JP2015214807A - Heterogeneous steel beam joint structure - Google Patents

Heterogeneous steel beam joint structure Download PDF

Info

Publication number
JP2015214807A
JP2015214807A JP2014097031A JP2014097031A JP2015214807A JP 2015214807 A JP2015214807 A JP 2015214807A JP 2014097031 A JP2014097031 A JP 2014097031A JP 2014097031 A JP2014097031 A JP 2014097031A JP 2015214807 A JP2015214807 A JP 2015214807A
Authority
JP
Japan
Prior art keywords
steel beam
beam member
stress transmission
steel
lower flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014097031A
Other languages
Japanese (ja)
Other versions
JP6393516B2 (en
Inventor
健嗣 田中
Kenji Tanaka
健嗣 田中
隆史 河野
Takashi Kono
隆史 河野
太志 大堀
Futoshi Ohori
太志 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2014097031A priority Critical patent/JP6393516B2/en
Publication of JP2015214807A publication Critical patent/JP2015214807A/en
Application granted granted Critical
Publication of JP6393516B2 publication Critical patent/JP6393516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a labor of jointing work of steel beam members having different beam depths.SOLUTION: A heterogeneous steel beam joint structure 10 includes: a first steel beam member 20 jointed to a column 14; a second steel beam member 30 having a smaller beam depth than the first steel beam member 20, arranged so that an upper flange part 20U continues from an upper flange part 20U of the first steel beam member 20, and not jointed to the upper flange part 20U; and joint plates 40 arranged over each of web parts 20W of the first steel beam member 20 and the second steel beam member 30 and jointed with bolts to the web parts 20W respectively.

Description

本発明は、異種鉄骨梁接合構造に関する。   The present invention relates to a heterogeneous steel beam joint structure.

隣接する鉄骨梁部材のウェブ部同士を、スプライスプレートを介してボルト及びナットで接合する境界梁ダンパーが知られている(例えば、特許文献1参照)。   A boundary beam damper is known in which web portions of adjacent steel beam members are joined with a bolt and a nut via a splice plate (see, for example, Patent Document 1).

また、隣接する鉄骨梁部材のウェブ部に亘って形成された開口の上下にスプライスプレートを配置する有開口鉄骨梁の補強構造が知られている(例えば、特許文献2参照)。   In addition, there is known a reinforcing structure of an open steel beam in which a splice plate is disposed above and below an opening formed over the web portion of adjacent steel beam members (see, for example, Patent Document 2).

特開2003−064901号公報JP 2003-064901 A 特開平5−179756号公報JP-A-5-179756

ところで、隣接する鉄骨梁部材同士の接合方法を簡素化したいとの要望がある。特に、ハンチ鉄骨梁では、梁成が異なる鉄骨梁部材同士を接合するため、その接合作業に手間がかかる可能性がある。   By the way, there is a desire to simplify the method of joining adjacent steel beam members. In particular, in the case of a hunched steel beam, steel beam members having different beam formations are joined to each other, so that the joining work may take time.

本発明は、上記の事実を考慮し、梁成が異なる鉄骨梁部材の接合作業の手間を低減することを目的とする。   In view of the above facts, an object of the present invention is to reduce the labor of joining steel beam members having different beam formations.

請求項1に記載の異種鉄骨梁接合構造は、柱に接合された第1鉄骨梁部材と、前記第1鉄骨梁部材よりも梁成が低くされ、上フランジ部が前記第1鉄骨梁部材の上フランジ部と連続するように配置されて且つ該上フランジ部と非接合とされる第2鉄骨梁部材と、前記第1鉄骨梁部材及び前記第2鉄骨梁部材の各々のウェブ部に亘って配置され、該ウェブ部にそれぞれボルト接合される接合プレートと、を備える。   The dissimilar steel beam joint structure according to claim 1 has a first steel beam member joined to a column, a beam formation lower than that of the first steel beam member, and an upper flange portion of the first steel beam member. A second steel beam member disposed so as to be continuous with the upper flange portion and not joined to the upper flange portion, and the web portions of the first steel beam member and the second steel beam member. And a joining plate that is respectively bolted to the web portion.

請求項1に係る異種鉄骨梁接合構造によれば、第1鉄骨梁部材及び第2鉄骨梁部材の上フランジ部同士を非接合とすると共に、第1鉄骨梁部材及び第2鉄骨梁部材のウェブ部同士を接合プレートを介してボルト接合する。   According to the heterogeneous steel beam joint structure according to claim 1, the upper flange portions of the first steel beam member and the second steel beam member are not joined to each other, and the web of the first steel beam member and the second steel beam member is used. The parts are bolted together via a joining plate.

したがって、例えば、第1鉄骨梁部材及び第2鉄骨梁部材の上フランジ部同士を溶接接合すると共にウェブ部同士を接合プレートを介して溶接接合する場合と比較して、第1鉄骨梁部材と第2鉄骨梁部材との接合作業の手間を低減することができる。   Therefore, for example, compared with the case where the upper flange portions of the first steel beam member and the second steel beam member are welded together and the web portions are welded together via the joining plate, the first steel beam member and the second steel beam member It is possible to reduce the labor of joining the two steel beam members.

請求項2に記載の異種鉄骨梁接合構造は、請求項1に記載の異種鉄骨梁接合構造において、前記接合プレートには、該接合プレートの下部から面外方向に延出し、前記第1鉄骨梁部材及び前記第2鉄骨梁部材の下フランジ部の各々と対向する応力伝達リブ部が設けられる。   The dissimilar steel beam joint structure according to claim 2 is the dissimilar steel beam joint structure according to claim 1, wherein the joint plate extends in an out-of-plane direction from a lower part of the joint plate, and the first steel beam A stress transmission rib portion facing each of the member and the lower flange portion of the second steel beam member is provided.

請求項2に係る異種鉄骨梁接合構造によれば、接合プレートには、応力伝達リブ部が設けられる。この応力伝達リブ部は、接合プレートの下部から面外方向に延出し、第1鉄骨梁部材及び第2鉄骨梁部材の下フランジ部の各々と対向する。   According to the dissimilar steel beam joining structure according to claim 2, the joining plate is provided with the stress transmission rib portion. The stress transmission rib portion extends in the out-of-plane direction from the lower portion of the joining plate, and faces each of the lower flange portions of the first steel beam member and the second steel beam member.

ここで、第1鉄骨梁部材と第2鉄骨梁部材とは、梁成が異なると共にその上フランジ部同士が連続するように配置されるため、その下フランジ部同士が連続しない。したがって、これらの下フランジ部間で応力を伝達することが難しい。   Here, since the first steel beam member and the second steel beam member are arranged so that their beam formations are different and their upper flange portions are continuous, their lower flange portions are not continuous. Therefore, it is difficult to transmit stress between these lower flange portions.

これに対して本発明では、接合プレートの下部には、第1鉄骨梁部材及び第2鉄骨梁部材の下フランジ部の各々と対向する応力伝達リブ部が設けられる。これにより、応力伝達リブ部を介して、第1鉄骨梁部材及び第2鉄骨梁部材の下フランジ部間で応力が伝達される。   On the other hand, in this invention, the stress transmission rib part facing each of the lower flange part of a 1st steel beam member and a 2nd steel beam member is provided in the lower part of a joining plate. Thereby, stress is transmitted between the lower flange portions of the first steel beam member and the second steel beam member via the stress transmission rib portion.

また、応力伝達リブ部によって、第1鉄骨梁部材が補強されるため、当該第1鉄骨梁部材の下フランジ部の座屈(横座屈)等が抑制される。   Further, since the first steel beam member is reinforced by the stress transmission rib portion, buckling (lateral buckling) or the like of the lower flange portion of the first steel beam member is suppressed.

このように本発明では、第1鉄骨梁部材及び第2鉄骨梁部材の下フランジ部間の応力伝達を良好にしつつ、第1鉄骨梁部材の下フランジ部の座屈等を抑制することができる。   As described above, in the present invention, it is possible to suppress the buckling of the lower flange portion of the first steel beam member while improving the stress transmission between the lower flange portions of the first steel beam member and the second steel beam member. .

請求項3に記載の異種鉄骨梁接合構造は、請求項1に記載の異種鉄骨梁接合構造において、前記第1鉄骨梁部材の前記ウェブ部に重ねられてボルト接合されると共に該ウェブ部から前記第2鉄骨梁部材の下フランジ部の下側へ延出するベースプレート部と、前記ベースプレート部の上端部に沿って設けられ、前記第1鉄骨梁部材と前記第2鉄骨梁部材に亘ると共に前記第2鉄骨梁部材の前記下フランジ部に下側から重ねられてボルト接合される応力伝達リブ部と、を有する応力伝達部材を備える。   The dissimilar steel beam joint structure according to claim 3 is the dissimilar steel beam joint structure according to claim 1, wherein the dissimilar steel beam joint structure is overlapped with the web portion of the first steel beam member and is bolt-joined and the web portion is A base plate portion extending to a lower side of a lower flange portion of the second steel beam member; and provided along an upper end portion of the base plate portion, spanning the first steel beam member and the second steel beam member, and The stress transmission member which has a stress transmission rib part piled up and bolted to the said lower flange part of 2 steel beam members from the lower side is provided.

請求項3に係る異種鉄骨梁接合構造によれば、応力伝達部材は、ベースプレート部と、ベースプレート部の上端部に沿って設けられた応力伝達リブ部とを有する。ベースプレート部は、第1鉄骨梁部材のウェブ部に重ねられてボルト接合される。一方、応力伝達リブ部は、第2鉄骨梁部材の下フランジ部に下側から重ねられてボルト接合される。この応力伝達部材を介して第1鉄骨梁部材と第2鉄骨梁部材とが接合される。   According to the heterogeneous steel beam joint structure according to the third aspect, the stress transmission member includes a base plate portion and a stress transmission rib portion provided along the upper end portion of the base plate portion. The base plate portion is overlapped with the web portion of the first steel beam member and bolted. On the other hand, the stress transmission rib portion is overlapped and bolted to the lower flange portion of the second steel beam member from the lower side. The first steel beam member and the second steel beam member are joined via the stress transmission member.

したがって、第1鉄骨梁部材及び第2鉄骨梁部材に応力伝達部材をそれぞれ溶接接合する場合と比較して、第1鉄骨梁部材及び第2鉄骨梁部材の接合作業の手間を低減することができる。   Therefore, compared with the case where the stress transmission member is welded to each of the first steel beam member and the second steel beam member, the labor of joining the first steel beam member and the second steel beam member can be reduced. .

また、応力伝達リブ部は、第1鉄骨梁部材と第2鉄骨梁部材とに亘って配置される。これにより、応力伝達リブ部を介して、第1鉄骨梁部材及び第2鉄骨梁部材の下フランジ部間で応力が伝達される。   Further, the stress transmission rib portion is disposed across the first steel beam member and the second steel beam member. Thereby, stress is transmitted between the lower flange portions of the first steel beam member and the second steel beam member via the stress transmission rib portion.

さらに、応力伝達リブ部によって、第1鉄骨梁部材が補強されるため、当該第1鉄骨梁部材の下フランジ部の座屈(横座屈)等が抑制される。   Furthermore, since the first steel beam member is reinforced by the stress transmission rib portion, buckling (lateral buckling) or the like of the lower flange portion of the first steel beam member is suppressed.

このように本発明では、第1鉄骨梁部材及び第2鉄骨梁部材の下フランジ部間の応力伝達を良好にしつつ、第1鉄骨梁部材の下フランジ部の座屈等を抑制することができる。   As described above, in the present invention, it is possible to suppress the buckling of the lower flange portion of the first steel beam member while improving the stress transmission between the lower flange portions of the first steel beam member and the second steel beam member. .

以上説明したように、本発明に係る異種鉄骨梁接合構造によれば、梁成が異なる鉄骨梁部材の接合作業の手間を低減することができる。   As described above, according to the heterogeneous steel beam joining structure according to the present invention, it is possible to reduce the labor of joining steel beam members having different beam formations.

本発明の第1実施形態に係る異種鉄骨梁接合構造が適用されたハンチ鉄骨梁を示す立面図である。It is an elevation view which shows the haunch steel beam to which the dissimilar steel beam joining structure which concerns on 1st Embodiment of this invention was applied. 図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. (A)は、本発明の第2実施形態に係る異種鉄骨梁接合構造が適用されたハンチ鉄骨梁を部分的に示す立面図であり、(B)は、図3(A)の3B−3B線断面図である。(A) is an elevation view partially showing a hunched steel beam to which the heterogeneous steel beam joint structure according to the second embodiment of the present invention is applied, and (B) is a 3B- in FIG. 3 (A). FIG. 3B is a sectional view taken along line 3B. (A)は、図3(A)に示されるハンチ鉄骨梁の上にスラブを形成した状態を示す立面図であり、(B)は、図4(A)の4B−4B線断面図である。(A) is an elevational view showing a state in which a slab is formed on the haunch steel beam shown in FIG. 3 (A), and (B) is a sectional view taken along line 4B-4B in FIG. 4 (A). is there. 比較例に係るハンチ鉄骨梁を示す立面図である。It is an elevation view which shows the haunch steel beam which concerns on a comparative example. (A)は、本発明の第3実施形態に係る異種鉄骨梁接合構造が適用されたハンチ鉄骨梁を部分的に示す立面図であり、(B)は、図6(A)の6B−6B線断面図である。(A) is an elevation view partially showing a hunched steel beam to which a heterogeneous steel beam joint structure according to a third embodiment of the present invention is applied, and (B) is a 6B- in FIG. 6 (A). It is a 6B line sectional view. (A)は、本発明の第4実施形態に係る異種鉄骨梁接合構造が適用されたハンチ鉄骨梁を部分的に示す立面図であり、(B)は、図7(A)の7B−7B線断面図である。(A) is an elevational view partially showing a hunched steel beam to which the heterogeneous steel beam joint structure according to the fourth embodiment of the present invention is applied, and (B) is 7B- in FIG. 7 (A). It is a 7B line sectional view.

以下、図面を参照しながら、本発明の実施形態に係る異種鉄骨梁接合構造について説明する。   Hereinafter, a heterogeneous steel beam joint structure according to an embodiment of the present invention will be described with reference to the drawings.

先ず、第1実施形態について説明する。   First, the first embodiment will be described.

図1には、第1実施形態に係る異種鉄骨梁接合構造10が適用されたハンチ鉄骨梁12が示されている。ハンチ鉄骨梁12は、一対の柱14に架設されている。このハンチ鉄骨梁12は、一対の第1鉄骨梁部材20と、第2鉄骨梁部材30とを備えている。   FIG. 1 shows a haunch steel beam 12 to which the heterogeneous steel beam joint structure 10 according to the first embodiment is applied. The haunch steel beam 12 is installed on a pair of columns 14. The haunch steel beam 12 includes a pair of first steel beam members 20 and a second steel beam member 30.

一対の第1鉄骨梁部材20は、H形鋼で形成されており、上下方向に対向する一対の上フランジ部20U及び下フランジ部20Lと、一対の上フランジ部20Uと下フランジ部20Lとを接続するウェブ部20Wとを有している。各第1鉄骨梁部材20の材軸方向の一端部は、柱14の仕口部14Aに接合されている。   The pair of first steel beam members 20 is formed of H-shaped steel, and includes a pair of upper flange portion 20U and lower flange portion 20L opposed in the vertical direction, and a pair of upper flange portion 20U and lower flange portion 20L. It has the web part 20W to connect. One end portion of each first steel beam member 20 in the material axis direction is joined to the joint portion 14 </ b> A of the column 14.

具体的には、柱14の仕口部14Aには、ガセットプレート16と、上下一対のダイアフラム18とが設けられている。ガセットプレート16は、柱14の側面に溶接等で接合されている。このガセットプレート16は、第1鉄骨梁部材20のウェブ部20Wに重ねられた状態でボルト22及び図示しないナットによりボルト接合されている。   Specifically, a gusset plate 16 and a pair of upper and lower diaphragms 18 are provided in the joint portion 14 </ b> A of the column 14. The gusset plate 16 is joined to the side surface of the column 14 by welding or the like. The gusset plate 16 is bolted by a bolt 22 and a nut (not shown) in a state where the gusset plate 16 is overlaid on the web portion 20W of the first steel beam member 20.

一対のダイアフラム18は、例えば、通しダイアフラムや外ダイアフラムとされており、ガセットプレート16の上下に配置されている。この一対のダイアフラム18には、第1鉄骨梁部材20の上フランジ部20U及び下フランジ部20Lが溶接等によりそれぞれ接合されている。これにより、柱14の仕口部14Aに、第1鉄骨梁部材20の材軸方向の一端部が接合(剛接合)されている。   The pair of diaphragms 18 is, for example, a through diaphragm or an outer diaphragm, and is disposed above and below the gusset plate 16. An upper flange portion 20U and a lower flange portion 20L of the first steel beam member 20 are joined to the pair of diaphragms 18 by welding or the like. Thus, one end of the first steel beam member 20 in the material axis direction is joined (rigidly joined) to the joint portion 14A of the column 14.

なお、柱14は、例えば、角形鋼管や丸形鋼管、H形鋼等で形成される。また、柱14は、鉄骨造に限らず、RC造やSRC造、CFT造でも良い。   Note that the column 14 is formed of, for example, a square steel pipe, a round steel pipe, an H-shaped steel, or the like. Further, the column 14 is not limited to a steel structure, but may be an RC structure, an SRC structure, or a CFT structure.

一対の第1鉄骨梁部材20の間には、第2鉄骨梁部材30が配置されている。第2鉄骨梁部材30は、第1鉄骨梁部材20と同様に、H形鋼で形成されており、上下方向に対向する一対の上フランジ部30U及び下フランジ部30Lと、一対の上フランジ部30Uと下フランジ部30Lとを接続するウェブ部30Wとを有している。   A second steel beam member 30 is disposed between the pair of first steel beam members 20. Similar to the first steel beam member 20, the second steel beam member 30 is formed of H-shaped steel, and a pair of upper flange portions 30U and a lower flange portion 30L opposed in the vertical direction, and a pair of upper flange portions. It has the web part 30W which connects 30U and the lower flange part 30L.

ここで、第2鉄骨梁部材30の梁成Hは、第1鉄骨梁部材20の梁成Hよりも低くされている。つまり、ハンチ鉄骨梁12は、材軸方向中間部の梁成Hが、材軸方向両側(柱14側)の梁成Hよりも低くなっている。これにより、ハンチ鉄骨梁12における柱14側の剛性及び耐力を確保しつつ、ハンチ鉄骨梁12の軽量化が図られている。 Here, the beam component H 2 of the second steel beam member 30 is set lower than the beam component H 1 of the first steel beam member 20. In other words, haunch steel beam 12, RyoNaru of H 2 Material axial intermediate portion is lower than RyoNaru H 1 axis of member opposite sides (column 14 side). Thereby, weight reduction of the haunch steel beam 12 is achieved, ensuring the rigidity and proof strength of the column 14 side in the haunch steel beam 12.

なお、第1鉄骨梁部材20と第2鉄骨梁部材30とは、上フランジ部20U,30U同士の板厚や幅が同じでも良いし、異なっていても良い。下フランジ部20L,30L同士及びウェブ部20W,30W同士についても同様である。また、第1鉄骨梁部材20と第2鉄骨梁部材30とは材質(強度)が同じでも良いし、異なっていても良い。さらに、材質が異なっていれば、第1鉄骨梁部材20と第2鉄骨梁部材30との梁成H,Hが同じであっても良い。さらには、第1鉄骨梁部材及び第2鉄骨梁部材は、H形鋼に限らない。第1鉄骨梁部材及び第2鉄骨梁部材は、少なくもウェブ部及び上フランジ部を有していれば良く、例えば、I形鋼、C形鋼、T形鋼等であっても良い。また、例えば、第1鉄骨梁部材及び第2鉄骨梁部材の一方をH形鋼で形成しても良いし、他方をC形鋼等で形成しても良い。 In addition, the plate | board thickness and width | variety of upper flange part 20U and 30U may be the same, and the 1st steel beam member 20 and the 2nd steel beam member 30 may differ. The same applies to the lower flange portions 20L and 30L and the web portions 20W and 30W. The first steel beam member 20 and the second steel beam member 30 may be made of the same material (strength) or different. Furthermore, as long as the materials are different, the beam formations H 1 and H 2 of the first steel beam member 20 and the second steel beam member 30 may be the same. Furthermore, the first steel beam member and the second steel beam member are not limited to H-shaped steel. The first steel beam member and the second steel beam member need only have at least a web portion and an upper flange portion, and may be, for example, an I-shaped steel, a C-shaped steel, a T-shaped steel, or the like. Further, for example, one of the first steel beam member and the second steel beam member may be formed of H-section steel, and the other may be formed of C-section steel or the like.

第2鉄骨梁部材30の材軸方向の両端部は、一対の第1鉄骨梁部材20の材軸方向の他端部にそれぞれ接合されている。具体的には、第2鉄骨梁部材30は、その上フランジ部30Uが第1鉄骨梁部材20の上フランジ部20Uと連続するように配置されており、その下フランジ部30Lが第1鉄骨梁部材20の下フランジ部20Lよりも上側に位置している。そのため、下フランジ部30Lと下フランジ部20Lとの間に、段差が形成されている。これにより、第2鉄骨梁部材30の下に、設備配線や配管等の設置スペースが形成されている。   Both ends of the second steel beam member 30 in the material axis direction are joined to the other ends of the pair of first steel beam members 20 in the material axis direction, respectively. Specifically, the second steel beam member 30 is arranged such that its upper flange portion 30U is continuous with the upper flange portion 20U of the first steel beam member 20, and its lower flange portion 30L is the first steel beam. The member 20 is positioned above the lower flange portion 20L. Therefore, a step is formed between the lower flange portion 30L and the lower flange portion 20L. Thereby, installation space, such as installation wiring and piping, is formed under the 2nd steel beam member 30. As shown in FIG.

なお、ここでいう第1鉄骨梁部材20の上フランジ部20Uと第2鉄骨梁部材30の上フランジ部30Uとが連続するとは、施工誤差等により上フランジ部20U,30Uが上下方向にずれる構成や、上フランジ部20U,30Uの幅方向にずれる構成等を含む概念である。また、第2鉄骨梁部材30の上フランジ部30Uと第1鉄骨梁部材20の上フランジ部30Uとは非接合とされており、溶接やボルトによって接合されていない。   Note that the upper flange portion 20U of the first steel beam member 20 and the upper flange portion 30U of the second steel beam member 30 are continuous here because the upper flange portions 20U and 30U are displaced in the vertical direction due to construction errors or the like. In addition, it is a concept including a configuration that shifts in the width direction of the upper flange portions 20U and 30U. Further, the upper flange portion 30U of the second steel beam member 30 and the upper flange portion 30U of the first steel beam member 20 are not joined, and are not joined by welding or bolts.

図1及び図2に示されるように、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wは、一対の接合プレート40を介してボルト接合される。具体的には、一対の接合プレート(フラットプレート)40は、矩形の平板状に形成されており、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wの面外方向の両側に配置されている。なお、接合プレート40の形状は矩形状に限らず、多角形状や楕円形状でも良い。   As shown in FIGS. 1 and 2, the web portions 20 </ b> W and 30 </ b> W of the first steel beam member 20 and the second steel beam member 30 are bolted via a pair of bonding plates 40. Specifically, the pair of joining plates (flat plates) 40 are formed in a rectangular flat plate shape, and are in the out-of-plane direction of the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30. Located on both sides. In addition, the shape of the joining plate 40 is not limited to a rectangular shape, and may be a polygonal shape or an elliptical shape.

各接合プレート40は、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wに亘って配置され、これらのウェブ部20W,30Wの各々に重ねられた状態で複数のボルト42及びナット44によりボルト接合されている。換言すると、一対の接合プレート40は、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wを面外方向の両側から挟み込んだ状態で、複数のボルト42及びナット44により互いにボルト接合されている。これにより、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30W同士がピン接合されており、一対の接合プレート40を介してウェブ部20W,30Wの間でせん断力が伝達されるようになっている。なお、ボルト42には、高力ボルトを用いても良いし、通常のボルトを用いても良い。   Each joining plate 40 is arranged over the web portions 20W, 30W of the first steel beam member 20 and the second steel beam member 30, and a plurality of bolts 42 in a state of being superimposed on each of these web portions 20W, 30W. And a bolt 44 with a nut 44. In other words, the pair of joining plates 40 are connected to each other by the plurality of bolts 42 and the nuts 44 with the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30 sandwiched from both sides in the out-of-plane direction. It is bolted. Thereby, the web parts 20W and 30W of the 1st steel beam member 20 and the 2nd steel beam member 30 are pin-joined, and shear force is transmitted between the web parts 20W and 30W via a pair of joining plates 40. It has come to be. The bolt 42 may be a high-strength bolt or a normal bolt.

次に、第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

図1及び図2に示されるように、本実施形態に係る異種鉄骨梁接合構造10によれば、第1鉄骨梁部材20及び第2鉄骨梁部材30の上フランジ部20U,30U同士を非接合とすると共に、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30W同士を一対の接合プレート40を介してボルト接合する。   As shown in FIGS. 1 and 2, according to the dissimilar steel beam joint structure 10 according to the present embodiment, the upper flange portions 20U and 30U of the first steel beam member 20 and the second steel beam member 30 are not joined to each other. In addition, the web portions 20 </ b> W and 30 </ b> W of the first steel beam member 20 and the second steel beam member 30 are bolt-bonded via a pair of bonding plates 40.

したがって、例えば、第1鉄骨梁部材20及び第2鉄骨梁部材30の上フランジ部20U,30U同士を溶接接合すると共にウェブ部20W,30W同士を一対の接合プレート40を介して溶接接合する場合と比較して、第1鉄骨梁部材20と第2鉄骨梁部材30との接合作業の手間を低減することができる。   Therefore, for example, the upper flange portions 20U and 30U of the first steel beam member 20 and the second steel beam member 30 are welded together and the web portions 20W and 30W are welded and joined via the pair of joining plates 40. In comparison, the labor of joining the first steel beam member 20 and the second steel beam member 30 can be reduced.

また、ボルト接合では、溶接接合で必要となる非破壊検査(UT)が不要になる。したがって、非破壊検査(UT)が完了するまでの第1鉄骨梁部材20及び第2鉄骨梁部材30の一時保管スペースを不要にすることができる。   Further, in bolt joining, nondestructive inspection (UT) required for welding joining is not necessary. Therefore, the temporary storage space of the 1st steel beam member 20 and the 2nd steel beam member 30 until a nondestructive inspection (UT) is completed can be made unnecessary.

さらに、ボルト接合は、施工が容易であるため、熟練工が不要であり、また、現場においても工場と同等の接合品質を確保することができる。そのため、第1鉄骨梁部材20及び第2鉄骨梁部材30を分割した状態で現場へ運搬し、現場で第1鉄骨梁部材20と第2鉄骨梁部材30とを接合することができる。したがって、第1鉄骨梁部材20及び第2鉄骨梁部材30の運搬性及び揚重性が向上する。   Furthermore, since the bolt joint is easy to construct, a skilled worker is unnecessary, and the joint quality equivalent to that of the factory can be ensured on site. Therefore, the 1st steel beam member 20 and the 2nd steel beam member 30 can be conveyed to the field in the state where it divided, and the 1st steel beam member 20 and the 2nd steel beam member 30 can be joined on the field. Therefore, the transportability and liftability of the first steel beam member 20 and the second steel beam member 30 are improved.

さらに、例えば、第1鉄骨梁部材20と第2鉄骨梁部材30との接合部を、長期荷重に起因する曲げモーメントがゼロになる反曲点若しくは反曲点付近に位置させることにより、第1鉄骨梁部材20と第2鉄骨梁部材30との接合構造を合理的に簡素化することができる。   Furthermore, for example, the first steel beam member 20 and the second steel beam member 30 are joined at the first or second inflection point where the bending moment due to the long-term load is zero or near the inflection point. The joining structure of the steel beam member 20 and the second steel beam member 30 can be rationally simplified.

次に、第2実施形態について説明する。なお、第1実施形態と同じ構成のものは、同符号を付して説明を省略する。   Next, a second embodiment will be described. In addition, the thing of the same structure as 1st Embodiment attaches | subjects a same sign, and abbreviate | omits description.

図3(A)及び図3(B)には、第2実施形態に係る異種鉄骨梁接合構造50が適用されたハンチ鉄骨梁52が示されている。第2実施形態では、第1実施形態と異なり、接合プレート54に応力伝達リブ部54Bが設けられている。   3 (A) and 3 (B) show a hunched steel beam 52 to which the dissimilar steel beam joint structure 50 according to the second embodiment is applied. In the second embodiment, unlike the first embodiment, a stress transmission rib portion 54 </ b> B is provided on the bonding plate 54.

具体的には、一対の接合プレート54は、断面L字状に形成されており、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wの面外方向の両側に配置されている。各接合プレート54は、ベースプレート部(フラットプレート部)54Aと、応力伝達リブ部54Bとを有している。なお、接合プレート54は、不等辺山形鋼でも良いし、等辺山形鋼でも良い。また、接合プレート54は、溝形鋼で良い。   Specifically, the pair of joining plates 54 is formed in an L-shaped cross section, and is disposed on both sides of the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30 in the out-of-plane direction. ing. Each joining plate 54 has a base plate portion (flat plate portion) 54A and a stress transmission rib portion 54B. The joining plate 54 may be an unequal angle iron or an equal angle iron. The joining plate 54 may be channel steel.

ベースプレート部54Aは、矩形の平板状に形成されている。このベースプレート部54Aは、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wに亘って配置されており、これらのウェブ部20W,30Wにそれぞれ重ねられた状態で複数のボルト56A,56B及びナット58によってボルト接合されている。換言すると、一対のベースプレート部54Aは、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wを面外方向の両側から挟み込んだ状態で、複数のボルト56A,56B及びナット58により互いにボルト接合されている。これにより、第1鉄骨梁部材20と第2鉄骨梁部材30とがピン接合されている。   The base plate portion 54A is formed in a rectangular flat plate shape. The base plate portion 54A is disposed over the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30, and a plurality of bolts are overlaid on the web portions 20W and 30W. The bolts are joined by 56A and 56B and a nut 58. In other words, the pair of base plate portions 54A includes a plurality of bolts 56A, 56B and nuts 58 with the web portions 20W, 30W of the first steel beam member 20 and the second steel beam member 30 sandwiched from both sides in the out-of-plane direction. Are bolted together. Thereby, the 1st steel beam member 20 and the 2nd steel beam member 30 are pin-joined.

応力伝達リブ部54Bは、ベースプレート部54Aの下端部に沿って設けられており、第1鉄骨梁部材20と第2鉄骨梁部材30のウェブ部20W,30Wに亘って配置されている。この応力伝達リブ部54Bは、ベースプレート部54Aの下端部から面外方向に延出している。つまり、応力伝達リブ部54Bは、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wの表面(側面)に対して略垂直に立てられている。この応力伝達リブ部54Bによって、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wが補強されている。   The stress transmission rib portion 54B is provided along the lower end portion of the base plate portion 54A, and is disposed across the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30. The stress transmission rib portion 54B extends in the out-of-plane direction from the lower end portion of the base plate portion 54A. That is, the stress transmission rib portion 54 </ b> B stands substantially perpendicular to the surfaces (side surfaces) of the web portions 20 </ b> W and 30 </ b> W of the first steel beam member 20 and the second steel beam member 30. The web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30 are reinforced by the stress transmission rib portion 54B.

また、応力伝達リブ部54Bは、第2鉄骨梁部材30の下フランジ部30Lの上側に配置され、当該下フランジ部30Lと近接した状態で対向している。この応力伝達リブ部54Bは、下フランジ部30Lに沿って第2鉄骨梁部材30のウェブ部30Wから第1鉄骨梁部材20のウェブ部20Wへ延出し、第1鉄骨梁部材20の下フランジ部20Lと対向している。この応力伝達リブ部54Bを介して、第2鉄骨梁部材30の下フランジ部30Lと第1鉄骨梁部材20の下フランジ部20Lとの間で応力が伝達される。   Moreover, the stress transmission rib part 54B is arrange | positioned above the lower flange part 30L of the 2nd steel beam member 30, and has opposed the said lower flange part 30L. The stress transmission rib portion 54B extends from the web portion 30W of the second steel beam member 30 to the web portion 20W of the first steel beam member 20 along the lower flange portion 30L, and the lower flange portion of the first steel beam member 20 It faces 20L. Stress is transmitted between the lower flange portion 30L of the second steel beam member 30 and the lower flange portion 20L of the first steel beam member 20 through the stress transmission rib portion 54B.

なお、接合プレート54は、断面L字状に限らず、断面T字状でも良い。つまり、応力伝達リブ部54Bは、ベースプレート部54Aの下端部に限らず、当該下端部以外の下部に設けても良い。   Note that the bonding plate 54 is not limited to an L-shaped section, and may have a T-shaped section. That is, the stress transmission rib portion 54B is not limited to the lower end portion of the base plate portion 54A, and may be provided in a lower portion other than the lower end portion.

ここで、本実施形態では、ボルト56A,56Bが複数段複数列で配列されている。そして、最下段のボルト56Bの数、すなわち応力伝達リブ部54B側のボルト56Bの数(列数)が、その上段のボルト56Aの数(列数)よりも多くなっている。また、最下段のボルト56Bは、応力伝達リブ部54Bに沿って配列されている。これらのボルト56Bによって、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wと応力伝達リブ部54Bとの間の応力伝達効率が向上されている。なお、ボルト56A,56Bの数や配列は、適宜変更可能である。   Here, in this embodiment, the bolts 56A and 56B are arranged in a plurality of stages and a plurality of rows. The number of the lowest bolts 56B, that is, the number (rows) of the bolts 56B on the stress transmission rib portion 54B side is larger than the number (rows) of the upper bolts 56A. Further, the lowermost bolt 56B is arranged along the stress transmission rib portion 54B. With these bolts 56B, the stress transmission efficiency between the web portions 20W, 30W of the first steel beam member 20 and the second steel beam member 30 and the stress transmission rib portion 54B is improved. The number and arrangement of the bolts 56A and 56B can be changed as appropriate.

図4(A)及び図4(B)に示されるように、第1鉄骨梁部材20及び第2鉄骨梁部材30の上には、例えば、鉄筋コンクリート造のスラブ60が形成される。スラブ60には、上端スラブ筋62及び下端スラブ筋64が水平二方向にそれぞれ埋設されている。このスラブ60は、複数のスタッド66を介して第1鉄骨梁部材20及び第2鉄骨梁部材30と接合されている。   As shown in FIGS. 4A and 4B, a slab 60 made of, for example, reinforced concrete is formed on the first steel beam member 20 and the second steel beam member 30. An upper end slab bar 62 and a lower end slab bar 64 are embedded in the slab 60 in two horizontal directions. The slab 60 is joined to the first steel beam member 20 and the second steel beam member 30 through a plurality of studs 66.

具体的には、第1鉄骨梁部材20及び第2鉄骨梁部材30の上フランジ部20U,30Uの上面には、せん断力伝達部材としての複数のスタッド66がそれぞれ設けられている。これらのスタッド66をスラブ60の下面側に埋設することにより第1鉄骨梁部材20及び第2鉄骨梁部材30とスラブ60とが一体化されている。なお、スラブ60は、図示しないデッキプレートを用いた合成スラブとされている。   Specifically, a plurality of studs 66 as shear force transmission members are provided on the upper surfaces of the upper flange portions 20U and 30U of the first steel beam member 20 and the second steel beam member 30, respectively. By embedding these studs 66 on the lower surface side of the slab 60, the first steel beam member 20, the second steel beam member 30, and the slab 60 are integrated. The slab 60 is a synthetic slab using a deck plate (not shown).

ここで、スラブ60におけるスタッド66の周辺部には、複数の応力伝達筋(補強筋)68がハンチ鉄骨梁52の材軸方向に沿って埋設されている。複数の応力伝達筋68は、上端スラブ筋62と下端スラブ筋64との間に配置されると共に、ウェブ部20W,30Wの面外方向(矢印X方向)に間隔を空けて配筋されている。また、各応力伝達筋68は、上端スラブ筋62及び下端スラブ筋64よりも径が大きくされている。   Here, a plurality of stress transmission bars (reinforcing bars) 68 are embedded in the peripheral portion of the stud 66 in the slab 60 along the material axis direction of the hunch steel beam 52. The plurality of stress transmission bars 68 are arranged between the upper end slab bars 62 and the lower end slab bars 64, and are arranged at intervals in the out-of-plane direction (arrow X direction) of the web portions 20W and 30W. . Each stress transmission bar 68 has a diameter larger than that of the upper end slab bar 62 and the lower end slab bar 64.

これにより、応力伝達筋68及びスタッド66を介して、第1鉄骨梁部材20及び第2鉄骨梁部材30の上フランジ部20U,30Uの間で応力が伝達されるようになっている。つまり、応力伝達筋68及びスタッド66は、スラブ60内に上フランジ部20U,30U間の応力伝達経路を形成している。   As a result, stress is transmitted between the upper flange portions 20U and 30U of the first steel beam member 20 and the second steel beam member 30 via the stress transmission bars 68 and the studs 66. That is, the stress transmission line 68 and the stud 66 form a stress transmission path between the upper flange portions 20U and 30U in the slab 60.

なお、応力伝達筋68及びスタッド66の数や配置は、適宜変更可能である。また、応力伝達筋68とスタッド66とは、結束線等で適宜結束しても良い。   In addition, the number and arrangement | positioning of the stress transmission line 68 and the stud 66 can be changed suitably. Further, the stress transmission line 68 and the stud 66 may be appropriately bound by a binding wire or the like.

次に、第2実施形態の作用について説明する。   Next, the operation of the second embodiment will be described.

図3(A)及び図3(B)に示されるように、本実施形態に係る異種鉄骨梁接合構造50によれば、接合プレート54には、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wに亘る応力伝達リブ部54Bが設けられている。この応力伝達リブ部54Bは、ベースプレート部54Aの下端部から面外方向に延出し、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30Lの各々と対向している。   As shown in FIG. 3A and FIG. 3B, according to the dissimilar steel beam joining structure 50 according to the present embodiment, the joining plate 54 includes the first steel beam member 20 and the second steel beam member. The stress transmission rib part 54B over 30 web parts 20W and 30W is provided. The stress transmission rib portion 54B extends in the out-of-plane direction from the lower end portion of the base plate portion 54A, and faces the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30.

ここで、第1鉄骨梁部材20と第2鉄骨梁部材30とは、梁成H,Hが異なると共にその上フランジ部20U,30U同士が連続するように配置される。そのため、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L同士が連続せず、その間に段差が形成されている。したがって、下フランジ部20L,30Lの間で応力を伝達することが難しい。 Here, the first steel beam member 20 and the second steel beam member 30 are arranged such that the beam formations H 1 and H 2 are different and the upper flange portions 20U and 30U are continuous with each other. Therefore, the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30 are not continuous with each other, and a step is formed therebetween. Therefore, it is difficult to transmit stress between the lower flange portions 20L and 30L.

これに対して本実施形態では、接合プレート54に、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wに亘る応力伝達リブ部54Bが設けられている。これにより、例えば、第2鉄骨梁部材30の下フランジ部30Lに作用する応力(引張応力)は、第2鉄骨梁部材30側のウェブ部30W、ボルト56B、ベースプレート部54Aを介して応力伝達リブ部54Bに伝達される。また、応力伝達リブ部54Bに伝達された応力は、第1鉄骨梁部材20側のベースプレート部54A、ボルト56B、及びウェブ部20Wを介して当該第1鉄骨梁部材20の下フランジ部20Lへ伝達される。   On the other hand, in this embodiment, the joining plate 54 is provided with stress transmission ribs 54 </ b> B extending over the web portions 20 </ b> W and 30 </ b> W of the first steel beam member 20 and the second steel beam member 30. Thereby, for example, the stress (tensile stress) acting on the lower flange portion 30L of the second steel beam member 30 is a stress transmission rib via the web portion 30W, the bolt 56B, and the base plate portion 54A on the second steel beam member 30 side. Is transmitted to the unit 54B. Further, the stress transmitted to the stress transmission rib portion 54B is transmitted to the lower flange portion 20L of the first steel beam member 20 through the base plate portion 54A, the bolt 56B, and the web portion 20W on the first steel beam member 20 side. Is done.

また、本実施形態で、複数段のボルト56A,56Bのうち、最下段のボルト56Bの数(列数)がその上段のボルト56Aの数(列数)よりも多くなっている。これにより、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wと応力伝達リブ部54Bとの間の応力伝達が良好になる。したがって、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L間の応力伝達効率が向上する。   In the present embodiment, among the plurality of stages of bolts 56A and 56B, the number of lowermost bolts 56B (number of rows) is larger than the number of upper bolts 56A (number of rows). Thereby, the stress transmission between the web parts 20W and 30W of the 1st steel beam member 20 and the 2nd steel beam member 30 and the stress transmission rib part 54B becomes favorable. Therefore, the stress transmission efficiency between the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30 is improved.

さらに、応力伝達リブ部54Bによって、第1鉄骨梁部材20の下フランジ部20Lの座屈(横座屈)等が抑制される。したがって、第1鉄骨梁部材20と第2鉄骨梁部材30との接合部の耐力を高めることができる。   Furthermore, buckling (lateral buckling) or the like of the lower flange portion 20L of the first steel beam member 20 is suppressed by the stress transmission rib portion 54B. Therefore, the proof stress of the junction part of the 1st steel beam member 20 and the 2nd steel beam member 30 can be improved.

また、応力伝達リブ部54Bが設けられた接合プレート54は、第1鉄骨梁部材20のウェブ部20Wにボルト接合される。したがって、例えば、図5に示される比較例のように、第1鉄骨梁部材20のウェブ部20Wに座屈防止用の補剛リブ100を溶接する構成と比べ、第1鉄骨梁部材20の製作性が向上する。   Further, the joining plate 54 provided with the stress transmission rib portion 54 </ b> B is bolted to the web portion 20 </ b> W of the first steel beam member 20. Therefore, for example, as in the comparative example shown in FIG. 5, the first steel beam member 20 is manufactured as compared with the configuration in which the stiffening rib 100 for buckling prevention is welded to the web portion 20 </ b> W of the first steel beam member 20. Improves.

このように本実施形態では、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L間の応力伝達を良好にしつつ、第1鉄骨梁部材20の下フランジ部20Lの座屈等を抑制することができる。   Thus, in the present embodiment, the seat of the lower flange portion 20L of the first steel beam member 20 is improved while the stress transmission between the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30 is improved. Bending and the like can be suppressed.

さらに、図4(A)及び図4(B)に示されるように、第1鉄骨梁部材20及び第2鉄骨梁部材30の上に形成されるスラブ60には、複数の応力伝達筋(補強筋)68が埋設されている。これらの応力伝達筋68及びスタッド66を介して、第1鉄骨梁部材20及び第2鉄骨梁部材30の上フランジ部20U,30U間で応力が伝達される。   Further, as shown in FIGS. 4A and 4B, the slab 60 formed on the first steel beam member 20 and the second steel beam member 30 has a plurality of stress transmission bars (reinforcement). (Stripes) 68 are buried. Stress is transmitted between the upper flange portions 20U and 30U of the first steel beam member 20 and the second steel beam member 30 through the stress transmission bars 68 and the studs 66.

したがって、第1鉄骨梁部材20及び第2鉄骨梁部材30の上フランジ部20U,30U同士を溶接等により直接的に接合せずに、第1鉄骨梁部材20と第2鉄骨梁部材30との接合部の耐力を高めることができる。   Therefore, the first steel beam member 20 and the second steel beam member 30 can be joined to each other without joining the upper flange portions 20U, 30U of the first steel beam member 20 and the second steel beam member 30 directly by welding or the like. The yield strength of the joint can be increased.

なお、応力伝達筋68及びスタッド66によって、スラブ60内に上フランジ部20U,30U間の応力伝達経路を形成する構成は、上記第1実施形態や後述する第3,第4実施形態にも適宜適用可能である。   The configuration in which the stress transmission path 68 and the stud 66 form the stress transmission path between the upper flange portions 20U and 30U in the slab 60 is also appropriate for the first embodiment and the third and fourth embodiments described later. Applicable.

次に、第3実施形態について説明する。なお、第1,第2実施形態と同じ構成のものは、同符号を付して説明を省略する。   Next, a third embodiment will be described. In addition, the thing of the same structure as 1st, 2nd embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.

図6(A)及び図6(B)には、第3実施形態に係る異種鉄骨梁接合構造70が適用されたハンチ鉄骨梁72が示されている。第3実施形態では、第1,第2実施形態と異なり、一対の第1鉄骨梁部材20と第2鉄骨梁部材30とが、一対の接合プレート74及び一対の応力伝達部材80を介してボルト接合されている。   6A and 6B show a hunched steel beam 72 to which the heterogeneous steel beam joint structure 70 according to the third embodiment is applied. In the third embodiment, unlike the first and second embodiments, a pair of first steel beam members 20 and a second steel beam member 30 are bolted via a pair of joining plates 74 and a pair of stress transmission members 80. It is joined.

具体的には、一対の接合プレート74は、第1実施形態における接合プレート40(図1参照)と同様の構成とされており、矩形の平板状に形成されている。また、一対の接合プレート74は、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wの面外方向の両側に配置されており、複数のボルト76及びナット78によってウェブ部20W,30Wにそれぞれボルト接合されている。この一対の接合プレート74は、主として第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30W間でせん断力を伝達する。   Specifically, the pair of joining plates 74 has the same configuration as the joining plate 40 (see FIG. 1) in the first embodiment, and is formed in a rectangular flat plate shape. The pair of joining plates 74 are disposed on both sides in the out-of-plane direction of the web portions 20 </ b> W and 30 </ b> W of the first steel beam member 20 and the second steel beam member 30. It is bolted to 20W and 30W, respectively. The pair of joining plates 74 mainly transmits a shearing force between the web portions 20 </ b> W and 30 </ b> W of the first steel beam member 20 and the second steel beam member 30.

一方、一対の応力伝達部材80は、断面L字状に形成されており、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wの面外方向の両側に配置されている。各応力伝達部材80は、ベースプレート部80Aと、応力伝達リブ部80Bとを有し、長手方向をハンチ鉄骨梁72の材軸方向とすると共に応力伝達リブ部80Bを下にした状態で配置されている。この一対の応力伝達部材80は、主として第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L間で応力(引張応力)を伝達する。   On the other hand, the pair of stress transmission members 80 are formed in an L-shaped cross section, and are disposed on both sides of the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30 in the out-of-plane direction. . Each stress transmission member 80 has a base plate portion 80A and a stress transmission rib portion 80B, and is arranged in a state where the longitudinal direction is the material axis direction of the hunch steel beam 72 and the stress transmission rib portion 80B is down. Yes. The pair of stress transmission members 80 mainly transmit stress (tensile stress) between the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30.

ベースプレート部80Aは、矩形の平板状に形成されている。このベースプレート部80Aは、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wに亘って配置されており、これらのウェブ部20W,30Wにそれぞれ重ねられた状態で複数のボルト82及びナット84によってボルト接合されている。   The base plate portion 80A is formed in a rectangular flat plate shape. The base plate portion 80A is disposed over the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30, and a plurality of bolts are overlaid on the web portions 20W and 30W. 82 and nut 84 are bolted together.

応力伝達リブ部80Bは、ベースプレート部80Aの下端部に沿って設けられており、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wに亘っている。この応力伝達リブ部80Bは、ベースプレート部80Aの下端部から面外方向に延出している。つまり、応力伝達リブ部80Bは、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wの表面(側面)に対して略垂直に立てられている。この応力伝達リブ部80Bによって、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wが補強されている。   The stress transmission rib portion 80B is provided along the lower end portion of the base plate portion 80A and extends over the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30. The stress transmission rib portion 80B extends in the out-of-plane direction from the lower end portion of the base plate portion 80A. That is, the stress transmission rib portion 80B stands substantially perpendicular to the surfaces (side surfaces) of the web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30. The web portions 20W and 30W of the first steel beam member 20 and the second steel beam member 30 are reinforced by the stress transmission rib portion 80B.

また、応力伝達リブ部80Bは、第2鉄骨梁部材30の下フランジ部30Lの上側に配置され、当該下フランジ部30Lと近接した状態で対向している。この応力伝達リブ部80Bは、下フランジ部30Lに沿って第2鉄骨梁部材30のウェブ部30Wから第1鉄骨梁部材20のウェブ部20Wへ延出し、第1鉄骨梁部材20の下フランジ部20Lと対向している。この応力伝達リブ部80Bを介して、第2鉄骨梁部材30の下フランジ部30Lと第1鉄骨梁部材20の下フランジ部20Lとの間で応力が伝達される。   In addition, the stress transmission rib portion 80B is disposed on the upper side of the lower flange portion 30L of the second steel beam member 30, and faces the lower flange portion 30L in a close proximity. The stress transmission rib portion 80B extends from the web portion 30W of the second steel beam member 30 to the web portion 20W of the first steel beam member 20 along the lower flange portion 30L, and the lower flange portion of the first steel beam member 20 It faces 20L. Stress is transmitted between the lower flange portion 30L of the second steel beam member 30 and the lower flange portion 20L of the first steel beam member 20 through the stress transmission rib portion 80B.

さらに、応力伝達部材80における第1鉄骨梁部材20側の長さは、第2鉄骨梁部材30側よりも長くなっている。また、応力伝達部材80は、接合プレート74よりも第2鉄骨梁部材30から柱14側へ延出している。これにより、第1鉄骨梁部材20の下フランジ部20Lの座屈(横座屈)がより確実に抑制されている。   Further, the length of the stress transmission member 80 on the first steel beam member 20 side is longer than that of the second steel beam member 30 side. Further, the stress transmission member 80 extends from the second steel beam member 30 to the column 14 side than the joining plate 74. Thereby, buckling (lateral buckling) of the lower flange portion 20L of the first steel beam member 20 is more reliably suppressed.

なお、応力伝達部材80の長さは適宜変更可能であり、例えば、応力伝達部材80における第1鉄骨梁部材20側と第2鉄骨梁部材30側の長さを同じにしても良いし、第1鉄骨梁部材20側よりも第2鉄骨梁部材30側の長さを長くしても良い。また、応力伝達部材80は、接合プレート74と同じ長さにしても良いし、接合プレート74よりも短くしても良い。   The length of the stress transmission member 80 can be changed as appropriate. For example, the lengths of the stress transmission member 80 on the first steel beam member 20 side and the second steel beam member 30 side may be the same. The length of the second steel beam member 30 side may be longer than that of the first steel beam member 20 side. Further, the stress transmission member 80 may have the same length as the joining plate 74 or may be shorter than the joining plate 74.

次に、第3実施形態の作用について説明する。   Next, the operation of the third embodiment will be described.

図6(A)及び図6(B)に示されるように、本実施形態に係る異種鉄骨梁接合構造70によれば、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30W間でせん断力を伝達する接合プレート74と、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L間で応力(引張応力)を伝達する応力伝達部材80とが別体(別部材)とされている。   As shown in FIGS. 6A and 6B, according to the dissimilar steel beam joint structure 70 according to the present embodiment, the web portions 20W of the first steel beam member 20 and the second steel beam member 30 are provided. The joining plate 74 that transmits shearing force between 30 W and the stress transmission member 80 that transmits stress (tensile stress) between the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30 are separated. It is a body (separate member).

このように接合プレート74と応力伝達部材80とを機能(役割)ごとに別部材とすることにより、接合プレート74及び応力伝達部材80の設計が容易となる。また、接合プレート74及び応力伝達部材80を一体にした場合と比較して、各接合プレート74及び応力伝達部材80がそれぞれ軽くなるため、施工性が向上する。   In this way, the joining plate 74 and the stress transmission member 80 are made separate for each function (role), so that the design of the joining plate 74 and the stress transmission member 80 is facilitated. Moreover, since each joining plate 74 and the stress transmission member 80 become light respectively compared with the case where the joining plate 74 and the stress transmission member 80 are united, workability | operativity improves.

また、本実施形態では、応力伝達部材80が、接合プレート74よりも第2鉄骨梁部材30から柱14側へ延出している。これにより、第1鉄骨梁部材20の下フランジ部20Lの座屈(横座屈)をより確実に抑制することができる。したがって、本実施形態では、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L間の応力伝達を良好にしつつ、第1鉄骨梁部材20の下フランジ部20Lの座屈等をより確実に抑制することができる。   Further, in the present embodiment, the stress transmission member 80 extends from the second steel beam member 30 to the column 14 side rather than the joining plate 74. Thereby, the buckling (lateral buckling) of the lower flange portion 20L of the first steel beam member 20 can be more reliably suppressed. Therefore, in the present embodiment, the buckling of the lower flange portion 20L of the first steel beam member 20 is improved while improving the stress transmission between the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30. Etc. can be more reliably suppressed.

さらに、応力伝達部材80は、接合プレート74と同様に、第1鉄骨梁部材20及び第2鉄骨梁部材30にボルト接合される。したがって、第1鉄骨梁部材20及び第2鉄骨梁部材30に応力伝達部材80をそれぞれ溶接接合する場合と比較して、第1鉄骨梁部材20と第2鉄骨梁部材30との接合作業の手間を低減することができる。   Further, the stress transmission member 80 is bolted to the first steel beam member 20 and the second steel beam member 30 in the same manner as the bonding plate 74. Therefore, compared with the case where the stress transmission member 80 is welded and joined to the first steel beam member 20 and the second steel beam member 30, respectively, the work of joining the first steel beam member 20 and the second steel beam member 30 is troublesome. Can be reduced.

次に、第4実施形態について説明する。なお、第1〜第3実施形態と同じ構成のものは、同符号を付して説明を省略する。   Next, a fourth embodiment will be described. In addition, the thing of the same structure as 1st-3rd embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.

図7(A)及び図7(B)には、第4実施形態に係る異種鉄骨梁接合構造90が適用されたハンチ鉄骨梁92が示されている。第4実施形態では、第3実施形態と異なり、一対の応力伝達部材80が第2鉄骨梁部材30の下側に配置されている。   7A and 7B show a hunched steel beam 92 to which the heterogeneous steel beam joint structure 90 according to the fourth embodiment is applied. In the fourth embodiment, unlike the third embodiment, a pair of stress transmission members 80 are disposed below the second steel beam member 30.

具体的には、一対の応力伝達部材80は、応力伝達リブ部80Bを上にした状態で配置されている。この一対の応力伝達部材80のベースプレート部80Aにおける長手方向一方側(第1鉄骨梁部材20側)は、第1鉄骨梁部材20のウェブ部20Wに重ねられた状態でボルト82及びナット(図示省略)によりボルト接合されている。   Specifically, the pair of stress transmission members 80 are arranged with the stress transmission rib portion 80B facing up. One side in the longitudinal direction (the first steel beam member 20 side) of the base plate portion 80A of the pair of stress transmission members 80 is overlaid on the web portion 20W of the first steel beam member 20 with bolts 82 and nuts (not shown). ).

一方、一対の応力伝達部材80のベースプレート部80Aにおける長手方向他方側(第2鉄骨梁部材30側)は、第1鉄骨梁部材20のウェブ部20Wから第2鉄骨梁部材30の下フランジ部30Lの下側へそれぞれ延出しており、板状のスペーサ94を挟んだ状態でボルト96及びナット97により互いにボルト接合されている。なお、スペーサ94は、第1鉄骨梁部材20のウェブ部20Wと略同じ板厚とされている。また、スペーサ94は、適宜省略可能である。   On the other hand, the other longitudinal side of the base plate portion 80A of the pair of stress transmission members 80 (the second steel beam member 30 side) is from the web portion 20W of the first steel beam member 20 to the lower flange portion 30L of the second steel beam member 30. The bolts 96 and nuts 97 are joined to each other with a plate-like spacer 94 interposed therebetween. The spacer 94 has substantially the same thickness as the web portion 20W of the first steel beam member 20. Further, the spacer 94 can be omitted as appropriate.

応力伝達リブ部80Bは、ベースプレート部80Aの上端部に沿って設けられており、第1鉄骨梁部材20のウェブ部20Wと第2鉄骨梁部材30の下フランジ部30Lとに亘っている。この応力伝達リブ部80Bは、第2鉄骨梁部材30の下フランジ部30Lに下側から重ねられた状態で、複数のボルト98及びナット99によりボルト接合されている。   The stress transmission rib portion 80B is provided along the upper end portion of the base plate portion 80A, and extends over the web portion 20W of the first steel beam member 20 and the lower flange portion 30L of the second steel beam member 30. The stress transmission rib portion 80 </ b> B is bolted by a plurality of bolts 98 and nuts 99 while being superimposed on the lower flange portion 30 </ b> L of the second steel beam member 30 from the lower side.

次に、第4実施形態の作用について説明する。   Next, the operation of the fourth embodiment will be described.

図7(A)及び図7(B)に示されるように、本実施形態に係る異種鉄骨梁接合構造90によれば、一対の応力伝達部材80の応力伝達リブ部80Bは、第2鉄骨梁部材30の下フランジ部30Lに下側から重ねられた状態でボルト98及びナット99によりボルト接合される。   As shown in FIGS. 7A and 7B, according to the dissimilar steel beam connection structure 90 according to the present embodiment, the stress transmission rib portion 80B of the pair of stress transmission members 80 is the second steel beam. The member 30 is bolted by a bolt 98 and a nut 99 in a state of being overlapped with the lower flange portion 30L of the member 30 from below.

これにより、第2鉄骨梁部材30の下フランジ部30Lに作用する応力(引張応力)が、応力伝達リブ部80Bに直接的に伝達される。また、応力伝達リブ部80Bに伝達された応力は、第1鉄骨梁部材20側のベースプレート部80A、ボルト82、及びウェブ部20Wを介して当該第1鉄骨梁部材20の下フランジ部20Lへ伝達される。したがって、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L間の応力伝達効率が向上する。   Thereby, the stress (tensile stress) acting on the lower flange portion 30L of the second steel beam member 30 is directly transmitted to the stress transmission rib portion 80B. Further, the stress transmitted to the stress transmission rib portion 80B is transmitted to the lower flange portion 20L of the first steel beam member 20 through the base plate portion 80A on the first steel beam member 20 side, the bolt 82, and the web portion 20W. Is done. Therefore, the stress transmission efficiency between the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30 is improved.

また、応力伝達リブ部80Bを第2鉄骨梁部材30の下フランジ部30Lにボルト接合することにより、応力伝達リブ部80Bの固定度が高くなる。したがって、第1鉄骨梁部材20の下フランジ部20Lの座屈(横座屈)をより確実に抑制することができる。   In addition, by fixing the stress transmission rib portion 80B to the lower flange portion 30L of the second steel beam member 30, the degree of fixation of the stress transmission rib portion 80B is increased. Therefore, the buckling (lateral buckling) of the lower flange portion 20L of the first steel beam member 20 can be more reliably suppressed.

このように本実施形態では、第1鉄骨梁部材20及び第2鉄骨梁部材30の下フランジ部20L,30L間の応力伝達を良好にしつつ、第1鉄骨梁部材20の下フランジ部20Lの座屈等を抑制することができる。   Thus, in the present embodiment, the seat of the lower flange portion 20L of the first steel beam member 20 is improved while the stress transmission between the lower flange portions 20L and 30L of the first steel beam member 20 and the second steel beam member 30 is improved. Bending and the like can be suppressed.

また、応力伝達部材80は、接合プレート40と同様に、第1鉄骨梁部材20及び第2鉄骨梁部材30にボルト接合される。したがって、第1鉄骨梁部材20及び第2鉄骨梁部材30に応力伝達部材80をそれぞれ溶接接合する場合と比較して、第1鉄骨梁部材20と第2鉄骨梁部材30との接合作業の手間を低減することができる。   The stress transmission member 80 is bolted to the first steel beam member 20 and the second steel beam member 30 in the same manner as the bonding plate 40. Therefore, compared with the case where the stress transmission member 80 is welded and joined to the first steel beam member 20 and the second steel beam member 30, respectively, the work of joining the first steel beam member 20 and the second steel beam member 30 is troublesome. Can be reduced.

次に、上記第1〜第4実施形態の変形例について説明する。なお、以下では、第1実施形態を例に各種の変形例について説明するが、これらの変形例は第2〜第4実施形態にも適宜適用可能である。   Next, modified examples of the first to fourth embodiments will be described. In the following, various modified examples will be described by taking the first embodiment as an example, but these modified examples are also applicable to the second to fourth embodiments as appropriate.

上記第1実施形態では、第1鉄骨梁部材20及び第2鉄骨梁部材30のウェブ部20W,30Wの面外方向の両側に一対の接合プレート40を設けた例を示したが、これに限らない。接合プレート40は、ウェブ部20W,30Wの面外方向の片側にのみ設けても良い。第2実施形態における接合プレート54や、第3,第4実施形態における応力伝達部材80についても同様である。   In the said 1st Embodiment, although the example which provided a pair of joining plate 40 in the both sides of the web part 20W, 30W of the 1st steel beam member 20 and the 2nd steel beam member 30 in the out-of-plane direction was shown, it does not restrict to this Absent. You may provide the joining plate 40 only in the one side of the out-of-plane direction of the web parts 20W and 30W. The same applies to the joining plate 54 in the second embodiment and the stress transmission member 80 in the third and fourth embodiments.

また、上記第1実施形態では、第2鉄骨梁部材30の材軸方向の両端部に一対の第1鉄骨梁部材20を接合した例を示したが、これに限らない。第2鉄骨梁部材30の材軸方向の一端部にのみ第1鉄骨梁部材20を接合し、第2鉄骨梁部材30の材軸方向の他端部は柱14の仕口部14Aに接合しても良い。   Moreover, in the said 1st Embodiment, although the example which joined a pair of 1st steel beam member 20 to the both ends of the material axis direction of the 2nd steel beam member 30 was shown, it does not restrict to this. The first steel beam member 20 is joined only to one end portion of the second steel beam member 30 in the material axis direction, and the other end portion of the second steel beam member 30 in the material axis direction is joined to the joint portion 14A of the column 14. May be.

以上、本発明の一実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、一実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to such an embodiment, and one embodiment and various modifications may be used in combination as appropriate, and the gist of the present invention will be described. Of course, various embodiments can be implemented without departing from the scope.

10 異種鉄骨梁接合構造
12 ハンチ鉄骨梁
14 柱
20 第1鉄骨梁部材
20U 上フランジ部
20L 下フランジ部
20W ウェブ部
30 第2鉄骨梁部材
30U 上フランジ部
30L 下フランジ部
30W ウェブ部
40 接合プレート
42 ボルト
50 異種鉄骨梁接合構造
52 ハンチ鉄骨梁
54 接合プレート
54B 応力伝達リブ部
56A ボルト
56B ボルト
70 異種鉄骨梁接合構造
72 ハンチ鉄骨梁
74 接合プレート
76 ボルト
80 応力伝達部材
80A ベースプレート部
80B 応力伝達リブ部
82 ボルト
90 異種鉄骨梁接合構造
92 ハンチ鉄骨梁
98 ボルト
DESCRIPTION OF SYMBOLS 10 Dissimilar steel beam joining structure 12 Haunch steel beam 14 Column 20 1st steel beam member 20U Upper flange part 20L Lower flange part 20W Web part 30 2nd steel beam member 30U Upper flange part 30L Lower flange part 30W Web part 40 Joining plate 42 Bolt 50 Heterogeneous steel beam joint structure 52 Haunch steel beam 54 Joint plate 54B Stress transmission rib part 56A Bolt 56B Bolt 70 Heterogeneous steel beam joint structure 72 Haunch steel beam 74 Joint plate 76 Bolt 80 Stress transmission member 80A Base plate part 80B Stress transmission rib part 82 Bolt 90 Heterogeneous steel beam joint structure 92 Haunch steel beam 98 Bolt

Claims (3)

柱に接合された第1鉄骨梁部材と、
前記第1鉄骨梁部材よりも梁成が低くされ、上フランジ部が前記第1鉄骨梁部材の上フランジ部と連続するように配置されて且つ該上フランジ部と非接合とされる第2鉄骨梁部材と、
前記第1鉄骨梁部材及び前記第2鉄骨梁部材の各々のウェブ部に亘って配置され、該ウェブ部にそれぞれボルト接合される接合プレートと、
を備える異種鉄骨梁接合構造。
A first steel beam member joined to a column;
A second steel frame in which the beam formation is lower than that of the first steel beam member, the upper flange portion is arranged so as to be continuous with the upper flange portion of the first steel beam member, and is not joined to the upper flange portion. A beam member;
A joining plate that is disposed over the web portions of the first steel beam member and the second steel beam member and is bolted to the web portions;
Dissimilar steel beam joint structure.
前記接合プレートには、該接合プレートの下部から面外方向に延出し、前記第1鉄骨梁部材及び前記第2鉄骨梁部材の下フランジ部の各々と対向する応力伝達リブ部が設けられる、
請求項1に記載の異種鉄骨梁接合構造。
The joint plate is provided with a stress transmission rib portion extending in an out-of-plane direction from a lower portion of the joint plate and facing each of the lower flange portions of the first steel beam member and the second steel beam member.
The heterogeneous steel beam joint structure according to claim 1.
前記第1鉄骨梁部材の前記ウェブ部に重ねられてボルト接合されると共に該ウェブ部から前記第2鉄骨梁部材の下フランジ部の下側へ延出するベースプレート部と、前記ベースプレート部の上端部に沿って設けられ、前記第1鉄骨梁部材と前記第2鉄骨梁部材に亘ると共に前記第2鉄骨梁部材の前記下フランジ部に下側から重ねられてボルト接合される応力伝達リブ部と、を有する応力伝達部材を備える、
請求項1に記載の異種鉄骨梁接合構造。
A base plate portion that is overlapped with the web portion of the first steel beam member and is bolted and extends from the web portion to a lower side of a lower flange portion of the second steel beam member; and an upper end portion of the base plate portion A stress transmission rib portion that is provided along the first steel beam member and the second steel beam member and is overlapped with the lower flange portion of the second steel beam member from below and bolt-bonded; Comprising a stress transmission member having
The heterogeneous steel beam joint structure according to claim 1.
JP2014097031A 2014-05-08 2014-05-08 Heterogeneous steel beam joint structure Active JP6393516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097031A JP6393516B2 (en) 2014-05-08 2014-05-08 Heterogeneous steel beam joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097031A JP6393516B2 (en) 2014-05-08 2014-05-08 Heterogeneous steel beam joint structure

Publications (2)

Publication Number Publication Date
JP2015214807A true JP2015214807A (en) 2015-12-03
JP6393516B2 JP6393516B2 (en) 2018-09-19

Family

ID=54751936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097031A Active JP6393516B2 (en) 2014-05-08 2014-05-08 Heterogeneous steel beam joint structure

Country Status (1)

Country Link
JP (1) JP6393516B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164101A1 (en) * 2017-03-07 2018-09-13 構法開発株式会社 Coupling structure and construction structure body
CN108978868A (en) * 2018-09-12 2018-12-11 西安建筑科技大学 A kind of replaceable shearing-type energy-consumption beam section-steel deep beam connection structure and installation method
CN109057024A (en) * 2018-09-12 2018-12-21 西安建筑科技大学 The double replaceable active beam link of channel cross-section-steel skirt beam connection structures and installation method
CN110593405A (en) * 2019-10-08 2019-12-20 西安建筑科技大学 Single-side-reaming T-shaped connection replaceable beam connection structure and connection method
CN111219015A (en) * 2020-03-06 2020-06-02 西安建筑科技大学 Dragon and phoenix tenon type connection replaceable beam connection structure and connection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210093A (en) * 1998-01-21 1999-08-03 Nippon Steel Corp Joining construction for structural member
JPH11324111A (en) * 1998-05-15 1999-11-26 Masayuki Ebina Balance construction of steel framed beam
JP2001262695A (en) * 2000-03-17 2001-09-26 Sawata Kenzaisha:Kk Beam connecting device
US20030009977A1 (en) * 2001-07-12 2003-01-16 Houghton David L. Gusset plates connection of beam to column
JP2004169298A (en) * 2002-11-18 2004-06-17 Ohbayashi Corp Joint structure of column and beam and method for joining column and beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210093A (en) * 1998-01-21 1999-08-03 Nippon Steel Corp Joining construction for structural member
JPH11324111A (en) * 1998-05-15 1999-11-26 Masayuki Ebina Balance construction of steel framed beam
JP2001262695A (en) * 2000-03-17 2001-09-26 Sawata Kenzaisha:Kk Beam connecting device
US20030009977A1 (en) * 2001-07-12 2003-01-16 Houghton David L. Gusset plates connection of beam to column
JP2004169298A (en) * 2002-11-18 2004-06-17 Ohbayashi Corp Joint structure of column and beam and method for joining column and beam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164101A1 (en) * 2017-03-07 2018-09-13 構法開発株式会社 Coupling structure and construction structure body
JP2018145717A (en) * 2017-03-07 2018-09-20 積水化学工業株式会社 Joint structure and structure for building
CN108978868A (en) * 2018-09-12 2018-12-11 西安建筑科技大学 A kind of replaceable shearing-type energy-consumption beam section-steel deep beam connection structure and installation method
CN109057024A (en) * 2018-09-12 2018-12-21 西安建筑科技大学 The double replaceable active beam link of channel cross-section-steel skirt beam connection structures and installation method
CN108978868B (en) * 2018-09-12 2023-10-20 西安建筑科技大学 Replaceable shear type energy consumption beam section-steel deep beam connecting structure and mounting method
CN110593405A (en) * 2019-10-08 2019-12-20 西安建筑科技大学 Single-side-reaming T-shaped connection replaceable beam connection structure and connection method
CN111219015A (en) * 2020-03-06 2020-06-02 西安建筑科技大学 Dragon and phoenix tenon type connection replaceable beam connection structure and connection method

Also Published As

Publication number Publication date
JP6393516B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6393516B2 (en) Heterogeneous steel beam joint structure
JP5985929B2 (en) Composite structures and buildings
JP6132132B2 (en) High performance perforated steel plate gibber
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP2017066702A (en) Vertical connection structure of steel sheet pipe and steel sheet pile wall
JP2014077339A (en) Equipment material construction structure and beam joint structure
JP5635734B2 (en) Beam-column joints and reinforcement hardware for beam-column joints
JP6589922B2 (en) Beam reinforcement structure and beam reinforcement method
JP5656065B2 (en) Structural member of steel plate concrete structure
JP7070890B2 (en) Joint structure
JP6340181B2 (en) Reinforcing structure for steel perforated members
JP6893799B2 (en) Beam flint connection structure and beam flint connection piece
JP5741852B2 (en) Double tube structure
JP2012188872A (en) Concrete filled circular steel pipe column
JP6679261B2 (en) Reinforcement structure of steel beam support of slab
JP2016089549A (en) Structure and method for joining reinforced concrete beam and steel column or column comprising steel column
JP2011089290A (en) Concrete member
JP6390360B2 (en) Structure and method for joining reinforced concrete beam and steel pipe column
JP6261976B2 (en) Cross section beam
JP6353647B2 (en) Seismic isolation device joint structure
JP6240426B2 (en) Steel member fixing structure
JP5134228B2 (en) Joint between steel pipe column and flat slab
KR101747959B1 (en) Built-up beam with double web
JP2016216905A (en) Column-beam frame
JP6518886B2 (en) Building reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R150 Certificate of patent or registration of utility model

Ref document number: 6393516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150