JP2013083070A - Double pipe structure - Google Patents

Double pipe structure Download PDF

Info

Publication number
JP2013083070A
JP2013083070A JP2011222894A JP2011222894A JP2013083070A JP 2013083070 A JP2013083070 A JP 2013083070A JP 2011222894 A JP2011222894 A JP 2011222894A JP 2011222894 A JP2011222894 A JP 2011222894A JP 2013083070 A JP2013083070 A JP 2013083070A
Authority
JP
Japan
Prior art keywords
pipe
steel
joint portion
joint
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222894A
Other languages
Japanese (ja)
Other versions
JP5741852B2 (en
Inventor
Noriyoshi Tominaga
知徳 冨永
Shinji Myonaka
真治 妙中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011222894A priority Critical patent/JP5741852B2/en
Publication of JP2013083070A publication Critical patent/JP2013083070A/en
Application granted granted Critical
Publication of JP5741852B2 publication Critical patent/JP5741852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Abstract

PROBLEM TO BE SOLVED: To suppress the buckling of steel plates forming a steel pipe, and to facilitate the joining of the steel plates by making them thin.SOLUTION: A support 1 of a double pipe structure is provided which consists of an inner pipe 2 and an outer pipe 3 coaxially provided outside the inner pipe 2 so as to be spaced with a certain distance from the inner pipe 2. Concrete 4 is injected between the inner pipe 2 and the outer pipe 3. The inner pipe 2 and the outer pipe 3 respectively have a certain length. First joint parts T1 each connecting the inner pipes 2, 2 to each other and second joint parts T2 each connecting the outer pipes 3, 3 to each other are arranged so as be alternately shifted in a longitudinal direction Y.

Description

本発明は、例えば風力発電の風車の支柱等に適用される二重管構造に関する。   The present invention relates to a double tube structure applied to, for example, a prop of a wind turbine for wind power generation.

洋上風力発電に用いられる風車等のタワー構造では、規模の大型化が進んでおり、使用される支柱の板厚も100mmに達する大断面の鋼管構造となっている(例えば、特許文献1参照)。このような大断面支柱では、座屈を抑えるために、支柱の径厚比D/t(外径寸法Dと板厚寸法tの比)を略50に制限しているのが一般的となっているため、支柱の外径は5m程度が限度となっている。そのため、鋼構造による支柱では、鋼板製造の観点からこれ以上の大型化が困難になっている。
一方で支柱の強度を高めるために、コンクリート充填鋼管(CFT)を用いたものも知られている。
In a tower structure such as a windmill used for offshore wind power generation, the scale has been increased, and a steel pipe structure having a large cross section in which the thickness of a supporting column used reaches 100 mm (see, for example, Patent Document 1). . In such a large cross-section strut, in order to suppress buckling, the strut diameter / thickness ratio D / t (the ratio of the outer diameter dimension D to the plate thickness dimension t) is generally limited to approximately 50. Therefore, the outer diameter of the support is limited to about 5 m. For this reason, it is difficult to increase the size of the support with a steel structure from the viewpoint of steel sheet manufacture.
On the other hand, in order to increase the strength of the struts, a concrete-filled steel pipe (CFT) is also known.

特開2010−223157号公報JP 2010-223157 A

しかしながら、従来の大断面の鋼管構造からなる支柱では、以下のような問題があった。
すなわち、例えば外径寸法が5mの鋼管を用いる場合、圧延方向を支柱の円周方向に向けて配置するため、支柱構造の延長方向(支柱の長さ方向)の継手部は圧延幅(例えば5m)毎に設けられることになる。そして、このような継手部は通常はボルト接合となるが、5m径の鋼管では上述したように板厚が100mmとなる場合があり、ボルトによる接合が困難であった。また、板厚100mmの鋼板同士を継手部で突合せて全断面溶接するのも技術的に難しく、しかも溶接コストが増大するという問題があった。
However, the conventional struts having a large-section steel pipe structure have the following problems.
That is, for example, when using a steel pipe having an outer diameter of 5 m, the joint portion in the extending direction of the column structure (length direction of the column) has a rolling width (for example, 5 m) in order to arrange the rolling direction in the circumferential direction of the column. ). Such a joint portion is usually bolted, but a steel pipe with a diameter of 5 m may have a plate thickness of 100 mm as described above, and it is difficult to join with a bolt. In addition, it is technically difficult to abut the steel plates having a thickness of 100 mm at the joints and weld all the cross sections, and there is a problem that the welding cost increases.

また、一般的に、風車の支柱構造では、鋼材強度が500MPa程度のものを使用しており、溶接継手とする構造の場合には高強度鋼を使用して鋼重を軽くすることは困難であった。つまり、板厚100mmの鋼板同士を継手部で付き合わせて全断面溶接するときには、靭性の確保が難しくなり、溶接割れが生じたり、溶接部強度の低下が生じることから、高強度鋼では溶接がより困難になる。
さらに、高強度鋼は、同じ径厚比D/tにおいて、低強度鋼よりもΣcr/σy(座屈応力/降伏応力)が小さくなるため、座屈に対する径厚比の制限がより厳しくなっている。そのため、高強度鋼を採用する利点が得られないことから、その点で改良の余地があった。
In general, the wind turbine support structure uses a steel material having a strength of about 500 MPa, and in the case of a structure to be a welded joint, it is difficult to reduce the weight of the steel using high strength steel. there were. That is, when 100 mm-thick steel plates are brought together at the joint portion and welded in all cross sections, it becomes difficult to ensure toughness, weld cracks occur, and weld strength decreases. It becomes more difficult.
Further, since the high strength steel has a smaller Σcr / σy (buckling stress / yield stress) than the low strength steel at the same diameter / thickness ratio D / t, the restriction of the diameter / thickness ratio on buckling becomes more severe. Yes. Therefore, there is room for improvement in that respect because the advantage of adopting high-strength steel cannot be obtained.

本発明は、上述する問題点に鑑みてなされたもので、鋼管を構成する鋼板の座屈を抑えることができ、さらに鋼板を薄くすることで管同士の接合を容易に行うことができる二重管構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and can suppress buckling of a steel plate constituting a steel pipe, and can further easily join pipes by making the steel plate thinner. The object is to provide a tube structure.

上記目的を達成するため、本発明に係る二重管構造では、内管と外管とから二重とし、それら内管と外管との間にコンクリートを充填してなり、内管と外管とはそれぞれ一定の長さを有し、長手方向に接合される二重管構造であって、内管同士を接合する第1継手部と、外管同士を接合する第2継手部とが長手方向に交互にずれて配置されていることを特徴としている。   In order to achieve the above object, in the double pipe structure according to the present invention, the inner pipe and the outer pipe are doubled, and concrete is filled between the inner pipe and the outer pipe. Each has a fixed length and is a double pipe structure joined in the longitudinal direction, and the first joint part joining the inner pipes and the second joint part joining the outer pipes are long. It is characterized by being alternately displaced in the direction.

本発明では、内管同士を接合する第1継手部と外管同士を接合する第2継手部との位置が管の長手方向にずれているので、内管及び外管のうちいずれか一方の管の継手部の位置が長さ方向の同位置において他方の管の鋼板部分となり、内管の第1継手部と外管の第2継手部とが同一断面内に存在しない構成となる。そのため、同一断面において極限強度の低くなる可能性のある継手部分の応力集中を分散させることができ、内管及び外管のうち一方の継手部に破壊が生じた場合でも、フェール・セーフ構造となり、鋼管の折損を防止することができる。   In this invention, since the position of the 1st joint part which joins inner pipes and the 2nd joint part which joins outer pipes has shifted in the longitudinal direction of a pipe, either one of an inner pipe and an outer pipe The position of the joint portion of the pipe becomes the steel plate portion of the other pipe at the same position in the length direction, and the first joint portion of the inner pipe and the second joint portion of the outer pipe do not exist in the same cross section. Therefore, it is possible to disperse the stress concentration in the joint part where the ultimate strength may be low in the same cross section, and even if one of the inner pipe and the outer pipe breaks, a fail-safe structure is obtained. In addition, breakage of the steel pipe can be prevented.

さらに、内管と外管との間にコンクリートを充填した構造とすることで、従来の鋼管のみからなる場合に比べて、コンクリート分の重量が増加部分であるが、コンクリートよりも比重が大きな鋼材が板厚の大幅な低減に伴って減少するので、トータルとしての全体重量は微増となる。鋼管の板厚低減は、溶接にかかるコストを大幅に削減することができる。この特性を逆に活用すれば、より大径の二重管構造の管を構成することができる。
また、板厚を薄くすることができることによって、溶接が困難な高強度鋼の採用が可能となる。しかも、コンクリートが圧縮力を負担するため、断面設計において鋼材の強度は引張力で決定されるようになるので、高強度鋼化による座屈応力の低下の影響がなくなるという利点がある。
Furthermore, by making the structure filled with concrete between the inner pipe and the outer pipe, the weight of the concrete is an increased part compared to the case consisting of only conventional steel pipes, but the steel has a higher specific gravity than concrete. However, the total weight is slightly increased. Reducing the thickness of the steel pipe can greatly reduce the cost of welding. If this characteristic is used in reverse, a pipe having a larger diameter double pipe structure can be formed.
Further, since the plate thickness can be reduced, it is possible to employ high-strength steel that is difficult to weld. In addition, since the concrete bears the compressive force, the strength of the steel material is determined by the tensile force in the cross-sectional design, so there is an advantage that the influence of the reduction of the buckling stress due to the high strength steel is eliminated.

また、本発明に係る二重管構造では、第1継手部及び第2継手部は、摩擦ボルトにより接合されていることが好ましい。   Moreover, in the double pipe structure which concerns on this invention, it is preferable that the 1st coupling part and the 2nd coupling part are joined by the friction bolt.

この場合、摩擦ボルトで各継手部を接合することで、溶接作業を低減して作業効率を向上させることが可能となることから、接合作業にかかる時間と手間を少なくすることができる。
そして、内管及び外管の長手方向の全断面溶接が無くなり、これらの管に存在する残留応力や溶接変形が減少するため、座屈強度を高めることが可能となる。また、摩擦ボルトがずれ止めとしての効果を発揮するために、これも座屈強度を向上させることができる。さらに、摩擦ボルト接合のために使用する添設板によってその部分の板厚が大きくなることから、より座屈がしにくくなる構造となる利点がある。
In this case, it is possible to reduce the welding work and improve the work efficiency by joining the joint portions with the friction bolts, so that the time and labor required for the joining work can be reduced.
And since the entire cross-section welding in the longitudinal direction of the inner tube and the outer tube is eliminated and the residual stress and welding deformation existing in these tubes are reduced, the buckling strength can be increased. Further, since the friction bolt exhibits an effect as a stopper, this can also improve the buckling strength. Furthermore, since the thickness of the portion is increased by the additional plate used for the friction bolt joining, there is an advantage that the structure becomes more difficult to buckle.

また、本発明に係る二重管構造では、外管及び内管には、それぞれ高強度鋼が用いられていることがより好ましい。   In the double pipe structure according to the present invention, it is more preferable that high strength steel is used for each of the outer pipe and the inner pipe.

本発明では、管の長手方向の全断面溶接を無くすことが可能となり、管を横にした状態で溶接を行うことで、この管の長手方向に直交する方向に延在する継手部を常に下向き溶接で行うことができ、管の長手方向の継手部と比較して容易に溶接を行うことができる。   In the present invention, it is possible to eliminate the entire cross-section welding in the longitudinal direction of the pipe, and by performing welding in a state where the pipe is laid down, the joint portion extending in a direction perpendicular to the longitudinal direction of the pipe is always directed downward. It can be performed by welding, and welding can be easily performed as compared with the joint portion in the longitudinal direction of the pipe.

本発明の二重管構造によれば、内管同士を接合する第1継手部と外管同士を接合する第2継手部とが管の長手方向の同一断面内に設けられていないので、各継手部に生じる応力集中が内管と外管で長手方向に交互にずれて分散され、鋼管を構成する鋼板の座屈を抑えることができる。さらに、鋼板を薄くすることで管同士の接合を容易に行うことができるという利点がある。   According to the double pipe structure of the present invention, the first joint part for joining the inner pipes and the second joint part for joining the outer pipes are not provided in the same cross section in the longitudinal direction of the pipes. The stress concentration generated in the joint portion is alternately shifted and dispersed in the longitudinal direction between the inner tube and the outer tube, and the buckling of the steel plate constituting the steel tube can be suppressed. Furthermore, there exists an advantage that joining of tubes can be performed easily by making a steel plate thin.

本発明の実施の形態による支柱の構成を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the support | pillar by embodiment of this invention. 図1に示す立面図である。It is an elevation view shown in FIG. 図1に示すA−A線断面図であって、支柱の縦断面図である。It is AA sectional view taken on the line shown in FIG. 1, Comprising: It is a longitudinal cross-sectional view of a support | pillar. 図2に示すB−B線断面図であって、支柱の水平断面図である。FIG. 3 is a cross-sectional view taken along line B-B shown in FIG. 2, and is a horizontal cross-sectional view of a support column. 図3に示す支柱の継手部の拡大図である。It is an enlarged view of the joint part of the support | pillar shown in FIG.

以下、本発明の実施の形態による二重管構造について、図面に基づいて説明する。   Hereinafter, a double tube structure according to an embodiment of the present invention will be described with reference to the drawings.

図1乃至図4に示すように、本実施の形態による二重管構をなす支柱1は、風力発電の風車に用いられ、長手方向Yを上下方向に向けた状態で立設されている。すなわち、支柱1は、内管2と、この内管2の外側で一定の間隔をあけて同軸に設けられる外管3とからなり、それら内管2と外管3との間にコンクリート4を充填させた構成となっている。   As shown in FIGS. 1 to 4, the strut 1 having a double pipe structure according to the present embodiment is used in a wind turbine for wind power generation, and is erected with the longitudinal direction Y directed in the vertical direction. That is, the support column 1 is composed of an inner tube 2 and an outer tube 3 that is coaxially provided outside the inner tube 2 at a predetermined interval, and the concrete 4 is placed between the inner tube 2 and the outer tube 3. It has a filled configuration.

内管2と外管3とは、それぞれ一定の長さ寸法をなし、内管2、2同士を連結する第1継手部T1と、外管3、3同士を連結する第2継手部T2とが長手方向Yに交互にずれて配置されている。このときの第1継手部T1と第2継手部T2との長手方向Yへのずれ量は、とくに制限されることはないが、後述するように剛性の低い継手部分の応力集中を分散させる点を考慮すれば、第1継手部T1の位置が長さ方向で第2継手部T2、T2同士の中間程度の位置であることが好ましい。   The inner tube 2 and the outer tube 3 each have a fixed length, and a first joint portion T1 that connects the inner tubes 2 and 2 and a second joint portion T2 that connects the outer tubes 3 and 3 to each other. Are alternately displaced in the longitudinal direction Y. The amount of displacement in the longitudinal direction Y between the first joint portion T1 and the second joint portion T2 at this time is not particularly limited, but the stress concentration of the joint portion having low rigidity is dispersed as will be described later. In consideration of the above, it is preferable that the position of the first joint portion T1 is a middle position between the second joint portions T2 and T2 in the length direction.

内管2は、厚さ寸法が例えば22mmの高強度鋼が使用された円筒状の鋼管である。図 3及び図5に示すように、第1継手部T1は、内管2、2同士の内面側の第1継手部T1に複数のボルト穴を有する添接板5Aを当てて、それらボルト穴において摩擦ボルト6Aで締結することにより接合されている。なお,添接板5Aは、これらの図では1面せん断の配置となっているが、二重の鋼管の間隔が許せば二面せん断とすることもできる。単体の内管2は、圧延によって製造され、その圧延方向を円周方向に向けた状態でその両端部同士を溶接により接合した第1接合部R1(図4参照)を有している。そして、上下方向に接合される内管2、2同士は、それぞれの第1接合部R1同士も互いに周方向にずれた位置で接合されている。   The inner pipe 2 is a cylindrical steel pipe in which high-strength steel having a thickness dimension of, for example, 22 mm is used. As shown in FIG. 3 and FIG. 5, the first joint portion T <b> 1 is formed by applying an attachment plate 5 </ b> A having a plurality of bolt holes to the first joint portion T <b> 1 on the inner surface side of the inner tubes 2, 2. Are joined by fastening with friction bolts 6A. Note that the splicing plate 5A has a one-sided shear arrangement in these drawings, but can also be a two-sided shear if the distance between the double steel pipes permits. The single inner tube 2 is manufactured by rolling, and has a first joint R1 (see FIG. 4) in which both ends are joined by welding in a state in which the rolling direction is in the circumferential direction. And the inner pipes 2 and 2 joined to an up-down direction are joined in the position where each 1st junction part R1 mutually shifted | deviated to the circumferential direction.

外管3は、厚さ寸法が例えば25mmの高強度鋼が使用された円筒状の鋼管である。第2継手部T2は、外管3、3同士の外面側の第2継手部T2に複数のボルト穴を有する添設板5Bを当てて、それらボルト穴において摩擦ボルト6Bで締結することにより接合されている。単体の外管3は、圧延によって製造され、その圧延方向を円周方向に向けた状態でその両端部同士を溶接により接合した第2接合部R2(図4参照)を有している。そして、上下方向に接合される外管3、3同士は、それぞれの第2接合部R1同士も互いに周方向にずれた位置で接合されている。   The outer tube 3 is a cylindrical steel tube in which high-strength steel having a thickness dimension of, for example, 25 mm is used. The second joint portion T2 is joined by applying an attachment plate 5B having a plurality of bolt holes to the second joint portion T2 on the outer surface side of the outer tubes 3 and 3 and fastening with the friction bolts 6B in these bolt holes. Has been. The single outer tube 3 is manufactured by rolling, and has a second joint portion R2 (see FIG. 4) in which both ends are joined by welding in a state where the rolling direction is in the circumferential direction. And the outer pipes 3 and 3 joined to the up-down direction are joined in the position where each 2nd junction part R1 mutually shifted | deviated to the circumferential direction.

そして、長手方向Yに複数連結された内管2と外管3との間にはコンクリート4が充填されて一体化されている。このとき、コンクリート4は、第1継手部T1と第2継手部T2の摩擦ボルト6A、6Bの一部が内管2と外管3との間の隙間に突出しているので、この突出部がずれ止めの機能をもつことでコンクリート4と一体化する構成となっている。   The concrete 4 is filled and integrated between the inner tube 2 and the outer tube 3 connected in a plurality in the longitudinal direction Y. At this time, since the concrete 4 has part of the friction bolts 6A and 6B of the first joint portion T1 and the second joint portion T2 projecting into the gap between the inner tube 2 and the outer tube 3, this projecting portion is It has a structure that is integrated with the concrete 4 by having a function of preventing slippage.

例えば、外径5mで板厚100mmの普通鋼管の比較例1と、外径5mで板厚65mmの鋼管内にコンクリートが充填されているCFT管の比較例2と、普通鋼からなる板厚25mmの外管と板厚22mmの内管との間にコンクリートを充填させた本願発明の実施例1と、実施例1の外管及び内管の部材を高強度鋼とした実施例2と、の鋼重と全体重量を比較した。これを表1に示す。   For example, a comparative example 1 of an ordinary steel pipe having an outer diameter of 5 m and a thickness of 100 mm, a comparative example 2 of a CFT pipe in which concrete is filled in a steel pipe having an outer diameter of 5 m and a thickness of 65 mm, and a thickness of 25 mm made of ordinary steel Example 1 of the present invention in which concrete is filled between an outer tube of the present invention and an inner tube having a thickness of 22 mm, and Example 2 in which members of the outer tube and the inner tube of Example 1 are made of high-strength steel. Steel weight and total weight were compared. This is shown in Table 1.

Figure 2013083070
Figure 2013083070

表1に示すように、実施例1の普通鋼による二重管では、普通鋼管単体の比較例1に比べて曲げ耐力を鋼重比55%の鋼重で達成することができる。さらに、実施例2のBHS500の高強度鋼の場合には、普通鋼を使用した実施例1の鋼重比55%に対して41%まで鋼重を低減することができる。なお、この実施例2では、コンクリートを充填した構成となるので、普通鋼管単体の比較例1に比べて重量は17%のみ増加する。
比較例2のCFT(コンクリート充填鋼管)は、その重量が4倍以上に増大するうえ、鋼重比も65%までしか低減しないことが表1より確認できる。
As shown in Table 1, in the double pipe made of plain steel of Example 1, the bending strength can be achieved with a steel weight of 55% of the steel weight ratio as compared with Comparative Example 1 of the plain steel pipe alone. Furthermore, in the case of the high strength steel of BHS500 of Example 2, the steel weight can be reduced to 41% with respect to the steel weight ratio of 55% of Example 1 using ordinary steel. In addition, in this Example 2, since it becomes the structure filled with concrete, a weight increases only 17% compared with the comparative example 1 of a plain steel pipe single-piece | unit.
It can be confirmed from Table 1 that the CFT (concrete-filled steel pipe) of Comparative Example 2 increases in weight by 4 times or more and the steel weight ratio is reduced only to 65%.

次に、上述した支柱1(二重管構造)の作用について、図面に基づいて詳細に説明する。
図1に示すように、内管2、2同士を接合する第1継手部T1と外管3、3同士を接合する第2継手部T2との位置が長手方向Yにずれているので、内管2の第1継手部T1及び外管3の第2継手部T2のうちいずれか一方の継手部T1(T2)の位置が長さ方向Yの同位置において他方の管の鋼板部分となり、内管2と外管3の継手部T1、T2同士が同一断面内に存在しない構成となる。そのため、同一断面において極限強度の低い継手部分の応力集中を分散させることができ、内管2及び外管3のうち一方の継手部T1(T2)に破壊が生じた場合でも、フェール・セーフ構造となり、鋼管の折損を防止することができる。
また、内管2と外管3からなる二重管にすることで、コンクリートが圧縮力を負担するために鋼板に生じる圧縮力を減少させることができ、引張力に基づいた断面設計を行うことができる。したがって、座屈をより確実に抑制することができ、径厚比D/tを小さくすることが可能となる。
Next, the effect | action of the support | pillar 1 (double-pipe structure) mentioned above is demonstrated in detail based on drawing.
As shown in FIG. 1, the positions of the first joint T1 that joins the inner tubes 2 and 2 and the second joint T2 that joins the outer tubes 3 and 3 are shifted in the longitudinal direction Y. The position of one joint part T1 (T2) of the first joint part T1 of the pipe 2 and the second joint part T2 of the outer pipe 3 becomes the steel plate part of the other pipe at the same position in the length direction Y, The joint portions T1 and T2 of the tube 2 and the outer tube 3 do not exist in the same cross section. Therefore, it is possible to disperse the stress concentration in the joint portion having a low ultimate strength in the same cross section, and even when one of the joint portions T1 (T2) of the inner tube 2 and the outer tube 3 is broken, the fail-safe structure. Thus, breakage of the steel pipe can be prevented.
In addition, by making a double pipe composed of the inner pipe 2 and the outer pipe 3, the compressive force generated in the steel sheet can be reduced because the concrete bears the compressive force, and the cross-sectional design based on the tensile force is performed. Can do. Therefore, buckling can be more reliably suppressed and the diameter / thickness ratio D / t can be reduced.

さらに、内管2と外管3との間にコンクリート4を充填した構造とすることで、従来の鋼管のみからなる場合に比べて、コンクリート4分の重量が増えるので全体重量は増える傾向にあるが、内管2及び外管3の板厚を薄くすることが可能となることから鋼重を減らすことができるため、トータルとしての鋼重増は小さくなる。さらに、溶接にかかるコストを低減することができる。さらに逆に、より大径の支柱1を構成することができる。   Furthermore, by making the structure filled with concrete 4 between the inner pipe 2 and the outer pipe 3, the total weight tends to increase because the weight of concrete 4 minutes is increased as compared with the case where only the conventional steel pipe is used. However, since it is possible to reduce the plate thickness of the inner pipe 2 and the outer pipe 3, the steel weight can be reduced, so that the increase in the steel weight as a total is reduced. Furthermore, the cost for welding can be reduced. Furthermore, conversely, a larger-diameter support column 1 can be configured.

また、板厚を薄くすることができるので、溶接が困難な高強度鋼の採用が可能となる。しかも、コンクリートが圧縮力を負担するため、断面設計において鋼材の強度は引張力で決定されるようになるので、高強度鋼化による座屈応力の低下の影響がなくなるという利点がある。   Further, since the plate thickness can be reduced, it is possible to employ high-strength steel that is difficult to weld. In addition, since the concrete bears the compressive force, the strength of the steel material is determined by the tensile force in the cross-sectional design, so there is an advantage that the influence of the reduction of the buckling stress due to the high strength steel is eliminated.

また、第1継手部T1及び第2継手部T2は、摩擦ボルト6A、6Bにより接合されているので、摩擦ボルト6A、6Bで各継手部T1、T2を接合することで、溶接作業を低減して作業効率を向上させることが可能となることから、接合作業にかかる時間と手間を少なくすることができる。   Further, since the first joint portion T1 and the second joint portion T2 are joined by the friction bolts 6A and 6B, welding work is reduced by joining the joint portions T1 and T2 with the friction bolts 6A and 6B. As a result, the work efficiency can be improved, and the time and labor required for the joining work can be reduced.

そして、内管2及び外管3の長手方向Yの全断面溶接が無くなり、これらの管に存在する残留応力や溶接変形が減少するため、座屈強度を高めることが可能となる。また、摩擦ボルト6A、6Bがずれ止めとしての効果を発揮するために、これも座屈強度を向上させることができる。さらに、摩擦ボルト接合のために使用する添設板5によってその部分の板厚が大きくなることから、より座屈がしにくくなる構造となる利点がある。   And since the entire cross-section welding in the longitudinal direction Y of the inner tube 2 and the outer tube 3 is eliminated and the residual stress and welding deformation existing in these tubes are reduced, the buckling strength can be increased. In addition, since the friction bolts 6A and 6B exhibit the effect of preventing slippage, this can also improve the buckling strength. Furthermore, since the plate thickness of the portion is increased by the attachment plate 5 used for the friction bolt joining, there is an advantage that the structure becomes more difficult to buckle.

また、内管2及び外管3には、それぞれ高強度鋼が用いられているので、長手方向Yの全断面溶接を無くすことが可能となり、管を横にした状態で溶接を行うことで、この管の長手方向Yに直交する方向に延在する継手部T1(T2)を常に下向き溶接で行うことができ、長手方向Yの継手部T1、T2と比較して容易に溶接を行うことができる。   Moreover, since high strength steel is used for each of the inner tube 2 and the outer tube 3, it is possible to eliminate the entire cross-sectional welding in the longitudinal direction Y, and by performing welding in a state where the tube is placed horizontally, The joint portion T1 (T2) extending in the direction perpendicular to the longitudinal direction Y of the pipe can always be downwardly welded and can be easily welded compared to the joint portions T1 and T2 in the longitudinal direction Y. it can.

上述した本実施の形態による二重管構造では、内管2の第1継手部T1と外管3の第2継手部T2とが長手方向Yの同一断面内に設けられていないので、各継手部T1、T2に生じる応力集中が内管2と外管3で長手方向に交互にずれて分散され、鋼管を構成する鋼板の座屈を抑えることができる。さらに、鋼板を薄くすることで管同士の接合を容易に行うことができるという利点がある。   In the double pipe structure according to this embodiment described above, the first joint portion T1 of the inner pipe 2 and the second joint portion T2 of the outer pipe 3 are not provided in the same cross section in the longitudinal direction Y. Stress concentrations generated in the portions T1 and T2 are alternately shifted and dispersed in the longitudinal direction between the inner tube 2 and the outer tube 3, and buckling of the steel plates constituting the steel tube can be suppressed. Furthermore, there exists an advantage that joining of tubes can be performed easily by making a steel plate thin.

以上、本発明による二重管構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した実施の形態では内管2、2同士を接合する第1継手部T1と、外管3、3同士を接合する第2継手部T2とを添設板5A、5Bを介して摩擦ボルト6A、6Bで固定する構成としているが、このような接合手段に限定されることはなく、溶接による固定手段であってもかまわない。添接板は、1面せん断でも2面せん断でもかまわない。
また、内管2及び外管3の厚さ寸法、単位長さ寸法、外径寸法などの構成については、材質、必要強度などに応じて適宜設定するこができる。
As mentioned above, although the embodiment of the double tube structure according to the present invention has been described, the present invention is not limited to the above embodiment, and can be appropriately changed without departing from the scope of the present invention.
For example, in the above-described embodiment, the first joint portion T1 that joins the inner tubes 2 and 2 and the second joint portion T2 that joins the outer tubes 3 and 3 are frictioned via the attachment plates 5A and 5B. Although it is set as the structure fixed with volt | bolt 6A, 6B, it is not limited to such a joining means, The fixing means by welding may be sufficient. The splicing plate may be one-sided shear or two-sided shear.
Moreover, about thickness, the unit length dimension, an outer diameter dimension, etc. of the inner tube 2 and the outer tube 3, it can set suitably according to a material, required intensity | strength, etc.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.

1 支柱(二重管構造)
2 内管
3 外管
4 コンクリート
5 添設板
6A、6B 摩擦ボルト
T1 第1継手部
T2 第2継手部
R1 第1接合部
R2 第2接合部
1 strut (double pipe structure)
2 inner pipe 3 outer pipe 4 concrete 5 additional plate 6A, 6B friction bolt T1 first joint part T2 second joint part R1 first joint part R2 second joint part

Claims (3)

内管と外管とから二重とし、それら内管と外管との間にコンクリートを充填してなり、前記内管と前記外管とはそれぞれ一定の長さを有し、長手方向に接合される二重管構造であって、
前記内管同士を接合する第1継手部と、前記外管同士を接合する第2継手部とが長手方向に交互にずれて配置されていることを特徴とする二重管構造。
The inner pipe and the outer pipe are doubled, and concrete is filled between the inner pipe and the outer pipe. Each of the inner pipe and the outer pipe has a certain length and is joined in the longitudinal direction. A double pipe structure,
The double pipe structure characterized by the 1st joint part which joins the said inner pipes, and the 2nd joint part which joins the said outer pipes mutually shifting in the longitudinal direction.
前記第1継手部及び前記第2継手部は、摩擦ボルトにより接合されていることを特徴とする請求項1に記載の二重管構造。   The double pipe structure according to claim 1, wherein the first joint portion and the second joint portion are joined by a friction bolt. 前記内管及び前記外管には、それぞれ高強度鋼が用いられていることを特徴とする請求項1又は2に記載の二重管構造。   The double pipe structure according to claim 1 or 2, wherein high strength steel is used for each of the inner pipe and the outer pipe.
JP2011222894A 2011-10-07 2011-10-07 Double tube structure Active JP5741852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222894A JP5741852B2 (en) 2011-10-07 2011-10-07 Double tube structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222894A JP5741852B2 (en) 2011-10-07 2011-10-07 Double tube structure

Publications (2)

Publication Number Publication Date
JP2013083070A true JP2013083070A (en) 2013-05-09
JP5741852B2 JP5741852B2 (en) 2015-07-01

Family

ID=48528511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222894A Active JP5741852B2 (en) 2011-10-07 2011-10-07 Double tube structure

Country Status (1)

Country Link
JP (1) JP5741852B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505274A (en) * 2018-10-29 2022-01-14 オルステッド・ウィンド・パワー・エー/エス Vessels with bow fenders
CN114135292A (en) * 2021-11-30 2022-03-04 中国铁建重工集团股份有限公司 Shaft heading machine and modular multiplexing shield thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994249B1 (en) * 2016-12-19 2019-06-28 한국해양과학기술원 Reinforcement-Body for Wind Turbine Tower Structure and Method of Construction for Reinforcing and Heightening

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120625U (en) * 1986-01-23 1987-07-31
JPH05287847A (en) * 1992-04-13 1993-11-02 Nippon Steel Corp Double steel pipe pillar filled with cold setting material
JPH09100651A (en) * 1995-10-06 1997-04-15 Tomoe Corp Steel tower for power transmission
JP2006265851A (en) * 2005-03-22 2006-10-05 Tomita Seisakusho:Kk Knockdown steel pipe and concrete-filled steel pipe using the same
JP2007520653A (en) * 2004-02-04 2007-07-26 コラス・スタール・ベー・ブイ Wind turbine tower, prefabricated metal wall parts for use in wind turbine tower, and method for constructing wind turbine tower
WO2011077546A1 (en) * 2009-12-25 2011-06-30 三菱重工業株式会社 Monopole tower and wind power generator equipped with monopole tower

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120625U (en) * 1986-01-23 1987-07-31
JPH05287847A (en) * 1992-04-13 1993-11-02 Nippon Steel Corp Double steel pipe pillar filled with cold setting material
JPH09100651A (en) * 1995-10-06 1997-04-15 Tomoe Corp Steel tower for power transmission
JP2007520653A (en) * 2004-02-04 2007-07-26 コラス・スタール・ベー・ブイ Wind turbine tower, prefabricated metal wall parts for use in wind turbine tower, and method for constructing wind turbine tower
JP2006265851A (en) * 2005-03-22 2006-10-05 Tomita Seisakusho:Kk Knockdown steel pipe and concrete-filled steel pipe using the same
WO2011077546A1 (en) * 2009-12-25 2011-06-30 三菱重工業株式会社 Monopole tower and wind power generator equipped with monopole tower

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022505274A (en) * 2018-10-29 2022-01-14 オルステッド・ウィンド・パワー・エー/エス Vessels with bow fenders
US11851145B2 (en) 2018-10-29 2023-12-26 Ørsted Wind Power A/S Ship with a bow fender
JP7472120B2 (en) 2018-10-29 2024-04-22 オルステッド・ウィンド・パワー・エー/エス Vessels equipped with bow fenders
CN114135292A (en) * 2021-11-30 2022-03-04 中国铁建重工集团股份有限公司 Shaft heading machine and modular multiplexing shield thereof

Also Published As

Publication number Publication date
JP5741852B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5786627B2 (en) Double tube structure using spiral tube
KR101118608B1 (en) Phi truss structure
US10167623B2 (en) Prefabricated reinforced concrete-filled steel pipe sleeve joint
JP2016089478A (en) Frame structure of earth retaining wall
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP5741852B2 (en) Double tube structure
JP2015214807A (en) Heterogeneous steel beam joint structure
KR100952931B1 (en) Shear force reinforcing apparatus of concrete filled steel tube column-reinforced concrete flat slab joint
JP5744582B2 (en) Steel pipe combined perforated steel plate gibber
JP2011043009A (en) Reinforcing member around opening in reinforcing concrete beam with opening, and reinforcing structure and method using the same
JP2008025236A (en) Precast prestressed concrete beam using tension material different in strength between end part and central part
JP6128058B2 (en) Beam end joint structure
JP2018172892A (en) Reinforcing structure of beam and reinforcing method of beam
JP2012188872A (en) Concrete filled circular steel pipe column
KR200477104Y1 (en) Joint Structure of Steel Tube Column and Steel Beam
CN103161238A (en) Connecting end portion energy-consuming-type all-steel anti-bending support
JP6754552B2 (en) Column beam frame
JP2015004249A (en) Circular ring reinforcement beam member
KR20130121403A (en) Steel spiral lattice girder for tunneling work
JP2014051822A (en) Steel beam and column-beam joint structure
KR100985181B1 (en) Gider using FRP unit
JP5982879B2 (en) Welded assembled H-section steel
JP2021165462A (en) Joint structure of channel steel
JP6782093B2 (en) Mounting structure of lateral buckling stiffener
JP2012188871A (en) Concrete filled circular steel pipe column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150414

R151 Written notification of patent or utility model registration

Ref document number: 5741852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350