JP2001208394A - Air-conditioning system - Google Patents

Air-conditioning system

Info

Publication number
JP2001208394A
JP2001208394A JP2000021696A JP2000021696A JP2001208394A JP 2001208394 A JP2001208394 A JP 2001208394A JP 2000021696 A JP2000021696 A JP 2000021696A JP 2000021696 A JP2000021696 A JP 2000021696A JP 2001208394 A JP2001208394 A JP 2001208394A
Authority
JP
Japan
Prior art keywords
temperature
air
building
indoor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000021696A
Other languages
Japanese (ja)
Inventor
Jiro Okajima
次郎 岡島
Hitoshi Iijima
等 飯島
Moriya Miyamoto
守也 宮本
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000021696A priority Critical patent/JP2001208394A/en
Publication of JP2001208394A publication Critical patent/JP2001208394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an air-conditioning system of a simple and low-cost constitution by allowing comfort and energy saving, to be compatible by utilizing a thermal storage in a building skeleton. SOLUTION: A room temperature is detected by a temperature sensor 15a, and a floor temperature is detected by a temperature sensor 15c. A controller 17 calculates a sensible temperature from the detected room temperature and the floor temperature. The calculated sensible temperature is compared with the preset room temperature by a user, and an air supply means 2, a heat exchanger 3 are controlled to be stopped or started, or capacity is controlled, so that the sensible temperature becomes the same as the indoor temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、多層階建築にお
ける当該階の天井と上階床スラブとの間で形成される天
井裏スペースに空気調和機を配置し、深夜電力時間帯に
天井裏スペースを空気調和して多層階建築の躯体に蓄熱
する空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-story building, in which an air conditioner is arranged in a space above a ceiling formed between a ceiling of the floor and an upper floor slab, and the space above the ceiling is used at midnight power hours. The present invention relates to an air conditioning system for storing air in a building of a multi-story building by air conditioning.

【0002】[0002]

【従来の技術】図11は、例えば特開平11−8307
9号公報に示された従来の空調システムの構成図であ
り、躯体蓄熱空調システムを示す。図において、多層階
建築50における当該階51の天井51Cと上階床スラ
ブ52Aとの間で形成される天井裏スペース53に、天
井内埋込型の空気調和機54が配置されている。
2. Description of the Related Art FIG. 11 shows, for example, Japanese Patent Application Laid-Open No. 11-8307.
It is a block diagram of the conventional air-conditioning system shown in No. 9 and shows a frame thermal storage air-conditioning system. In the figure, an in-ceiling air conditioner 54 is arranged in a space 53 above the ceiling formed between a ceiling 51C of the floor 51 and an upper floor slab 52A in a multi-story building 50.

【0003】空気調和機54の吹出側には、天井51C
に設けられた空気吹出口57に連通する空気ダクト56
と通風路切換器55が接続されている。通風路切換器5
5は空気調和機54から吹き出された空調空気の通風路
を当該階51の室内または天井裏スペース53に切り替
えるものである。そして、天井51Cには空気吸込口5
8が設けられている。
[0003] On the outlet side of the air conditioner 54, a ceiling 51C is provided.
Air duct 56 communicating with air outlet 57 provided in
And the ventilation path switch 55 are connected. Ventilation path switch 5
5 switches the ventilation path of the conditioned air blown out from the air conditioner 54 to the room on the floor 51 or the space 53 above the ceiling. The air inlet 5 is provided on the ceiling 51C.
8 are provided.

【0004】次に、動作について説明する。まず、通常
の空調運転、例えば、深夜電力時間帯以外の昼間の冷房
運転では、通風路切換器55による通風路を当該階51
の室内に切り換える。当該階51の室内空気は、空気吸
込口58から天井裏スペース53内に流入して空気調和
機54の吸込側から吸入され、室外機(図示せず)で凝
縮・減圧され空気調和機54に導かれた冷媒により冷却
された後、空気ダクト56を経由して空気吹出口57か
ら当該階51へ戻され、室内を冷房する。
Next, the operation will be described. First, in a normal air-conditioning operation, for example, in a daytime cooling operation other than the midnight power time zone, the ventilation path by the ventilation path switch 55 is connected to the floor 51.
Switch to the room. The indoor air on the floor 51 flows into the space 53 above the ceiling from the air inlet 58 and is sucked from the suction side of the air conditioner 54, and is condensed and decompressed by the outdoor unit (not shown) and is condensed by the air conditioner 54 After being cooled by the introduced refrigerant, it is returned from the air outlet 57 to the floor 51 via the air duct 56 to cool the room.

【0005】一方、夜22時から翌朝8時までの深夜電
力時間帯には、通風路切換器55による通風路を天井裏
スペース53に切り換える。これにより、天井裏スペー
ス53の空気が空気調和機54の吸込側から吸入され、
室外機(図示せず)で凝縮・減圧され空気調和機54に
導かれた冷媒により冷却された後、天井裏スペース53
に戻されて、多層階建築50の躯体、主に上階床スラブ
52Aに冷熱を蓄熱する。
On the other hand, in the midnight power time zone from 22:00 at night to 8:00 in the next morning, the ventilation path by the ventilation path switch 55 is switched to the space 53 above the ceiling. Thereby, the air in the space above the ceiling 53 is sucked from the suction side of the air conditioner 54,
After being condensed and decompressed by an outdoor unit (not shown) and cooled by a refrigerant guided to the air conditioner 54, the space 53
To store the cold heat in the frame of the multi-story building 50, mainly the upper floor slab 52A.

【0006】このような躯体蓄熱空調システムは、安価
な深夜電力を利用できると共に昼夜電力使用量の平準化
につながるものとして知られている。また、暖房時に上
階52の利用者に最も近い位置の躯体に蓄熱した場合に
は床暖房となるので快適に過ごせる場合がある。
[0006] Such a building thermal storage air-conditioning system is known to be able to use inexpensive midnight power and to lead to a leveling of power consumption day and night. Further, when heat is stored in the skeleton located closest to the user on the upper floor 52 during heating, floor heating is performed, so that the user may be able to spend comfortably.

【0007】[0007]

【発明が解決しようとする課題】しかしがら、上記のよ
うな従来の空調システムでは、室内環境を検出する手段
をもっておらず、多層階建築50の躯体への蓄熱分を必
要以上に放熱することにより空気調和機54による追加
運転が増え、快適性と省エネルギーを両立できないとい
う問題点があった。
However, the conventional air-conditioning system as described above does not have a means for detecting the indoor environment, and radiates heat stored in the frame of the multi-story building 50 more than necessary. The additional operation by the air conditioner 54 increases, and there is a problem that it is impossible to achieve both comfort and energy saving.

【0008】また、多層階建築50の躯体への顕熱蓄熱
であり、冷房時には湿度への対策が成されておらず、快
適性を損なうという問題点があった。
In addition, the sensible heat is stored in the frame of the multi-story building 50, and there is no countermeasure against humidity during cooling, and there is a problem that the comfort is impaired.

【0009】この発明は、上述のような課題を解決する
ためになされたものであって、快適性と省エネルギーを
両立させ、簡素で安価な構成の空気調和システムを得る
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air-conditioning system having a simple and inexpensive configuration that achieves both comfort and energy saving.

【0010】[0010]

【課題を解決するための手段】この発明に係る空気調和
システムにおいては、室内側熱交換器、送風手段、この
送風手段による前記熱交換器からの通風を建築物躯体に
吹き付ける方向と建築物室内に吹出す方向のいずれかに
切換える通風切換手段を有し、建築物躯体へ蓄熱を行う
空気調和機と、建築物室内の空気温度を検出する室内空
気温度検出手段と、躯体蓄熱された建物躯体の温度を検
出する建物躯体温度検出手段と、前記室内空気温度検出
手段による空気温度と前記建物躯体温度検出手段による
建物躯体温度に基づいて体感温度を演算する体感温度演
算手段と、この体感温度演算手段による体感温度が設定
温度になるように前記空気調和機を制御する制御手段と
を備えたものである。
In the air conditioning system according to the present invention, the indoor heat exchanger, the blowing means, the direction of blowing the ventilation from the heat exchanger by the blowing means to the building body, and the building interior An air conditioner that has ventilation switching means for switching to any one of the directions of blowing air to the building and stores heat in the building body, an indoor air temperature detecting means for detecting the air temperature in the building room, and a building body having the building heat stored therein Building temperature detecting means for detecting the temperature of the building, body temperature calculating means for calculating the body temperature based on the air temperature by the indoor air temperature detecting means and the building temperature by the building body temperature detecting means, and the body temperature calculating Control means for controlling the air conditioner so that the sensible temperature of the means becomes the set temperature.

【0011】また、室内側熱交換器、送風手段、この送
風手段による前記熱交換器からの通風を建築物躯体に吹
き付ける方向と建築物室内に吹出す方向のいずれかに切
換える通風切換手段を有し、建築物躯体へ蓄熱を行う空
気調和機と、建築物室内の空気温度を検出する室内空気
温度検出手段と、前記熱交換器の吸入空気温度を検出す
る吸入空気温度検出手段と、この吸入空気温度検出手段
による前記熱交換器の吸入空気温度および前記室内空気
温度検出手段による室内の空気温度から躯体蓄熱された
建物躯体の温度を推論する建物躯体温度推論手段と、前
記室内空気温度検出手段による空気温度と前記建物躯体
温度推論手段による建物躯体温度に基づいて体感温度を
演算する体感温度演算手段と、この体感温度演算手段に
よる体感温度が設定温度になるように前記空気調和機を
制御する制御手段とを備えたものである。
[0011] Further, there is provided an indoor heat exchanger, a ventilation means, and ventilation switching means for switching the direction of the ventilation from the heat exchanger to the building frame or the direction of blowing the ventilation from the heat exchanger into the building room. An air conditioner that stores heat in a building body; an indoor air temperature detecting unit that detects an air temperature in a building room; an intake air temperature detecting unit that detects an intake air temperature of the heat exchanger; Building skeleton temperature inference means for inferring the temperature of the building skeleton whose skeleton is stored from the intake air temperature of the heat exchanger by the air temperature detection means and the indoor air temperature by the indoor air temperature detection means, and the indoor air temperature detection means Temperature calculating means for calculating the temperature based on the air temperature and the building temperature by the building temperature estimating means, and the temperature detected by the temperature calculating means. In which a control means for controlling the air conditioner so that the temperature.

【0012】また、暖房運転時に、前記室内空気温度検
出手段による空気温度が前記建物躯体温度検出手段また
は前記建物躯体温度推論手段による建物躯体温度よりも
高い状態で所定時間推移した場合には、前記送風手段の
送風量を上げるものである。
In the heating operation, if the air temperature by the indoor air temperature detecting means changes for a predetermined time in a state higher than the building temperature by the building temperature detecting means or the building temperature estimating means, This is to increase the amount of air blown by the air blowing means.

【0013】また、前記室内空気温度検出手段による室
内の空気温度が前記設定温度に達しない場合には、前記
空気調和機の熱交換器による熱を前記送風手段により建
築物室内へ送付し、前記室内の空気温度が前記設定温度
に達している場合には、前記建築物躯体による熱を前記
送風手段により建物室内へ送付するものである。
When the indoor air temperature detected by the indoor air temperature detecting means does not reach the set temperature, the heat from the heat exchanger of the air conditioner is sent into the building room by the blowing means. When the indoor air temperature has reached the set temperature, the heat from the building frame is sent into the building room by the blowing means.

【0014】また、建築物躯体への冷房蓄熱後に空気調
和機を稼動させる場合に、前記送風手段の送風量を上げ
るものである。
Further, when the air conditioner is operated after cooling and storing heat in the building frame, the amount of air blown by the blowing means is increased.

【0015】また、建築物躯体近傍の温度を検出する建
築物躯体近傍温度検出手段と、建築物躯体近傍の湿度を
検出する建築物躯体近傍湿度検出手段と、この建築物躯
体近傍湿度検出手段による湿度と前記建築物躯体近傍温
度検出手段による建築物躯体近傍の温度に基づいて露点
温度を演算する露点温度演算手段とを備え、前記建物躯
体温度検出手段または前記建物躯体温度推論手段による
建物躯体の温度が前記露点温度演算手段による露点温度
以上になるように前記制御手段により前記空気調和機の
熱交換器または送風手段を制御するものである。
[0015] Further, a temperature detecting means near the building body for detecting a temperature near the building body, a humidity detecting means near the building body for detecting humidity near the building body, and a humidity detecting means near the building body. Dew point temperature calculating means for calculating a dew point temperature based on the humidity and the temperature near the building skeleton by the building skeleton near temperature detecting means, the building skeleton temperature detecting means or the building skeleton temperature inferring means by the building skeleton temperature inferring means The control unit controls the heat exchanger or the blowing unit of the air conditioner so that the temperature becomes equal to or higher than the dew point temperature of the dew point temperature calculating unit.

【0016】[0016]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1による空気調和システムの構成図、図2は
この空気調和システムの暖房運転時における室温、平均
輻射温度に対するPMV(予測平均温冷感申告)の関係
を示す図、図3はこの空気調和システムの室内温度、床
面温度に対する体感温度の関係を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram of an air conditioning system according to Embodiment 1 of the present invention, and FIG. 2 is a diagram showing a relationship between a room temperature and an average radiant temperature of a PMV (report of predicted average thermal sensation) during a heating operation of the air conditioning system. FIG. 3 is a diagram showing the relationship between the sensible temperature and the room temperature and floor surface temperature of the air conditioning system.

【0017】図において、多層階建築における当該階の
天井13と上階床スラブ(建築物躯体)10との間で形
成される天井内12のスペースに室内用の空気調和機1
(以下、空調機1という)を設置する。11は空調対象
空間を示す室内である。空調機1は、送風機等の送風手
段2、熱交換器3、ダンパ等の通風切換手段4から構成
され、また、空調機吸込口8と、通風切換手段4からス
ラブ10方向へ向けられた躯体側吹出口5と、もう一方
向はダクト6を介して天井13に設置され、室内11方
向へ向けられた室内側吹出口7とに接続される。天井1
3には、室内11からの空気を天井内12に導く吸込口
9が設置される。
In the figure, a room air conditioner 1 is provided in a space in a ceiling 12 formed between a ceiling 13 of the floor and an upper floor slab (building body) 10 in a multi-story building.
(Hereinafter, referred to as an air conditioner 1). Reference numeral 11 denotes a room indicating a space to be air-conditioned. The air conditioner 1 includes a blower 2 such as a blower, a heat exchanger 3, and a ventilation switch 4 such as a damper. The air conditioner suction port 8 and a body directed from the ventilation switch 4 toward the slab 10. The side outlet 5 and the other side are installed on the ceiling 13 via the duct 6 and connected to the indoor side outlet 7 directed toward the room 11. Ceiling 1
3, a suction port 9 for guiding air from the room 11 to the ceiling 12 is provided.

【0018】15aは室内11の温度を検出する温度セ
ンサー、15bは天井裏温度を検出する温度センサー1
5b、15cはスラブ10の上面に設置され、床面温度
を検出する温度センサー、15dはスラブ10の下面に
設置され、スラブ下温度を検出する温度センサーであ
る。16aは室内11の湿度を検出する湿度センサー、
16bは天井内12の湿度を検出する湿度センサー、1
7は各センサーからの入力に基づいて、送風手段2、熱
交換器3、通風切換手段4を制御する制御器である。
Reference numeral 15a denotes a temperature sensor for detecting the temperature of the room 11, and 15b denotes a temperature sensor 1 for detecting the temperature behind the ceiling.
5b and 15c are temperature sensors installed on the upper surface of the slab 10 to detect the floor surface temperature, and 15d are installed on the lower surface of the slab 10 and detect the temperature below the slab. 16a is a humidity sensor for detecting the humidity of the room 11,
16b is a humidity sensor for detecting the humidity in the ceiling 12, 1
Reference numeral 7 denotes a controller that controls the blowing unit 2, the heat exchanger 3, and the ventilation switching unit 4 based on the input from each sensor.

【0019】次に動作について説明する。暖房運転につ
いて説明する。深夜電力時間帯の蓄熱運転時には、送風
手段2を稼動させ、空調機吸込口8から空気を吸込し、
熱交換器3における冷媒の凝縮熱または温水の顕熱によ
り空気が加熱され温風となり、通風切換手段4により躯
体側吹出口5側を開、ダクト6側を閉とすることによ
り、温風を躯体側吹出口5からスラブ10へ吹出し、ス
ラブ10に蓄熱が行われる。
Next, the operation will be described. The heating operation will be described. During the heat storage operation in the midnight power time zone, the air blowing means 2 is operated to suck air from the air conditioner suction port 8,
The air is heated by the heat of condensation of the refrigerant in the heat exchanger 3 or the sensible heat of the hot water to become hot air, and the ventilation switching means 4 opens the skeleton side outlet 5 side and closes the duct 6 side, so that the hot air is The slab 10 is blown out from the skeleton side outlet 5 to the slab 10 to store heat.

【0020】一方、深夜電力時間帯以外の昼間に行われ
る空調運転時には、送風手段2を稼動させ、熱交換器3
を停止状態とし、通風切換手段4により躯体側側吹出口
5側を閉、ダクト6側を開とする。これにより、蓄熱さ
れたスラブ10により暖められた天井内12の空気を空
調機吸込口8から吸込し、ダクト6を通り、吹出口7よ
り室内11へ吹き出す。ここで、温度センサー15aに
より検出された室内温度がユーザーにより予め設定され
た室内温度(ユーザーが希望する室内温度であり、以
下、設定温度という)に達しない場合、すなわちスラブ
10の温度が低下した場合には、熱交換器3を稼働させ
追焚運転を行う。
On the other hand, during the air-conditioning operation performed during the daytime other than the midnight power hours, the air blowing means 2 is operated and the heat exchanger 3 is operated.
Is stopped, and the ventilation switching means 4 closes the skeleton side outlet 5 side and opens the duct 6 side. As a result, the air in the ceiling 12 warmed by the stored slab 10 is sucked in from the air conditioner suction port 8, passes through the duct 6, and is blown out to the room 11 from the air outlet 7. Here, when the room temperature detected by the temperature sensor 15a does not reach the room temperature preset by the user (the room temperature desired by the user, hereinafter referred to as the set temperature), that is, the temperature of the slab 10 has decreased. In such a case, the heat exchanger 3 is operated to perform the reheating operation.

【0021】暖房運転の場合には、上階床スラブ10に
蓄熱するので、必然的に床面温度が上昇し、床暖房の効
果が出てくる。図2に暖房運転時における室温、平均輻
射温度に対するPMV(予測平均温冷感申告)を示す。
PMVを構成する6要素のうち着衣量、活動量、湿度、
平均風速は固定とする。図2より平均輻射温度が1de
g高ければ、室温が1deg低くても同じPMV値を示
し、同じ体感を得ることができるということになる。
In the heating operation, heat is stored in the upper floor slab 10, so that the floor surface temperature inevitably rises, and the effect of floor heating is obtained. FIG. 2 shows a PMV (predicted average thermal sensation report) with respect to the room temperature and the average radiation temperature during the heating operation.
Clothing amount, activity amount, humidity,
The average wind speed is fixed. According to FIG. 2, the average radiation temperature is 1 de.
If g is higher, the same PMV value is exhibited even when the room temperature is lower by 1 deg, and the same sensation can be obtained.

【0022】そこで、平均輻射温度=室温となるPMV
を体感温度に書き換えると、体感温度は次式のようにな
る。 体感温度=室温×0.5+平均輻射温度×0.5 ・・・ 式(1) ここで平均輻射温度は、床面、天井面、壁面の平均温度
である。冷房運転の場合は、このまま平均輻射温度を使
えば良いが、暖房運転では頭寒足熱の観点から、平均輻
射温度を構成する温度のうち床面温度が重要になってく
る。図3は室温、床面温度に対する体感温度を示し、同
じ室温であっても床面温度が高ければ床からの輻射熱と
伝導熱の効果で居住者は室温以上の体感温度を感じられ
ることになる。
Therefore, PMV where the average radiation temperature = room temperature
Can be rewritten into the sensible temperature, the sensible temperature becomes as follows. Sensible temperature = room temperature × 0.5 + average radiation temperature × 0.5 (1) Here, the average radiation temperature is the average temperature of the floor surface, the ceiling surface, and the wall surface. In the cooling operation, the average radiant temperature may be used as it is, but in the heating operation, the floor surface temperature becomes important among the temperatures constituting the average radiant temperature from the viewpoint of head and foot heat. FIG. 3 shows the sensible temperature with respect to the room temperature and the floor surface temperature. Even if the room temperature is the same, if the floor surface temperature is high, the occupants can feel the sensible temperature higher than the room temperature due to the effect of the radiant heat and the conduction heat from the floor. .

【0023】そこで、温度センサー15aにより室温を
検出し、温度センサー15cにより床面温度を検出す
る。予め、上記式(1)の関係を制御器17内に記憶さ
せておき、制御器17が検出された室温、床面温度から
体感温度を演算する。ここで、暖房運転の場合、上記式
(1)の平均輻射温度を床面温度に置き換えて体感温度
を演算する。
Therefore, the room temperature is detected by the temperature sensor 15a, and the floor surface temperature is detected by the temperature sensor 15c. The relationship of the above equation (1) is stored in the controller 17 in advance, and the controller 17 calculates the sensed temperature from the detected room temperature and floor surface temperature. Here, in the case of the heating operation, the average radiant temperature in Expression (1) is replaced with the floor surface temperature to calculate the sensible temperature.

【0024】この演算された体感温度と設定温度とを比
較し、体感温度と設定温度が同じになるように、送風手
段2、熱交換器3の発停制御、もしくは容量制御をす
る。なお、上記の体感温度はPMVから求めたものを示
したが、標準有効温度などの他の快適性指標を用いても
よい。
The calculated perceived temperature is compared with the set temperature, and the blower means 2 and the heat exchanger 3 are controlled to start and stop or to control the capacity so that the perceived temperature is equal to the set temperature. Although the above-mentioned sensible temperature has been obtained from the PMV, another comfort index such as a standard effective temperature may be used.

【0025】以上のように、この実施の形態1によれ
ば、室温と床面温度の両方を検知し、体感温度を演算し
て、体感温度を一定に制御するので、体感温度の変動の
少ない快適性の高い暖房空間を実現でき、暖房運転にお
いて床面温度が高い場合には室温を低めに制御するの
で、暖めすぎによる無駄もなく省エネルギー性の高い運
転が可能となる。
As described above, according to the first embodiment, since both the room temperature and the floor surface temperature are detected, the sensible temperature is calculated, and the sensible temperature is controlled to be constant, the fluctuation of the sensible temperature is small. A heating space with high comfort can be realized, and when the floor surface temperature is high in the heating operation, the room temperature is controlled to be lower, so that a highly energy-saving operation can be performed without waste due to overheating.

【0026】また、冷房運転においても室温と平均輻射
温度の両方を検知し体感温度を一定に制御するので、快
適性の高い冷房空間を実現でき、平均輻射温度が低い場
合には室温を高めに制御するので、冷やしすぎによる無
駄もなく省エネルギー性の高い運転が可能となる。
Also, in the cooling operation, since both the room temperature and the average radiant temperature are detected and the sensible temperature is controlled to be constant, a cooling space with high comfort can be realized, and when the average radiant temperature is low, the room temperature is raised. Since the control is performed, an operation with high energy saving can be performed without waste due to excessive cooling.

【0027】実施の形態2図4はこの発明の実施の形態
2による空気調和システムのスラブ内部温度分布の経時
変化を示す図、図5はこの空気調和システムの天井内温
度、床面温度の経時変化を示す図である。なお、空気調
和システムの構成図は図1と同様である。
Embodiment 2 FIG. 4 is a diagram showing a temporal change of a temperature distribution inside a slab of an air conditioning system according to Embodiment 2 of the present invention, and FIG. 5 is a time diagram of a temperature inside a ceiling and a temperature of a floor surface of the air conditioning system. It is a figure showing a change. The configuration diagram of the air conditioning system is the same as that of FIG.

【0028】次に、動作について説明する。まず、図4
はスラブ10の内部温度分布の経時変化を示し、T1が
床面温度、T7がスラブ下温度であり、5:00〜8:0
0までの3時間が蓄熱運転時間帯、8:00〜20:00
までが空調運転時間帯である。蓄熱運転時間帯にはスラ
ブ下温度が急激に上昇し、スラブ内部に温度分布ができ
る。空調運転時間帯には、運転開始直後の8:00〜9:
00には温度分布が大きいが、9:00以降にはスラブ
内部の温度分布はほどんど見られず、ほぼ同一の温度
で、ゆっくりと温度降下していく。
Next, the operation will be described. First, FIG.
Indicates a temporal change of the internal temperature distribution of the slab 10, T1 is the floor surface temperature, T7 is the temperature under the slab, and 5:00 to 8: 0.
3 hours until 0, heat storage operation time zone, 8:00 to 20:00
Up to the air conditioning operation time zone. During the heat storage operation time, the temperature under the slab rapidly rises, and a temperature distribution is formed inside the slab. During the air-conditioning operation time zone, 8:00 to 9:
Although the temperature distribution is large at 00, the temperature distribution inside the slab is scarcely seen after 9:00, and the temperature gradually drops at almost the same temperature.

【0029】暖房運転については、図1のようにスラブ
10に設置された温度センサー15cにより床面温度を
計測する必要があるが、オフィスビルの場合、机、椅子
などの内容物により温度センサー15cを設置しにくい
場合が多い。そこで、上記図4による温度分布により、
スラブ10の温度センサー15cの設置が困難な場合に
は、空調機1に近い、温度センサー15dによるスラブ
下温度を計測することにより、床面温度を代用すること
ができる。
For the heating operation, it is necessary to measure the floor surface temperature by the temperature sensor 15c installed on the slab 10 as shown in FIG. 1, but in the case of an office building, the temperature sensor 15c is determined by the contents such as desks and chairs. Is often difficult to install. Therefore, according to the temperature distribution shown in FIG.
If it is difficult to install the temperature sensor 15c of the slab 10, the floor temperature can be substituted by measuring the temperature under the slab by the temperature sensor 15d near the air conditioner 1.

【0030】また、図5は温度センサー15cによる床
面温度と空調機1の吸込温度センサー15bによる天井
裏温度の経時変化を示し、両者に多少の温度分布の違い
があるものの、床面温度の変化とともに天井裏温度も同
様に変化している。よって、吸込温度を温度センサー1
5bで計測し、室温とから修正係数をかけることにより
床面温度を推論する。
FIG. 5 shows a temporal change of the floor surface temperature by the temperature sensor 15c and the ceiling temperature by the suction temperature sensor 15b of the air conditioner 1. Although there is a slight difference in the temperature distribution between the two, there is a difference in the floor temperature. As the temperature changes, the temperature of the ceiling changes as well. Therefore, the suction temperature is set to the temperature sensor 1
5b, the floor surface temperature is inferred by multiplying the correction coefficient from the room temperature.

【0031】例えば、 冷房時 床面温度=室温−A×(室温−吸込温度) ここで、Aは定数(=2.5) 暖房時 床面温度=室温+B×(吸込温度−室温) ここで、Bは定数(=4.0) となり、これらの式のように簡単に表すことができる。For example, when cooling, floor surface temperature = room temperature−A × (room temperature−suction temperature) where A is a constant (= 2.5) during heating floor surface temperature = room temperature + B × (suction temperature−room temperature) , B are constants (= 4.0), and can be simply expressed as in these equations.

【0032】次に、冷房運転については、床面温度の推
論は上記の要領で行い、天井面温度は天井13に直接温
度センサーをつけても良いが、簡単にするために、温度
センサー15bによる吸込空気温度と温度センサー15
aによる室温から平均値を演算して天井面温度を推論す
る。
Next, for the cooling operation, the inference of the floor surface temperature is performed in the same manner as described above, and the ceiling surface temperature may be directly attached to the ceiling 13 by a temperature sensor. Suction air temperature and temperature sensor 15
The average value is calculated from the room temperature according to a to infer the ceiling surface temperature.

【0033】以上のように、この実施の形態2によれ
ば、温度センサー15dによるスラブ下温度の計測で床
面温度が代用でき、温度センサー15cがなくても床面
温度を検出できる。また、温度センサー15bを計測
し、修正係数をかけることにより床面温度を推論するこ
とができ、さらに、温度センサー15bによる吸込空気
温度と温度センサー15aによる室温から平均値を演算
して天井面温度を推論するので、温度センサー15c、
15dが不要となり、体感温度の演算を安価な構成で実
現できる。
As described above, according to the second embodiment, the floor surface temperature can be substituted by the measurement of the temperature under the slab by the temperature sensor 15d, and the floor surface temperature can be detected without the temperature sensor 15c. Further, the floor surface temperature can be inferred by measuring the temperature sensor 15b and multiplying it by a correction coefficient. Further, the average value is calculated from the intake air temperature by the temperature sensor 15b and the room temperature by the temperature sensor 15a, and the ceiling surface temperature is calculated. , The temperature sensor 15c,
15d becomes unnecessary, and the calculation of the sensible temperature can be realized with an inexpensive configuration.

【0034】実施の形態3.図6はこの発明の実施の形
態3による空気調和システムの床面からの高さに対する
室内温度分布の関係を示す図である。なお、空気調和シ
ステムの構成図は図1と同様である。
Embodiment 3 FIG. 6 is a diagram showing the relationship between the height from the floor and the room temperature distribution in the air-conditioning system according to Embodiment 3 of the present invention. The configuration diagram of the air conditioning system is the same as that of FIG.

【0035】次に、動作について説明する。暖房運転に
ついては、実施の形態1のように床暖房効果を利用した
体感温度一定制御を行うが、空調開始から時間の経過と
ともにスラブ10の温度は低下していき、特に夕方から
夜にかけては、蓄熱時間が短かった場合、外気温が低く
空調負荷が大きいと、スラブ10の温度低下が著しくな
る。
Next, the operation will be described. For the heating operation, the sensible temperature constant control using the floor heating effect is performed as in the first embodiment, but the temperature of the slab 10 decreases with the lapse of time from the start of air conditioning, particularly from evening to night. When the heat storage time is short and the outside air temperature is low and the air conditioning load is large, the temperature of the slab 10 drops significantly.

【0036】図6は室内の床からの高さに対する室内温
度分布を示し、例えば床面からの高さが2.5mある場
合には10℃以上の温度差(図中の定常状態)がつくこ
とがある。また、スラブ10の温度が低下してくると、
空調機1により設定温度になるように追加運転を行って
も、室内の上部の温度は高くなるが、床面近傍は低くな
り、上下温度分布が形成され不快な居住環境となってく
る。
FIG. 6 shows the room temperature distribution with respect to the height from the floor in the room. For example, when the height from the floor is 2.5 m, a temperature difference of 10 ° C. or more (steady state in the figure) is generated. Sometimes. Also, when the temperature of the slab 10 decreases,
Even if the additional operation is performed by the air conditioner 1 so as to reach the set temperature, the temperature in the upper part of the room becomes higher, but the vicinity of the floor surface becomes lower, and a vertical temperature distribution is formed, resulting in an uncomfortable living environment.

【0037】そこで、実施の形態1と同様に、温度セン
サー15aおよび温度センサー15cにより室温および
床面温度を検出し、制御器17で体感温度を演算し、設
定温度と比較し、送風手段2、熱交換器3の発停制御、
もしくは容量制御を行う。そこで、室温>床面温度の状
態が、ある一定時間続いた場合には、送風手段2の風量
を通常運転時の所定値より上げ、室内空気のサーキュレ
ーション運転を行う。なお、サーキュレーション運転時
間と送風手段2の風量の関係は、室内11の容積から予
め制御器17に設定しておく。
Therefore, similarly to the first embodiment, the room temperature and the floor surface temperature are detected by the temperature sensor 15a and the temperature sensor 15c, the sensory temperature is calculated by the controller 17, and the temperature is compared with the set temperature. Start / stop control of the heat exchanger 3,
Alternatively, capacity control is performed. Therefore, when the condition of (room temperature> floor surface temperature) continues for a certain period of time, the air volume of the blower 2 is increased from a predetermined value during normal operation, and the indoor air circulation operation is performed. The relationship between the circulation operation time and the air volume of the blowing means 2 is set in the controller 17 in advance based on the volume of the room 11.

【0038】例えば、次式に、部屋空気をn回循環させ
るためのサーキュレーション運転時間を示す。 T=n・V/Q [min] ここで、運転時間 :T[min] 室内容積 :V 送風量 :Q[m3/min]
For example, the following equation shows a circulation operation time for circulating room air n times. T = nV / Q [min] Here, operation time: T [min] Indoor volume: V Ventilation amount: Q [m 3 / min]

【0039】そこで、図6のサーキュレーション後の温
度分布はn=0.5回循環させた場合(例えば、T=
2.8[min]、V=90[m3]、Q=16[m3/min]の
場合)であり、図に示すように0.5回循環させただけ
でも十分に上下温度差が解消されていることがわかる。
よって、サーキュレーション運転時間は、上記式におい
て、n=0.5回以上とし、所定の室内容積、送風量を
当てはめ、算出した運転時間Tを設定すれば良いことに
なる。
Therefore, the temperature distribution after circulation shown in FIG. 6 is obtained by circulating n = 0.5 times (for example, T =
2.8 [min], V = 90 [m 3 ], Q = 16 [m 3 / min]), and as shown in FIG. It can be seen that it has been resolved.
Therefore, in the above equation, the circulation operation time is set to n = 0.5 or more, and the calculated operation time T may be set by applying a predetermined room volume and air flow rate.

【0040】以上のように、この実施の形態3によれ
ば、暖房運転にあたり、空調負荷が大きい場合などによ
り、スラブ温度の低下が著しく、室温が高く、床面温度
が低い場合には、送風手段2の風量を通常運転の所定値
以上にして室内空気のサーキュレーション運転を行うの
で、上下温度分布が改善され快適な空間が実現できる。
なお、上記実施の形態では、実施の形態1の構成の空気
調和システムについて説明したが、実施の形態2の構成
の空気調和システムでも同様に行われることはいうまで
もない。
As described above, according to the third embodiment, in the heating operation, the slab temperature is significantly reduced due to a large air-conditioning load, etc., and when the room temperature is high and the floor surface temperature is low, the ventilation Since the circulation operation of the indoor air is performed with the air volume of the means 2 being equal to or more than the predetermined value of the normal operation, the vertical temperature distribution is improved and a comfortable space can be realized.
In the above embodiment, the air conditioning system having the configuration of the first embodiment has been described. However, it goes without saying that the same applies to the air conditioning system of the second embodiment.

【0041】実施の形態4.図7はこの発明の実施の形
態4による空気調和システムの冷房運転時の室温の経時
変化を示す図である。なお、空気調和システムの構成図
は図1と同様である。図において、設定温度Ttに対し
て、±△Tmの温度範囲を設定し、この温度範囲内に室
温を制御している。A1の状態は、空調機1が稼動の状
態(サーモON)、A2の状態は空調機1が停止の状態
である。
Embodiment 4 FIG. FIG. 7 is a diagram showing a change over time in room temperature during the cooling operation of the air-conditioning system according to Embodiment 4 of the present invention. The configuration diagram of the air conditioning system is the same as that of FIG. In the figure, a temperature range of ± ΔTm is set with respect to a set temperature Tt, and the room temperature is controlled within this temperature range. The state of A1 is a state where the air conditioner 1 is operating (thermo ON), and the state of A2 is a state where the air conditioner 1 is stopped.

【0042】次に、スラブ10へ蓄熱された熱量の有効
な活用について説明する。温度センサー15aで検出さ
れた室温Trの時間変化△Tr/△tを制御器17で演算
し,次のような場合分けをして室温制御する。なお、通
風切換手段4により躯体側側吹出口5側を閉、ダクト6
側を開とする。
Next, the effective use of the amount of heat stored in the slab 10 will be described. The controller 17 calculates the time change ΔTr / Δt of the room temperature Tr detected by the temperature sensor 15a, and controls the room temperature in the following cases. The ventilation side switching means 4 closes the skeleton side outlet 5 side, and the duct 6
Open side.

【0043】A1の状態(サーモON)で、 ケース1 △Tr/△t<0の場合 空調機1の送風手段2をON 、熱交換器3をOFF ケース2 △Tr/△t>0の場合 空調機1の送風手段2をON 、熱交換器3をON A2の状態(サーモOFF)で ケース3 △Tr/△t<0の場合 空調機1の送風手段2をOFF、熱交換器3をOFF ケース4 △Tr/△t>0の場合 空調機1の送風手段2をON 、熱交換器3をOFFIn the state of A1 (thermo ON), case 1 ΔTr / Δt <0, the air blowing means 2 of the air conditioner 1 is ON, and the heat exchanger 3 is OFF. Case 2 ΔTr / Δt> 0. Case 3 in the state of A2 (thermo OFF), the blower means 2 of the air conditioner 1 is ON, and the heat exchanger 3 is ON. OFF Case 4 When ΔTr / Δt> 0 Blowing means 2 of air conditioner 1 is ON, and heat exchanger 3 is OFF

【0044】ケース1はスラブ10の蓄熱だけで空調で
きる場合であり、ケース2は室内機2の追加運転を必要
とする場合である。ケース3はサーモOFF時に蓄熱量
が多い場合であり、送風手段2をOFFして室温低下を
防ぎ、ケース4は躯体の蓄熱分によりサーモOFF状態
を長くしようというものである。暖房運転の場合は上記
の不等号を逆にして適用すればよい。
Case 1 is a case where air conditioning can be performed only by storing heat in the slab 10, and case 2 is a case where additional operation of the indoor unit 2 is required. Case 3 is a case where a large amount of heat is stored when the thermostat is turned off. The blower means 2 is turned off to prevent the room temperature from dropping, and case 4 is to prolong the thermo-off state by the heat storage of the frame. In the case of heating operation, the above inequality sign may be reversed and applied.

【0045】以上のように、この実施の形態4によれ
ば、室内の温度制御において躯体の蓄熱を有効に活用し
て省エネルギーを図り、快適な空間が実現できる。な
お、上記実施の形態では、実施の形態1の構成の空気調
和システムについて説明したが、実施の形態2の構成の
空気調和システムでも同様に行われることはいうまでも
ない。
As described above, according to the fourth embodiment, it is possible to save energy by effectively utilizing the heat storage of the skeleton in the indoor temperature control, and to realize a comfortable space. In the above embodiment, the air conditioning system having the configuration of the first embodiment has been described. However, it goes without saying that the same applies to the air conditioning system of the second embodiment.

【0046】実施の形態5.図8はこの発明の実施の形
態5による空気調和システムの冷房運転時の室温と室内
湿度の経時変化を示す図であり、図9はこの空気調和シ
ステムの室内風速とPMVの関係を示す図である。な
お、空気調和システムの構成図は図1と同様である。
Embodiment 5 FIG. FIG. 8 is a diagram showing changes over time in room temperature and indoor humidity during cooling operation of an air conditioning system according to Embodiment 5 of the present invention, and FIG. 9 is a diagram showing the relationship between indoor wind speed and PMV in this air conditioning system. is there. The configuration diagram of the air conditioning system is the same as that of FIG.

【0047】次に、動作について説明する。まず、予め
設定された室内温度を26℃とする。深夜時間帯の22
時から8時までが蓄熱運転時間帯であり、8時から20
時までが空調運転時間帯である。立ち上がりの8時には
室内使用開始とともに換気による外気水分の進入や人体
からの発汗により湿度が急激に上昇する。しかし、室温
は躯体蓄熱により低く空調機1は稼動しない。躯体蓄熱
は顕熱性の蓄熱であるため、湿度除去はできず、空調機
1を稼動してしまうと、室温がさらに低下して快適性が
損なわれる。なお、9時以降は、室内使用により室温が
26℃以上になるため、室内温度26℃になるように空
調機1の追加運転が行われ、湿度増加分が除去される。
Next, the operation will be described. First, the preset indoor temperature is set to 26 ° C. Late night time 22
From 8:00 to 8:00 is the heat storage operation time zone, from 8:00 to 20
Until the time is the air conditioning operation time zone. At 8 o'clock, the humidity rises sharply due to the entry of outside air moisture due to ventilation and perspiration from the human body at the beginning of indoor use. However, the room temperature is low due to the heat storage of the skeleton, and the air conditioner 1 does not operate. Since the frame heat storage is sensible heat storage, the humidity cannot be removed, and when the air conditioner 1 is operated, the room temperature is further lowered and the comfort is impaired. After 9:00, since the room temperature becomes 26 ° C. or higher due to indoor use, the air conditioner 1 is additionally operated so that the room temperature becomes 26 ° C., and the increased humidity is removed.

【0048】ここで、図9により、室内風速とPMVの
関係を示す。例えば、室内風速0.1m/sの状態では
PMV=0.3となるが、室内風速を0.2m/sまで
上げるとドラフト感によりPMV=0まで下がる。よっ
て湿度が高いとPMVは上がる傾向にあるが、室内風速
を上げればPMVを下げることができる。
FIG. 9 shows the relationship between the indoor wind speed and the PMV. For example, when the indoor wind speed is 0.1 m / s, PMV becomes 0.3, but when the indoor wind speed is increased to 0.2 m / s, it drops to PMV = 0 due to the draft feeling. Therefore, the PMV tends to increase when the humidity is high, but the PMV can be decreased by increasing the indoor wind speed.

【0049】そこで、室内11の温度センサー15a、
湿度センサー16aの温度湿度検出値より制御器17で
PMVを演算し、送風手段2の風量を上げて、PMVが
適正な値になるようにする。室内風速と送風手段2の吹
出風速の関係は、室内11の天井高さの関係から予め演
算して制御器17に設定しておく
Therefore, the temperature sensor 15a in the room 11
The controller 17 calculates the PMV from the detected temperature and humidity of the humidity sensor 16a, and increases the air volume of the blower 2 so that the PMV becomes an appropriate value. The relationship between the indoor wind speed and the blowing wind speed of the blowing means 2 is calculated in advance from the relationship between the ceiling height of the room 11 and set in the controller 17.

【0050】例えば、天井高さ2.5mの場合には、 吹出風速 室内風速(居住域、床面から1.2m高さ) 2.0(m/s) → 0.10(m/s) 3.0(m/s) → 0.15(m/s) 4.0(m/s) → 0.20(m/s) 上記のように表すことができる。For example, in the case of a ceiling height of 2.5 m, the blowing wind speed is the indoor wind speed (1.2 m height from the living area, floor) 2.0 (m / s) → 0.10 (m / s) 3.0 (m / s) → 0.15 (m / s) 4.0 (m / s) → 0.20 (m / s) It can be expressed as described above.

【0051】以上のように、この実施の形態5によれ
ば、冷房運転にあたり、空調開始時の室温が低く、湿度
が高い場合に送風手段2の風量を所定値以上にしてPM
Vが適正な値になるように制御するので、高湿度による
不快感を取り除き快適な空間が実現できる。なお、上記
実施の形態では、実施の形態1の構成の空気調和システ
ムについて説明したが、実施の形態2の構成の空気調和
システムでも同様に行われることはいうまでもない。
As described above, according to the fifth embodiment, in the cooling operation, when the room temperature at the start of air conditioning is low and the humidity is high, the air volume of the blowing
Since V is controlled so as to have an appropriate value, a comfortable space can be realized by removing discomfort due to high humidity. In the above embodiment, the air conditioning system having the configuration of the first embodiment has been described. However, it goes without saying that the same applies to the air conditioning system of the second embodiment.

【0052】実施の形態6.図10はこの発明の実施の
形態6による空気調和システムの温度、湿度の関係を示
した空気線図であり、吸い込み空気状態と露点の関係を
示す。なお、空気調和システムの構成図は図1と同様で
ある。
Embodiment 6 FIG. FIG. 10 is a psychrometric chart showing the relationship between the temperature and the humidity of the air-conditioning system according to Embodiment 6 of the present invention, and shows the relationship between the state of the sucked air and the dew point. The configuration diagram of the air conditioning system is the same as that of FIG.

【0053】次に、動作について説明する。冷房運転に
あたり、天井内12で深夜電力時間帯の蓄熱運転を行う
と、スラブ10の温度が低下し、天井内12に吸込口9
などから高湿の空気が進入した場合、スラブ10が結露
する恐れがある。
Next, the operation will be described. In the cooling operation, when the heat storage operation is performed in the ceiling 12 in the midnight power time zone, the temperature of the slab 10 decreases, and the inlet 9 is inserted into the ceiling 12.
If high-humidity air enters from such as, there is a risk that the slab 10 will condense.

【0054】図10に示すように、吸込空気状態が温度
Ta、湿度Raであるとすると、空気線図より露点Tw
は一義的に決まる。スラブ10の温度を露点Tw以上に
しておけば、結露する恐れはなくなる。そこで、天井内
12に設置された温度センサー15bと湿度センサー1
6bにより温度湿度を検出し、制御器17において露点
を演算する。一方、スラブ10に取り付けられた温度セ
ンサー15dにより躯体温度を検出する。よって、この
躯体温度が露点Tw以上になるように、送風手段2、熱
交換器3の発停を制御する。
As shown in FIG. 10, assuming that the suction air state is temperature Ta and humidity Ra, the dew point Tw is obtained from the psychrometric chart.
Is uniquely determined. If the temperature of the slab 10 is equal to or higher than the dew point Tw, there is no danger of dew condensation. Therefore, the temperature sensor 15b and the humidity sensor 1
6b detects the temperature and humidity, and the controller 17 calculates the dew point. On the other hand, the temperature of the skeleton is detected by the temperature sensor 15d attached to the slab 10. Therefore, the start and stop of the blower 2 and the heat exchanger 3 are controlled so that the temperature of the skeleton becomes equal to or higher than the dew point Tw.

【0055】以上のように、この実施の形態6によれ
ば、天井内の温度湿度の両方を検知し露点を演算し、検
出される躯体温度がこの露点以上になるように制御する
ので、スラブへの結露を防止することができる。なお、
上記実施の形態では、実施の形態1の構成の空気調和シ
ステムについて説明したが、実施の形態2の構成の空気
調和システムでも同様に行われることはいうまでもな
い。
As described above, according to the sixth embodiment, both the temperature and the humidity inside the ceiling are detected, the dew point is calculated, and the control is performed so that the detected body temperature is equal to or higher than the dew point. Condensation can be prevented. In addition,
In the above embodiment, the air-conditioning system having the configuration of the first embodiment has been described. However, it goes without saying that the air-conditioning system having the configuration of the second embodiment is similarly performed.

【0056】[0056]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。室内側
熱交換器、送風手段、この送風手段による前記熱交換器
からの通風を建築物躯体に吹き付ける方向と建築物室内
に吹出す方向のいずれかに切換える通風切換手段を有
し、建築物躯体へ蓄熱を行う空気調和機と、建築物室内
の空気温度を検出する室内空気温度検出手段と、躯体蓄
熱された建物躯体の温度を検出する建物躯体温度検出手
段と、前記室内空気温度検出手段による空気温度と前記
建物躯体温度検出手段による建物躯体温度に基づいて体
感温度を演算する体感温度演算手段と、この体感温度演
算手段による体感温度が設定温度になるように前記空気
調和機を制御する制御手段とを備えたので、体感温度の
変動の少ない快適性の高い暖房空間を実現でき、床面温
度が高い場合には室温を低めに制御することになり、暖
めすぎによる無駄もなく省エネルギー性の高い運転が可
能となる。
Since the present invention is configured as described above, it has the following effects. An indoor heat exchanger, a blowing means, and a ventilation switching means for switching the ventilation from the heat exchanger by the blowing means to either a direction of blowing the building frame or a direction of blowing the building chamber. An air conditioner that stores heat in the building, an indoor air temperature detecting unit that detects an air temperature in the building room, a building skeleton temperature detecting unit that detects a temperature of the building skeleton whose thermal storage is performed, and the indoor air temperature detecting unit. A perceived temperature calculating means for calculating a perceived temperature based on an air temperature and a building frame temperature by the building frame temperature detecting means, and a control for controlling the air conditioner such that the perceived temperature by the perceived temperature calculating means becomes a set temperature. Means, it is possible to realize a highly comfortable heating space with less fluctuation of the perceived temperature, and if the floor surface temperature is high, the room temperature will be controlled lower, and if the floor surface temperature is too high, A highly energy-saving operation without also becomes possible spoiled.

【0057】また、室内側熱交換器、送風手段、この送
風手段による前記熱交換器からの通風を建築物躯体に吹
き付ける方向と建築物室内に吹出す方向のいずれかに切
換える通風切換手段を有し、建築物躯体へ蓄熱を行う空
気調和機と、建築物室内の空気温度を検出する室内空気
温度検出手段と、前記熱交換器の吸入空気温度を検出す
る吸入空気温度検出手段と、この吸入空気温度検出手段
による前記熱交換器の吸入空気温度および前記室内空気
温度検出手段による室内の空気温度から躯体蓄熱された
建物躯体の温度を推論する建物躯体温度推論手段と、前
記室内空気温度検出手段による空気温度と前記建物躯体
温度推論手段による建物躯体温度に基づいて体感温度を
演算する体感温度演算手段と、この体感温度演算手段に
よる体感温度が設定温度になるように前記空気調和機を
制御する制御手段とを備えたので、体感温度の変動の少
ない快適性の高い暖房空間を実現でき、床面温度が高い
場合には室温を低めに制御することになり、暖めすぎに
よる無駄もなく省エネルギー性の高い運転が可能であ
り、さらに、熱交換器吸込空気温度と室温から建物躯体
の床面温度および天井面温度を推論し、体感温度の演算
を安価な構成を実現できる。
Further, there is provided an indoor heat exchanger, a ventilation means, and ventilation switching means for switching the direction of the ventilation from the heat exchanger to the building frame or the direction of blowing the ventilation from the heat exchanger into the building room. An air conditioner that stores heat in a building body; an indoor air temperature detecting unit that detects an air temperature in a building room; an intake air temperature detecting unit that detects an intake air temperature of the heat exchanger; Building skeleton temperature inference means for inferring the temperature of the building skeleton whose skeleton is stored from the intake air temperature of the heat exchanger by the air temperature detection means and the indoor air temperature by the indoor air temperature detection means, and the indoor air temperature detection means Temperature calculating means for calculating the temperature based on the air temperature and the building temperature by the building temperature estimating means, and the temperature detected by the temperature calculating means. Control means for controlling the air conditioner so as to be at a temperature, so that it is possible to realize a highly comfortable heating space with less fluctuation of the perceived temperature, and to control the room temperature lower when the floor surface temperature is high. In other words, high energy-saving operation is possible without wasting due to overheating, and the floor temperature and ceiling temperature of the building frame are inferred from the heat exchanger intake air temperature and room temperature to calculate the sensible temperature. An inexpensive configuration can be realized.

【0058】さらに、暖房運転時に、前記室内空気温度
検出手段による空気温度が前記建物躯体温度検出手段ま
たは前記建物躯体温度推論手段による建物躯体温度より
も高い状態で所定時間推移した場合には、前記送風手段
の送風量を上げるので、暖房運転にあたり、空調負荷が
大きい場合などスラブ温度低下が著しく、室温が高く、
床面温度が高い場合には、送風手段の風量を所定以上に
して室内空気のサーキュレーション運転を行うことによ
り、上下温度分布が改善され快適な空間が実現できる。
Further, in the heating operation, when the air temperature by the indoor air temperature detecting means has been higher than the building temperature by the building temperature detecting means or the building temperature inferring means for a predetermined time, Since the amount of air blown by the air blowing means is increased, the slab temperature drops significantly when the air-conditioning load is large during heating operation, and the room temperature is high.
When the floor surface temperature is high, the upper and lower temperature distribution is improved and a comfortable space can be realized by performing the circulation operation of the indoor air by setting the air volume of the blowing means to a predetermined value or more.

【0059】また、前記室内空気温度検出手段による室
内の空気温度が前記設定温度に達しない場合には、前記
空気調和機の熱交換器による熱を前記送風手段により建
築物室内へ送付し、前記室内の空気温度が前記設定温度
に達している場合には、前記建築物躯体による熱を前記
送風手段により建物室内へ送付するので、室内の温度制
御において躯体の蓄熱を有効に活用して省エネルギーを
図り、快適な空間が実現できる。
When the indoor air temperature detected by the indoor air temperature detecting means does not reach the set temperature, the heat from the heat exchanger of the air conditioner is sent into the building room by the blowing means. When the indoor air temperature has reached the set temperature, heat from the building skeleton is sent into the building room by the blowing means, so that in the indoor temperature control, the heat storage of the skeleton is effectively used to save energy. A comfortable space can be realized.

【0060】また、建築物躯体への冷房蓄熱後に空気調
和機を稼動させる場合に、前記送風手段の送風量を上げ
るので、冷房運転にあたり、空調開始時の室温が低く、
湿度が高い場合に送風手段の風量を上げてPMVが適正
な値になるように制御することにより、高湿度による不
快感を取り除き快適な空間が実現できる。
When the air conditioner is operated after cooling and storing heat in the building frame, the air volume of the air blowing means is increased, so that in cooling operation, the room temperature at the start of air conditioning is low.
When the humidity is high, the air volume of the air blowing means is increased to control the PMV to an appropriate value, so that uncomfortable feeling due to the high humidity can be eliminated and a comfortable space can be realized.

【0061】また、建築物躯体近傍の温度を検出する建
築物躯体近傍温度検出手段と、建築物躯体近傍の湿度を
検出する建築物躯体近傍湿度検出手段と、この建築物躯
体近傍湿度検出手段による湿度と前記建築物躯体近傍温
度検出手段による建築物躯体近傍の温度に基づいて露点
温度を演算する露点温度演算手段とを備え、前記建物躯
体温度検出手段または前記建物躯体温度推論手段による
建物躯体の温度が前記露点温度演算手段による露点温度
以上になるように前記制御手段により前記空気調和機の
熱交換器または送風手段を制御するので、建築物躯体へ
の結露を防止することができる。
[0061] Further, a temperature near the building body detecting means for detecting a temperature near the building body, a humidity detecting means near the building body for detecting humidity near the building body, and a humidity detecting means near the building body. Dew point temperature calculating means for calculating a dew point temperature based on the humidity and the temperature near the building skeleton by the building skeleton near temperature detecting means, the building skeleton temperature detecting means or the building skeleton temperature inferring means by the building skeleton temperature inferring means Since the control means controls the heat exchanger or the air blowing means of the air conditioner so that the temperature becomes equal to or higher than the dew point temperature of the dew point temperature calculating means, dew condensation on the building body can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す空気調和シス
テムの構成図である。
FIG. 1 is a configuration diagram of an air conditioning system according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1を示す空気調和シス
テムの室内温度、平均輻射温度に対するPMVの関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a room temperature and an average radiation temperature of PMV in the air-conditioning system according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態1を示す空気調和シス
テムの室内温度、床面温度に対する体感温度の関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the sensible temperature and the room temperature and the floor surface temperature of the air-conditioning system according to Embodiment 1 of the present invention.

【図4】 この発明の実施の形態2を示す空気調和シス
テムのスラブ内温度分布の経時変化を示す図である。
FIG. 4 is a diagram showing a temporal change of a temperature distribution in a slab of the air-conditioning system according to Embodiment 2 of the present invention.

【図5】 この発明の実施の形態2を示す空気調和シス
テムの天井内温度、床面温度の経時変化を示す図であ
る。
FIG. 5 is a diagram showing a temporal change in a ceiling temperature and a floor surface temperature of the air-conditioning system according to Embodiment 2 of the present invention.

【図6】 この発明の実施の形態3を示す空気調和シス
テムの床面からの高さに対する室内温度分布の関係を示
す図である。
FIG. 6 is a diagram illustrating a relationship between a height from a floor surface and a room temperature distribution of the air-conditioning system according to Embodiment 3 of the present invention.

【図7】 この発明の実施の形態4を示す空気調和シス
テムの設定温度に対する室温の経時変化を示す図であ
る。
FIG. 7 is a diagram showing a change over time of a room temperature with respect to a set temperature of the air-conditioning system according to Embodiment 4 of the present invention.

【図8】 この発明の実施の形態5を示す空気調和シス
テムの冷房運転時の室温と室内湿度の経時変化を示す図
である。
FIG. 8 is a diagram showing changes over time in room temperature and indoor humidity during a cooling operation of the air-conditioning system according to Embodiment 5 of the present invention.

【図9】 この発明の実施の形態5を示す空気調和シス
テムの室内風速とPMVの関係を示す図である。
FIG. 9 is a diagram showing a relationship between indoor wind speed and PMV of the air-conditioning system according to Embodiment 5 of the present invention.

【図10】 この発明の実施の形態6を示す空気調和シ
ステムのの温度、湿度の関係を示した空気線図である。
FIG. 10 is an air line diagram showing a relationship between temperature and humidity of the air conditioning system according to Embodiment 6 of the present invention.

【図11】 従来の空気調和システムの構成図である。FIG. 11 is a configuration diagram of a conventional air conditioning system.

【符号の説明】[Explanation of symbols]

1 空気調和機、 2 送風手段、 3 熱交換器、
4 通風切換手段、5 躯体側吹出口、 6 ダクト、
7 室内側吹出口、 8 空調機吸込口、9 吸込
口、 10 スラブ、 11 室内、 12 天井内、
13 天井、 15a 温度センサー、 15b 温
度センサー、 15c 温度センサー、 15d 温度
センサー、 16a 湿度センサー、 16b 湿度セ
ンサー、 17 制御器。
1 air conditioner, 2 blowing means, 3 heat exchanger,
4 ventilation switching means, 5 skeleton side outlet, 6 duct,
7 indoor side outlet, 8 air conditioner inlet, 9 inlet, 10 slab, 11 indoor, 12 ceiling,
13 ceiling, 15a temperature sensor, 15b temperature sensor, 15c temperature sensor, 15d temperature sensor, 16a humidity sensor, 16b humidity sensor, 17 controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 守也 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 河西 智彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L060 AA03 AA06 AA07 AA08 CC01 CC02 CC06 CC08 DD02 DD08 EE05 EE41  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Moriya Miyamoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Tomohiko Kawanishi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo 3 F term in Ryo Denki Co., Ltd. (reference) 3L060 AA03 AA06 AA07 AA08 CC01 CC02 CC06 CC08 DD02 DD08 EE05 EE41

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 室内側熱交換器、送風手段、この送風手
段による前記熱交換器からの通風を建築物躯体に吹き付
ける方向と建築物室内に吹出す方向のいずれかに切換え
る通風切換手段を有し、建築物躯体へ蓄熱を行う空気調
和機と、 建築物室内の空気温度を検出する室内空気温度検出手段
と、 躯体蓄熱された建物躯体の温度を検出する建物躯体温度
検出手段と、 前記室内空気温度検出手段による空気温度と前記建物躯
体温度検出手段による建物躯体温度に基づいて体感温度
を演算する体感温度演算手段と、 この体感温度演算手段による体感温度が設定温度になる
ように前記空気調和機を制御する制御手段とを備えたこ
とを特徴とする空気調和システム。
1. An indoor heat exchanger, a ventilation means, and a ventilation switching means for switching the ventilation from the heat exchanger by the ventilation means to either a direction in which the ventilation is blown into a building frame or a direction in which the ventilation is blown into a building room. An air conditioner that stores heat in the building frame; an indoor air temperature detecting unit that detects an air temperature in the building room; a building frame temperature detecting unit that detects the temperature of the building frame stored in the building; A perceived temperature calculating means for calculating a perceived temperature based on the air temperature detected by the air temperature detecting means and the building frame temperature detected by the building frame temperature detecting means; and An air conditioning system comprising: a control unit for controlling the air conditioner.
【請求項2】 室内側熱交換器、送風手段、この送風手
段による前記熱交換器からの通風を建築物躯体に吹き付
ける方向と建築物室内に吹出す方向のいずれかに切換え
る通風切換手段を有し、建築物躯体へ蓄熱を行う空気調
和機と、 建築物室内の空気温度を検出する室内空気温度検出手段
と、 前記熱交換器の吸入空気温度を検出する吸入空気温度検
出手段と、 この吸入空気温度検出手段による前記熱交換器の吸入空
気温度および前記室内空気温度検出手段による室内の空
気温度から躯体蓄熱された建物躯体の温度を推論する建
物躯体温度推論手段と、 前記室内空気温度検出手段による空気温度と前記建物躯
体温度推論手段による建物躯体温度に基づいて体感温度
を演算する体感温度演算手段と、 この体感温度演算手段による体感温度が設定温度になる
ように前記空気調和機を制御する制御手段とを備えたこ
とを特徴とする空気調和システム。
2. An indoor heat exchanger, a blowing means, and a ventilation switching means for switching the direction of the ventilation from the heat exchanger to the building frame or the direction of blowing the ventilation from the heat exchanger into the building room. An air conditioner that stores heat in a building body; an indoor air temperature detecting unit that detects an air temperature in a building room; an intake air temperature detecting unit that detects an intake air temperature of the heat exchanger; A building frame temperature inferring means for inferring a temperature of the building frame whose building heat is stored from an intake air temperature of the heat exchanger by an air temperature detecting means and an indoor air temperature by the indoor air temperature detecting means; and the indoor air temperature detecting means Temperature calculating means for calculating the temperature based on the air temperature and the building temperature by the building temperature estimating means; and the temperature setting by the temperature calculating means. Air conditioning system, characterized in that a control means for controlling the air conditioner so that every time.
【請求項3】 暖房運転時に、前記室内空気温度検出手
段による空気温度が前記建物躯体温度検出手段または前
記建物躯体温度推論手段による建物躯体温度よりも高い
状態で所定時間推移した場合には、前記送風手段の送風
量を上げることを特徴とする請求項1または2記載の空
気調和システム。
3. During a heating operation, if the air temperature by the indoor air temperature detecting means has been higher than the building temperature by the building temperature detecting means or the building temperature inferring means for a predetermined period of time, The air conditioning system according to claim 1 or 2, wherein the air blowing amount of the air blowing means is increased.
【請求項4】 前記室内空気温度検出手段による室内の
空気温度が前記設定温度に達しない場合には、前記空気
調和機の熱交換器による熱を前記送風手段により建築物
室内へ送付し、前記室内の空気温度が前記設定温度に達
している場合には、前記建築物躯体による熱を前記送風
手段により建物室内へ送付することを特徴とする請求項
1または2記載の空気調和システム。
4. When the indoor air temperature detected by the indoor air temperature detecting means does not reach the set temperature, heat from the heat exchanger of the air conditioner is sent into the building room by the blowing means, The air conditioning system according to claim 1 or 2, wherein when the indoor air temperature has reached the set temperature, the heat generated by the building body is sent into the building room by the blowing means.
【請求項5】 建築物躯体への冷房蓄熱後に空気調和機
を稼動させる場合に、前記送風手段の送風量を上げるこ
とを特徴とする請求項1または2記載の空気調和システ
ム。
5. The air conditioning system according to claim 1, wherein when the air conditioner is operated after cooling and storing the heat in the building frame, the amount of air blown by the air blowing means is increased.
【請求項6】 建築物躯体近傍の温度を検出する建築物
躯体近傍温度検出手段と、 建築物躯体近傍の湿度を検出する建築物躯体近傍湿度検
出手段と、 この建築物躯体近傍湿度検出手段による湿度と前記建築
物躯体近傍温度検出手段による建築物躯体近傍の温度に
基づいて露点温度を演算する露点温度演算手段とを備
え、 前記建物躯体温度検出手段または前記建物躯体温度推論
手段による建物躯体の温度が前記露点温度演算手段によ
る露点温度以上になるように前記制御手段により前記空
気調和機の熱交換器または送風手段を制御することを特
徴とする請求項1または2記載の空気調和システム。
6. A near-building temperature detecting means for detecting a temperature near the building body, a near-building humidity detecting means for detecting humidity near the building body, and a near-humidity detecting means near the building body. Dew point temperature calculating means for calculating a dew point temperature based on the humidity and the temperature near the building frame by the building frame temperature detecting means, wherein the building frame temperature detecting means or the building frame temperature inference means by the building frame temperature inferring means. The air conditioning system according to claim 1 or 2, wherein the control means controls a heat exchanger or a blowing means of the air conditioner such that a temperature is equal to or higher than a dew point temperature obtained by the dew point temperature calculating means.
JP2000021696A 2000-01-31 2000-01-31 Air-conditioning system Pending JP2001208394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021696A JP2001208394A (en) 2000-01-31 2000-01-31 Air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021696A JP2001208394A (en) 2000-01-31 2000-01-31 Air-conditioning system

Publications (1)

Publication Number Publication Date
JP2001208394A true JP2001208394A (en) 2001-08-03

Family

ID=18548072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021696A Pending JP2001208394A (en) 2000-01-31 2000-01-31 Air-conditioning system

Country Status (1)

Country Link
JP (1) JP2001208394A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145389A (en) * 2004-11-19 2006-06-08 Sanki Eng Co Ltd Temperature sensor
JP2007032933A (en) * 2005-07-27 2007-02-08 Daikin Ind Ltd Air conditioner
JP2007155174A (en) * 2005-12-02 2007-06-21 Showa Tansan Co Ltd Heat pump system, air conditioner or refrigerating machine system using zeotropic refrigerant mixture
JP2007183032A (en) * 2006-01-05 2007-07-19 Toshiba Corp Robot device and system for environmental control
JP2007298257A (en) * 2006-05-08 2007-11-15 Sekisui Chem Co Ltd Comfort evaluation method
JP2009097740A (en) * 2007-10-15 2009-05-07 Sanken Setsubi Kogyo Co Ltd Heating/cooling system
CN102338446A (en) * 2010-07-16 2012-02-01 三菱电机株式会社 Air conditioner
CN103604200A (en) * 2013-11-25 2014-02-26 嘉兴南洋职业技术学院 Central-air-conditioning air supply system
JP2014081122A (en) * 2012-10-16 2014-05-08 Mitsubishi Electric Corp Air conditioner
JP2019199986A (en) * 2018-05-16 2019-11-21 清水建設株式会社 Air flow control system
CN114811732A (en) * 2022-04-29 2022-07-29 海信空调有限公司 Fresh air purification air conditioner and control method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145389A (en) * 2004-11-19 2006-06-08 Sanki Eng Co Ltd Temperature sensor
JP4654008B2 (en) * 2004-11-19 2011-03-16 三機工業株式会社 Temperature sensor
JP2007032933A (en) * 2005-07-27 2007-02-08 Daikin Ind Ltd Air conditioner
JP4581891B2 (en) * 2005-07-27 2010-11-17 ダイキン工業株式会社 Air conditioner
JP2007155174A (en) * 2005-12-02 2007-06-21 Showa Tansan Co Ltd Heat pump system, air conditioner or refrigerating machine system using zeotropic refrigerant mixture
JP2007183032A (en) * 2006-01-05 2007-07-19 Toshiba Corp Robot device and system for environmental control
JP2007298257A (en) * 2006-05-08 2007-11-15 Sekisui Chem Co Ltd Comfort evaluation method
JP4693689B2 (en) * 2006-05-08 2011-06-01 積水化学工業株式会社 Comfort evaluation method
JP2009097740A (en) * 2007-10-15 2009-05-07 Sanken Setsubi Kogyo Co Ltd Heating/cooling system
JP2012021735A (en) * 2010-07-16 2012-02-02 Mitsubishi Electric Corp Air conditioner
CN102338446A (en) * 2010-07-16 2012-02-01 三菱电机株式会社 Air conditioner
CN102338446B (en) * 2010-07-16 2014-08-27 三菱电机株式会社 Air conditioner
US8826678B2 (en) 2010-07-16 2014-09-09 Mitsubishi Electric Corporation Air conditioner
JP2014081122A (en) * 2012-10-16 2014-05-08 Mitsubishi Electric Corp Air conditioner
CN103604200A (en) * 2013-11-25 2014-02-26 嘉兴南洋职业技术学院 Central-air-conditioning air supply system
CN103604200B (en) * 2013-11-25 2016-01-20 嘉兴南洋职业技术学院 A kind of air supply system of central air-conditioning
JP2019199986A (en) * 2018-05-16 2019-11-21 清水建設株式会社 Air flow control system
JP7107740B2 (en) 2018-05-16 2022-07-27 清水建設株式会社 airflow control system
CN114811732A (en) * 2022-04-29 2022-07-29 海信空调有限公司 Fresh air purification air conditioner and control method thereof
CN114811732B (en) * 2022-04-29 2023-08-29 海信空调有限公司 Fresh air purifying air conditioner and control method thereof

Similar Documents

Publication Publication Date Title
JP4703692B2 (en) Air conditioning control system, air supply switching controller used therefor, and air conditioning control method
JP5175643B2 (en) Air conditioning control system and air conditioning control device
JP6072561B2 (en) Air conditioning system
JP2013088087A (en) Air conditioner
JP2001280663A (en) Air conditioner and method for controlling it
JPH11294839A (en) Whole building air conditioning and ventilating system
JP2010210200A (en) Air conditioner
JP2001208394A (en) Air-conditioning system
JP2000257939A (en) Air conditioner
JP2014142099A (en) Air conditioner
JP4042480B2 (en) Air conditioner
JP2000283535A (en) Radiation air conditioner
JP6219107B2 (en) Air conditioning method and air conditioning system used in the air conditioning method
JP4985018B2 (en) Radiant air conditioning system
JP2019132526A (en) Air conditioning system
JP2003120945A (en) Air conditioner
CN112594880A (en) Control method, air conditioner, processor and storage medium
KR20000034767A (en) Method of controlling air conditioner
JP6259997B2 (en) Supply / exhaust ventilator
JP2002277000A (en) Air conditioning system
JP7386388B2 (en) ventilation system
JP2013088072A (en) Air conditioner
JPH0526508A (en) Air conditioner
JPH1151448A (en) Radiant air conditioning system
JP2014142098A (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040722