power consumption value than the energy-saving cooling operation 101.

ここで、省エネ冷房運転101及び省エネピークカット冷房運転102の設定温度が同じ場合、省エネピークカット冷房運転102の安定運転時の消費電力は、省エネ冷房運転101の安定運転時の消費電力と近い値となる。つまり、省エネピークカット冷房運転102は、省エネ冷房運転101に比べて、最大消費電力での運転時の吹出空気温度と安定運転時の吹出空気温度との温度差が小さく、省エネ運転による吹出空気温度の変化の拡大を抑えることができるため、快適性を維持することができる。   Here, when the set temperatures of the energy saving cooling operation 101 and the energy saving peak cut cooling operation 102 are the same, the power consumption during the stable operation of the energy saving peak cut cooling operation 102 is a value close to the power consumption during the stable operation of the energy saving cooling operation 101. It becomes. That is, the energy-saving peak cut cooling operation 102 has a smaller temperature difference between the blown air temperature during operation at maximum power consumption and the blown air temperature during stable operation than the energy-saving cooling operation 101, and the blown air temperature due to energy-saving operation. Therefore, the comfort can be maintained.

ここでは、室内吹出口13から吹出す空気の風量が一定について説明したが、吹出空気の風量を制御することで、さらに吹出空気の温度の変化を抑制し、ユーザの不快感を低減することができる。図11に省エネピークカット冷房運転102、及び、高負荷運転時の室内送風機8の回転数が低負荷運転時の室内送風機8の回転数より高めた省エネピークカット冷房運転103の経過時間に対する吹出空気温度の変化を示す。図12に省エネピークカット冷房運転102、及び、高負荷運転時の室内送風機8の回転数が低負荷運転時の室内送風機8の回転数より高めた省エネピークカット冷房運転103の経過時間に対する室内送風機の回転数の変化を示す。運転開始初期の高負荷運転時に、図12に示すように室内送風機8の回転数が低負荷運転時の室内送風機8の回転数より高めたことにより、より多くの室内の空気が空気調和機の熱交換器7を通過するため、単位体積当たりの室内の空気の冷却量は減少する。つまり、図11に示すとおり、高負荷運転時における吹出空気温度の低下を弱めることができ、高負荷時における吹出空気温度と低負荷時における吹出空気温度との温度差をより狭めることができる。   Here, although the description has been made with respect to the constant air volume of the air blown from the indoor air outlet 13, by controlling the air volume of the blown air, it is possible to further suppress changes in the temperature of the blown air and reduce the user's discomfort. it can. In FIG. 11, the blown air with respect to the elapsed time of the energy saving peak cut cooling operation 102 and the energy saving peak cut cooling operation 103 in which the rotation speed of the indoor blower 8 during high load operation is higher than the rotation speed of the indoor blower 8 during low load operation. Shows temperature change. FIG. 12 shows an indoor blower with respect to the elapsed time of energy saving peak cut cooling operation 102 and energy saving peak cut cooling operation 103 in which the rotational speed of indoor blower 8 during high load operation is higher than the rotational speed of indoor blower 8 during low load operation. Changes in the number of rotations are shown. At the time of high load operation at the beginning of operation, as shown in FIG. 12, the number of rotations of the indoor fan 8 is higher than the number of rotations of the indoor fan 8 at the time of low load operation. Since it passes through the heat exchanger 7, the cooling amount of the indoor air per unit volume is reduced. That is, as shown in FIG. 11, it is possible to weaken the decrease in the blown air temperature during high load operation, and to narrow the temperature difference between the blown air temperature during high load and the blown air temperature during low load.

また、省エネピークカット運転の安定運転時、体感温度を維持するため、所定の風量シフト値を風量に加える。例えば冷房運転時の温度シフト値が+1℃のとき、風速を+1m/s程度増速することで、おおむね体感温度が同等となる。暖房についても温度シフト値が−1℃で、風速を−1m/s程度減速することで、おおむね体感温度が同等となる。   In addition, during the stable operation of the energy saving peak cut operation, a predetermined air volume shift value is added to the air volume in order to maintain the sensible temperature. For example, when the temperature shift value during cooling operation is + 1 ° C., increasing the wind speed by about +1 m / s generally results in the same sensible temperature. As for heating, the temperature shift value is −1 ° C. and the wind speed is reduced by about −1 m / s, so that the sensible temperature is almost equal.

このとき、最大消費電力での運転時は、安定運転時に比べ吹出空気温度が低いので、風量シフトを行わない。このことで、最大消費電力での運転時の吹出空気温度と安定運転時の吹出空気温度との温度差が小さく、省エネ運転による吹出空気温度の変化の拡大を抑えることができるため、快適性を維持することができる。   At this time, during the operation with the maximum power consumption, since the blown air temperature is lower than that during the stable operation, the air volume shift is not performed. As a result, the temperature difference between the blown air temperature during operation at maximum power consumption and the blown air temperature during stable operation is small, and the expansion of changes in the blown air temperature due to energy-saving operation can be suppressed. Can be maintained.

従って、室内へ空調した空気を吹出す室内送風機8と圧縮機を制御する空気調和機であって、省エネモードを含む複数の運転モードから所望の運転モードを選択する選択手段と、吹出空気温度を算出する吹出温度算出部と、を備え、省エネモードは、冷房運転時は設定温度を上げ、暖房運転時は設定温度を下げ、圧縮機の能力の最大値を所定の値に制限し、吹出温度算出部により算出される吹出空気温度が設定温度に近づくよう室内送風機8を制御する風量制御を行うことで、最大使用時の消費電力制限および節電を図りつつ、吹出空気温度の変化を抑制し、ユーザの不快感を低減することができる。   Therefore, the indoor air blower 8 that blows out the air conditioned into the room and the air conditioner that controls the compressor, a selection unit that selects a desired operation mode from a plurality of operation modes including the energy saving mode, and the blown air temperature. An energy-saving mode that increases the set temperature during cooling operation, decreases the set temperature during heating operation, limits the maximum capacity of the compressor to a predetermined value, and By controlling the air volume so that the blown air temperature calculated by the calculation unit approaches the set temperature, the change in the blown air temperature is suppressed while limiting power consumption and saving power during maximum use, User discomfort can be reduced.

なお、吹出空気温度は吹出温度算出部により室内送風機8の回転数等から算出される。また、吹出温度算出部は空気吹出口13付近の空気を直接計測してもよい。   The blown air temperature is calculated from the number of rotations of the indoor fan 8 by the blown temperature calculation unit. Further, the blowout temperature calculation unit may directly measure the air near the air outlet 13.

なお、風量制御は、冷房運転時は室内送風機8を制御することにより吹出空気温度を設定温度よりも所定の温度低い値になるようにし、暖房運転時は室内送風機8を制御することにより吹出空気温度を設定温度よりも所定の温度高い値になるようにしてもよい。   In the air volume control, the blower air temperature is controlled to be a predetermined temperature lower than the set temperature by controlling the indoor fan 8 during the cooling operation, and the blown air is controlled by controlling the indoor fan 8 during the heating operation. The temperature may be a predetermined temperature higher than the set temperature.

なお、省エネモードを選択した際に、設定温度を予め定めた所定の温度に変えるようにしてもよい。但し、冷房運転時に、省エネモードを選択する前の設定温度がすでに予め定めた所定の温度よりも高い場合は、設定温度を変えないようにしてもよい。一方、暖房運転時に、同様に省エネモードを選択する前の設定温度がすでに予め定めた所定の温度よりも低い場合は、設定温度を変えないようにしてもよい。   When the energy saving mode is selected, the set temperature may be changed to a predetermined temperature. However, during the cooling operation, if the set temperature before selecting the energy saving mode is higher than a predetermined temperature that has been determined in advance, the set temperature may not be changed. On the other hand, during the heating operation, when the set temperature before selecting the energy saving mode is lower than a predetermined temperature that has been determined in advance, the set temperature may not be changed.

また、吹出空気温度及び吹出風量により定まる体感温度を求める体感温度算出部を備え、省エネモードは、冷房運転時は設定温度を上げ、暖房運転時は設定温度を下げ、圧縮機の能力の最大値を所定の値に制限し、体感温度算出部により求めた体感温度が所定の値に近づくよう室内送風機8を制御する風量制御を行うことで、最大使用時の消費電力制限および節電を図りつつ、体感温度の変化を抑制し、ユーザの不快感を低減することができる。   It also has a sensible temperature calculation unit that calculates the sensible temperature determined by the blown air temperature and the blown air volume, and the energy saving mode increases the set temperature during cooling operation, decreases the set temperature during heating operation, and maximizes the compressor capacity. Is limited to a predetermined value, and air volume control is performed to control the indoor blower 8 so that the sensible temperature calculated by the sensible temperature calculation unit approaches the predetermined value, thereby limiting power consumption and power saving during maximum use, It is possible to suppress changes in the temperature of the sensation and reduce user discomfort.

また、本実施例の空気調和機は、電力制限値の設定値に応じて、冷房運転時の温度シフト値は正の値としその下限を定め、暖房運転時の温度シフト値は負の値としその上限を定める。このとき体感温度を維持するため、所定の風量シフト値を風量に加える。例えば冷房運転時の温度シフト値が+1℃のとき、風速を+1m/s程度増速することで、おおむね体感温度が同等となる。暖房についても温度シフト値が−1℃で、風速を−1m/s程度減速することで、おおむね体感温度が同等となる。   Further, in the air conditioner of this embodiment, the temperature shift value during the cooling operation is set to a positive value and the lower limit is determined according to the set value of the power limit value, and the temperature shift value during the heating operation is set to a negative value. Set the upper limit. At this time, in order to maintain the sensible temperature, a predetermined air volume shift value is added to the air volume. For example, when the temperature shift value during cooling operation is + 1 ° C., increasing the wind speed by about +1 m / s generally results in the same sensible temperature. As for heating, the temperature shift value is −1 ° C. and the wind speed is reduced by about −1 m / s, so that the sensible temperature is almost equal.

このように、冷房運転時の温度シフト値に下限を設けることにより、確実に省エネ運転となり、風量シフト値を正の値として風量に加えることで体感温度が下がり快適性が維持される。例えば図6で冷房運転時最大15%制限のとき温度シフト値の下限は+1℃となり、このとき図15に示すように風速が+1m/s増速するように室内風量が制御される。また、暖房運転時の温度シフト値に上限を設けることにより、確実に省エネ運転となり、風量シフト値を負の値として風量に加えることで体感温度が上昇し、快適性が維持される。例えば図14で暖房運転時最大15%制限のとき温度シフト値の下限は−1℃となり、このとき図15に示すように風速が−1m/s減速するように室内風量が制御される。   Thus, by providing a lower limit to the temperature shift value during cooling operation, energy saving operation is ensured, and by adding the air volume shift value as a positive value to the air volume, the sensible temperature is lowered and comfort is maintained. For example, in FIG. 6, when the maximum is 15% during cooling operation, the lower limit of the temperature shift value is + 1 ° C. At this time, the indoor air volume is controlled so that the wind speed increases by +1 m / s as shown in FIG. Further, by providing an upper limit to the temperature shift value during heating operation, energy saving operation is ensured, and by adding the air volume shift value to the air volume as a negative value, the sensible temperature rises and comfort is maintained. For example, in FIG. 14, when the maximum is 15% during heating operation, the lower limit of the temperature shift value is −1 ° C. At this time, the indoor air volume is controlled so that the wind speed is reduced by −1 m / s as shown in FIG.

従って、吹出空気温度を算出する吹出温度算出部と、吹出温度及び吹出風量により定まる体感温度を算出又は選択する体感温度算出部と、を備え、省エネモードが選択された時に、所定温度にシフトする際に体感温度を維持する吹出風量を吹出すことにより、ユーザの不快感を低減することができる。   Accordingly, the apparatus includes a blowing temperature calculation unit that calculates the blowing air temperature, and a sensation temperature calculation unit that calculates or selects a sensible temperature determined by the blowing temperature and the blowing air amount, and shifts to a predetermined temperature when the energy saving mode is selected. In this case, the user's discomfort can be reduced by blowing out the blowing air volume that maintains the sensible temperature.

さらに、空気調和機は室内の温度(及び湿度)および風量を制御することにより快適性を保持する。人の温熱感覚は温度、湿度、気流、輻射、着衣量及び活動量の影響を受ける。室内に居る人の行動が変わると、湿度、気流、輻射、着衣量等の条件が同じでも、その人の温熱感覚は変わる。従って、快適性を維持するためには、温度(及び湿度)・風量等をその人の行動に応じて変える必要がある。   Furthermore, the air conditioner maintains comfort by controlling the indoor temperature (and humidity) and the air volume. A person's thermal sensation is affected by temperature, humidity, airflow, radiation, clothing and activity. When the behavior of a person in the room changes, the thermal sensation of the person changes even if conditions such as humidity, airflow, radiation, and amount of clothes are the same. Therefore, in order to maintain comfort, it is necessary to change the temperature (and humidity), the air volume, etc. according to the action of the person.

空気調和機が備える人検知機能から在室者の活動量の情報を得ることができる。この在室者の活動量の情報に応じて室温を変更することにより、在室者の快適性を維持することができる。図13は活動内容と活動量の関係である。人の活動量を表す単位としてMETを用いており、活動内容とその活動内容に対応するMET値を示している。図13の右欄に、活動量の区分例を示す。METの大小により5つの区分に細分化している。また、図14は活動量の区分に応じた温度シフト値の例である。また、図15は消費電力の制限値に応じた風量シフト値の例である。   Information on the amount of activity of the occupants can be obtained from the human detection function of the air conditioner. The comfort of the occupants can be maintained by changing the room temperature in accordance with the information on the amount of activity of the occupants. FIG. 13 shows the relationship between the activity content and the activity amount. MET is used as a unit representing the amount of human activity, and shows the activity content and the MET value corresponding to the activity content. In the right column of FIG. It is subdivided into five categories according to the size of MET. Moreover, FIG. 14 is an example of the temperature shift value according to the category of activity amount. FIG. 15 is an example of the air volume shift value corresponding to the power consumption limit value.

本実施例では、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサの人検知機能、室内の床面温度及び壁面温度を検出する輻射温度センサ、リモコンの位置を検出する機能、カレンダー機能を用いて温度シフト値および風量シフト値を設定し、制御する例について述べる。   In this embodiment, the infrared sensor that detects the amount of movement of the occupants, the human detection function of the sound sensor that detects the sound in the room, the radiation temperature sensor that detects the floor surface temperature and the wall surface temperature, and the position of the remote controller An example of setting and controlling the temperature shift value and the airflow shift value using the detection function and the calendar function will be described.

人の活動量は、在室者の動き量を検出する赤外線センサと、室内の音を検出する音センサにより把握する。例えば、同じ時刻に得られた焦電型赤外線センサによる在室者の動きの活発さの検出区分と音センサにより捉えられた音源の周波数による判定の結果を組み合わせて、在室者の活動量を5つに細分化する。活動量に応じた温度シフト値は例えば図14に示すように、冷房運転であれば、活動量最大で+0.3℃、最小で+1.2℃であり、活動量が大きいほどシフト値を小さく設定する。   The amount of activity of a person is grasped by an infrared sensor that detects the amount of movement of the occupant and a sound sensor that detects sound in the room. For example, the activity level of the occupants can be calculated by combining the detection classification of the activity of the occupants by the pyroelectric infrared sensor obtained at the same time and the result of the determination by the frequency of the sound source captured by the sound sensor. Divided into five. For example, as shown in FIG. 14, the temperature shift value corresponding to the activity amount is + 0.3 ° C. at the maximum activity amount and + 1.2 ° C. at the minimum in the cooling operation, and the shift value decreases as the activity amount increases. Set.

また、自動的に空気調和機の吹出風向をリモコン位置に向けるように制御する場合に、ゾーンシフト値を温度シフト値に加える。空調された快適な風を受けているときには、冷房運転時は吸込空気温度を上げ、暖房運転時は吸込空気温度を下げて、省エネ運転する。例えば図14の冷房運転で、シフト値を+0.6とする。   In addition, when the air conditioner blow direction is automatically controlled to the remote control position, the zone shift value is added to the temperature shift value. When receiving a comfortable air-conditioned wind, the intake air temperature is raised during cooling operation, and the intake air temperature is lowered during heating operation to perform energy saving operation. For example, in the cooling operation of FIG. 14, the shift value is set to +0.6.

また、室内の壁、床等が日光で暖められ、又、他の暖冷房機等により温度が室温と乖離すると、在室者の温熱感覚が変わってしまう。そこで輻射センサを用いて、室内の床面温度及び壁面温度を検出し、温熱感覚に影響する輻射温度を空気調和機の制御に取入れることにより、輻射温度−室内温度の違いに応じて輻射シフト値を変えることで、よりきめ細かな制御により省エネ運転をはかることができる。例えば、「輻射温度−(マイナス)室内温度」が小さいほど大きな輻射シフト値とし、輻射シフト値を温度シフト値に加える。あるいは、輻射温度−室内温度の値により「温度差正(図14冷房運転ではシフト値0)」、「温度差小(図14冷房運転ではシフト+0.3)」、「温度差負(図14冷房運転ではシフト値+0.6)」に分け、輻射温度−室内温度が大きいほど小さい値を輻射シフト値とし、この輻射シフト値を温度シフト値に加える。これにより、暖房時は輻射温度が高いほど吸込空気温度が設定温度より低めに調整され、冷房時は輻射温度が低いほど吸込空気温度が設定温度より高めに調整される。   Also, if the indoor walls, floors, etc. are warmed by sunlight, and the temperature deviates from room temperature by other heating / cooling units, the thermal sensation of the occupants changes. Therefore, by using the radiation sensor, the floor temperature and wall surface temperature of the room are detected, and the radiation temperature that affects the thermal sensation is incorporated into the control of the air conditioner, so that the radiation shift according to the difference between the radiation temperature and the room temperature. By changing the value, energy-saving operation can be achieved with finer control. For example, the smaller the “radiation temperature− (minus) room temperature”, the larger the radiation shift value, and the radiation shift value is added to the temperature shift value. Alternatively, “temperature difference positive (shift value 0 in cooling operation in FIG. 14)”, “small temperature difference (shift +0.3 in cooling operation in FIG. 14)”, “temperature difference negative (FIG. 14) depending on the value of radiation temperature−room temperature. In the cooling operation, the value is divided into a shift value +0.6), and the smaller the radiation temperature minus the room temperature, the smaller the value is taken as the radiation shift value, and this radiation shift value is added to the temperature shift value. Thereby, the suction air temperature is adjusted to be lower than the set temperature as the radiation temperature is higher during heating, and the suction air temperature is adjusted to be higher than the set temperature as the radiation temperature is lower during cooling.

空気調和機本体と双方向に通信可能なリモコンと、被空調空間内の在室者の活動量を判定するための複数のセンサおよび活動量判定部と、を備え、活動量判定部で判定された在室者の活動判定量に応じて活動シフト値を定め、リモコンの位置に応じて位置シフト値を定め、活動シフト値及び位置シフト値より、設定温度の補正値を算出し、全電流の制限値に応じて設定風量の補正値を算出し、風量設定値及び吸込空気温度の目標温度を補正後の設定値として制御することにより、温度(及び湿度)・風量等をその人の行動に応じて変え、より快適性を高めることができる。   A remote control capable of bidirectional communication with the air conditioner main body, and a plurality of sensors and an activity amount determination unit for determining the amount of activity of the occupants in the air-conditioned space, are determined by the activity amount determination unit. The activity shift value is determined according to the activity determination amount of the occupant, the position shift value is determined according to the position of the remote control, the set temperature correction value is calculated from the activity shift value and the position shift value, and the total current By calculating the correction value of the set air volume according to the limit value and controlling the target air temperature setting value and the target temperature of the intake air temperature as the corrected set value, the temperature (and humidity), the air volume, etc. It can be changed according to the comfort level.

また、冷房モードでの運転の際に温度シフトに下限値を設け、活動量より算出される温度シフトが下限値を下回る場合は定められている下限値とするとともに、温度シフト下限値に応じて室内送風機の回転数を大きく制御する。一方、暖房モードでの運転の際に温度シフトに下限値を設け、活動量より算出される温度シフトが下限値を下回る場合は定められている下限値とするとともに、温度シフト下限値に応じて室内送風機の回転数を小さく制御する。   In addition, when operating in the cooling mode, a lower limit is set for the temperature shift, and when the temperature shift calculated from the amount of activity falls below the lower limit, the lower limit is set, and depending on the lower limit of the temperature shift The number of rotations of the indoor fan is greatly controlled. On the other hand, when operating in the heating mode, a lower limit value is set for the temperature shift, and when the temperature shift calculated from the activity amount falls below the lower limit value, the lower limit value is set, and the temperature shift lower limit value is set. The rotational speed of the indoor blower is controlled to be small.

一方、人の温熱感覚には、気流も大きな影響を及ぼす。同じ温度でも、気流が強い場合は弱い場合よりも温熱感覚が増大され、気流を涼しく感じるときはより涼しく感じ、気流を暖かく感じるときにはより暖かく感じる。本実施例の空気調和機は、空気調和機本体と双方向に通信可能なリモコンに、位置を検出する機能をもたせ、空気調和機とリモコンとの距離を認識することができる。この機能を利用して、使用者の居るリモコン近くの気流の状態を推定する。リモコンの位置が空気調和機から遠い場合は、空気調和機からの気流は弱く、リモコンの近くに居る使用者も空気調和機からは弱い気流を感じる。反対に、リモコンの位置が空気調和機から近い場合は、空気調和機からの気流は強く、リモコンの近くに居る使用者も空気調和機からは強い気流を感じ、空気調和機からの冷温風を強く感じる。例えば、図14の冷房運転で、リモコン「近」ならば+0.3℃、「中」ならば+0.2℃、「遠」ならば0℃とする。つまり、冷房の場合は室温を若干上げても快適性は許容範囲内に留まり、また、暖房の場合は室温を若干下げても快適性の許容範囲内に留まるので、冷房、暖房ともに、空気調和機は省エネ運転になる。   On the other hand, airflow has a great influence on human thermal sensation. Even at the same temperature, when the airflow is strong, the thermal sensation is increased than when it is weak, and when the airflow is felt cool, it feels cooler, and when it feels warmer, it feels warmer. The air conditioner of the present embodiment can recognize the distance between the air conditioner and the remote control by providing a remote control capable of bidirectional communication with the air conditioner body and a function of detecting the position. Using this function, the state of airflow near the remote control where the user is located is estimated. When the position of the remote control is far from the air conditioner, the airflow from the air conditioner is weak, and a user near the remote control feels a weak airflow from the air conditioner. On the other hand, when the remote control is close to the air conditioner, the airflow from the air conditioner is strong, and the user near the remote control feels a strong airflow from the air conditioner. I feel strongly. For example, in the cooling operation of FIG. 14, if the remote control is “near”, + 0.3 ° C., “medium” is + 0.2 ° C., and “far” is 0 ° C. In other words, in the case of cooling, comfort remains within the allowable range even if the room temperature is slightly increased, and in the case of heating, comfort remains within the allowable range of comfort even if the room temperature is slightly decreased. The machine will be energy saving.

また、本実施例の空気調和機は、リモコン周囲温度から設定温度を減じた値に応じたリモコン温度シフト値を温度シフト値に加える。暖房運転時はリモコン周囲温度が高いほど吸込空気温度が設定温度より低めに調整され、冷房運転時はリモコン周囲温度が低いほど吸込空気温度が設定温度より高めに調整される。例えば図14の冷房運転で、「リモコン周囲温度−(マイナス)設定温度」が3℃以上なら補正シフト値0、−3〜3℃で+0.6℃、−3℃未満で+0.6℃となる。   Moreover, the air conditioner of a present Example adds the remote control temperature shift value according to the value which subtracted setting temperature from remote control ambient temperature to a temperature shift value. During the heating operation, the suction air temperature is adjusted to be lower than the set temperature as the remote control ambient temperature is higher, and during the cooling operation, the suction air temperature is adjusted to be higher than the set temperature as the remote control ambient temperature is lower. For example, in the cooling operation of FIG. 14, if the “remote control ambient temperature− (minus) set temperature” is 3 ° C. or higher, the correction shift value is 0, + 3 ° C. to + 0.6 ° C., less than −3 ° C. to + 0.6 ° C. Become.

冷房モード、暖房モードでの運転の際に設定温度をあらかじめ定められた基準設定温度に設定するとともに、活動量判定部で判定された在室者の活動判定量に応じた活動シフト値及び位置シフト値により、リモコンの位置が空気調和機から遠いほど、且つ、在室者の前記活動判定量が大きいほど、室内送風機の回転数を大きくして、リモコンに向けて風向を制御する。一方、暖房モードでの運転の際に活動シフト値及び位置シフト値により、リモコンの位置が空気調和機から近いほど、且つ、在室者の活動判定量が大きいほど、室内送風機の回転数を小さく制御する。従って、リモコンの近くにいる在室者の快適性に配慮しつつ、きめ細かく空気調和機を制御することで省エネ運転することができる。   The set temperature is set to a predetermined reference set temperature during operation in the cooling mode and the heating mode, and the activity shift value and the position shift according to the activity determination amount of the occupant determined by the activity amount determination unit Depending on the value, as the position of the remote control is farther from the air conditioner and the activity determination amount of the occupant is larger, the rotational speed of the indoor blower is increased and the air direction is controlled toward the remote control. On the other hand, as the remote control position is closer to the air conditioner and the occupant's activity determination amount is larger due to the activity shift value and the position shift value during operation in the heating mode, the rotational speed of the indoor fan is decreased. Control. Therefore, it is possible to perform an energy saving operation by controlling the air conditioner finely while considering the comfort of the occupants near the remote control.

また、本実施例の空気調和機は、冷房モードでの運転の際に前記活動シフト値及び前記位置シフト値により在室者の前記活動判定量があらかじめ定められた下限値より小さい場合に、冷房運転を停止し、送風運転に運転モードを切換えることができる。これにより、電力の最大使用時に消費電力制限を行いつつ、在室者の動きの量を組み合わせて在室者の活動量を精度よく判定し、適正に空気調和機を制御できる。   In addition, the air conditioner of the present embodiment, when operating in the cooling mode, when the activity determination amount of the occupant is smaller than a predetermined lower limit value due to the activity shift value and the position shift value, The operation can be stopped and the operation mode can be switched to the air blowing operation. Thereby, while restricting power consumption at the time of maximum use of electric power, it is possible to accurately determine the amount of activity of the occupants by combining the amount of movement of the occupants and to control the air conditioner appropriately.

また、本実施例の空気調和機は、外気負荷が小さい場合に室外ファン回転数を定められた回転数増速するように制御することができる。これにより、電力の最大使用時に消費電力制限を行いつつ、在室者の動きの量を組み合わせて在室者の活動量を精度よく判定し、適正に空気調和機を制御できる。従って、快適性を考慮しつつ、消費電力制限および節電運転をすることができる。   Further, the air conditioner of the present embodiment can control the outdoor fan rotational speed to be increased by a predetermined rotational speed when the outside air load is small. Thereby, while restricting power consumption at the time of maximum use of electric power, it is possible to accurately determine the amount of activity of the occupants by combining the amount of movement of the occupants and to control the air conditioner appropriately. Therefore, it is possible to perform power consumption limitation and power saving operation while considering comfort.

また、本実施例の空気調和機は、カレンダー機能に基づいて、厳寒期(例えば2月)に近いほど着衣の量が多く、盛夏(例えば8月)に近いほど着衣の量が少ないと判断する。このとき、着衣量が多いほど小さい値の補正シフト値を温度シフト値に加える。例えば図14の冷房運転で、8月はシフト値を+0.2℃、暖房運転で2月はシフト値を−0.2℃とする。従って、快適性に配慮しながら、省エネ運転をはかることができる。   Moreover, the air conditioner of a present Example judges that the amount of clothes is so large that it is close to a severe cold period (for example, February), and the amount of clothes is so small that it is close to midsummer (for example, August) based on a calendar function. . At this time, the smaller the shift amount, the smaller the correction shift value is added to the temperature shift value. For example, in the cooling operation of FIG. 14, the shift value is set to + 0.2 ° C. in August, and in the heating operation in February, the shift value is set to −0.2 ° C. Therefore, it is possible to carry out energy saving operation while considering comfort.

また、本実施例の空気調和機は、冷房運転時の温度シフト値は正の値としその上限を定め、暖房運転時の温度シフト値は負の値としその下限を定める。冷房運転時の温度シフト値に上限を設けることにより、省エネ運転を追及するあまり、設定温度から極端に室温が上がり過ぎて快適な空調から逸脱することを防ぐ。例えば図14で冷房運転時の温度シフト上限値を+3℃としている。また、暖房運転時も温度シフト値に下限を設けることにより、設定温度から極端に室温が下がり過ぎて快適な空調から逸脱することを防ぐ。例えば図14で暖房運転時の温度シフト上限値を−5℃としている。これらは、各々の補正シフト値を温度シフト値に加えると、温度シフト値が大きくなりすぎて、設定温度から乖離する可能性があるためである。このように、快適性に配慮しながら、冷房運転時は吸込空気温度を高めに調整し、暖房運転時は吸込空気温度を低めに調節することにより、省エネ運転を図る。   In the air conditioner of the present embodiment, the temperature shift value during the cooling operation is a positive value and the upper limit is set, and the temperature shift value during the heating operation is a negative value and the lower limit is set. By providing an upper limit for the temperature shift value during cooling operation, the room temperature is excessively raised from the set temperature and the departure from comfortable air conditioning is prevented because of pursuing energy saving operation. For example, in FIG. 14, the upper limit value of the temperature shift during the cooling operation is set to + 3 ° C. Further, by providing a lower limit to the temperature shift value even during heating operation, it is possible to prevent the room temperature from being excessively lowered from the set temperature and deviating from comfortable air conditioning. For example, in FIG. 14, the upper limit value of the temperature shift during the heating operation is set to −5 ° C. These are because if each correction shift value is added to the temperature shift value, the temperature shift value becomes too large and may deviate from the set temperature. Thus, while considering comfort, the intake air temperature is adjusted to be higher during the cooling operation, and the intake air temperature is adjusted to be lower during the heating operation, thereby achieving energy saving operation.

なお、空気調和機の暖房能力及び冷房能力は、空気調和機の吸込空気温度と設定温度に基づいて制御される。しかしながら、一般に、室内の高所に据付けられた空気調和機の吸込空気温度は、使用者が位置する室内の床から顔の高さまでの居住空間の温度より高くなる。従って、この温度差を補正するため、設定温度に所定値(温度シフト値)を上乗せした上乗せ設定温度を目標温度にして、吸込空気温度が、上乗せ設定温度(目標温度)に近づくように空気調和機を制御する。所定値としては、空気調和機の構造や運転モード(暖房/冷房/除湿)により相違するが、−1〜5℃程度である。   The heating capacity and cooling capacity of the air conditioner are controlled based on the intake air temperature and the set temperature of the air conditioner. However, in general, the intake air temperature of an air conditioner installed at a high place in the room is higher than the temperature of the living space from the floor in the room where the user is located to the height of the face. Therefore, in order to correct this temperature difference, the air conditioning is performed so that the intake air temperature approaches the additional set temperature (target temperature), with the set temperature obtained by adding a predetermined value (temperature shift value) to the set temperature as the target temperature. Control the machine. The predetermined value is about −1 to 5 ° C., although it varies depending on the structure of the air conditioner and the operation mode (heating / cooling / dehumidification).

さらに、図16に示すように、予め設定された時刻に前記省エネモードによる運転を行うタイマ設定部を有することにより、例えば予め電力が不足すると予測される時刻にあわせて、空気調和機の運転を制限することができる。   Furthermore, as shown in FIG. 16, by having a timer setting unit that operates in the energy saving mode at a preset time, for example, the air conditioner is operated in accordance with a time when power is predicted to be insufficient in advance. Can be limited.

図16(a)は夏季における省エネ運転の一例である。例えば、電力が不足することが予め予測されている8時から22時の間で省エネ運転を行っているが、14時から20時の間における電力の不足量にあわせて制御Bの省エネ運転を行い、8時から14時及び20時から22時の間における電力の不足量にあわせて制御Aの省エネ運転を行うよう予め設定することができる。   FIG. 16A is an example of energy saving operation in summer. For example, the energy-saving operation is performed between 8:00 and 22:00, where it is predicted that the power will be insufficient, but the control B energy-saving operation is performed in accordance with the power shortage between 14:00 and 20:00. From 14:00 to 24:00 and from 20:00 to 22:00, it can be set in advance to perform the energy saving operation of the control A in accordance with the shortage of power.

図16(b)は冬季における省エネ運転の一例である。例えば、電力が不足することが予め予測されている8時から14時、及び、16時から20時の間で省エネ運転を行うよう予め設定することができる。つまり、複数の時間帯に省エネ運転を行うことを予め設定することもできる。   FIG. 16B is an example of energy saving operation in winter. For example, it can be set in advance to perform energy-saving operation between 8 o'clock and 14 o'clock, and from 16:00 to 20 o'clock, when it is predicted that power will be insufficient. That is, it is possible to set in advance to perform the energy saving operation in a plurality of time zones.

さらに、予め省エネ運転を行う時刻になる前に、省エネ運転へ移行するための省エネ移行運転を行い、徐々に設定温度を変化させることもできる。通常の運転から省エネ運転に移行して設定温度を変えた場合、風量を制御したとしても、空気調和機から吹出空気の温度の変化を抑えることができない場合も有り得る。そのため、通常の運転と省エネ運転との間に、通常の運転における設定温度と省エネ運転における設定温度との間の温度を設定温度とする省エネ移行運転を行うことにより、急激に空気調和機からの吹出空気の温度が変化することを抑えることができる。ここでは、吹出空気の温度の変化を抑えることについて説明したが、省エネ移行運転を体感温度の変化を抑えることにも有効である。   Furthermore, before the time when the energy saving operation is performed, the energy saving transition operation for shifting to the energy saving operation can be performed, and the set temperature can be gradually changed. When the set temperature is changed from the normal operation to the energy-saving operation, even if the air volume is controlled, the change in the temperature of the blown air from the air conditioner may not be suppressed. Therefore, by performing energy-saving transition operation in which the temperature between the set temperature in normal operation and the set temperature in energy-saving operation is set between normal operation and energy-saving operation, It can suppress that the temperature of blowing air changes. Here, the description has been given of suppressing the change in the temperature of the blown air, but the energy saving transition operation is also effective in suppressing the change in the sensible temperature.

室内へ空調した空気を吹出す送風機と、圧縮機と、吹出空気温度を算出する吹出温度算出部と、予め設定された時刻に前記省エネモードによる運転を行うタイマ設定部と、を備え、空気調和機の運転は、前記室内の温度を前記設定温度に近づける高負荷運転と、前記室内の温度を前記設定温度に維持する低負荷運転とから構成され、冷房運転時および暖房運転時にそれぞれ省エネモードを選択可能であり、タイマ設定部で省エネモードを行う時刻を予め設定された場合、省エネモードより所定の時間前から省エネ移行モードによる運転を行い、前記省エネモードは、前記冷房運転時に前記省エネモードを選択すると、設定温度を上げる変更を行い、前記暖房運転時に前記省エネモードを選択すると、前記設定温度を下げる変更を行い、前記高負荷運転時に前記圧縮機の能力の最大値を所定の値に制限し、前記高負荷運転時から前記低負荷運転に切り替わる際、前記送風機の回転数を下げ、前記省エネ移行モードは、前記冷房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも低い温度に前記設定温度を上げる変更を行い、前記暖房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも高い温度に前記設定温度を下げる変更を行う。通常の運転と省エネ運転との間に、通常の運転における設定温度と省エネ運転における設定温度との間の温度を設定温度とする省エネ移行運転を行うことにより、急激に空気調和機からの吹出空気の温度が変化することを抑えることができる。   An air conditioner comprising: a blower that blows air conditioned into a room; a compressor; a blowout temperature calculation unit that calculates a blown air temperature; and a timer setting unit that operates in the energy saving mode at a preset time. The machine operation consists of a high load operation that brings the room temperature close to the set temperature, and a low load operation that maintains the room temperature at the set temperature, and the energy saving mode is set during cooling operation and heating operation, respectively. When the time to perform the energy saving mode is preset in the timer setting unit, the operation in the energy saving transition mode is performed from a predetermined time before the energy saving mode, and the energy saving mode is set to the energy saving mode during the cooling operation. When selected, a change is made to raise the set temperature, and when the energy saving mode is selected during the heating operation, a change is made to lower the set temperature, and the high temperature is set. The maximum value of the capacity of the compressor during load operation is limited to a predetermined value, and when switching from the high load operation to the low load operation, the rotational speed of the blower is reduced, and the energy saving transition mode is the cooling operation. Sometimes when the energy saving mode is selected, the setting temperature is changed to a temperature lower than the set temperature in the energy saving mode, and when the energy saving mode is selected during the heating operation, the temperature is higher than the set temperature in the energy saving mode. The temperature is changed to lower the set temperature. By performing an energy-saving transition operation between the normal operation and the energy-saving operation, the temperature between the set temperature in the normal operation and the set temperature in the energy-saving operation is set as the set temperature. It is possible to suppress changes in the temperature.

室内へ空調した空気を吹出す送風機と、圧縮機と、吹出空気温度を算出する吹出温度算出部と、前記吹出空気温度及び吹出風量により算出される体感温度を算出する体感温度算出部と、予め設定された時刻に前記省エネモードによる運転を行うタイマ設定部と、を備え、空気調和機の運転は、室内の温度を設定温度に近づける高負荷運転と、前記室内の温度を設定温度に維持する低負荷運転とから構成され、冷房運転時および暖房運転時にそれぞれ省エネモードを選択可能であり、タイマ設定部で省エネモードを行う時刻を予め設定された場合、省エネモードより所定の時間前から省エネ移行モードによる運転を行い、前記省エネモードは、前記冷房運転時に前記省エネモードを選択すると、設定温度を上げる変更を行い、前記暖房運転時に前記省エネモードを選択すると、前記設定温度を下げる変更を行い、前記高負荷運転時に前記圧縮機の能力の最大値を所定の値に制限し、前記冷房運転時に前記省エネモードを選択すると、前記高負荷運転時から前記低負荷運転に切り替わる際、前記送風機の回転数を上げ、前記暖房運転時に前記省エネモードを選択すると、前記高負荷運転時から前記低負荷運転に切り替わる際、前記送風機の回転数を下げ、前記省エネ移行モードは、前記冷房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも低い温度に前記設定温度を上げる変更を行い、前記暖房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも高い温度に前記設定温度を下げる変更を行う。通常の運転と省エネ運転との間に、通常の運転における設定温度と省エネ運転における設定温度との間の温度を設定温度とする省エネ移行運転を行うことにより、急激に体感温度が変化することを抑えることができる。   A blower that blows out air conditioned into the room, a compressor, a blowing temperature calculation unit that calculates a blowing air temperature, a bodily sensation temperature calculation unit that calculates a bodily sensation temperature calculated based on the blowing air temperature and the blowing air amount, A timer setting unit that performs the operation in the energy saving mode at a set time, and the operation of the air conditioner is a high-load operation that brings the room temperature close to the set temperature, and the room temperature is maintained at the set temperature. It is composed of low load operation, energy saving mode can be selected during cooling operation and heating operation, respectively, and when the time to perform energy saving mode is preset in the timer setting section, energy saving transition is started from a predetermined time before energy saving mode When the energy saving mode is selected during the cooling operation, when the energy saving mode is selected, the set temperature is increased and the energy saving mode is changed during the heating operation. When the energy saving mode is selected, a change is made to lower the set temperature, the maximum capacity of the compressor is limited to a predetermined value during the high load operation, and the energy saving mode is selected when the energy saving mode is selected during the cooling operation. When switching from the load operation to the low load operation, the rotation speed of the blower is increased, and when the energy saving mode is selected during the heating operation, the rotation speed of the blower is switched from the high load operation to the low load operation. When the energy saving mode is selected during the cooling operation, the energy saving transition mode is changed to raise the set temperature to a temperature lower than the set temperature in the energy saving mode, and the energy saving mode is selected during the heating operation. Then, a change is made to lower the set temperature to a temperature higher than the set temperature in the energy saving mode. By performing an energy-saving transition operation in which the temperature between the set temperature in normal operation and the set temperature in energy-saving operation is set between normal operation and energy-saving operation, the sensible temperature changes rapidly. Can be suppressed.

1 空気調和機
2 室内機
3 室外機
4 接続配管
5 リモコン
6 筐体ベース
7 熱交換器
8 室内送風機
8a 吹出風路
9 露受皿
10 化粧枠
11 フロントパネル
12 空気吸込口
13 空気吹出口
14 左右風向板
15 上下風向板
16 室内送受信部
17 焦電型赤外線センサ
18 輻射センサ(サーモパイル)
19 音センサ
20 制御部
25 室温センサ
26 湿度センサ
27 リモコン周囲温度センサ
28 リモコン位置センサ
29 カレンダー情報
35 活動量判定部
36a 温度シフト値設定部
36b 風量シフト値設定部
37 目標室温設定部
38 室温設定部
45 空調能力制御部
46、55 圧縮機回転数設定部
47 室内送風機回転数設定部
48 室外送風機回転数設定部
56 室外送風機
62 電力シフト設定部
63 時刻・タイマ設定部
100 通常の冷房運転
101 省エネ冷房運転
102 省エネピークカット冷房運転
103 高負荷運転時の室内送風機8の回転数が低負荷運転時の室内送風機8の回転数より高めた省エネピークカット冷房運転
104 設定温度
105 補正後の設定温度
900 室内
901 室外
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Indoor unit 3 Outdoor unit 4 Connection piping 5 Remote control 6 Case base 7 Heat exchanger 8 Indoor fan 8a Blowing air passage 9 Dew tray 10 Dressing frame 11 Front panel 12 Air inlet 13 Air outlet 14 Left and right wind direction Plate 15 Vertical wind direction plate 16 Indoor transmission / reception unit 17 Pyroelectric infrared sensor 18 Radiation sensor (thermopile)
19 sound sensor 20 control unit 25 room temperature sensor 26 humidity sensor 27 remote control ambient temperature sensor 28 remote control position sensor 29 calendar information 35 activity amount determination unit 36a temperature shift value setting unit 36b air volume shift value setting unit 37 target room temperature setting unit 38 room temperature setting unit 45 Air-conditioning capacity control units 46 and 55 Compressor rotation speed setting unit 47 Indoor fan rotation speed setting unit 48 Outdoor fan rotation speed setting unit 56 Outdoor fan 62 Power shift setting unit 63 Time / timer setting unit 100 Normal cooling operation 101 Energy-saving cooling Operation 102 Energy-saving peak-cut cooling operation 103 Energy-saving peak-cut cooling operation in which the rotational speed of the indoor fan 8 during high-load operation is higher than the rotational speed of the indoor fan 8 during low-load operation 104 Set temperature 105 Corrected set temperature 900 Indoor 901 outdoor

Claims (2)

室内へ空調した空気を吹出す送風機と、圧縮機と、吹出空気温度を算出する吹出温度算出部と、予め設定された時刻に省エネモードによる運転を行うタイマ設定部と、を備え、
空気調和機の運転は、前記室内の温度を前記設定温度に近づける高負荷運転と、前記室内の温度を前記設定温度に維持する低負荷運転とから構成され、
冷房運転時および暖房運転時にそれぞれ前記省エネモードを選択可能であり、
前記タイマ設定部で前記省エネモードを行う時刻を予め設定された場合、前記省エネモードより所定の時間前から省エネ移行モードによる運転を行い、
前記省エネモードは、
前記冷房運転時に前記省エネモードを選択すると、設定温度を上げる変更を行い、
前記暖房運転時に前記省エネモードを選択すると、前記設定温度を下げる変更を行い、
前記高負荷運転時に前記圧縮機の能力の最大値を所定の値に制限し、
前記高負荷運転時から前記低負荷運転に切り替わる際、前記送風機の回転数を下げ、
前記省エネ移行モードは、
前記冷房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも低い温度に前記設定温度を上げる変更を行い、
前記暖房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも高い温度に前記設定温度を下げる変更を行う空気調和機。
A blower that blows air conditioned into the room, a compressor, a blowout temperature calculation unit that calculates a blown air temperature, and a timer setting unit that operates in an energy saving mode at a preset time,
The operation of the air conditioner is composed of a high load operation that brings the indoor temperature close to the set temperature, and a low load operation that maintains the indoor temperature at the set temperature,
The energy saving mode can be selected during cooling operation and heating operation,
When the time for performing the energy saving mode is set in advance in the timer setting unit, the operation in the energy saving transition mode is performed from a predetermined time before the energy saving mode,
The energy saving mode is
When the energy saving mode is selected during the cooling operation, a change is made to increase the set temperature,
When the energy saving mode is selected during the heating operation, a change to lower the set temperature is performed,
Limiting the maximum value of the compressor capacity to a predetermined value during the high load operation,
When switching from the high load operation to the low load operation, the rotational speed of the blower is reduced,
The energy saving transition mode is
When the energy saving mode is selected during the cooling operation, a change is made to raise the set temperature to a temperature lower than the set temperature in the energy saving mode,
When the energy saving mode is selected during the heating operation, an air conditioner that changes the set temperature to a temperature higher than the set temperature in the energy saving mode.
室内へ空調した空気を吹出す送風機と、圧縮機と、吹出空気温度を算出する吹出温度算出部と、前記吹出空気温度及び吹出風量により算出される体感温度を算出する体感温度算出部と、予め設定された時刻に省エネモードによる運転を行うタイマ設定部と、を備え、
空気調和機の運転は、室内の温度を設定温度に近づける高負荷運転と、前記室内の温度を設定温度に維持する低負荷運転とから構成され、
冷房運転時および暖房運転時にそれぞれ前記省エネモードを選択可能であり、
前記タイマ設定部で前記省エネモードを行う時刻を予め設定された場合、前記省エネモードより所定の時間前から省エネ移行モードによる運転を行い、
前記省エネモードは、
前記冷房運転時に前記省エネモードを選択すると、設定温度を上げる変更を行い、
前記暖房運転時に前記省エネモードを選択すると、前記設定温度を下げる変更を行い、
前記高負荷運転時に前記圧縮機の能力の最大値を所定の値に制限し、
前記冷房運転時に前記省エネモードを選択すると、前記高負荷運転時から前記低負荷運転に切り替わる際、前記送風機の回転数を上げ、
前記暖房運転時に前記省エネモードを選択すると、前記高負荷運転時から前記低負荷運転に切り替わる際、前記送風機の回転数を下げ、
前記省エネ移行モードは、
前記冷房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも低い温度に前記設定温度を上げる変更を行い、
前記暖房運転時に前記省エネモードを選択すると、前記省エネモードにおける前記設定温度よりも高い温度に前記設定温度を下げる変更を行う空気調和機。
A blower that blows out air conditioned into the room, a compressor, a blowing temperature calculation unit that calculates a blowing air temperature, a bodily sensation temperature calculation unit that calculates a bodily sensation temperature calculated based on the blowing air temperature and the blowing air amount, A timer setting unit that operates in the energy saving mode at a set time, and
The operation of the air conditioner is composed of a high load operation that brings the indoor temperature close to the set temperature, and a low load operation that maintains the indoor temperature at the set temperature,
The energy saving mode can be selected during cooling operation and heating operation,
When the time for performing the energy saving mode is set in advance in the timer setting unit, the operation in the energy saving transition mode is performed from a predetermined time before the energy saving mode,
The energy saving mode is
When the energy saving mode is selected during the cooling operation, a change is made to increase the set temperature,
When the energy saving mode is selected during the heating operation, a change to lower the set temperature is performed,
Limiting the maximum value of the compressor capacity to a predetermined value during the high load operation,
When the energy saving mode is selected during the cooling operation, when switching from the high load operation to the low load operation, the rotational speed of the blower is increased,
When the energy saving mode is selected during the heating operation, when switching from the high load operation to the low load operation, the rotational speed of the blower is reduced,
The energy saving transition mode is
When the energy saving mode is selected during the cooling operation, a change is made to raise the set temperature to a temperature lower than the set temperature in the energy saving mode,
When the energy saving mode is selected during the heating operation, an air conditioner that changes the set temperature to a temperature higher than the set temperature in the energy saving mode.
JP2011231233A 2011-10-21 2011-10-21 Air conditioner Pending JP2013088087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231233A JP2013088087A (en) 2011-10-21 2011-10-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231233A JP2013088087A (en) 2011-10-21 2011-10-21 Air conditioner

Publications (1)

Publication Number Publication Date
JP2013088087A true JP2013088087A (en) 2013-05-13

Family

ID=48532169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231233A Pending JP2013088087A (en) 2011-10-21 2011-10-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP2013088087A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080308A (en) * 2014-10-21 2016-05-16 積水化学工業株式会社 Air conditioning system and building
JPWO2015029177A1 (en) * 2013-08-29 2017-03-02 三菱電機株式会社 Air conditioning system
WO2017090132A1 (en) * 2015-11-25 2017-06-01 株式会社アドテックス Power saving device
CN106885344A (en) * 2017-04-01 2017-06-23 青岛海尔空调器有限总公司 Air conditioning control method and device
CN107036230A (en) * 2016-02-04 2017-08-11 Lg电子株式会社 The method of air-conditioning and control air-conditioning
WO2018152964A1 (en) * 2017-02-23 2018-08-30 广东美的制冷设备有限公司 Comfort control method and device for air conditioner, and air conditioner
KR101919825B1 (en) * 2017-07-20 2018-11-19 엘지전자 주식회사 Air conditioner
CN111928434A (en) * 2020-07-31 2020-11-13 海信(山东)空调有限公司 Control method of air conditioner
CN112710072A (en) * 2020-12-29 2021-04-27 宁波奥克斯电气股份有限公司 Outdoor unit temperature control method and device and air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015029177A1 (en) * 2013-08-29 2017-03-02 三菱電機株式会社 Air conditioning system
EP3040633A4 (en) * 2013-08-29 2017-06-14 Mitsubishi Electric Corporation Air conditioning system
JP2016080308A (en) * 2014-10-21 2016-05-16 積水化学工業株式会社 Air conditioning system and building
WO2017090132A1 (en) * 2015-11-25 2017-06-01 株式会社アドテックス Power saving device
JP6144842B1 (en) * 2015-11-25 2017-06-07 株式会社アドテックス Power saving device
CN107036230A (en) * 2016-02-04 2017-08-11 Lg电子株式会社 The method of air-conditioning and control air-conditioning
WO2018152964A1 (en) * 2017-02-23 2018-08-30 广东美的制冷设备有限公司 Comfort control method and device for air conditioner, and air conditioner
CN106885344A (en) * 2017-04-01 2017-06-23 青岛海尔空调器有限总公司 Air conditioning control method and device
EP3546841A4 (en) * 2017-04-01 2020-01-08 Qingdao Haier Air Conditioner General Corp., Ltd. Method and device for controlling air conditioner
US10890347B2 (en) 2017-04-01 2021-01-12 Qingdao Haier Air Conditioner General Corp., Ltd. Method and device for controlling air conditioner
KR101919825B1 (en) * 2017-07-20 2018-11-19 엘지전자 주식회사 Air conditioner
CN111928434A (en) * 2020-07-31 2020-11-13 海信(山东)空调有限公司 Control method of air conditioner
CN112710072A (en) * 2020-12-29 2021-04-27 宁波奥克斯电气股份有限公司 Outdoor unit temperature control method and device and air conditioner
CN112710072B (en) * 2020-12-29 2022-09-23 宁波奥克斯电气股份有限公司 Outdoor unit temperature control method and device and air conditioner

Similar Documents

Publication Publication Date Title
JP2013088087A (en) Air conditioner
JP5585556B2 (en) Air conditioner
JP4478099B2 (en) Air conditioner
JP5396223B2 (en) Air conditioner
US20120097748A1 (en) Air-conditioning apparatus
US20130134229A1 (en) Air conditioner and method of controlling an air conditioner
CN104729018A (en) Air-conditioner and control method and control device of air-conditioner
JP2012021735A (en) Air conditioner
JPH0635895B2 (en) Heat pump type air conditioner operation control method and heat pump type air conditioner
JP2013204835A (en) Air conditioner
JP4432467B2 (en) Ventilation control device
JP5312434B2 (en) Air conditioner
KR20060029096A (en) Apparatus for control delightful operation of air-conditioner and method thereof
JP2001280663A (en) Air conditioner and method for controlling it
JP2016176653A (en) Air conditioner
JP2013164190A (en) Air conditioning apparatus
KR20100009253A (en) Method for air conditioner
JP2007040554A (en) Air conditioner
JP2013088072A (en) Air conditioner
JP2012013261A (en) Control device of circulator
JP5930909B2 (en) Air conditioner
JP2001208394A (en) Air-conditioning system
JP6259997B2 (en) Supply / exhaust ventilator
JP2014142099A (en) Air conditioner
JP2010048501A (en) Control device for air conditioner