JP2013082655A - ジオキサアンタントレン系化合物及び電子デバイス - Google Patents

ジオキサアンタントレン系化合物及び電子デバイス Download PDF

Info

Publication number
JP2013082655A
JP2013082655A JP2011224664A JP2011224664A JP2013082655A JP 2013082655 A JP2013082655 A JP 2013082655A JP 2011224664 A JP2011224664 A JP 2011224664A JP 2011224664 A JP2011224664 A JP 2011224664A JP 2013082655 A JP2013082655 A JP 2013082655A
Authority
JP
Japan
Prior art keywords
group
electrode
electronic device
dioxaanthanthrene
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011224664A
Other languages
English (en)
Inventor
Norihito Kobayashi
典仁 小林
Eri Igarashi
絵里 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011224664A priority Critical patent/JP2013082655A/ja
Priority to PCT/JP2012/075784 priority patent/WO2013054729A1/ja
Priority to CN201280049303.1A priority patent/CN103874704A/zh
Priority to EP12840090.0A priority patent/EP2767540A1/en
Priority to US14/349,275 priority patent/US20140291659A1/en
Publication of JP2013082655A publication Critical patent/JP2013082655A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】高い安定性を有し、プロセスに対する適応性が高い有機半導体材料に適する新規化合物、及び該化合物からなる半導体層を備えた電子デバイスの提供。
【解決手段】ジオキサアンタントレン系化合物であり、は、代表的なものとして、下記で示される化合物、及び
該化合物からなる半導体層を備えた電子デバイス。
Figure 2013082655

【選択図】図1

Description

本開示は、ジオキサアンタントレン系化合物、及び、係るジオキサアンタントレン系化合物から成る半導体層を備えた電子デバイスに関する。
近年、有機半導体材料から成る半導体層を備えた半導体装置等の電子デバイスが注目されている。このような電子デバイスは、無機材料から成る半導体層を備えた構成と比較して、半導体層を低温で塗布成膜することが可能である。そのため、大面積化に有利であると共に、プラスチック等の、耐熱性は低いが、可撓性を有する基板上への形成が可能であり、多機能化と共に、印刷技術等を用いた低コスト化も期待されている。
現在、半導体層を構成する有機半導体材料として、例えば、下記の構造式を有するアントラセン、ナフタセン、ペンタセン等のポリアセン化合物が広く研究されている。また、本出願人は、例えば、特開2010−006794において、各種のジオキサアンタントレン系化合物、及び、係るジオキサアンタントレン系化合物を用いた半導体装置を提案している。
Figure 2013082655
これらのアセン化合物は、隣り合う分子間で「C−H・・・π」相互作用を利用した分子間相互作用による凝集力が強いため、高い結晶性を有している。ここで、「C−H・・・π」相互作用とは、隣り合う分子の間で働く相互作用の1つであり、分子周辺のC−H基(エッジ)が、分子平面上下に張り出したπ軌道(フェイス)方向に弱く引き寄せられる状態のことを指し、一般的に、エッジ・トゥー・フェイスで配列する。そして、固体中においては、このように、分子同士が面と辺で接するヘリングボーン構造のパッキングとなっている。そして、このような構造によって、高いキャリア移動度と、優れた半導体デバイス特性とを発現することが報告されている(Wei-Qiao Deng and William A. Goddard III, J. Phys. Chem. B, 2004 American Chemical Society, Vol. 108, No. 25, 2004, p.8614-8621 参照)。
特開2010−006794
Wei-Qiao Deng and William A. Goddard III, J. Phys. Chem. B, 2004 American Chemical Society, Vol. 108, No. 25, 2004, p.8614-8621 ジャーナル オブ オーガニック ケミストリー,2010,75,8241−8251
このように、ポリアセン化合物は、環の長さが伸びていくと共にπ系が広がり、隣り合う分子間でより大きな軌道の重なりを形成し、キャリア移動度が向上することが期待されている。しかしながら、安定に存在できる最大の環の長さを有するポリアセン化合物はペンタセンであり、ペンタセンよりも環の長いポリアセン化合物(例えば、ヘキサセン等)は、大気中での安定性に乏しく、単離することが困難である。これは、ポリアセン化合物は、分子内に反応活性部位を有し、酸素、光、水、高温等によって容易に分解反応が生じるためであると考えられる。このように、ポリアセン骨格のみを有する限り分子の安定性を確立することは困難であり、複雑な集積化プロセスを経て製造される、例えば、有機ELディスプレイを駆動するための薄膜トランジスタ(TFT)におけるチャネル形成領域を、このようなポリアセン化合物で作製することは困難である。
従って、本開示の目的は、高い安定性を有し、プロセスに対する適応性が高い有機半導体材料(具体的には、ジオキサアンタントレン系化合物)、及び、係る有機半導体材料から成る半導体層を備えた電子デバイスを提供することにある。
上記の目的を達成するための本開示のジオキサアンタントレン系化合物は、以下の構造式(1)乃至構造式(9)から成る群から選択されたいずれか1つの構造式で表される。
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
ここで、
Xは、酸素、硫黄、セレン及びテルルから成る群から選択された1種類の原子であり、
Yは、酸素、硫黄、セレン及びテルルから成る群から選択された1種類の原子であり、
R、A1、A2は、それぞれ、水素原子、又は、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、芳香族複素環、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、アミノ基、ハロゲン原子、フッ化炭化水素基、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、及び、シリル基から成る群から選択された1種類の置換基である。
本開示のジオキサアンタントレン系化合物にあっては、R、A1、A2は、それぞれ、水素原子、又は、アルキル基、アルケニル基、アリール基、アリールアルキル基、芳香族複素環、及び、ハロゲン原子から成る群から選択された1種類の置換基であることが好ましい。
また、このような好ましい形態を含む本開示のジオキサアンタントレン系化合物にあっては、Xは酸素であることが好ましく、更には、以上に説明した好ましい各種の形態を含む本開示のジオキサアンタントレン系化合物にあっては、Yは硫黄であることが好ましく、更には、以上に説明した好ましい各種の形態を含む本開示のジオキサアンタントレン系化合物にあっては、A1及びA2は水素原子であることが好ましい。
あるいは又、上記の目的を達成するための本開示の電子デバイスは、
第1電極、
第1電極と離間して設けられた第2電極、及び、
第1電極から第2電極に亙り設けられた、有機半導体材料から成る能動層、
を少なくとも備えており、
有機半導体材料は、以上に説明した好ましい各種の形態を含む本開示のジオキサアンタントレン系化合物から成る。
本開示のジオキサアンタントレン系化合物(6,12−ジオキサアンタントレン系化合物、所謂、ペリキサンテノキサンテン系化合物,6,12-dioxaanthanthrene 系化合物であり、『PXX系化合物』と略称する場合がある)、あるいは、このPXX系化合物をチャネル形成領域に用いた電子デバイスにあっては、安定性、高移動度に関して実績のあるPXX骨格へ複素環を縮環させることにより、π共役系を広くすることができる。即ち、隣り合うPXX系化合物分子間でより一層広い(大きな)π軌道の重なりが形成され、大きな分子間相互作用を得ることができる。その結果、キャリア移動度の一層の向上を図ることができる。しかも、PXX系化合物分子の周囲に張り出した「Y」原子(例えば、硫黄原子)に基づく大きな分子間接触が期待できるため、PXX系化合物分子間の軌道の重なりが更に一層大きくなり、一層高い伝導性を発現させ得る。更には、R、A1、A2といった置換基をPXX系化合物分子の規定の位置に導入することで、溶解性、分子配列等の制御を行うことができ、塗布・印刷が可能な高移動度有機半導体材料を容易に得ることが可能である。また、PXX骨格の電子密度が高い部位(具体的には、2位及び3位並びに8位及び9位)へ「Y」原子(例えば、硫黄原子)を含む環(例えば、チオフェンといった複素環式化合物)を縮環させることにより、大気中での酸素との反応性を抑制することが可能となるし、分子のHOMOレベルを深くすることができるため、大気中で安定な有機半導体材料を提供することができる。
図1は、実施例1のジオキサアンタントレン系化合物の合成経路を示す図である。 図2の(A)及び(B)は、実施例2の電子デバイスの製造方法の概要を説明するための基体等の模式的な一部端面図である。 図3の(A)及び(B)は、実施例3の電子デバイスの製造方法の概要を説明するための基体等の模式的な一部端面図である。 図4の(A)及び(B)は、実施例4の電子デバイスの製造方法の概要を説明するための基体等の模式的な一部端面図である。 図5の(A)〜(C)は、実施例5の電子デバイスの製造方法の概要を説明するための基体等の模式的な一部端面図である。 図6の(A)及び(B)は、実施例6の電子デバイスの模式的な一部断面図である。
以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示のジオキサアンタントレン系化合物及び電子デバイス、全般に関する説明
2.実施例1(本開示のジオキサアンタントレン系化合物)
3.実施例2(本開示の電子デバイス、3端子型電子デバイス)
4.実施例3(実施例2の変形)
5.実施例4(実施例2の別の変形)
6.実施例5(実施例2の更に別の変形)
7.実施例6(実施例2の更に別の変形、2端子型電子デバイス)、その他
[本開示のジオキサアンタントレン系化合物及び電子デバイス、全般に関する説明]
本開示のジオキサアンタントレン系化合物、あるいは、本開示の電子デバイスにおける能動層を構成する有機半導体材料であるジオキサアンタントレン系化合物において、R、A1、A2のそれぞれを構成するアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、イソペンチル基、イソヘキシル基、ターシャリーブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基等を挙げることができる。尚、直鎖、分岐は問わない。また、シクロアルキル基として、シクロペンチル基、シクロヘキシル基等を挙げることができるし;アルケニル基として、ビニル基等を挙げることができるし;アルキニル基として、エチニル基等を挙げることができるし;アリール基として、フェニル基、ナフチル基、ビフェニル基等を挙げることができるし;アリールアルキル基として、メチルアリール基、エチルアリール基、イソプロピルアリール基、ノルマルブチルアリール基、p−トリル基、p−エチルフェニル基、p−イソプロピルフェニル基、p−イソブチルフェニル基、4−プロピルフェニル基、4−ブチルフェニル基、4−ノニルフェニル基、o−メチルフェニル基、o−イソブチル基、o,p−ジメチルフェニル基、p−エチル−o−メチル−フェニル基、p−イソブチル−o−メチル−フェニル基を挙げることができるし;芳香族複素環として、ピリジル基、チエニル基、フリル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等を挙げることができるし;複素環基として、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等を挙げることができるし;アルコキシ基として、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基等を挙げることができるし;シクロアルコキシ基として、シクロペンチルオキシ基、シクロヘキシルオキシ基等を挙げることができるし;アリールオキシ基として、フェノキシ基、ナフチルオキシ基等を挙げることができるし;アルキルチオ基として、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基等を挙げることができるし;シクロアルキルチオ基として、シクロペンチルチオ基、シクロヘキシルチオ基等を挙げることができるし;アリールチオ基として、フェニルチオ基、ナフチルチオ基等を挙げることができるし;アルコキシカルボニル基として、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基等を挙げることができるし;アリールオキシカルボニル基として、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等を挙げることができるし;スルファモイル基として、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、シクロヘキシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等を挙げることができるし;アシル基として、アセチル基、エチルカルボニル基、プロピルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等を挙げることができるし;アシルオキシ基として、アセチルオキシ基、エチルカルボニルオキシ基、オクチルカルボニルオキシ基、フェニルカルボニルオキシ基等を挙げることができるし;アミド基として、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等を挙げることができるし;カルバモイル基として、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等を挙げることができるし;ウレイド基として、メチルウレイド基、エチルウレイド基、シクロヘキシルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等を挙げることができるし;スルフィニル基として、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等を挙げることができるし;アルキルスルホニル基として、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等を挙げることができるし;アリールスルホニル基として、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等を挙げることができるし;アミノ基として、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、2−エチルヘキシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等を挙げることができるし;ハロゲン原子として、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるし;フッ化炭化水素基として、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等を挙げることができる。更には、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基を挙げることができるし、シリル基として、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等を挙げることができる。ここで、以上で例示した置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は、複数が互いに結合して環を形成してもよい。
本開示の電子デバイスは、所謂3端子構造を有していてもよいし、2端子構造を有していてもよい。前者の場合にあっては、電子デバイスは、絶縁層、及び、絶縁層を介して、第1電極と第2電極との間に位置する能動層の部分に対向して設けられた制御電極を更に備えている。そして、このような3端子構造を有する電子デバイスによって、例えば、電界効果トランジスタ、より具体的には、薄膜トランジスタ(TFT)が構成され、あるいは又、発光素子が構成される。即ち、制御電極、第1電極及び第2電極への電圧の印加によって能動層が発光する発光素子(有機発光素子、有機発光トランジスタ)を構成することができる。これらの電子デバイスにおいては、制御電極に印加される電圧によって、第1電極から第2電極に向かって能動層に流れる電流が制御される。ここで、発光素子において、能動層を構成する有機半導体材料は、制御電極に印加される電圧に基づく変調による電荷の蓄積や、注入された電子と正孔(ホール)との再結合に基づく発光機能を有し、発光強度は、第1電極から第2電極に流れる電流の絶対値に比例し、制御電極に印加する電圧と、第1電極及び第2電極の間に印加する電圧とによって変調することができる。尚、電子デバイスが、電界効果トランジスタとしての機能を発揮するか、発光素子として機能するかは、第1電極及び第2電極への電圧印加状態(バイアス)に依存する。先ず、第2電極からの電子注入が起こらない範囲のバイアスを加えた上で制御電極を変調することにより、第1電極から第2電極へ電流が流れる。これがトランジスタ動作である。一方、正孔が十分に蓄積された上で第1電極及び第2電極へのバイアスが増加されると電子注入が始まり、正孔との再結合によって発光が起こる。また、2端子構造を有する電子デバイスとして、能動層への光の照射によって第1電極と第2電極との間に電流が流れる光電変換素子を挙げることができる。電子デバイスから光電変換素子を構成する場合、光電変換素子によって、具体的には、太陽電池やイメージセンサー、光センサーを構成することができる。あるいは又、有機エレクトロルミネッセンス素子(有機EL素子)を構成することもできるし、化学物質センサーとして機能させることもできる。尚、3端子構造を有する電子デバイスからも光電変換素子を構成することができ、この場合、制御電極への電圧の印加は行わなくともよいし、行ってもよく、後者の場合、制御電極への電圧の印加によって、流れる電流の変調を行うことが可能となる。また、本開示のジオキサアンタントレン系化合物から有機EL素子の発光部を構成することもできる。
第1電極や第2電極、能動層は、基体上に形成され、あるいは又、基体の上方に形成される。
本開示の電子デバイスから半導体装置を構成する場合、半導体装置として、具体的には、ボトムゲート/ボトムコンタクト型の電界効果トランジスタ(FET)、ボトムゲート/トップコンタクト型のFET、トップゲート/ボトムコンタクト型のFET、トップゲート/トップコンタクト型のFETを挙げることができる。
半導体装置を、ボトムゲート/ボトムコンタクト型の電界効果トランジスタ(FET)から構成する場合、係るボトムゲート/ボトムコンタクト型のFETは、
(A)基体上に形成されたゲート電極(制御電極)、
(B)ゲート電極及び基体上に形成されたゲート絶縁層(絶縁層)、
(C)ゲート絶縁層上に形成されたソース/ドレイン電極(第1電極及び第2電極)、並びに、
(D)ソース/ドレイン電極の間であってゲート絶縁層上に形成され、能動層によって構成されたチャネル形成領域、
を備えている。
あるいは又、半導体装置を、ボトムゲート/トップコンタクト型のFETから構成する場合、係るボトムゲート/トップコンタクト型のFETは、
(A)基体上に形成されたゲート電極(制御電極)、
(B)ゲート電極及び基体上に形成されたゲート絶縁層(絶縁層)、
(C)ゲート絶縁層上に形成され、能動層によって構成されたチャネル形成領域及びチャネル形成領域延在部、並びに、
(D)チャネル形成領域延在部上に形成されたソース/ドレイン電極(第1電極及び第2電極)、
を備えている。
あるいは又、半導体装置を、トップゲート/ボトムコンタクト型のFETから構成する場合、係るトップゲート/ボトムコンタクト型のFETは、
(A)基体上に形成されたソース/ドレイン電極(第1電極及び第2電極)、
(B)ソース/ドレイン電極の間の基体上に形成され、能動層によって構成されたチャネル形成領域、
(C)ソース/ドレイン電極及びチャネル形成領域上に形成されたゲート絶縁層(絶縁層)、並びに、
(D)ゲート絶縁層上に形成されたゲート電極(制御電極)、
を備えている。
あるいは又、半導体装置を、トップゲート/トップコンタクト型のFETから構成する場合、係るトップゲート/トップコンタクト型のFETは、
(A)基体上に形成され、能動層によって構成されたチャネル形成領域及びチャネル形成領域延在部、
(B)チャネル形成領域延在部上に形成されたソース/ドレイン電極(第1電極及び第2電極)、
(C)ソース/ドレイン電極及びチャネル形成領域上に形成されたゲート絶縁層(絶縁層)、並びに、
(D)ゲート絶縁層上に形成されたゲート電極(制御電極)、
を備えている。
ここで、基体は、酸化ケイ素系材料(例えば、SiOXやスピンオンガラス(SOG)、酸窒化ケイ素(SiON));窒化ケイ素(SiNY);酸化アルミニウム(Al23)やHfO2等の金属酸化物高誘電絶縁膜;金属酸化物;金属塩から構成することができる。基体をこれらの材料から構成する場合、基体を、以下に挙げる材料から適宜選択された支持体上に(あるいは支持体の上方に)形成すればよい。即ち、支持体として、あるいは又、上述した基体以外の基体として、ポリメチルメタクリレート(ポリメタクリル酸メチル,PMMA)やポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリエーテルスルホン(PES)、ポリイミド、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミドに例示される有機ポリマー(高分子材料から構成された可撓性を有するプラスチック・フィルムやプラスチック・シート、プラスチック基板といった高分子材料の形態を有する)を挙げることができ、あるいは又、雲母等の天然鉱物系絶縁材料、金属系半導体材料、分子性半導体材料を挙げることができる。このような可撓性を有する高分子材料から構成された基体を使用すれば、例えば曲面形状を有する画像表示装置(ディスプレイ装置)や電子機器への電子デバイスの組込みあるいは一体化が可能となる。あるいは又、基体として、各種ガラス基板や、表面に絶縁膜が形成された各種ガラス基板、石英基板、表面に絶縁膜が形成された石英基板、表面に絶縁膜が形成されたシリコン基板、表面に絶縁膜が形成された導電性基板(金やアルミニウム、ステンレス鋼等の金属や合金から成る基板、高配向性グラファイトから成る基板)を挙げることができる。電気絶縁性の支持体としては、以上に説明した材料から適切な材料を選択すればよい。支持体として、その他、導電性基板(金やアルミニウム等の金属から成る基板、高配向性グラファイトから成る基板、ステンレス鋼基板等)を挙げることができる。また、電子デバイスの構成、構造によっては、電子デバイスが支持部材上に設けられているが、この支持部材も上述した材料から構成することができる。
制御電極、第1電極、第2電極、ゲート電極やソース/ドレイン電極、配線(以下、これらを総称して、『制御電極等』と呼ぶ)を構成する材料として、白金(Pt)、金(Au)、パラジウム(Pd)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、銀(Ag)、タンタル(Ta)、タングステン(W)、銅(Cu)、チタン(Ti)、インジウム(In)、錫(Sn)、鉄(Fe)、コバルト(Co)、亜鉛(Zn)、マグネシウム(Mg)、マンガン(Mn)、ルテニウム(Rh)、ルビジウム(Rb)、モリブデン(Mo)等の金属、あるいは、これらの金属元素を含む合金、これらの金属から成る導電性粒子、これらの金属を含む合金の導電性粒子、不純物を含有したポリシリコン、炭素系材料等の導電性物質を挙げることができるし、これらの元素を含む層の積層構造とすることもできる。更には、制御電極等を構成する材料として、ポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホン酸[PEDOT/PSS]やTTF−TCNQ、ポリアニリンといった有機材料(導電性高分子)を挙げることもできる。制御電極等を構成する材料は、同じ材料であってもよいし、異なる材料であってもよい。
制御電極等の形成方法として、これらを構成する材料にも依るが、物理的気相成長法(PVD法);パルスレーザ堆積法(PLD)、アーク放電法;MOCVD法を含む各種の化学的気相成長法(CVD法);スピンコート法;スクリーン印刷法やインクジェット印刷法、オフセット印刷法、反転オフセット印刷法、グラビア印刷法、グラビアオフセット印刷法、凸版印刷、フレキソ印刷、マイクロコンタクト法といった各種印刷法;エアドクタコーター法、ブレードコーター法、ロッドコーター法、ナイフコーター法、スクイズコーター法、リバースロールコーター法、トランスファーロールコーター法、グラビアコーター法、キスコーター法、キャストコーター法、スプレーコーター法、スリットコーター法、スリットオリフィスコーター法、カレンダーコーター法、キャスティング法、キャピラリーコーター法、バーコーター法、浸漬法といった各種コーティング法;スタンプ法;キャスト法;ディスペンサーを用いる方法;スプレー法;リフト・オフ法;シャドウマスク法;並びに、電解メッキ法や無電解メッキ法あるいはこれらの組合せといったメッキ法の内のいずれかと、必要に応じてパターニング技術との組合せを挙げることができる。尚、PVD法として、(a)電子ビーム加熱法、抵抗加熱法、フラッシュ蒸着、ルツボを加熱する方法等の各種真空蒸着法、(b)プラズマ蒸着法、(c)2極スパッタリング法、直流スパッタリング法、直流マグネトロンスパッタリング法、高周波スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法、バイアススパッタリング法等の各種スパッタリング法、(d)DC(direct current)法、RF法、多陰極法、活性化反応法、電界蒸着法、高周波イオンプレーティング法、反応性イオンプレーティング法等の各種イオンプレーティング法を挙げることができる。制御電極等をエッチング方法に基づき形成する場合、ドライエッチング法やウェットエッチング法を採用すればよく、ドライエッチング法として、例えば、イオンミリングや反応性イオンエッチング(RIE)を挙げることができる。また、制御電極等を、レーザアブレーション法、マスク蒸着法、レーザ転写法等に基づき形成することもできる。
絶縁層(ゲート絶縁層)を構成する材料として、酸化ケイ素系材料;窒化ケイ素(SiNY);酸化アルミニウム(Al23)やHfO2等の金属酸化物高誘電絶縁膜にて例示される無機系絶縁材料だけでなく、ポリメチルメタクリレート(PMMA);ポリビニルフェノール(PVP);ポリビニルアルコール(PVA);ポリイミド;ポリカーボネート(PC);ポリエチレンテレフタレート(PET);ポリスチレン;N−2(アミノエチル)3−アミノプロピルトリメトキシシラン(AEAPTMS)、3−メルカプトプロピルトリメトキシシラン(MPTMS)、オクタデシルトリクロロシラン(OTS)等のシラノール誘導体(シランカップリング剤);オクタデカンチオール、ドデシルイソシアネイト等の一端に制御電極(ゲート電極)と結合可能な官能基を有する直鎖炭化水素類にて例示される有機系絶縁材料(有機ポリマー)を挙げることができるし、これらの組み合わせを用いることもできる。ここで、酸化ケイ素系材料として、酸化シリコン(SiOX)、BPSG、PSG、BSG、AsSG、PbSG、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、低誘電率材料[例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー及びベンゾシクロブテン、環状フッ素樹脂、アモルファスフッ素樹脂(例えば、旭硝子株式社製CYTOP)、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン、有機SOG]を例示することができる。
絶縁層(ゲート絶縁層)は、上述の各種PVD法;各種CVD法;スピンコート法;上述した各種印刷法;上述した各種コーティング法;浸漬法;キャスティング法;ゾル−ゲル法;電着法;シャドウマスク法;及び、スプレー法の内のいずれかによって形成することができる。あるいは又、制御電極(ゲート電極)の表面を酸化あるいは窒化することによって形成することができるし、制御電極の表面に酸化膜や窒化膜を成膜することで得ることもできる。制御電極の表面を酸化する方法として、制御電極を構成する材料にも依るが、O2プラズマを用いた酸化法、陽極酸化法を例示することができる。また、制御電極の表面を窒化する方法として、制御電極を構成する材料にも依るが、N2プラズマを用いた窒化法を例示することができる。あるいは又、例えば、Au電極に対しては、一端をメルカプト基で修飾された直鎖状炭化水素のように、制御電極と化学的に結合を形成し得る官能基を有する絶縁性分子によって、浸漬法等の方法で自己組織的に制御電極表面を被覆することで、制御電極(ゲート電極)の表面に絶縁層(ゲート絶縁層)を形成することもできる。あるいは又、制御電極(ゲート電極)の表面をシラノール誘導体(シランカップリング剤)により修飾することで、絶縁層(ゲート絶縁層)を形成することもできる。
能動層、あるいは、チャネル形成領域及びチャネル形成領域延在部の形成方法として、上述した各種印刷法;各種コーティング法;ディスペンサーを用いる方法;スピンコート法;スプレー法の内のいずれかの湿式法を挙げることができるが、これに限定するものではなく、場合によっては、上述した各種PVD法;CVD法;リフト・オフ法;シャドウマスク法を採用することもできる。ジオキサアンタントレン系化合物に添加物(例えば、n型不純物やp型不純物といった、所謂ドーピング材料)を加えることもできる。
本開示の電子デバイスを組み込む装置として、例えば、画像表示装置を例示することができる。ここで、画像表示装置として、所謂デスクトップ型のパーソナルコンピュータ、ノートブック型のパーソナルコンピュータ、モバイル型のパーソナルコンピュータ、PDA(パーソナル・デジタル・アシスト)、携帯電話、ゲーム機、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、コピー機、プリンター用紙代替のリライタブルペーパー、電卓、家電製品の表示部、ポイントカード等のカード表示部、電子広告、電子POP等における各種画像表示装置(例えば、有機エレクトロルミネッセンス表示装置、液晶表示装置、プラズマ表示装置、電気泳動表示装置、冷陰極電界放出表示装置等)を挙げることができる。また、各種照明装置を挙げることもできる。
電子デバイスを、各種画像表示装置や各種電子機器に適用、使用する場合、支持部材に多数の電子デバイスを集積したモノリシック集積回路としてもよいし、各電子デバイスを切断して個別化し、ディスクリート部品として使用してもよい。また、電子デバイスを樹脂にて封止してもよい。
実施例1は、本開示のジオキサアンタントレン系化合物(以下、『PXX系化合物』と略記する)に関する。実施例1のPXX系化合物は、以下の構造式(1)、より具体的には、以下の構造式(1A)で表される。即ち、実施例1のPXX系化合物において、「X」は酸素(O)であり、「Y」は硫黄(S)であり、「A1」及び「A2」は水素(H)原子である。また、「R」はパラ−イソブチルフェニル基である。
Figure 2013082655
Figure 2013082655
このような実施例1のPXX系化合物は、図1に示す合成経路を経て合成することができる。即ち、先ず、文献「ジャーナル オブ オーガニック ケミストリー」2010,75,8241−8251に基づき化合物2を得た後、化合物2にNBS若しくは臭素を反応させることによって得られる化合物3と、パラ−イソブチルフェニルボロン酸とをパラジウム触媒の存在下でクロスカップリングさせることで、化合物4を得ることができる。更には、化合物4を三臭化ホウ素と反応させることによって脱メチル化した化合物5を、塩化鉄(III)の存在下でクロスカップリングさせることで、化合物6を得ることができる。次いで、塩基性条件下、化合物6を酢酸銅と反応させる環化反応によって、目的物である実施例1のPXX系化合物を得ることができた。
実施例1のPXX系化合物にあっては、大気中で安定しており、容易に単離することができる。
実施例2は、本開示のジオキサアンタントレン系化合物から成る半導体層を備えた電子デバイスに関する。実施例2あるいは後述する実施例3〜実施例6の電子デバイスは、
第1電極、
第1電極と離間して設けられた第2電極、及び、
第1電極から第2電極に亙り設けられた、有機半導体材料から成る能動層、
を少なくとも備えており、
有機半導体材料は、前述した好ましい各種の形態を含む本開示のジオキサアンタントレン系化合物から成る。具体的には、実施例2あるいは後述する実施例3〜実施例5の電子デバイスは、
(A)制御電極、
(B)第1電極及び第2電極、並びに、
(C)第1電極と第2電極の間であって、絶縁層を介して制御電極と対向して設けられ、金属酸化物半導体から成る能動層、
を備えた3端子型電子デバイスである。
より具体的には、実施例2あるいは後述する実施例3〜実施例5の3端子型電子デバイスは、制御電極に印加される電圧によって、第1電極から第2電極に向かって能動層に流れる電流が制御される電界効果トランジスタ(FET)であり、制御電極がゲート電極に相当し、第1電極及び第2電極がソース/ドレイン電極に相当し、絶縁層がゲート絶縁膜に相当し、能動層がチャネル形成領域に相当する。
即ち、図2の(B)に模式的な一部断面図を示すように、実施例2の電子デバイスは、半導体装置、具体的には、ボトムゲート/ボトムコンタクト型の電界効果トランジスタ[より具体的には、薄膜トランジスタ(TFT)]であり、
(A)基体10上に形成されたゲート電極14(制御電極に相当する)、
(B)ゲート電極14及び基体10上に形成されたゲート絶縁層15(絶縁層に相当する)、
(C)ゲート絶縁層15上に形成されたソース/ドレイン電極16(第1電極及び第2電極に相当する)、並びに、
(D)ソース/ドレイン電極16の間であってゲート絶縁層15上に形成され、能動層20によって構成されたチャネル形成領域17、
を備えている。
以下、基体等の模式的な一部端面図である図2の(A)及び(B)を参照して、実施例2の電子デバイス(電界効果トランジスタ)の製造方法の概要を説明する。
[工程−200]
先ず、基体10上にゲート電極14を形成する。具体的には、ガラス基板11の表面に形成されたSiO2から成る絶縁膜12上に、ゲート電極14を形成すべき部分が除去されたレジスト層(図示せず)を、リソグラフィ技術に基づき形成する。その後、密着層としてのチタン(Ti)層(図示せず)、及び、ゲート電極14としての金(Au)層を、順次、真空蒸着法にて全面に成膜し、その後、レジスト層を除去する。こうして、所謂リフト・オフ法に基づき、ゲート電極14を得ることができる。尚、ガラス基板11の表面に形成されたSiO2から成る絶縁膜12上に、印刷法に基づきゲート電極14を形成することもできる。
[工程−210]
次に、ゲート電極14を含む基体10(より具体的には、ガラス基板11の表面に形成された絶縁膜12)上に、絶縁層に相当するゲート絶縁層15を形成する。具体的には、SiO2から成るゲート絶縁層15を、スパッタリング法に基づきゲート電極14及び絶縁膜12上に形成する。ゲート絶縁層15の成膜を行う際、ゲート電極14の一部をハードマスクで覆うことによって、ゲート電極14の取出部(図示せず)をフォトリソグラフィ・プロセス無しで形成することができる。
[工程−220]
その後、ゲート絶縁層15の上に、密着層としての厚さ1nmのクロム(Cr)層(図示せず)、及び、厚さ25nmの金(Au)層から成るソース/ドレイン電極16を、順次、真空蒸着法に基づき形成する(図2の(A)参照)。これらの層の成膜を行う際、ゲート絶縁層15の一部をハードマスクで覆うことによって、ソース/ドレイン電極16をフォトリソグラフィ・プロセス無しで形成することができる。尚、ゲート絶縁層15の上に、印刷法に基づきソース/ドレイン電極16を形成することもできる。
[工程−230]
次いで、チャネル形成領域17(能動層20)を、湿式法(塗布法)に基づきゲート絶縁層15及びソース/ドレイン電極16上に形成する。具体的には、実施例1において得られたPXX系化合物をトルエンやキシレン等の芳香族化合物、オクチルアルコールやノニルアルコール等の長鎖炭化水素系アルコールといった溶媒に溶解させたPXX系化合物溶液をスピンコート法により全面に塗布し、乾燥させることで、チャネル形成領域17をゲート絶縁層15及びソース/ドレイン電極16上に形成することができる(図2の(B)参照)。尚、所望に応じて、チャネル形成領域17をパターニングしてもよい。
例えば、画像表示装置の製造にあっては、この工程に引き続き、こうして得られたTFTの上あるいは上方に、画像表示部(具体的には、例えば、有機エレクトロルミネッセンス素子あるいは電気泳動ディスプレイ素子、半導体発光素子等から成る画像表示部)を、周知の方法に基づき形成すればよい。以下に説明する各実施例においても、電子デバイス(TFT)の製造の完了後、同様の工程を経ることで画像表示部を得ることができる。
[工程−240]
あるいは又、全面にパッシベーション膜(図示せず)を形成することで、ボトムゲート/ボトムコンタクト型のFET(具体的には、TFT)を得ることができる。
実施例2の電子デバイスにあっては、実施例1において説明したPXX系化合物をチャネル形成領域に用いており、安定性、高移動度に関して実績のあるPXX骨格へチオフェン環を縮環させることにより、π共役系を広くすることができる。即ち、隣り合うPXX系化合物分子間でより一層大きなπ軌道の重なりが形成され、大きな分子間相互作用を得ることができる。その結果、キャリア移動度の一層の向上を図ることができる。しかも、PXX系化合物分子の周囲に張り出した硫黄原子に基づく大きな分子間接触が期待できるため、分子間の軌道の重なりが更に一層大きくなり、一層高い伝導性を発現させ得る。更には、置換基をPXX系化合物分子の規定の位置に導入することで、溶解性、分子配列等の制御を行うことができ、塗布・印刷が可能な高移動度有機半導体材料を容易に得ることが可能となった。また、PXX骨格の電子密度が高い部位へ硫黄を含む環(チオフェン環)を縮環させることにより、大気中での酸素との反応性を抑制することが可能となるし、分子のHOMOレベルを深くすることができるため、大気中で安定な有機半導体材料を提供することができる。
実施例3は実施例2の変形である。実施例3にあっては、3端子型電子デバイスを、ボトムゲート/トップコンタクト型のFET(具体的には、TFT)とした。実施例3の電界効果トランジスタは、図3の(B)に模式的な一部断面図を示すように、
(A)基体10上に形成されたゲート電極14(制御電極に相当する)、
(B)ゲート電極14及び基体10上に形成されたゲート絶縁層15(絶縁層に相当する)、
(C)ゲート絶縁層15上に形成され、能動層20によって構成されたチャネル形成領域17及びチャネル形成領域延在部18、並びに、
(D)チャネル形成領域延在部18上に形成されたソース/ドレイン電極16(第1電極及び第2電極に相当する)、
を備えている。
以下、基体等の模式的な一部端面図である図3の(A)及び(B)を参照して、実施例3の電子デバイス(電界効果トランジスタ)の製造方法の概要を説明する。
[工程−300]
先ず、実施例2の[工程−200]と同様にして、基体10上にゲート電極14を形成した後、実施例2の[工程−210]と同様にして、ゲート電極14を含む基体(より具体的には絶縁膜12)上にゲート絶縁層15を形成する。
[工程−310]
次いで、実施例2の[工程−230]と同様にして、能動層20をゲート絶縁層15の上に形成する(図3の(A)参照)。こうして、チャネル形成領域17及びチャネル形成領域延在部18を得ることができる。尚、このような[工程−300]及び[工程−310]におけるゲート絶縁層15及び能動層20の形成方法の代わりに、ゲート絶縁層15を構成する絶縁体材料と、能動層20を構成する実施例1において得られたPXX系化合物とを、前述した溶媒に溶解し、基体10及びゲート電極14上に塗布し、乾燥することで、相分離現象を利用してゲート絶縁層15と能動層20とに分離させ、ゲート絶縁層15及び能動層20の積層構造体を得るといった方法を採用することもできる。
[工程−320]
その後、チャネル形成領域延在部18の上に、チャネル形成領域17を挟むようにソース/ドレイン電極16を形成する(図3の(B)参照)。具体的には、実施例2の[工程−220]と同様にして、ソース/ドレイン電極16としての金(Au)層を真空蒸着法に基づき形成する。成膜を行う際、チャネル形成領域延在部18の一部をハードマスクで覆うことによって、ソース/ドレイン電極16をフォトリソグラフィ・プロセス無しで形成することができる。尚、印刷法に基づきソース/ドレイン電極16を形成することもできる。
[工程−330]
次に、全面にパッシベーション膜(図示せず)を形成することで、実施例3の電子デバイスを完成させることができる。
実施例4も実施例2の変形である。実施例4にあっては、3端子型電子デバイスを、トップゲート/ボトムコンタクト型のFET(具体的には、TFT)とした。実施例4の電界効果トランジスタは、図4の(B)に模式的な一部断面図を示すように、
(A)基体10上に形成されたソース/ドレイン電極16(第1電極及び第2電極に相当する)、
(B)ソース/ドレイン電極16の間の基体10上に形成され、能動層20によって構成されたチャネル形成領域17、
(C)ソース/ドレイン電極16及びチャネル形成領域17上に形成されたゲート絶縁層15(絶縁層に相当する)、並びに、
(D)ゲート絶縁層15上に形成されたゲート電極14(制御電極に相当する)、
を備えている。
以下、基体等の模式的な一部端面図である図4の(A)及び(B)を参照して、実施例4の電子デバイス(電界効果トランジスタ)の製造方法の概要を説明する。
[工程−400]
先ず、実施例2の[工程−220]と同様の方法で、基体に相当する絶縁膜12上にソース/ドレイン電極16を形成した後、実施例2の[工程−230]と同様にして、ソース/ドレイン電極16を含む絶縁膜12上に、チャネル形成領域17(能動層20)を形成する(図4の(A)参照)。
[工程−410]
次いで、ゲート絶縁層15を、実施例2の[工程−210]と同様の方法で形成する。その後、チャネル形成領域17の上のゲート絶縁層15の部分に、実施例2の[工程−200]と同様の方法でゲート電極14を形成する(図4の(B)参照)。
[工程−420]
その後、全面にパッシベーション膜(図示せず)を形成することで、実施例4の電子デバイスを完成させることができる。
実施例5も実施例2の変形である。実施例5にあっては、3端子型電子デバイスを、トップゲート/トップコンタクト型のFET(具体的には、TFT)とした。実施例5の電界効果トランジスタは、図5の(C)に模式的な一部断面図を示すように、
(A)基体10上に形成され、能動層20によって構成されたチャネル形成領域17及びチャネル形成領域延在部18、
(B)チャネル形成領域延在部18上に形成されたソース/ドレイン電極16(第1電極及び第2電極に相当する)、
(C)ソース/ドレイン電極16及びチャネル形成領域17上に形成されたゲート絶縁層15(絶縁層に相当する)、並びに、
(D)ゲート絶縁層15上に形成されたゲート電極14(制御電極に相当する)、
を備えている。
以下、基体等の模式的な一部端面図である図5の(A)〜(C)を参照して、実施例5の電子デバイス(電界効果トランジスタ)の製造方法の概要を説明する。
[工程−500]
先ず、実施例2の[工程−230]と同様にして、基体10(より具体的には絶縁膜12)上に能動層20を形成することで、チャネル形成領域17及びチャネル形成領域延在部18を得ることができる(図5の(A)参照)。
[工程−510]
次いで、実施例2の[工程−220]と同様の方法で、チャネル形成領域延在部18上にソース/ドレイン電極16を形成する(図5の(B)参照)。
[工程−520]
その後、ゲート絶縁層15を実施例2の[工程−210]と同様の方法で形成する。次いで、チャネル形成領域17の上のゲート絶縁層15の部分に、実施例2の[工程−200]と同様の方法でゲート電極14を形成する(図5の(C)参照)。
[工程−530]
次に、全面にパッシベーション膜(図示せず)を形成することで、実施例5の電子デバイスを完成させることができる。
実施例6も実施例2の変形であるが、実施例6において、電子デバイスは、具体的には2端子型の電子デバイスから成り、より具体的には、模式的な一部断面図を図6の(A)あるいは図6の(B)に示すように、
第1電極31及び第2電極32、並びに、
第1電極31と第2電極32との間に形成された能動層33、
を備えている。尚、能動層33は、実施例1において説明したPXX系化合物から成る。そして、能動層33への光の照射によって電力が生成する。即ち、実施例6の電子デバイスは、光電変換素子あるいは太陽電池として機能する。あるいは又、第1電極31及び第2電極32への電圧の印加によって能動層33が発光する発光素子として機能する。
あるいは又、実施例6の電子デバイスは、2端子型電子デバイスから成る化学物質センサーとして機能させることもできる。具体的には、検出すべき化学物質が能動層33に吸着すると、第1電極31と第2電極32との間の電気抵抗値が変化する。従って、第1電極31と第2電極32との間に電流を流し、あるいは又、第1電極31と第2電極32との間に適切な電圧を印加し、能動層33の電気抵抗値を測定することで、能動層33に吸着した化学物質の量(濃度)を測定することができる。尚、化学物質は能動層33において吸着平衡状態となるので、時間が経過し、能動層33が置かれた雰囲気における化学物質の量(濃度)が変化すると、平衡状態も変化する。
以上の点を除き、実施例6の電子デバイスの構成、構造は、基本的に、制御電極及び絶縁層を設けない点を除き、実施例2あるいは実施例3において説明した電子デバイスの構成、構造と同様とすることができるので、詳細な説明は省略する。実施例6の電子デバイスは、実施例2の[工程−220]〜[工程−230]と同様の工程を実行し、あるいは又、実施例3の[工程−310]〜[工程−320]と同様の工程を実行することで得ることができる。
以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定されるものではない。ジオキサアンタントレン系化合物の具体的な構造(X、Y、R、A1、A2)は実施例に限定されるものでないし、電子デバイスの構造や構成、形成条件、製造条件も例示であり、適宜変更することができる。本開示の電子デバイスを、例えば、各種画像表示装置や各種電子機器に適用、使用する場合、支持部材に多数の電子デバイスを集積したモノリシック集積回路としてもよいし、各電子デバイスを切断して個別化し、ディスクリート部品として使用してもよい。
構造式(2)〜構造式(9)に示したジオキサアンタントレン系化合物において、例えば、「X」を酸素(O)、「Y」を硫黄(S)、「A1」及び「A2」を水素(H)原子、「R」をパラ−イソブチルフェニル基としたジオキサアンタントレン系化合物にあっても、実施例1のジオキサアンタントレン系化合物と同様に、大気中で安定しており、容易に単離することができる。また、これらのジオキサアンタントレン系化合物から電子デバイスを作製することで、実施例2〜実施例6と同様の電子デバイスを作製することができる。
尚、本開示は、以下のような構成を取ることもできる。
[1]《ジオキサアンタントレン系化合物》
以下の構造式(1)乃至構造式(9)から成る群から選択されたいずれか1つの構造式で表されるジオキサアンタントレン系化合物。
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
Figure 2013082655
ここで、
Xは、酸素、硫黄、セレン及びテルルから成る群から選択された1種類の原子であり、
Yは、酸素、硫黄、セレン及びテルルから成る群から選択された1種類の原子であり、
R、A1、A2は、それぞれ、水素原子、又は、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、芳香族複素環、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、アミノ基、ハロゲン原子、フッ化炭化水素基、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、及び、シリル基から成る群から選択された1種類の置換基である。
[2]R、A1、A2は、それぞれ、水素原子、又は、アルキル基、アルケニル基、アリール基、アリールアルキル基、芳香族複素環、及び、ハロゲン原子から成る群から選択された1種類の置換基である[1]に記載のジオキサアンタントレン系化合物。
[3]Xは酸素である[1]又は[2]に記載のジオキサアンタントレン系化合物。
[4]Yは硫黄である[1]乃至[3]のいずれか1項に記載のジオキサアンタントレン系化合物。
[5]A1及びA2は水素原子である[1]乃至[4]のいずれか1項に記載のジオキサアンタントレン系化合物。
[6]《電子デバイス》
第1電極、
第1電極と離間して設けられた第2電極、及び、
第1電極から第2電極に亙り設けられた、有機半導体材料から成る能動層、
を少なくとも備えており、
有機半導体材料は、[1]乃至[5]のいずれか1項に記載のジオキサアンタントレン系化合物から成る電子デバイス。
10・・・基体、11・・・ガラス基板、12・・・絶縁膜、14・・・ゲート電極(制御電極)、15・・・ゲート絶縁層(絶縁層)、16・・・ソース/ドレイン電極(第1電極及び第2電極)、17・・・チャネル形成領域、18・・・チャネル形成領域延在部、20,33・・・能動層、31・・・第1電極、32・・・第2電極

Claims (6)

  1. 以下の構造式(1)乃至構造式(9)から成る群から選択されたいずれか1つの構造式で表されるジオキサアンタントレン系化合物。
    Figure 2013082655
    Figure 2013082655
    Figure 2013082655
    Figure 2013082655
    Figure 2013082655
    Figure 2013082655
    Figure 2013082655
    Figure 2013082655
    Figure 2013082655
    ここで、
    Xは、酸素、硫黄、セレン及びテルルから成る群から選択された1種類の原子であり、
    Yは、酸素、硫黄、セレン及びテルルから成る群から選択された1種類の原子であり、
    R、A1、A2は、それぞれ、水素原子、又は、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、芳香族複素環、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基、アミノ基、ハロゲン原子、フッ化炭化水素基、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、及び、シリル基から成る群から選択された1種類の置換基である。
  2. R、A1、A2は、それぞれ、水素原子、又は、アルキル基、アルケニル基、アリール基、アリールアルキル基、芳香族複素環、及び、ハロゲン原子から成る群から選択された1種類の置換基である請求項1に記載のジオキサアンタントレン系化合物。
  3. Xは酸素である請求項1に記載のジオキサアンタントレン系化合物。
  4. Yは硫黄である請求項1に記載のジオキサアンタントレン系化合物。
  5. 1及びA2は水素原子である請求項1に記載のジオキサアンタントレン系化合物。
  6. 第1電極、
    第1電極と離間して設けられた第2電極、及び、
    第1電極から第2電極に亙り設けられた、有機半導体材料から成る能動層、
    を少なくとも備えており、
    有機半導体材料は、請求項1乃至請求項5のいずれか1項に記載のジオキサアンタントレン系化合物から成る電子デバイス。
JP2011224664A 2011-10-12 2011-10-12 ジオキサアンタントレン系化合物及び電子デバイス Pending JP2013082655A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011224664A JP2013082655A (ja) 2011-10-12 2011-10-12 ジオキサアンタントレン系化合物及び電子デバイス
PCT/JP2012/075784 WO2013054729A1 (ja) 2011-10-12 2012-10-04 ジオキサアンタントレン系化合物、積層構造体及びその形成方法、並びに、電子デバイス及びその製造方法
CN201280049303.1A CN103874704A (zh) 2011-10-12 2012-10-04 二氧杂蒽嵌蒽化合物、层压结构及其形成方法、以及电子器件及其制造方法
EP12840090.0A EP2767540A1 (en) 2011-10-12 2012-10-04 Dioxaanthanthrene-based compound, laminated structure and molding method thereof, and electronic device and production method thereof
US14/349,275 US20140291659A1 (en) 2011-10-12 2012-10-04 Dioxaanthanthrene compound, laminated structure and formation method thereof, and electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224664A JP2013082655A (ja) 2011-10-12 2011-10-12 ジオキサアンタントレン系化合物及び電子デバイス

Publications (1)

Publication Number Publication Date
JP2013082655A true JP2013082655A (ja) 2013-05-09

Family

ID=48528242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224664A Pending JP2013082655A (ja) 2011-10-12 2011-10-12 ジオキサアンタントレン系化合物及び電子デバイス

Country Status (1)

Country Link
JP (1) JP2013082655A (ja)

Similar Documents

Publication Publication Date Title
JP5470935B2 (ja) ジオキサアンタントレン系化合物及び半導体装置
US8860018B2 (en) Anthanthrene based compound and semiconductor device
JP2007019294A (ja) 有機半導体材料、有機半導体膜、有機半導体素子及び有機薄膜トランジスタ
JP2007067263A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP2005206750A (ja) 有機半導体材料、有機トランジスタ、電界効果トランジスタ、スイッチング素子及び5員複素環化合物
JP2009029746A (ja) 有機材料および半導体装置
JP2006216814A (ja) 有機半導体材料、有機半導体薄膜、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP4992202B2 (ja) 有機半導体材料、有機半導体膜、有機薄膜トランジスタ、有機半導体膜の製造方法及び有機薄膜トランジスタの製造方法
JPWO2005070994A1 (ja) 有機半導体材料、有機トランジスタ、電界効果トランジスタ、スイッチング素子及びチアゾール化合物
WO2013054729A1 (ja) ジオキサアンタントレン系化合物、積層構造体及びその形成方法、並びに、電子デバイス及びその製造方法
JP2006339577A (ja) 有機半導体薄膜及び有機薄膜トランジスタ
US8546796B2 (en) Semiconductor device, method of manufacturing the same, and method of forming multilayer semiconductor thin film
JP5228907B2 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
WO2013179857A1 (ja) ジオキサアンタントレン系化合物及び電子デバイス
JP6094831B2 (ja) 有機半導体層、電子デバイス、及び、電子デバイスの製造方法
JP2007311609A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP2007317984A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JPWO2006038459A1 (ja) 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2005260212A (ja) 有機半導体材料及びそれを用いた有機薄膜トランジスタ、電界効果有機薄膜トランジスタ並びにそれらを用いたスイッチング素子
JP2013082655A (ja) ジオキサアンタントレン系化合物及び電子デバイス
JP2006140180A (ja) 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2013087071A (ja) ジオキサアンタントレン系化合物及び電子デバイス
JP2007207968A (ja) 有機半導体素子及びその製造方法
JP2006028054A (ja) 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2006128601A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ