JP2013082569A - Method for converting biomass into liquid fertilizer, liquid fertilizer generated by the method and microorganism carrier - Google Patents

Method for converting biomass into liquid fertilizer, liquid fertilizer generated by the method and microorganism carrier Download PDF

Info

Publication number
JP2013082569A
JP2013082569A JP2011222049A JP2011222049A JP2013082569A JP 2013082569 A JP2013082569 A JP 2013082569A JP 2011222049 A JP2011222049 A JP 2011222049A JP 2011222049 A JP2011222049 A JP 2011222049A JP 2013082569 A JP2013082569 A JP 2013082569A
Authority
JP
Japan
Prior art keywords
biomass
shale
liquid fertilizer
microorganism
diatom shale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011222049A
Other languages
Japanese (ja)
Other versions
JP2013082569A5 (en
Inventor
Keiichi Sugino
慶一 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGINO YUTO
Original Assignee
SUGINO YUTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGINO YUTO filed Critical SUGINO YUTO
Priority to JP2011222049A priority Critical patent/JP2013082569A/en
Publication of JP2013082569A publication Critical patent/JP2013082569A/en
Publication of JP2013082569A5 publication Critical patent/JP2013082569A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently generating a liquid fertilizer allowed to be easily handled from a biomass.SOLUTION: The method includes a first step S1 for obtaining microorganism-carrying diatomaceous shale in which microorganisms are carried on diatomaceous shale and a second step S2 for agitating a mixture including at least the microorganism-carrying diatomaceous shale, a biomass and water and obtaining a liquid product through biomass decomposition by the microorganisms. Also a biomass contaminated with radioactive substances can be regenerated as a liquid fertilizer from which the radioactive substances are removed or reduced.

Description

本発明は、バイオマスの液体肥料化方法およびこの方法によって生成された液体肥料ならびに微生物担持体に関する。   The present invention relates to a method for converting a biomass into a liquid fertilizer, a liquid fertilizer produced by the method, and a microorganism carrier.

2011年3月の東北関東大震災によって、膨大な瓦礫が発生し、同年10月の段階においても、処理は遅々として進んでいない。同時に、福島第1原発事故により、膨大な量の放射性物質が放出され、これにより、きわめて広範囲の地域が汚染した。汚染は、単に放射性物質が土壌や建物や瓦礫に付着するだけではなく、雨水に混じってさらなる拡がりを見せる。   Due to the Great Tohoku Kanto Earthquake in March 2011, a huge amount of rubble was generated, and even in October of the same year, the treatment was not progressing slowly. At the same time, the Fukushima Daiichi nuclear accident released a huge amount of radioactive material, which contaminated a very wide area. Contamination is not just a matter of radioactive material adhering to soil, buildings and rubble, but is further spread by mixing with rainwater.

対象地域の除染、すなわち、放射性セシウム等の放射性物質を除去することはできても、その放射性物質が消失するわけではない。放射性物質に汚染した瓦礫についていえば、燃焼によって放射性物質が消えるわけではなく、かえって飛散する恐れがあるため、燃やして処理することも困難である。   Although decontamination of the target area, that is, radioactive substances such as radioactive cesium can be removed, the radioactive substances are not lost. Speaking of rubble contaminated with radioactive material, the radioactive material does not disappear due to combustion, but instead it may be scattered, so it is difficult to burn and process.

一方で、建築廃材や食品廃材等の廃棄物系バイオマスや、稲藁、麦藁、資源作物等の未利用バイオマスを利用可能な資材に転換する技術の開発も盛んである。たとえば、特許文献1に記載された技術では、一次的な処理として、バイオマスを微生物を使ってコンポスト化(堆肥化)する工程を含む。   On the other hand, the development of technology to convert waste biomass such as building waste and food waste, and unused biomass such as rice straw, wheat straw, and resource crops into viable materials is also active. For example, the technique described in Patent Document 1 includes a step of composting (composting) biomass using microorganisms as a primary treatment.

しかしながら、特許文献1に記載された上記の技術においては、バイオマスを堆肥化したとしても、その取扱いは容易ではなく、また、大量の微生物を必要とし、処理に時間がかかるという問題がある。また、放射性物質で汚染されたバイオマスについては、処理後の堆肥は放射性物質が含まれるので、再利用不可となる。   However, in the above technique described in Patent Document 1, even if biomass is composted, the handling thereof is not easy, and there is a problem that a large amount of microorganisms are required and processing takes time. Moreover, about the biomass contaminated with the radioactive substance, since the compost after a process contains a radioactive substance, it cannot be reused.

特開2011−78913号公報JP 2011-78913 A

本発明は、上記した事情のもとで考え出されたものであって、バイオマスから、より取扱いが容易な液体肥料を効率的に生成する方法を提供することを主たる目的とし、放射性物質に汚染されたバイオマスであっても、放射性物質が除去もしくは低減された液体肥料として再生できる方法を提供することを他の目的とする。   The present invention has been conceived under the circumstances described above, and its main purpose is to provide a method for efficiently producing liquid fertilizer that is easier to handle from biomass and contaminates radioactive substances. It is another object of the present invention to provide a method capable of regenerating liquid fertilizer from which radioactive material has been removed or reduced, even if the biomass has been removed.

上記の課題を解決するため、本発明では、次の技術的手段を採用した。   In order to solve the above problems, the present invention employs the following technical means.

本発明の第1の側面によって提供されるハイオマスの液体肥料化方法は、微生物を珪藻頁岩に担持させた微生物担持珪藻頁岩を得る第1工程と、少なくとも上記微生物担持珪藻頁岩と、バイオマスと、水とを含む混合物を攪拌し、上記微生物による上記バイオマスの分解作用を経た液体生成物を得る第2工程と、を含むことを特徴とする。   The liquid fertilizer method of hyomas provided by the first aspect of the present invention includes a first step of obtaining a microorganism-supporting diatom shale in which microorganisms are supported on diatom shale, at least the microorganism-supporting diatom shale, biomass, and water. And a second step of obtaining a liquid product through the decomposition action of the biomass by the microorganism.

好ましい実施の形態では、上記第1工程は、珪藻頁岩に微生物含有液体を吸収させた後、当該珪藻頁岩を乾燥させる。   In a preferred embodiment, in the first step, the diatom shale is dried after the diatom shale absorbs the microorganism-containing liquid.

好ましい実施の形態ではまた、上記第2工程で得られた液体生成物に別途の珪藻頁岩を浸漬させる第3工程を含む。   The preferred embodiment also includes a third step of immersing a separate diatom shale in the liquid product obtained in the second step.

本発明の第2の側面によって提供される液体肥料は、上記本発明の第1の側面における上記第2工程または第3工程で得られた液体生成物であることを特徴とする。   The liquid fertilizer provided by the second aspect of the present invention is a liquid product obtained in the second step or the third step in the first aspect of the present invention.

本発明の第3の側面によって提供される微生物担持体は、微生物含有液体を珪藻頁岩に担持させた後、当該珪藻頁岩を乾燥したものであることを特徴とする。   The microorganism carrier provided by the third aspect of the present invention is characterized in that the microorganism-containing liquid is supported on diatom shale, and then the diatom shale is dried.

本発明の各側面において用いられる珪藻頁岩は、好ましくは、稚内層珪藻頁岩に代表される貯水頁岩が用いられる。貯水頁岩は、ポーラスな構造をもっており、図1に示すように、ゼオライトや炭類に比較し、吸放湿率が圧倒的に高い。これは、貯水頁岩の空隙率が約70%と圧倒的に大きいことと、極微細な細孔分布が高レベルであることに起因する。それ故に、図2に示すように、相対湿度が70%を超えると急激に水蒸気吸湿率が高まる。これらのことは、貯水頁岩は、保水性能が圧倒的に高いことをも意味している。   The diatom shale used in each aspect of the present invention is preferably a reservoir shale represented by the Wakkanai diatom shale. Reservoir shale has a porous structure, and as shown in FIG. 1, its moisture absorption and desorption rate is overwhelmingly higher than that of zeolite and charcoal. This is due to the fact that the porosity of the reservoir shale is overwhelmingly large at about 70% and that the ultrafine pore distribution is at a high level. Therefore, as shown in FIG. 2, when the relative humidity exceeds 70%, the moisture absorption rate of water vapor increases rapidly. These also mean that the water storage shale has an overwhelmingly high water retention performance.

かかる貯水頁岩に関し、本発明者は、種々検討の結果、次のような知見を得、かかる知見に基づいてなされたのが本発明である。   As a result of various investigations, the present inventor has obtained the following knowledge, and the present invention has been made based on such knowledge.

その第1は、吸放湿性能が高いため、放射性物質を含んだ液体(水)は即座に吸収されて内部に保持され、その後乾燥環境下におくと、水分のみ放出されて放射性物質が内部に捕捉されるだけではなく、外部に放出される放射線量が微弱化される。   First, because of its high moisture absorption / release performance, the liquid (water) containing radioactive material is immediately absorbed and retained inside, and when placed in a dry environment, only moisture is released and the radioactive material is contained inside. In addition to being captured, the amount of radiation emitted to the outside is weakened.

その第2は、吸放湿性能が高いため、微生物を含む液体は即座に吸収されて内部に大量の微生物を保持することができ、これを乾燥させると、乾燥状態の微生物担持体として機能しうるとともに、湿潤状態では、微生物の培地として機能しうる。   Second, because of its high moisture absorption / release performance, the liquid containing microorganisms can be immediately absorbed and retain a large amount of microorganisms inside. When this is dried, it functions as a dry microorganism carrier. In addition, when wet, it can function as a microbial medium.

本願の第1の側面に係るバイオマスの液体肥料化方法では、とりわけ植物系のバイオマスを処理する場合、第2工程で得られた液体生成物には、窒素、リン、カリといった植物の3大栄養素が含まれ、これを液体肥料として有効に用いることができる。また、珪藻頁岩は、微生物の培地として機能するために、このような微生物を含んだ珪藻頁岩を繰り返し使用することができ、あらたな微生物を補充する必要が薄れ、コスト的に有利となる。さらには、バイオマスに放射性物質が含まれていたとしても、その多くは処理中に珪藻頁岩内に保持されるとともに、外部に放出される放射線量が微弱化されるため、放射性物質が付着した廃材等をバイオマスとして処理すれば、そのような廃材を安全な液体肥料に生まれ変わらせることができるとともに、廃材が生じた地域の除染に繋げることができる。また、第3工程を行う場合には、液体肥料の除染の程度をさらに高め、安全性を向上させることができる。   In the method for converting a biomass to a liquid fertilizer according to the first aspect of the present application, especially when processing plant biomass, the liquid product obtained in the second step includes three major nutrients of plants such as nitrogen, phosphorus, and potash. Can be used effectively as a liquid fertilizer. In addition, since diatom shale functions as a culture medium for microorganisms, diatom shale containing such microorganisms can be used repeatedly, and it becomes unnecessary to replenish new microorganisms, which is advantageous in terms of cost. Furthermore, even if radioactive materials are contained in biomass, many of them are retained in diatom shale during processing, and the amount of radiation emitted to the outside is weakened, so that waste materials with radioactive materials attached to them Can be converted into a safe liquid fertilizer, and can lead to decontamination of the area where the waste material is produced. Moreover, when performing a 3rd process, the grade of the decontamination of a liquid fertilizer can further be raised and safety can be improved.

本願発明のその他の特徴および利点は、図面を参照して以下に行う詳細な説明から、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the drawings.

稚内層珪藻頁岩(貯水頁岩)の吸放湿機能の優位性を示すグラフである。It is a graph which shows the predominance of the moisture absorption / release function of the Wakkanai diatom shale (storage shale). 稚内層珪藻頁岩(貯水頁岩)の吸湿率特性を示すグラフである。It is a graph which shows the moisture absorption characteristic of the Wakkanai diatom shale (storage shale). 稚内層珪藻頁岩(貯水頁岩)の汚染水の除染実験結果を示すグラフである。It is a graph which shows the decontamination experiment result of the contaminated water of the Wakkanai diatom shale (storage shale). 稚内層珪藻頁岩(貯水頁岩)の汚染水の除染実験結果を示すグラフである。It is a graph which shows the decontamination experiment result of the contaminated water of the Wakkanai diatom shale (storage shale). 本発明方法を説明するための工程図である。It is process drawing for demonstrating this invention method. 本発明方法を実施するための装置の説明図である。It is explanatory drawing of the apparatus for implementing this invention method.

以下、本発明の好ましい実施の形態につき、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

まず、貯水頁岩に関して本発明者が得た上記第1の知見について、具体的に説明する。   First, the first knowledge obtained by the present inventor regarding the water storage shale will be specifically described.

福島県南相馬市における馬場地区および高の倉地区およびその他の地区において、それ
ぞれ、容積10リットルのバケツに汚染水3リットルを入れたものと、同じく容積10リットルのバケツに同じ汚染水3リットルと貯水頁岩6リットルとを入れたものにつき、放射線量の変化について調べた。貯水頁岩は、稚内層珪藻頁岩を適当な大きさに砕いたものを用いた。汚染水と貯水頁岩とを入れたものについては、短時間で、汚染水のほぼ全量が貯水頁岩に吸収された。
In Baba district, Takanokura district and other districts in Minamisoma City, Fukushima Prefecture, 3 liters of contaminated water is stored in a 10 liter bucket, and 3 liters of the same contaminated water is stored in a 10 liter bucket. The change in radiation dose was investigated for the sample containing 6 liters of shale. Reservoir shale used was crushed Wakkanai diatom shale to an appropriate size. In the case of contaminated water and reservoir shale, almost all of the contaminated water was absorbed into the reservoir shale in a short time.

図3に示すように、馬場地区においては、測定当初の汚染水の放射線量が2.67マイクロシーベルトであったが、同じ汚染水を含んだ貯水頁岩については数日後の測定で放射線量が0.27マイクロシーベルトに微弱化し、ほぼ0.2マイクロシーベルト付近で安定した。   As shown in Fig. 3, in the Baba area, the radiation dose of contaminated water at the beginning of the measurement was 2.67 microsieverts, but for the storage shale containing the same contaminated water, the radiation dose was measured several days later. It was weakened to 0.27 microsievert and stabilized near 0.2 microsievert.

図4に示すように、高の倉地区において、測定当初の汚染水の放射線量が5.85マイクロシーベルトであったが、同じ汚染水を含んだ貯水頁岩については翌日の測定で放射線量が0.28マイクロシーベルトに微弱化し、ほぼ0.2マイクロシーベルト付近で安定した。   As shown in Fig. 4, in the Takanokura area, the radiation dose of contaminated water at the beginning of measurement was 5.85 microsieverts, but for the storage shale containing the same polluted water, the radiation dose was measured on the next day. It weakened to 0.28 microsievert and stabilized at around 0.2 microsievert.

他の地区でも、ほぼ同様の結果が示されたのであり、このことは、当初の汚染水の放射線量の大小にかかわらず、そのほぼ全量を貯水頁岩に吸収させることにより、外部への放射線量を0.2マイクロシーベルト台まで微弱化できることを示唆している。この実験において、汚染水に含まれる放射性物質が水とともに貯水頁岩の細孔内に吸収されたことは明らかであるが、放射線量が微弱化される理由については、明確でない。しかしながら、貯水頁岩が極微細な細孔分布が高レベルであるという独特の細孔構造をもっていることと、貯水頁岩の大部分がSiO2でできていることが関与していると推定される。 In other areas, almost the same results were shown. This is because, regardless of the amount of radiation of the original contaminated water, almost all of it was absorbed by the reservoir shale, and the radiation dose to the outside was reduced. It is suggested that can be weakened to 0.2 micro Sievert stand. In this experiment, it is clear that the radioactive material contained in the contaminated water was absorbed into the pores of the storage shale together with the water, but the reason why the radiation dose is weakened is not clear. However, a possible reservoir shale ultra-fine pore distribution has a unique pore structure that is a high level, most of the water shale are estimated to be made of a SiO 2 are involved.

図5に示すように、本発明のバイオマスの液体肥料化方法は、第1工程S1と、これに続く第2工程S2と、必要に応じてこれに続く第3工程S3と、を含む。   As shown in FIG. 5, the method for converting a biomass into a liquid fertilizer according to the present invention includes a first step S <b> 1, a second step S <b> 2 subsequent thereto, and a third step S <b> 3 subsequent thereto as necessary.

第1工程S1は、微生物を珪藻頁岩に担持させた微生物担持珪藻頁岩を得る工程である。微生物は、たとえば、納豆菌、乳酸菌、麹菌、酵母菌などが用いられるが、これに限定されない。バイオマスを加水分解し、最終的に水と二酸化炭素に変化させうる微生物であればよい。分解反応時の悪臭が許容されるのであれば、嫌気性の微生物であってもよい。ただし、非病原性の微生物を採用するべきであることはいうまでもなく、この点を考慮すれば、植物病原菌に対する殺菌能力にも優れるような微生物を用いるのがよい。珪藻頁岩は、吸放湿率に優れ、空隙率が高い稚内層珪藻頁岩が最適であるが、これに限定されない。   The first step S1 is a step of obtaining a microorganism-supporting diatom shale in which microorganisms are supported on diatom shale. For example, natto bacteria, lactic acid bacteria, koji molds, yeasts, and the like are used as microorganisms, but are not limited thereto. Any microorganism can be used as long as it can hydrolyze biomass and finally change it into water and carbon dioxide. An anaerobic microorganism may be used as long as malodor during the decomposition reaction is acceptable. However, it goes without saying that non-pathogenic microorganisms should be employed, and considering this point, it is preferable to use microorganisms that are also excellent in sterilizing ability against phytopathogenic bacteria. As the diatom shale, Wakkanai diatom shale, which has an excellent moisture absorption and release rate and a high porosity, is optimal, but is not limited thereto.

第1工程S1は、具体的には、乾燥納豆菌を水に分散させてなる液体を珪藻頁岩に吸収させ、これを自然乾燥させる。珪藻頁岩は空隙率が大きいため、細孔内に大量の納豆菌を担持させることができる。   Specifically, in the first step S1, a liquid obtained by dispersing dried natto bacteria in water is absorbed by diatom shale and naturally dried. Because diatom shale has a high porosity, a large amount of Bacillus natto can be carried in the pores.

第2工程S2は、上記した微生物担持珪藻頁岩と、バイオマスと、水とを含む混合物を攪拌し、微生物によるバイオマスの分解を経た液体生成物を得る工程である。バイオマスとしては、紙、家畜糞尿、食品廃材、建築廃材、下水汚泥等の廃棄物系バイオマスや、稲藁、麦藁、籾殻、間伐材、雑草、芝草、被害木などの未利用バイオマスを用いることができる。   The second step S2 is a step of stirring the mixture containing the microorganism-supported diatom shale, biomass, and water to obtain a liquid product that has undergone biomass decomposition by microorganisms. Biomass includes waste biomass such as paper, livestock manure, food waste, building waste, sewage sludge, and unused biomass such as rice straw, wheat straw, rice husk, thinned wood, weeds, turf grass, and damaged trees. it can.

図6に、第2工程S2を行うための処理装置100の一例を示す。この処理装置100は、投入口101と出口管102を備えた容器110と、この容器110内の収容物を攪拌する攪拌装置120と、この容器110内に水を散布するシャワー装置130とを備える。出口管102には、液体肥料貯留タンク140が接続されている。   FIG. 6 shows an example of the processing apparatus 100 for performing the second step S2. The processing apparatus 100 includes a container 110 having an input port 101 and an outlet pipe 102, a stirring device 120 that stirs the contents in the container 110, and a shower device 130 that sprays water into the container 110. . A liquid fertilizer storage tank 140 is connected to the outlet pipe 102.

この処理装置100においては、バイオマスAと、第1工程S1で得られた微生物担持珪藻頁岩Bとが投入されるとともに、これらバイオマスAと微生物担持珪藻頁岩Bは、シャワー装置130による水分供給を受けながら、攪拌装置120によりゆっくりと攪拌され、微生物のバイオマス分解作用を経て得られる液体生成物Lは、貯留タンク140に貯留される。なお、バイオマスAは、投入に際して、チップ状とするなどの前処理を施しておく。   In this processing apparatus 100, the biomass A and the microorganism-supporting diatom shale B obtained in the first step S1 are input, and the biomass A and the microorganism-supporting diatom shale B are supplied with moisture by the shower device 130. However, the liquid product L that is slowly stirred by the stirring device 120 and obtained through the biomass decomposition action of microorganisms is stored in the storage tank 140. Biomass A is subjected to a pretreatment such as making it into chips at the time of charging.

水分供給を受けて湿潤状態となった微生物担持珪藻頁岩Bからは、微生物が適度に漏出し、バイオマスAの加水分解作用を行う。こうして容器110内では、微生物により分解された成分を含む液体が生成される。植物系のバイオマスを処理する場合、このような液体生成物Lは、窒素、リン、カリといった植物の3大栄養素のほか、ミネラル、糖質といった有効成分をバランスよく含む液体肥料として用いることができる。   From the microorganism-supported diatom shale B that has become wet due to moisture supply, microorganisms leak appropriately and hydrolyze biomass A. Thus, a liquid containing components decomposed by microorganisms is generated in the container 110. When processing plant-based biomass, such a liquid product L can be used as a liquid fertilizer containing a balance of active ingredients such as minerals and carbohydrates in addition to the three major nutrients of plants such as nitrogen, phosphorus and potash. .

珪藻頁岩は、上記したように、吸収した放射性物質からの放射線量を微弱化することができる。したがって、第2工程S2において投入されるバイオマス(建築廃材、稲藁、麦藁、家畜糞尿、落ち葉)に放射性物質が付着していたとしても、第2工程S2においてこの放射性物質が珪藻頁岩に吸着されることが期待され、液体生成物を無害化もしくは、無害に近い状態とすることが可能である。   As described above, the diatom shale can weaken the radiation dose from the absorbed radioactive material. Therefore, even if radioactive materials are attached to the biomass (building waste, rice straw, wheat straw, livestock manure, fallen leaves) input in the second step S2, the radioactive materials are adsorbed on the diatom shale in the second step S2. The liquid product can be rendered harmless or nearly harmless.

第3工程S3は、第2工程S2で得られた液体生成物(液体肥料)Lに、必要に応じて珪藻頁岩を浸漬させる工程である。この第3工程S3を設けることにより、第2工程S2で得られた液体生成物Lになお放射性物質が残存している場合、これをさらに珪藻頁岩に吸着して除去することができる。   The third step S3 is a step of immersing diatom shale in the liquid product (liquid fertilizer) L obtained in the second step S2, if necessary. By providing the third step S3, when the radioactive substance still remains in the liquid product L obtained in the second step S2, it can be further adsorbed on the diatom shale and removed.

珪藻頁岩は、本来的には粘土類であるため、そのまま土壌や河川、田畑、港湾等に散布しても何ら自然環境に悪影響を及ぼさない。第1工程S1で得られた微生物担持珪藻頁岩Bは、土壌改質のための微生物を担持する微生物担持体として最適なものとなる。しかも、珪藻頁岩は、それ自体、悪臭成分などを吸着する性質をもっている。したがって、第1工程S1で得られた微生物担持珪藻頁岩Bは、そのまま土壌や田畑に散布して、微生物による土壌改質や土地改良作用を期待することができる。しかも、珪藻頁岩Bは、細孔内に保持された微生物を増殖させるための培地としても機能する。したがって、この微生物担持珪藻頁岩Bが散布された土壌等においては、上記した微生物による土壌改質機能を長期間維持することができる。   Diatom shale is inherently clay, so it will not adversely affect the natural environment even if it is applied to soil, rivers, fields, harbors, etc. as it is. The microorganism-supporting diatom shale B obtained in the first step S1 is optimal as a microorganism-supporting body that supports microorganisms for soil modification. Moreover, diatom shale itself has the property of adsorbing malodorous components and the like. Therefore, the microorganism-carrying diatom shale B obtained in the first step S1 can be applied to the soil or the field as it is, and soil improvement or land improvement by microorganisms can be expected. Moreover, the diatom shale B also functions as a medium for growing the microorganisms retained in the pores. Therefore, in the soil or the like in which the microorganism-supporting diatom shale B is sprayed, the above-described soil reforming function by the microorganism can be maintained for a long time.

第2工程S2を行う処理装置100内においても、処理後の液体生成物Lを排出した後の珪藻頁岩は、微生物の培地として存在しているため、あらたな微生物を投入することなく、繰り返しバイオマスAの処理を行うことができ、このことは、コスト的に非常に有利である。   Also in the processing apparatus 100 that performs the second step S2, the diatom shale after discharging the processed liquid product L exists as a microorganism culture medium, so that it is repeated without introducing new microorganisms. A can be performed, which is very advantageous in terms of cost.

さらには、第2工程S2において、放射性物質を含むバイオマスAを処理した場合、処理装置100内の珪藻頁岩Bには放射性物質が吸着されるが、上記したようにこの珪藻頁岩Bから外部に放出される放射線は微弱化されるので、第2工程S2で使用した珪藻頁岩Bを乾燥させて土壌に散布しても、放射性物質が実質的に無害化されることが期待できる。しかも、上記したように、微生物による長期間にわたる土壌の改質作用が期待できるのである。   Furthermore, in the second step S2, when the biomass A containing the radioactive substance is processed, the radioactive substance is adsorbed to the diatom shale B in the processing apparatus 100, but released from the diatom shale B to the outside as described above. Since the radiation to be applied is weakened, it can be expected that the radioactive material is substantially harmless even if the diatom shale B used in the second step S2 is dried and sprayed on the soil. In addition, as described above, it is possible to expect a soil improvement effect over a long period of time by microorganisms.

本発明をこの度の東北関東大震災において大量に生じた瓦礫の処理、および、福島第1原発の事故で大量放出された放射性物質による汚染の処理にあてはめれば、次のことが期待できる。   If the present invention is applied to the treatment of rubble produced in large quantities in the Great Tohoku Kanto Earthquake and the treatment of contamination with radioactive materials released in large quantities in the accident at the Fukushima Daiichi Nuclear Power Plant, the following can be expected.

瓦礫のうち、木材質の瓦礫ついては、これをチップ状に粉砕して本発明におけるバイオマスとすれば、この木材質の瓦礫を液体肥料として再生することができる。そして、仮に瓦礫に放射性物質が付着していたとしても、生成される液体肥料を実質的に無害化することができる。瓦礫を燃やしたり埋めたりして処理することに比較すれば、資源を有効利用でき、また、放射性物質の再放散を防止することができ、きわめて有効な処理方法となる。   Of the rubble, the woody rubble can be regenerated as liquid fertilizer if it is crushed into chips and used as biomass in the present invention. And even if a radioactive substance has adhered to the rubble, the produced liquid fertilizer can be made substantially harmless. Compared with burning and filling rubble, it is possible to effectively use resources and prevent re-emission of radioactive materials, which is an extremely effective treatment method.

放射性物質に汚染された稲藁や麦藁、芝草や雑草、間伐材、下草、落ち葉等についても、同様に無害化して液体肥料として利用することができる。   Rice straw and wheat straw, turfgrass and weeds, thinned wood, undergrowth, and fallen leaves that are contaminated with radioactive substances can also be rendered harmless and used as liquid fertilizer.

さらに、本発明において用いた微生物担持珪藻頁岩は、土壌改良用の微生物を担持する培地として最適であり、これを汚染土壌に散布することにより、土壌を生物学的に改良することができるとともに、珪藻頁岩が放射性物質を吸着して実質的に無害化することによる除染も期待できる。しかも、本発明の生成物である液体肥料を用いれば、被災農地が、最適な農地に生まれ変わる可能性がある。   Furthermore, the microorganism-supporting diatom shale used in the present invention is optimal as a medium for supporting microorganisms for soil improvement, and by spreading this on contaminated soil, the soil can be biologically improved, Decontamination can also be expected by diatom shale adsorbing radioactive material and making it substantially harmless. Moreover, if the liquid fertilizer that is the product of the present invention is used, the damaged farmland may be reborn as an optimal farmland.

もちろん、この発明は上記した実施形態に限定されるものではなく、各請求項に記載した範囲内でのあらゆる変更は、すべて本発明の範囲に包摂される。   Of course, the present invention is not limited to the above-described embodiments, and all modifications within the scope of the claims are all included in the scope of the present invention.

A バイオマス
B 微生物担持珪藻頁岩
100 処理装置
110 容器
120 攪拌装置
130 シャワー装置
140 貯留タンク
A Biomass B Microorganism-supporting diatom shale 100 Processing device 110 Container 120 Stirrer 130 Shower device 140 Storage tank

Claims (6)

微生物を珪藻頁岩に担持させた微生物担持珪藻頁岩を得る第1工程と、
少なくとも上記微生物担持珪藻頁岩と、バイオマスと、水とを含む混合物を攪拌し、上記微生物による上記バイオマスの分解作用を経た液体生成物を得る第2工程と、
を含むことを特徴とする、バイオマスの液体肥料化方法。
A first step of obtaining a microorganism-supported diatom shale in which microorganisms are supported on diatom shale;
A second step of stirring a mixture containing at least the microorganism-supporting diatom shale, biomass, and water to obtain a liquid product that has undergone the decomposition action of the biomass by the microorganism;
A method for converting a biomass into a liquid fertilizer, comprising:
上記第1工程は、珪藻頁岩に微生物含有液体を吸収させた後、当該珪藻頁岩を乾燥させる、請求項1に記載のバイオマスの液体肥料化方法。   The said 1st process is a liquid fertilizer method of biomass of Claim 1 which dries the said diatom shale after making a diatom shale absorb a microorganisms containing liquid. 上記第2工程で得られた液体生成物に別途の珪藻頁岩を浸漬させる第3工程を含む、請求項1または2に記載のバイオマスの液体肥料化方法。   The method for converting a biomass into a liquid fertilizer according to claim 1 or 2, comprising a third step of immersing a separate diatom shale in the liquid product obtained in the second step. 請求項1または2における上記第2工程で得られた液体生成物であることを特徴とする、液体肥料。   3. A liquid fertilizer, characterized in that it is a liquid product obtained in the second step in claim 1 or 2. 請求項3における上記第3工程を経た液体生成物であることを特徴とする、液体肥料。   A liquid fertilizer, which is a liquid product that has undergone the third step in claim 3. 微生物含有液体を珪藻頁岩に担持させた後、当該珪藻頁岩を乾燥したことを特徴とする、微生物担持体。   A microbial support, wherein the diatom shale is dried after supporting the microorganism-containing liquid on the diatom shale.
JP2011222049A 2011-10-06 2011-10-06 Method for converting biomass into liquid fertilizer, liquid fertilizer generated by the method and microorganism carrier Pending JP2013082569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222049A JP2013082569A (en) 2011-10-06 2011-10-06 Method for converting biomass into liquid fertilizer, liquid fertilizer generated by the method and microorganism carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222049A JP2013082569A (en) 2011-10-06 2011-10-06 Method for converting biomass into liquid fertilizer, liquid fertilizer generated by the method and microorganism carrier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015163876A Division JP6075806B2 (en) 2015-08-21 2015-08-21 Method for treating liquid containing radioactive material

Publications (2)

Publication Number Publication Date
JP2013082569A true JP2013082569A (en) 2013-05-09
JP2013082569A5 JP2013082569A5 (en) 2014-11-27

Family

ID=48528179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222049A Pending JP2013082569A (en) 2011-10-06 2011-10-06 Method for converting biomass into liquid fertilizer, liquid fertilizer generated by the method and microorganism carrier

Country Status (1)

Country Link
JP (1) JP2013082569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709370A (en) * 2017-02-28 2020-01-17 德莱特有限公司 Systems, methods, and apparatus for improving the quality of wastewater effluents and biosolids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265286A (en) * 1991-02-19 1992-09-21 Kunio Shinoda Active soil-microbial colony, concentrated extract of its metabolite and its production
JPH11228962A (en) * 1998-02-09 1999-08-24 L & G:Kk Liquid soil conditioner
JP2002226261A (en) * 2001-01-26 2002-08-14 Akoa Yagen Kk Ceramic powder for disposing garbage, disposer and method for disposing garbage
JP2007175048A (en) * 2005-12-02 2007-07-12 Npo Nihon Yuki No Sato Wo Susumerukai Culture medium to be used in organic cultivation of field crop

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265286A (en) * 1991-02-19 1992-09-21 Kunio Shinoda Active soil-microbial colony, concentrated extract of its metabolite and its production
JPH11228962A (en) * 1998-02-09 1999-08-24 L & G:Kk Liquid soil conditioner
JP2002226261A (en) * 2001-01-26 2002-08-14 Akoa Yagen Kk Ceramic powder for disposing garbage, disposer and method for disposing garbage
JP2007175048A (en) * 2005-12-02 2007-07-12 Npo Nihon Yuki No Sato Wo Susumerukai Culture medium to be used in organic cultivation of field crop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709370A (en) * 2017-02-28 2020-01-17 德莱特有限公司 Systems, methods, and apparatus for improving the quality of wastewater effluents and biosolids
EP3589605A4 (en) * 2017-02-28 2020-12-23 Drylet, LLC Systems, methods, and apparatus for increased wastewater effluent and biosolids quality
US11440853B2 (en) 2017-02-28 2022-09-13 Drylet, Inc. Systems, methods, and apparatus for increased wastewater effluent and biosolids quality

Similar Documents

Publication Publication Date Title
CN103864543B (en) Soil remediation agent prepared from straws serving as raw materials as well as preparation method and application
Agarry et al. Kinetic modelling and half-life study on enhanced soil bioremediation of bonny light crude oil amended with crop and animal-derived organic wastes
CN103864542B (en) Fowl and animal excrement is adopted to be the soil-repairing agent of raw material, preparation method and purposes
Bolan et al. Carbon storage in a heavy clay soil landfill site after biosolid application
CN110551507B (en) Method for preparing soil conditioner by using urban domestic garbage leachate
Lap et al. Assessment of rice straw–derived biochar for livestock wastewater treatment
Jansirani et al. Production and utilization of vermicast using organic wastes and its impact on Trigonella foenum and Phaseolus aureus
CN102557768A (en) Circularly-deodorizing granulated conditioner and application thereof in sludge compost
JP2015129065A (en) Method for producing bark compost
Wadkar et al. Aerobic thermophilic composting of municipal solid waste
Strizhenok et al. Assessment of the efficiency of using organic waste from the brewing industry for bioremediation of oil-contaminated soils
JP2009073687A (en) Method for collecting iron bacteria accumulation
Lindberg et al. Treatment of faecal sludge from pit latrines and septic tanks using lime and urea: Pathogen die-off with respect to time of storage
JP6075806B2 (en) Method for treating liquid containing radioactive material
JP2013082569A (en) Method for converting biomass into liquid fertilizer, liquid fertilizer generated by the method and microorganism carrier
CN109226216A (en) A kind of firing type heavy metal-polluted soil remover and preparation method
CN104774057B (en) For canopy formula fermentation organic fertilizer cycle deodorizing method
CN108002675A (en) A kind of sludge dehydrating agent and preparation method thereof, dewatering
Husain et al. Microorganisms: An eco-friendly tools for the waste management and environmental safety
Chaudhary et al. Assessment on variations in physico-chemical characteristics at different maturity phages of organic kitchen waste composting at Lucknow City UP (India)
JP2011212655A (en) Treatment method for removing, decomposing, digesting, and eliminating residual chemical and production method therefor
JP2006314212A (en) Rooftop-greening culture soil
Sánchez-Sánchez et al. Charcoal as a bacteriological adherent for biomethanation of organic wastes
JP6436525B2 (en) Environmental purification method
Gamage et al. Estimation of nitrate and phosphate leaching from lysimeter simulation of rice straw landfill bioreactor and evaluation of fertilizer quality of resulting compost

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151117