JP2013083883A - ドライビングシミュレータ - Google Patents

ドライビングシミュレータ Download PDF

Info

Publication number
JP2013083883A
JP2013083883A JP2011225037A JP2011225037A JP2013083883A JP 2013083883 A JP2013083883 A JP 2013083883A JP 2011225037 A JP2011225037 A JP 2011225037A JP 2011225037 A JP2011225037 A JP 2011225037A JP 2013083883 A JP2013083883 A JP 2013083883A
Authority
JP
Japan
Prior art keywords
gaze position
visual field
subject
field image
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011225037A
Other languages
English (en)
Inventor
Masayasu Azuma
真康 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011225037A priority Critical patent/JP2013083883A/ja
Publication of JP2013083883A publication Critical patent/JP2013083883A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】被験者の前方注視位置にかかわらず、被験者の運転模擬操作に応じた適切な速度感を被験者に与えることができるドライビングシミュレータを提供する。
【解決手段】制御装置20は、「人の車両制御動作モデル」に基づいて演算された、操舵に関係する車両の運動に関するパラメータと、被験者の実際の操作に基づいて演算された対応するパラメータとを比較することにより、被験者の前方注視位置と基準前方注視位置との遠近関係を判定する。被験者の前方注視位置が基準前方注視位置より近いと判定された場合には、制御装置20は、視野画像の流れの速度が遅くなるように、視野画像生成装置10を制御する。一方、被験者の前方注視位置が基準前方注視位置より遠いと判定された場合には、制御装置20は、視野画像の流れの速度が速くなるように、視野画像生成装置10を制御する。
【選択図】図2

Description

この発明は、運転者の前方視野を模擬する機能を備えたドライビングシミュレータに関する。
運転者の前方視野(走行視界)、車両挙動および操舵反力を模擬することが可能なドライビングシュミレータが開発されている(例えば下記特許文献1,2参照)。
前方視野は、視野画像生成装置によって生成される視野画像を被験者に提示することによって模擬される。視野画像生成装置は、例えば、コンピュータグラフックス(CG)によってコース、他車両等を含む視野画像を生成する。
車両挙動は、6軸のモーションアクチュエータ、ターンテーブル、可動レール等の揺動装置によってコックピットを揺動させることによって模擬される。操舵反力は、電動モータ、油圧装置等の操舵反力付加装置によってステアリングホイールに操舵反力を与えることによって模擬される。
特開2000−566687号公報 特開2000−56668号公報 特開平5−224586号公報 特開2009−40107号公報
「自動車の運動と制御」著者 安部正人、発行所 学校法人 東京電機大学 東京電機大学出版局、発行日 2009年9月20日
ドライビングシミュレータにおいては、被験者の運転模擬操作に応じた各種操作量と車両モデルとから、車両の運動に関する各種パラメータを演算し、演算された各種パラメータに基づいて、視野画像生成装置、揺動装置および操舵反力付加装置が制御される。これにより、実車両相当の動作を実現している。
しかしながら、設備規模の制約、各装置の性能面での制約等から、前方視野、車両挙動および操舵反力を、実車両と全く同じに模擬することは困難である。例えば、揺動装置では、実車両相当の加速度を被験者(運転者)に与えることは困難であった。また、視野画像生成装置によって生成される視野画像では、視野角が制限されるため、実車両相当の前方視野を被験者に与えることは困難であった。このため、被験者が感じる加速度感や速度感が、実車を運転している場合の感覚と異なり、運転模擬操作にも影響を与える。
実車両とドライビングシミュレータとの間の運転感覚の差が小さいほど、ドライビングシミュレータを用いて行われる各種評価の精度が向上する。このため、実車両とドライビングシミュレータとの間の運転感覚の差をできるたけ小さくすることが望ましい。
この発明の目的は、被験者の前方注視位置にかかわらず、被験者の運転模擬操作に応じた適切な速度感を被験者に与えることができるドライビングシミュレータを提供することである。
上記の目的を達成するための請求項1に記載の発明は、被験者の運転模擬操作に応じた各種操作量を検出する操作量検出手段(4b,4c,6b,7b)と、前記操作量検出手段によって検出される各種操作量に基づいて、前記被験者の前方視野の変化を模擬した視野画像を生成して前記被験者に提示する視野画像模擬手段(9,10)と、前記被験者の前方注視位置と予め設定された基準前方注視位置との遠近関係を判定する判定手段(20)と、前記判定手段の判定結果に基づいて、前記視野画像模擬手段によって生成される視野画像の流れの速度を制御する制御手段(20)と、を含むドライビングシミュレータ(1)である。なお、括弧内の英数字は、後述の実施形態における対応構成要素等を表すが、むろん、この発明の範囲は当該実施形態に限定されない。以下、この項において同じ。
この発明では、被験者の前方注視位置と予め設定された基準前方注視位置との遠近関係の判定結果に基づいて、視野画像模擬手段によって生成される視野画像の流れの速度が制御される。このため、被験者の前方注視位置にかかわらず、被験者の運転模擬操作に応じた適切な速度感を被験者に与えることが可能となる。これにより、ドライビングシミュレータを用いて行われる各種評価の精度を向上させることができる。
車両の制御者は、車両の前方を注視し、その前方注視位置での車両の予測位置と走行コースとの誤差が零となるようにフィードバック制御を行うという考え方を、人の伝達関数を用いてモデル化されたモデルを、人の車両制御動作モデルとする。前記判定手段は、前記人の車両制御動作モデルに基づいて求められる、操舵に関係する車両の運動に関するパラメータと、前記操作量検出手段によって検出される各種操作量に基づいて求められる対応するパラメータとを比較することにより、前記被験者の前方注視位置と予め設定された基準前方注視位置との遠近関係を判定するように構成されていてもよい。なお、操舵に関係する車両の運動とは、操舵によって生じる車両の運動をいう。
前記判定手段は、前記被験者の前方注視位置を検出する前方注視位置検出手段(21)と、前記前方注視位置検出手段によって検出された前記被験者の前方注視位置と、前記基準前方注視位置とを比較することによって、前記被験者の前方注視位置と予め設定された基準前方注視位置との遠近関係を判定する手段とを含むものであってもよい。
前記制御手段は、前記判定手段によって、前記被験者の前方注視位置が前記基準前方注視位置より近いと判定されたときに、前記視野画像模擬手段によって生成される視野画像の流れの速度が遅くなるように、前記視野画像模擬手段を制御する手段と、前記判定手段によって、前記被験者の前方注視位置が前記基準前方注視位置より遠いと判定されたときに、前記視野画像模擬手段によって生成される視野画像の流れの速度が速くなるように、前記視野画像模擬手段を制御する手段とを含むものであってもよい。
図1は、本発明の一実施形態に係るドライビングシミュレータの外観を示す斜視図である。 図2は、ドライビングシミュレータの電気的構成を示すブロック図である。 図3は、人の車両制御動作モデルを説明するための模式図である。 図4は、人の車両制御動作モデルを表すブロック図である。 図5は、制御装置によって実行される処理の手順を示すフローチャートである。 図6は、図5のステップS5の前方注視位置に関する遠近関係判定処理の詳細な手順を示すフローチャートである。 図7Aは、第2の周波数f2(波形Bの周波数)が、第1の周波数f1(波形Aの周波数)より高い場合を示す波形図であり、図7Bは、第2の周波数f2(波形Bの周波数)が、第1の周波数f1(波形Aの周波数)より低い場合を示す波形図である。
以下では、この発明の実施形態を、添付図面を参照して詳細に説明する。
図1は、この発明の一実施形態に係るドライビングシミュレータの外観を示す斜視図である。
ドライビングシミュレータ1は、コックピット2と、コックピット2を揺動させるための揺動用アクチュエータ3とを備えている。コックピット2は、底板2aと、底板2a上に設けられる運転席2bと、底板2aの周縁部に設けられる柵2cを有する。
揺動用アクチュエータ3は、一端が底板2aにリンク接続され、他端が床上のベース11にリンク接続された、複数の電動シリンダから構成されている。各電動シリンダの伸縮によりコックピット2を揺動させることが可能となっている。
コックピット2には、ステアリングホイールを模した操作部材4a(以下、単に「ステアリングホイール」という)と、アクセルペダルを模した操作部材6a(以下、単に「アクセルペダル」という)と、ブレーキペダルを模した操作部材7a(以下、単に「ブレーキペダル」という)と、映像表示部9とが設けられている。
図2は、ドライビングシミュレータの電気的構成を示すブロック図である。
ドライビングシミュレータ1は、揺動用アクチュエータ3と、ステアリングホイール4aを含む操舵量入力装置4と、アクセルペダル6aを含む駆動力入力装置6と、ブレーキペダル7aを含む制動力入力装置7と、反力付加用アクチュエータ5と、映像表示部9と、視野映像生成装置10と、制御装置20とを備えている。
操舵量入力装置4は、コックピット2に回転自在に支持されたステアリングホイール4aと、ステアリングホイール4aの回転角である操舵角を検出するための舵角センサ4bと、被験者によってステアリングホイール4aに加えられる操舵トルクを検出するためのトルクセンサ4cとを有する。舵角センサ4bによって検出される操舵角、トルクセンサ4cによって検出される操舵トルクは、制御装置20に入力される。
反力付加用アクチュエータ5は、ステアリングホイール4aに操舵反力を付加するためのものである。反力付加用アクチュエータ5は、操舵反力を発生する電動モータと、電動モータによって発生された操舵反力をステアリングホイール4aに伝達するための減速機構とを備えている。反力付加用アクチュエータ5は、制御装置20によって制御される。
駆動力入力装置6は、コックピット2に踏み込み操作可能に取り付けられるアクセルペダル6aと、アクセルペダル6aの踏み込み量(駆動力)を検出するための駆動力検出用センサ6bとを有する。駆動力検出用センサ6bによって検出される踏み込み量は、制御装置20に入力される。
制動力入力部7は、コックピット2に踏み込み操作可能に取り付けられるブレーキペダル7aと、ブレーキペダル7aの踏み込み量(制動力)を検出するための制動力検出用センサ7bとを有する。制動力検出用センサ7bによって検出される踏み込み量は、制御装置20に入力される。
映像表示部9は、液晶表示装置等の表示器から構成されている。視野映像生成装置10は、被験者の前方視野の変化を模擬した視野画像を生成する。視野映像生成装置10は、例えば、CPUおよびメモリ(ROM、RAM等)を有するマイクロコンピュータから構成されており、コンピュータグラフィクス(CG)により、視野画像を生成する。視野映像生成装置10によって生成された視野画像が映像表示部9に表示される。視野映像生成装置10と映像表示部9とによって、視野画像模擬手段が構成されている。なお、映像表示部9は、プロジェクタであってもよい。その場合には、視野映像生成装置10によって生成された視野画像がプロジェクタによってスクリーンに投影される。
制御装置20は、マイクロコンピュータから構成されており、揺動用アクチュエータ3、反力付加用アクチュエータ5および視野映像生成装置10を制御する。制御装置20は、被験者の運転模擬操作に応じた各種操作量と車両モデルとから、車両挙動や操舵反力に関するパラメータを演算し、視野映像生成装置10、揺動用アクチュエータ3および反力付加用アクチュエータ5を制御する。
被験者の運転模擬操作に応じた各種操作量は、この実施形態では、舵角センサ4bによって検出される操舵角と、トルクセンサ4cによって検出される操舵トルクと、駆動力検出用センサ6bによって検出されるアクセルペダル6aの踏み込み量と、制動力検出用センサ7bによって検出される踏み込み量からなる。
また、この実施形態では、制御装置20は、「人の車両制御動作モデル」に基づいて、操舵に関係する車両の運動に関するパラメータを演算し、演算されたパラメータと、被験者の実際の操作に基づいて演算された対応するパラメータとを比較することにより、被験者が注視している前方位置(以下、「前方注視位置」という)が予め設定された基準前方注視位置より近いか否かを判定する。
操舵に関係する車両の運動とは、操舵によって生じる車両の運動をいう。より具体的には、車両の重心点を原点に、車両の前後方向をx軸、左右方向をy軸、上下方向をz軸とした座標系を想定すると、操舵に関係する車両の運動には、y方向の並進運動(横方向の運動)、z軸回りの回転運動(ヨーイング運動)およびx軸回りの回転運動(ローリング運動)がある。
そして、制御装置20は、前記判定結果に基づいて、視野映像生成装置10によって生成される視野画像の流れの速度を制御する。具体的には、被験者の前方注視位置が基準前方注視位置より近いと判定された場合には、視野画像の流れの速度が遅くなるように、視野映像生成装置10を制御する。
一定速度で車両を運転している場合において、運転者の前方注視位置が近くなるほど、運転者の速度感が増加することが知られている。また、被験者の運転模擬操作に応じた各種操作量と車両モデルとに基づいて視野映像生成装置10から生成される視野画像は、被験者の前方注視位置が基準前方注視位置にあるものとして生成されている。言い換えれば、各種操作量と車両モデルとに基づいて視野映像生成装置10から生成される視野画像は、被験者から被験者の前方注視位置までの距離(以下、「前方注視距離」という)が、基準前方注視位置に対応する基準前方注視距離に等しいものとして、生成されている。したがって、そのような視野画像に対して、被験者が基準前方注視位置より近い位置を注視している場合には、被験者が感じる速度感は、被験者の運転模擬操作に応じた車速よりも速くなる。そこで、視野画像の流れの速度が遅くなるように、視野画像生成装置10を制御することにより、被験者の運転模擬操作に応じた適切な速度感を被験者に与えることができる。
一方、被験者の前方注視位置が基準前方注視位置より遠いと判定された場合には、走行視界の流れの速度が速くなるように、視野画像生成装置10を制御する。被験者が基準前方注視位置より遠い位置を注視している場合には、被験者が感じる速度感は被験者の運転模擬操作に応じた車速よりも遅くなる。そこで、視野画像の流れの速度が速くなるように、視野画像生成装置10を制御することにより、被験者の運転模擬操作に応じた適切な速度感を被験者に与えることができる。
「人の車両制御動作モデル」について説明する。この実施形態では、「人の車両制御動作モデル」は、前記非特許文献1に記載されているように、次のような考え方をモデル化することによって構築されたものである。つまり、車両の制御者は、車両からL(m)前方の位置を注視し、現在の車両の姿勢のまま車両がL(m)進んだとした場合の車両の予測位置と目標コースとの誤差を検知し、誤差が零になるようにフィードバック制御を行なうものと考える。車両からL(m)前方の位置が制御者の前方注視点となる。また、Lは、制御者から制御者の前方注視点までの距離(前方注視距離)となる。
前記非特許文献1に基づいて、より具体的に説明する。車両の制御者によって制御を受けた車両の運動を見るために、図3に示されるような、ゆるやかな曲線を含み、ほぼ直線とみなせるような車両の目標コースを与える。車両は、制御者の制御を受けて、この目標コースに沿った運動を行なおうとするから、コースに沿った方向をX軸、それに直角な方向をY軸とすれば、車両の運動状態は図3のようになる。
図3において、Vは車速であり、δは実舵角(タイヤ角)である。また、図3において、yは車両の横変位、θはヨー角、yOLは前方注視点での目標コースの横変位である。|θ|≪1と考えてよいから、このときの前方注視点での車両の予測位置と目標コースとの誤差εは、次式(1)のようになる。
ε=y+Lθ−yOL …(1)
制御者(人)の伝達関数H(s)は、例えば次式(2)で表される。
H(s)=h(1+τs)e−τLs …(2)
前記式(2)のe−τLs、hおよびτの意義について説明する。一般に人はなんらかの刺激(入力)が与えられてから、動作(出力)が表われるまでにはむだ時間がある。これを示すのがe−τLsであり、むだ時間をτで表している。人が最も負担が少なく、簡単に行うことができる制御動作は、入力信号の大きさに比例した出力信号を出す動作、つまり、比例動作である。これを比例定数hで表している。人は入力信号の変化の速さ(入力信号の微分値)に比例した出力信号を出すという、入力の変化を予測した制御動作、つまり、微分動作を行なうことができる。この微分時間をτで表している。
また、実舵角δに対する車両自体の運動を、δに対するyの伝達関数G(s)およびδに対するθの伝達関数Gθ(s)で示すことにする。δに対するyの伝達関数G(s)は、例えば次式(3)で表される。
Figure 2013083883
sはラプラス演算子である。y(s)およびδ(s)は、yおよびδのラプラス変換である。Gδ y”(0)は、横加速度ゲイン定数であり、定常円旋回時のδに対する横加速度y”の値である。ωおよびζは、操舵に対する車両の応答の固有振動数および減衰比である。lは、ホイールベースであり、l=l+lである。lは、車両重心点と前車軸間の距離であり、lは車両重心点と後車軸間の距離である。Aは、スタビリティファクタである。Kは、前輪1輪当たりのタイヤコーナリングパワーである。Kは、後輪1輪当たりのタイヤコーナリングパワーである。mは、車両の質量である。Vは車両の走行速度(車速)である。Iは車両のヨーイング慣性モーメントである。
一方、δに対するθの伝達関数Gθ(s)は、例えば次式(4)で表される。
Figure 2013083883
θ(s)は、θのラプラス変換である。Gδ (0)は、ヨー角速度ゲイン定数であり、定常円旋回時のδに対する車両のヨー角速度rの値である。
以上のような、前方注視点での目標コースの横変位yOLが与えられたときのyOLに対する車両の運動yの関係をブロック図で示すと、図4に示すようになる。このようにして、人による制御を受けた車両は目標コースに沿って走行することになる。
図5は、制御装置20によって実行される処理の手順を示すフローチャートである。図5の処理は、所定の演算周期毎に繰り返し実行される。
図5には図示していないが、制御装置20は、電源がオンされたときに、各種パラメータの初期値を設定する。
制御装置20は、各種センサ値を読み込む(ステップS1)。具体的には、制御装置20は、舵角センサ4bによって検出される操舵角、トルクセンサ4cによって検出される操舵トルク、駆動力検出用センサ6bによって検出されるアクセルペダル6aの踏み込み量(駆動力)、制動力検出用センサ7bによって検出されるブレーキペダル7aの踏み込み量(制動力)を読み込む。
次に、制御装置20は、読み込まれたセンサ値と車両モデルを用いて、車両挙動や操舵反力に関するパラメータ(以下、「制御用パラメータ」という)を演算する(ステップS2)。制御用パラメータには、例えば、車両の前後方向速度、前後方向加速度、横方向速度、横方向加速度、ヨー角、ヨーレート、セルフアライニグトルク、マニュアルステアリング時の操舵トルク、各前輪の制動力または駆動力、各後輪の制動力または駆動力、実舵角(タイヤ角)、走行距離、操舵方向、車両の位置座標、車両の横変位、目標コースの位置座標等がある。ただし、これに限定されるものではない。
次に、制御装置20は、「人の車両制御動作モデル」を用いて、操舵に関係する車両の運動に関するパラメータを演算する(ステップS3)。この実施形態では、制御装置20は、図4のブロック図で示される演算を行うことにより、実舵角δ、車両の横変位yおよび車両のヨー角θを演算する。
より具体的には、図4を参照して、制御装置20は、前方注視点での目標コースの横変位yOLと前方注視点での車両の予測位置(y+Lθ)との誤差εに対して、人の伝達関数H(s)を乗算することによって、実舵角δを演算する。前方注視点での目標コースの横変位yOLは、前方注視距離L、前記ステップS2で演算された目標コースの座標位置等から演算される。また、前方注視点での車両の予測位置(y+Lθ)は、前回の演算周期において、ステップS3で演算された値が用いられる。
また、制御装置20は、実舵角δに対して伝達関数G(s)を乗算することによって、車両の横変位yを演算するとともに、実舵角δに対して伝達関数Gθ(s)を乗算することによって、車両のヨー角θを演算する。そして、制御装置20は、車両のヨー角θに前方注視距離Lを乗算した値Lθに対して、車両の横変位yを加算することによって、次回における前方注視点での車両の予測位置(y+Lθ)を演算する。
次に、制御装置20は、前記ステップS2で演算された制御用パラメータに基づいて、揺動用アクチュエータ3、反力付加用アクチュエータ5および視野画像生成装置10を制御する(ステップS4)。
具体的には、制御装置20は、前記ステップS2で演算された、車両の前後方向速度、前後方向加速度、横方向速度、横方向加速度、ヨーレートおよび実舵角に基づいて、揺動用アクチュエータ3を制御する。制御装置20は、前記ステップS2で演算された、マニュアルステアリング時の操舵トルクに基づいて、反力付加用アクチュエータ5を制御する。さらに、制御装置20は、前記ステップS2で演算された車速、走行距離、操舵方向等の情報を視野画像生成装置10に与える。視野画像生成装置10は、制御装置20から与えられた情報に基づいて、視野画像を生成して映像表示部9に送る。
次に、制御装置20は、被験者の前方注視位置と基準前方注視位置との遠近関係を判定するための処理(以下、「前方注視位置に関する遠近関係判定処理」という)を行なう(ステップS5)。具体的には、制御装置20は、「人の車両制御動作モデル」に基づいて演算された、操舵に関係する車両の運動に関するパラメータと、被験者の実際の操作に基づいて演算された対応するパラメータとを比較することにより、被験者の前方注視位置と基準前方注視位置との遠近関係を判定する。
図6は、図5のステップS5の前方注視位置に関する遠近関係判定処理の詳細な手順を示すフローチャートである。
前方注視位置に関する遠近関係判定処理で用いられる、操舵に関係する車両の運動に関するパラメータには、例えば、実舵角、ヨー角、車両の横変位等がある。この実施形態では、操舵に関係する車両の運動に関するパラメータが実舵角である場合を例にとって説明する。この場合には、制御装置20は、「人の車両制御動作モデル」に基づいて演算された実舵角(以下、「第1の実舵角δ1」という)と、被験者の実際の操作と車両モデルとに基づいて演算された実舵角(以下、「第2の実舵角δ2」という)とを比較することにより、被験者の前方注視位置と基準前方注視位置との遠近関係を判定する。
第1の実舵角δ1は図5のステップS3で演算され、第2の実舵角δ2は図5のステップS2で演算される。第2の実舵角δ2は、例えば、ステアリングホイール4aの操舵角に対するステアリングホイール4aの操作により変化する実舵角(タイヤ角)の比であるオーバーオールギヤレシオR(V)に、舵角センサ4bによって検出される操舵角を乗算することによって演算される。オーバーオールギヤレシオR(V)は車速Vの関数として表され、オーバーオールギヤレシオR(V)と車速Vとの関係は予め記憶されている。
遠近関係判定処理においては、制御装置20は、図7Aまたは図7Bに示されるように、現時点から所定時間前までの一定期間T内における第1の実舵角δ1の時間的変化を表す波形Aの周波数f1と、前記一定期間T内における第2の実舵角δ2の時間的変化を表す波形Bの周波数f2をそれぞれ求める(ステップS21)。以下、周波数f1を第1の周波数といい、
周波数f2を第2の周波数という場合がある。
「人の車両制御動作モデル」で用いられる前方注視距離Lは、基準前方注視位置に対応した基準前方注視距離に設定されているものとする。第1の実舵角δ1は、被験者の前方注視位置が基準前方注視位置であると仮定した場合に「人の車両制御動作モデル」によって演算される実舵角である。したがって、第1の実舵角δ1の時間的変化を表す波形Aの周波数f1が、基準前方注視位置に対応した周波数となる。「人の車両制御動作モデル」において、前方注視位置が短く設定されるほど、操舵に関係する車両の運動に関するパラメータの変化を表す波形の周波数は高くなることが知られている。
次に、制御装置20は、第2の周波数f2と第1の周波数f1との差の絶対値が所定の閾値α未満であるか否かを判定する(ステップS22)。第2の周波数f2と第1の周波数f1との差の絶対値が前記閾値α未満である場合には(ステップS22:YES)、制御装置20は、被験者の前方注視位置が基準前方注視位置と同等であると判定する(ステップS23)。そして、今回の遠近関係判定処理を終了する。
一方、第2の周波数f2と第1の周波数f1との差の絶対値が前記閾値α以上である場合には(ステップS22:NO)、制御装置20は、第2の周波数f2が、第1の周波数f1より高いか否かを判定する(ステップS24)。図7Aに示すように、第2の周波数f2(波形Bの周波数)が、第1の周波数f1(波形Aの周波数)より高い場合には(ステップS24:YES)、制御装置20は、被験者の前方注視位置が基準前方注視位置より近いと判定する(ステップS25)。そして、今回の遠近関係判定処理を終了する。
一方、図7Bに示すように、第2の周波数f2(波形Bの周波数)が、第1の周波数f1(波形Aの周波数)より低い場合には(ステップS24:NO)、制御装置20は、被験者の前方注視位置が基準前方注視位置より遠いと判定する(ステップS26)。そして、今回の遠近関係判定処理を終了する。
図5に戻り、ステップS5の前方注視位置に関する遠近関係判定処理が終了すると、制御装置20は、前方注視位置に関する遠近関係判定処理における判定結果に応じた処理を行なう。具体的には、前方注視位置に関する遠近関係判定処理において、被験者の前方注視位置が基準前方注視位置と同等であると判定されている場合には(ステップS6:YES)、制御装置20は今演算周期での処理を終了する。
前方注視位置に関する遠近関係判定処理において、被験者の前方注視位置が基準前方注視位置より近いと判定されている場合には(ステップS6:NO,ステップS7:YES)、制御装置20は、視野画像の流れの速度が遅くなるように、視野画像生成装置10を制御する(ステップS8)。例えば、制御装置20は、ステップS2で演算された車速を低減補正して、視野画像生成装置10に与える。そして、制御装置20は今演算周期での処理を終了する。
前方注視位置に関する遠近関係判定処理において、被験者の前方注視位置が基準前方注視位置より遠いと判定されている場合には(ステップS7:NO)、制御装置20は、視野画像の流れの速度が速くなるように、視野画像生成装置10を制御する。例えば、制御装置20は、ステップS2で演算された車速を増加補正して、視野画像生成装置10に与える。そして、制御装置20は今演算周期での処理を終了する。
前記実施形態によれば、被験者が基準前方注視位置より近い位置を注視している場合には、視野画像の流れの速度が遅くなるように、視野画像生成装置10が制御されるから、被験者の運転模擬操作に応じた適切な速度感を被験者に与えることができる。一方、被験者の前方注視位置が基準前方注視位置より遠い位置を注視している場合には、視野画像の流れの速度が速くなるように、視野画像生成装置10が制御されるから、被験者の運転模擬操作に応じた適切な速度感を被験者に与えることができる。これにより、ドライビングシミュレータ1を用いて行われる各種評価の精度を向上させることができる。
以上、この発明の一実施形態について説明したが、この発明はさらに他の形態で実施することもできる。たとえば、前述の実施形態では、制御装置20は、「人の車両制御動作モデル」に基づいて演算された実舵角と、被験者の実際の操作と車両モデルとに基づいて演算された実舵角とを比較することにより、被験者の前方注視位置と基準前方注視位置との遠近関係を判定している。しかし、実舵角の代わりに実舵角以外の、操舵に関係する車両の運動に関するパラメータを用いて、被験者の前方注視位置と基準前方注視位置との遠近関係を判定してもよい。例えば、実舵角の代わりにヨー角、車両の横変位、ヨーレート、横加速度等を用いて、被験者の前方注視位置と基準前方注視位置との遠近関係を判定してもよい。
また、図2に破線で示すように、被験者の前方視点位置を検出できる視線計測装置21を制御装置20に接続し、視線計測装置21によって検出される被験者の前方視点位置(前方視点距離)と、基準前方注視位置(基準前方視点距離)とを比較することにより、被験者の前方注視位置と基準前方注視位置との遠近関係を判定するようにしてもよい。視線計測装置21としては、例えば下部は株式会社ナックイメージテクノロジー社製のアイマークレコーダ(商品名)を用いることができる。
以上、この発明の実施形態について説明したが、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1…ドライビングシミュレータ、4b…舵角センサ、4c…トルクセンサ、6b…駆動力検出用センサ、7b…制動力検出用センサ7b、9…映像表示部、10…視野画像生成装置、20…制御装置、21…視線計測装置

Claims (4)

  1. 被験者の運転模擬操作に応じた各種操作量を検出する操作量検出手段と、
    前記操作量検出手段によって検出される各種操作量に基づいて、前記被験者の前方視野の変化を模擬した視野画像を生成して前記被験者に提示する視野画像模擬手段と、
    前記被験者の前方注視位置と予め設定された基準前方注視位置との遠近関係を判定する判定手段と、
    前記判定手段の判定結果に基づいて、前記視野画像模擬手段によって生成される視野画像の流れの速度を制御する制御手段と、を含むドライビングシミュレータ。
  2. 車両の制御者は、車両の前方を注視し、その前方注視位置での車両の予測位置と走行コースとの誤差が零となるようにフィードバック制御を行うという考え方を、人の伝達関数を用いてモデル化されたモデルを、人の車両制御動作モデルとすると、
    前記判定手段は、前記人の車両制御動作モデルに基づいて求められる、操舵に関係する車両の運動に関するパラメータと、前記操作量検出手段によって検出される各種操作量に基づいて求められる対応するパラメータとを比較することにより、前記被験者の前方注視位置と予め設定された基準前方注視位置との遠近関係を判定するように構成されている、請求項1に記載のドライビングシミュレータ。
  3. 前記判定手段は、
    前記被験者の前方注視位置を検出する前方注視位置検出手段と、
    前記前方注視位置検出手段によって検出された前記被験者の前方注視位置と、前記基準前方注視位置とを比較することによって、前記被験者の前方注視位置と予め設定された基準前方注視位置との遠近関係を判定する手段、とを含む請求項1に記載のドライビングシミュレータ。
  4. 前記制御手段は、
    前記判定手段によって、前記被験者の前方注視位置が前記基準前方注視位置より近いと判定されたときに、前記視野画像模擬手段によって生成される視野画像の流れの速度が遅くなるように、前記視野画像模擬手段を制御する手段と、
    前記判定手段によって、前記被験者の前方注視位置が前記基準前方注視位置より遠いと判定されたときに、前記視野画像模擬手段によって生成される視野画像の流れの速度が速くなるように、前記視野画像模擬手段を制御する手段と、を含む請求項1〜3のいずか一項に記載のドライビングシミュレータ。
JP2011225037A 2011-10-12 2011-10-12 ドライビングシミュレータ Pending JP2013083883A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225037A JP2013083883A (ja) 2011-10-12 2011-10-12 ドライビングシミュレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225037A JP2013083883A (ja) 2011-10-12 2011-10-12 ドライビングシミュレータ

Publications (1)

Publication Number Publication Date
JP2013083883A true JP2013083883A (ja) 2013-05-09

Family

ID=48529113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225037A Pending JP2013083883A (ja) 2011-10-12 2011-10-12 ドライビングシミュレータ

Country Status (1)

Country Link
JP (1) JP2013083883A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364054A (zh) * 2019-07-24 2019-10-22 严震 一种基于物理引擎的驾考模拟系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364054A (zh) * 2019-07-24 2019-10-22 严震 一种基于物理引擎的驾考模拟系统

Similar Documents

Publication Publication Date Title
WO2022134859A1 (zh) 一种大封闭空间沉浸式驾驶系统及控制方法
Della Penna et al. Reducing steering wheel stiffness is beneficial in supporting evasive maneuvers
KR101880262B1 (ko) Vr을 이용한 레이싱 시뮬레이터
JP2014215225A (ja) 車両用試験システム
KR101429404B1 (ko) 운전 시뮬레이터 장치 및 이를 이용한 운전 재활 훈련 방법
JP3766756B2 (ja) ドライビングシミュレータ
JP2014215243A (ja) ドライビングシミュレータのモーション制御方法及び車両試験システム
JP2014215241A (ja) 車両試験システム
JP6901723B2 (ja) 車両挙動の制御方法及び車両挙動のシミュレーション方法
JP4736592B2 (ja) 運転模擬試験装置
JP2013083883A (ja) ドライビングシミュレータ
Ambrož et al. i3Drive, a 3D interactive driving simulator
JP4493575B2 (ja) 移動体シミュレータ装置およびその制御方法並びに制御プログラム
Grottoli Development and evaluation of a motorcycle riding simulator for low speed maneuvering
Wintersberger et al. Gear Up for Safety: Development and Evaluation of an Assisted Bicycle
Bouchner et al. Development of advanced driving simulator: Steering wheel and brake pedal feedback
Brems et al. New motion cueing algorithm for improved evaluation of vehicle dynamics on a driving simulator
JP7217874B2 (ja) 評価装置、制御装置、操作主体感向上システム、評価方法、及びコンピュータプログラム
Stahl et al. A washout and a tilt coordination algorithm for a hexapod platform
Weiss et al. Combining virtual reality and steer-by-wire systems to validate driver assistance concepts
WO2021043400A1 (en) A system and a method for determining a feedback torque to be applied to a steering wheel
JP4736591B2 (ja) 運転模擬試験装置
JP4681571B2 (ja) 運転シミュレータ及び運転シミュレーション方法
JP2007033562A (ja) 運転模擬試験装置
JP2010096829A (ja) 運転模擬装置