JP2009073687A - Method for collecting iron bacteria accumulation - Google Patents

Method for collecting iron bacteria accumulation Download PDF

Info

Publication number
JP2009073687A
JP2009073687A JP2007243200A JP2007243200A JP2009073687A JP 2009073687 A JP2009073687 A JP 2009073687A JP 2007243200 A JP2007243200 A JP 2007243200A JP 2007243200 A JP2007243200 A JP 2007243200A JP 2009073687 A JP2009073687 A JP 2009073687A
Authority
JP
Japan
Prior art keywords
iron bacteria
carrier
water
iron
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007243200A
Other languages
Japanese (ja)
Inventor
Ikuro Takeda
育郎 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007243200A priority Critical patent/JP2009073687A/en
Publication of JP2009073687A publication Critical patent/JP2009073687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently collecting an iron bacteria accumulation in a natural water area by investing a small amount of cost and energy as a form usable as a phosphate fertilizer or a water cleaning agent by solving problems such that an iron bacteria accumulation in a natural water area contains much an iron compound having a phosphorus adsorptivity and phosphorus adsorbed to it but is not utilized industrially since its efficient collection from water is difficult, and an iron bacteria accumulation shown in the technology for removing iron from water by using iron bacteria outside a natural water area and cleaning agents for water and soil are not linked to utilization in agriculture since a large amount of cost and energy are needed for chemical substances added and treatment processes. <P>SOLUTION: In this collecting method, a container having micropores charged with a carrier containing an organic substance is immersed in water wherein iron bacteria live for a certain period of time and then the carrier carrying the iron bacteria is collected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄バクテリアが生息する水中において、鉄バクテリア集積物をリン酸肥料又は水質浄化剤として利用することのできる形態で収集する方法に関する。 The present invention relates to a method for collecting iron bacteria accumulation in a form that can be used as a phosphate fertilizer or a water purification agent in water inhabited by iron bacteria.

地下水や浸透水の流入が多い河川、水路、沼沢などの自然水域では、しばしば底部に赤褐色、黄褐色又は茶褐色を呈する浮泥状の酸化鉄の堆積がみられるが、これらは鉄バクテリアの作用によって集積した鉄バクテリア集積物である。なお、ここでいう鉄バクテリアとは、水中の第一鉄を不溶性の第二鉄化合物として菌体の内部又は外部に集積する細菌類の総称を意味し、鉄バクテリア集積物とは、鉄バクテリアが集積した不溶性の第二鉄化合物と、これに混入することもある自然酸化によって生成した不溶性の第二鉄化合物を意味する。 In natural waters such as rivers, waterways, and swamps where inflow of groundwater and osmotic water is frequent, floating mud-like iron oxide with reddish brown, yellowish brown or brown color is often observed at the bottom. Accumulated iron bacteria accumulation. The term “iron bacteria” as used herein means a general term for bacteria that accumulate ferrous iron in water as insoluble ferric compounds inside or outside the cells. Iron bacteria accumulation means iron bacteria. It means an insoluble ferric compound accumulated and an insoluble ferric compound produced by natural oxidation which may be mixed in the ferric compound.

一般に自然水域における鉄バクテリア集積物は、雨天時には拡散して褐色の濁り水となり、水質汚濁や景観悪化の原因となるため、多くの場所では忌避される傾向にある。なかでも、鉄バクテリア集積物の多い水域において暗渠排水を行う場合やパイプラインによって灌漑や送水をする場所では、鉄バクテリア集積物はポンプやパイプの詰まりの原因となる。このため、鉄バクテリアの増殖を抑制するための閉塞防止材(特許文献1)が開発されているが、自然水域における鉄バクテリア集積物を利用する技術は提案されていない。 Generally, iron bacteria accumulations in natural waters are diffused in the rain to turn into brown turbid water, causing water pollution and landscape deterioration, and tend to be avoided in many places. In particular, fertilizer accumulation can cause clogging of pumps and pipes when underdrainage is performed in water areas where there are many iron bacteria accumulations, or where irrigation and water supply are carried out by pipelines. For this reason, an anti-clogging material (Patent Document 1) for suppressing the growth of iron bacteria has been developed, but a technique using iron bacteria accumulation in natural water has not been proposed.

一方、自然水域以外の施設や装置において鉄バクテリアを利用する技術としては、 浄水場における除鉄がある(たとえば、非特許文献1)。これは、鉄が過剰に含まれる水道原水を、鉄バクテリアが生息するろ過槽を通過させることによって、鉄を除去する技術である。また、鉄イオン除去装置(特許文献2)においては、鉄バクテリアの培養液にブロアで空気を供給し、鉄バクテリアの集まったペレットを生成させる。これらの技術では、浄水場や鉄イオン除去装置内において鉄バクテリア集積物が見られるが、肥料用途の農業利用につながるものではなく、また、ろ過槽への水道原水の送水やブロアによる通気に多大なエネルギーの投入が必要である。 On the other hand, as a technique for using iron bacteria in facilities and devices other than natural water areas, there is iron removal in water purification plants (for example, Non-Patent Document 1). This is a technique for removing iron by passing raw water containing excessive iron through a filtration tank in which iron bacteria live. Moreover, in an iron ion removal apparatus (patent document 2), air is supplied to the culture solution of iron bacteria with a blower, and the pellet which the iron bacteria gathered is produced | generated. In these technologies, iron bacteria accumulation can be seen in water treatment plants and iron ion removal equipment, but it does not lead to agricultural use for fertilizers, and it is also very much used for water supply to filtration tanks and ventilation by blowers. Energy input is required.

また、鉄バクテリア集積物にはリンのほかヒ素、カドミウム、鉛などの重金属を吸着する性質があるので、鉄バクテリアを利用した水質浄化剤(特許文献3)や土壌浄化剤(特許文献4)が提案されている。しかしながら、これらの浄化剤は、鉄バクテリア集積物に加えて製造過程で添加される多くの化学物質を含むため、リンのみを選択的に吸着した場合においても、肥料用途の農業利用につながるものではない。さらに、前者の水質浄化剤(特許文献3)では、製造過程の攪拌、送風、曝気などに多大なエネルギーを投入する必要がある。 In addition, iron bacteria accumulation has the property of adsorbing heavy metals such as arsenic, cadmium and lead in addition to phosphorus, so water purification agents (Patent Literature 3) and soil purification agents (Patent Literature 4) using iron bacteria are available. Proposed. However, these cleaners contain many chemical substances added in the manufacturing process in addition to the iron bacteria accumulation, so even if only phosphorus is selectively adsorbed, it does not lead to agricultural use for fertilizer applications. Absent. Furthermore, with the former water purification agent (Patent Document 3), it is necessary to input a large amount of energy for stirring, blowing, aeration and the like in the manufacturing process.

一方、わが国がその使用量のほぼ全量を輸入に依存しているリンは、今後数十年でリン鉱石の枯渇が懸念されるため、リン鉱石産出国においては重要な貿易戦略物資となっている。また、リンは窒素やイオウなどと異なり、水域と陸域との間でほとんど循環しない。このため、リンを水中から回収し、リン使用の約8割を占める肥料用途に資源化する技術の開発が重要な課題となっている。 On the other hand, phosphorus, which Japan relies on imports for almost all of its usage, has become an important trade strategy material in countries that produce phosphorus ore due to concerns over the depletion of phosphorus ore in the coming decades. . Also, unlike nitrogen and sulfur, phosphorus hardly circulates between water and land. For this reason, the development of technology for recovering phosphorus from water and reusing it for fertilizer applications that account for about 80% of phosphorus use has become an important issue.

これに関して本発明者は、自然水域における鉄バクテリア集積物には、リン吸着能を持つ鉄化合物とそれに吸着したリンが多く存在しているので、鉄バクテリア集積物が、水中からのリンの回収や資源化に重要な役割を果たしうることを見出した(非特許文献2)。
特開2004−270161号公報 特開2001−191091号公報 特開2005−87833号公報 特開2003−112163号公報 八木正一(2001)鉄バクテリアを利用した除鉄、除マンガン処理について、環境技術、30(12)、907〜911頁 Takeda,I.and A.Fukushima(2004)Phosphorus purification in a paddy field watershed using a circular irrigation system and the role of iron compounds,Water Research,38(19),4065〜4074頁
In this regard, the present inventors have found that iron bacteria accumulation in natural waters contains a large amount of iron compounds having phosphorus adsorption ability and phosphorus adsorbed to the iron bacteria accumulation. It has been found that it can play an important role in recycling (Non-Patent Document 2).
JP 2004-270161 A JP 2001-191091 A Japanese Patent Laid-Open No. 2005-87833 JP 2003-112163 A Shoichi Yagi (2001) About iron removal and manganese removal treatment using iron bacteria, Environmental Technology, 30 (12), pages 907-911. Takeda, I. et al. and A. Fukushima (2004) Phosphorus purification in a paddy field watered using a circular irrigation system and the world of iron compounds, 406

しかしながら、自然水域に見られる鉄バクテリア集積物は、リン吸着能を持つ鉄化合物とそれに吸着したリンが多く存在しているにもかかわらず、現在、産業上の利用が行われていない。この理由として、鉄バクテリア集積物が浮遊性に富んでいる事、また、鉄バクテリア集積物の堆積する表層数cmより下部はしばしば悪臭を放つ嫌気的なヘドロであるため、鉄バクテリア集積物のみを水中から効率的に回収することが困難である事が挙げられる。また、乾燥後の鉄バクテリア集積物は微細粉末であるので、空気中では飛散しやすく、扱いにくい事も理由として挙げられる。 However, iron-bacteria aggregates found in natural waters are not currently used industrially, despite the presence of iron compounds with phosphorus-adsorbing ability and phosphorus adsorbed to them. The reason for this is that the iron bacteria accumulation is rich in suspension, and the lower part of the surface layer where the iron bacteria accumulation is deposited is an anaerobic sludge that often gives off odors. It is difficult to recover efficiently from the water. Moreover, since the iron bacteria accumulation | aggregation after drying is a fine powder, it is easy to disperse | distribute in the air and it is mentioned that it is difficult to handle.

一方、自然水域以外での鉄バクテリアを利用した水中からの除鉄技術に見られる鉄バクテリア集積物や、水質や土壌の浄化剤では、添加する化学物質や処理工程に多大なコストとエネルギーが必要であり、肥料用途の農業利用につながるものではない。 On the other hand, with the accumulation of iron bacteria found in iron removal technology using iron bacteria outside of natural waters, as well as water and soil purification agents, the chemicals to be added and the treatment process require significant costs and energy. It does not lead to agricultural use for fertilizer.

そこで本発明は、自然水域における鉄バクテリア集積物を、リン酸肥料又は水質浄化剤として利用できる形態で、わずかなコストとエネルギーの投入によって、効率的に収集することを課題とする。 Therefore, an object of the present invention is to efficiently collect iron bacteria accumulations in natural waters in a form that can be used as a phosphate fertilizer or a water purification agent with a small amount of cost and energy input.

鉄バクテリアは炭素源として有機物を利用しない独立栄養細菌に分類されるが、本発明者は、自然水域の流速が緩やかな場所では、鉄バクテリア集積物が木片や水生植物などの有機物質に特に多く肥厚する事を見出した。 Although iron bacteria are classified as autotrophic bacteria that do not use organic matter as a carbon source, the present inventor has found that iron bacteria accumulation is particularly high in organic substances such as wood fragments and aquatic plants in places where the flow rate of natural water is slow. I found it thickened.

また、鉄バクテリアの突然の増殖によって赤水の被害が発生した簡易水道の水源地における調査において、本発明者は、鉄バクテリアの増殖の原因が、被害が発生する以前に埋設された多数の樹木の切り株であることを突き止めた。 In addition, in an investigation at the source of a simple water supply where red water was damaged due to sudden growth of iron bacteria, the present inventor found that the cause of the growth of iron bacteria was a large number of trees buried before the damage occurred. I found out that it was a stump.

これらのことから、本発明では、鉄バクテリアの生息する水中において、有機物質を含む担体を入れた微細孔のある容器を浸漬させ、一定期間の後、鉄バクテリア集積物が担持した担体を回収する。 For these reasons, in the present invention, a microporous container containing a carrier containing an organic substance is immersed in the water inhabited by iron bacteria, and after a certain period of time, the carrier carrying iron bacteria aggregates is recovered. .

本発明によれば、わずかなコストとエネルギーの投入によって、自然水域から鉄バクテリア集積物を効率的に回収することができる。また、微細粉末である鉄バクテリア集積物が担体に担持されるので、乾燥と運搬が容易である。 According to the present invention, iron bacteria accumulation can be efficiently recovered from natural waters with a small cost and energy input. Moreover, since the iron bacteria accumulation | aggregation which is a fine powder is carry | supported by the support | carrier, drying and conveyance are easy.

ヒ素や重金属の汚染のない水中に担体を浸漬した場合は、回収した担体をリン酸肥料として利用でき、リン資源の循環利用を実現することができる。 When the carrier is immersed in water free from arsenic or heavy metal contamination, the recovered carrier can be used as a phosphate fertilizer, and the recycling of phosphorus resources can be realized.

また、回収した担体は、リンを吸着する水質浄化剤として利用することができるほか、ヒ素や重金属を吸着する水質浄化剤としても利用することができる。 The recovered carrier can be used as a water purification agent that adsorbs phosphorus, and also as a water purification agent that adsorbs arsenic and heavy metals.

担体を水中に浸漬する過程において、水中の第一鉄を担体に固定することができるので、鉄バクテリア集積物が忌避される自然水域においては、本発明の実施場所の周辺で鉄バクテリア集積物の発生を抑制できる。 In the process of immersing the carrier in water, ferrous iron in the water can be fixed to the carrier. Therefore, in the natural water area where the iron bacterial accumulation is avoided, the iron bacterial accumulation around the place where the present invention is carried out. Generation can be suppressed.

有機物質を含む担体は、自然水域における浸漬期間中の腐食・分解による水質汚濁の影響が無視できるものが好ましく、木質材料は好ましい選択である。 The carrier containing an organic substance is preferably one that can ignore the influence of water pollution due to corrosion and decomposition during the immersion period in natural water, and a woody material is a preferred choice.

また、担体は比表面積が大きい方が望ましいので、担体のサイズは0.2〜2mm程度が好ましい。 Further, since the carrier preferably has a large specific surface area, the size of the carrier is preferably about 0.2 to 2 mm.

担体を入れる容器の微細孔のサイズは、担体が水中において散逸しないように、担体のサイズよりも小さいことが必要である。 The size of the micropores in the container containing the carrier needs to be smaller than the size of the carrier so that the carrier does not dissipate in water.

鉄バクテリアの中性付近での生育条件は、酸化還元電位=0〜500mV程度であるので、担体を入れた容器が底質中に埋没しないようにする。 Since the growth condition in the vicinity of the neutrality of the iron bacteria is about redox potential = 0 to 500 mV, the container containing the carrier should not be buried in the sediment.

以下、本発明を実施例に基づいて詳細に説明するが、本発明は、この実施例に限定されるものではない。 Hereinafter, although the present invention is explained in detail based on an example, the present invention is not limited to this example.

鉄バクテリア集積物を担持させる担体として、ヒノキ間伐材の心材を自然乾燥の後、0.2〜2mmに破砕した木質担体を用いた。 As the carrier for supporting the iron bacteria accumulation, a woody carrier obtained by pulverizing cypress thinned timber to 0.2 to 2 mm after natural drying was used.

ヒノキ材を用いた理由は、窒素、リンをほとんど含まず(窒素、リン合わせて0.5%未満)、また、腐朽菌に対する分解抵抗性が大きいリグニンを多く含むことにある。また、ヒノキ材は、中空の細長いパイプ状細胞である仮道管が木質組織全体の約97%を占めるため、細かく破砕すると大きな比表面積が期待できることも理由の一つである。なお、心材を用いた理由は、防食物質であるフラボノイドを多く含むことにある。 The reason for using the cypress wood is that it contains almost no nitrogen and phosphorus (nitrogen and phosphorus combined, less than 0.5%) and contains a large amount of lignin that is highly resistant to degradation by decaying fungi. Another reason is that a cypress wood can be expected to have a large specific surface area if it is finely crushed because the tracheid tube, which is a hollow elongated pipe-like cell, occupies about 97% of the entire wood tissue. The reason for using the heartwood is that it contains a lot of flavonoids which are anticorrosive substances.

微細孔のある容器としては、ポリエステルおよびレーヨンからなる袋状の不織布を用いた。 A bag-like non-woven fabric made of polyester and rayon was used as a container having fine holes.

この木質担体を袋状の不織布に入れて封をし、鉄バクテリアによって底部が赤褐色になった河川(河川水の全リン濃度=0.3mg/L程度)において底質中に埋没しないように浸漬させ、一定期間の経過後、回収した。なお、木質担体を腐食させる腐朽菌は水中では生育できないので、木質担体が常に水中に存在するように浸漬する必要がある。 This wooden carrier is put in a bag-like non-woven fabric, sealed, and immersed so that it will not be buried in the bottom sediment in a river whose bottom is reddish brown by iron bacteria (total phosphorus concentration of river water = about 0.3 mg / L) And recovered after a certain period of time. In addition, since the decaying fungi that corrode the wood carrier cannot grow in water, it is necessary to immerse the wood carrier so that it always exists in water.

回収した不織布の袋の中には、全体が茶褐色に変色した木質担体が確認され、また、顕微鏡による観察の結果、鉄バクテリアであるレプトスリックス オクラセア(Leptothrix ochracea)およびシデロカプサ エスピー(Siderocapusa sp.)とその集積物が、木質組織に担持されていることを確認した。さらに、微細孔のある容器として用いたポリエステルおよびレーヨンからなる不織布においても鉄バクテリア集積物の付着を確認した。 In the recovered non-woven bag, a wood carrier whose whole color is changed to brown is confirmed, and as a result of observation by a microscope, iron bacteria, Leptothrix ochracea and Siderocapusa sp. It was confirmed that the accumulation was carried on the woody tissue. Furthermore, the adhesion of iron bacteria accumulation was also confirmed in a nonwoven fabric made of polyester and rayon used as a container having micropores.

図1は、木質担体の河川での浸漬期間と木質担体に担持した鉄(フェナントロリン法による定量)の関係を表している。浸漬期間が10日で8mg/g程度、20日で12mg/g程度、30日で14mg/g程度の鉄の担持が確認された。鉄の担持速度は、浸漬期間が20日以降は低下するので、木質担体の浸漬期間は20日程度で十分である。 FIG. 1 shows the relationship between the immersion period of a wooden carrier in a river and the iron supported on the wooden carrier (determined by the phenanthroline method). It was confirmed that the iron loading was about 8 mg / g for 10 days, about 12 mg / g for 20 days, and about 14 mg / g for 30 days. Since the iron loading rate decreases after the immersion period of 20 days, about 20 days is sufficient for the immersion period of the wooden carrier.

図2は、木質担体の河川での浸漬期間と木質担体に吸着したリン(植物に利用可能なリン画分であるリン酸肥沃度の定量法の一つであるBrayNo2法による定量)の関係を表している。浸漬期間が10日で0.07mg/g程度、20日で0.11mg/g程度、30日で0.13mg/g程度のリンの吸着が確認された。なお、農地土壌のリン酸肥沃度の指標である、BrayNo2リン酸の通常の表示方法(mgP/100g)によれば、浸漬期間20日のリン吸着量は約50mgP/100gとなるので、回収した木質担体はリン酸肥沃度に十分富んでいるといえる。 Fig. 2 shows the relationship between the period of immersion of the wood carrier in the river and the phosphorus adsorbed on the wood carrier (quantification by the RayNo2 method, which is one of the methods for quantifying phosphate fertility, which is a phosphorus fraction available to plants). Represents. Phosphorus adsorption with an immersion period of about 0.07 mg / g for 10 days, about 0.11 mg / g for 20 days, and about 0.13 mg / g for 30 days was confirmed. Incidentally, an indicator of phosphoric acid fertility farmland soil, according to the conventional method of displaying BrayNo2 phosphate (mgP 2 O 5 / 100g) , phosphorus adsorption amount of immersion time 20 days about 50mgP 2 O 5 / 100g Therefore, it can be said that the recovered wooden carrier is sufficiently rich in phosphate fertility.

回収した後乾燥させた木質担体を、縦2cm、横2cm、深さ2cmの容器に充填し、コマツナの栽培試験を行った。なお、試験期間は一部の容器でコマツナの根が充満したため、30日である。 The collected and dried wood carrier was filled into a container having a length of 2 cm, a width of 2 cm, and a depth of 2 cm, and a cultivation test of Komatsuna was conducted. The test period is 30 days because some containers were filled with komatsuna roots.

図3は、試験終了後のコマツナの地上部の長さの平均値と標準偏差(サンプル数=8)を表している。ここで、「浸漬前担体」は浸漬前の木質担体のみを充填したもの、「浸漬担体50%」は、浸漬の後回収した木質担体と浸漬前の木質担体を1:1で混合して充填したもの、「浸漬担体100%」は浸漬の後回収した木質担体のみを充填したものを意味している。コマツナの地上部の長さの平均は、浸漬前担体=1.58cm、浸漬担体50%=1.78cm、浸漬担体100%=1.82cmであり、浸漬担体が多いほど地上部の長さは長くなった。ただし、統計的な有意差は確認できなかった。 FIG. 3 shows the average value and standard deviation (number of samples = 8) of the length of the above-ground part of the Komatsuna after the end of the test. Here, “the carrier before immersion” is filled with only the wooden carrier before immersion, and “the 50% immersion carrier” is filled with the wooden carrier recovered after immersion and the wooden carrier before immersion in a ratio of 1: 1. In this case, “100% soaked carrier” means a product filled only with a wood carrier recovered after soaking. The average length of the above-ground part of Komatsuna is: carrier before immersion = 1.58 cm, immersion carrier 50% = 1.78 cm, immersion carrier 100% = 1.82 cm. It became long. However, no statistically significant difference could be confirmed.

図4は、図3と同様の試験における地下部の長さを表している。コマツナの地下部の長さの平均は、浸漬前担体=1.19cm、浸漬担体50%=2.38cm、浸漬担体100%=3.63cmであり、浸漬担体が多いほど地下部の長さは長くなった。また、浸漬前担体と浸漬担体100%の間では1%水準の統計的な有意差が認められた。これらのことから、回収した木質担体は、リン酸肥料として土壌のリン酸肥沃度改善のために利用できる。 FIG. 4 shows the length of the underground part in the same test as FIG. The average length of the underground part of Komatsuna is: carrier before immersion = 1.19 cm, immersion carrier 50% = 2.38 cm, immersion carrier 100% = 3.63 cm. It became long. Further, a statistically significant difference of 1% level was observed between the carrier before immersion and 100% immersion carrier. For these reasons, the recovered wooden carrier can be used as a phosphate fertilizer to improve the phosphate fertility of the soil.

木質担体を浸漬させた河川の全リン濃度は0.3mg/Lと必ずしも高くないため、回収の後、乾燥させた木質担体0.1gを、リン酸濃度=2mg/Lの溶液50mLに添加し、実験室において常温で静置し、溶液のリン濃度の推移を測定した。 Since the total phosphorus concentration in the river with the wooden carrier immersed is not necessarily as high as 0.3 mg / L, after recovery, 0.1 g of the dried wooden carrier is added to 50 mL of a solution with a phosphoric acid concentration = 2 mg / L. The solution was allowed to stand at room temperature in a laboratory, and the transition of the phosphorus concentration of the solution was measured.

図5に示す溶液のリン濃度の推移では、担体1(担体に担持した鉄量=15.5mg/g、担体に吸着したリン量=0.110mg/g)および担体2(担体に担持した鉄量=12.3mg/g、担体に吸着したリン量=0.040mg/g)において、19日後にはリン濃度は半減したが、対照サンプル(リン酸溶液に浸漬前の担体を添加したもの、リン酸溶液のみのもの)では、リン濃度はほぼ一定であった。したがって、回収した木質担体は、リン吸着能を持つのでリンの水質浄化剤として利用できる。なお、ここでリン酸濃度ではなく全リン(T−P)濃度を測定した理由は、木質担体に吸着されず、懸濁態の形態で水中にリンが存在する可能性が考えられたからである。 In the transition of the phosphorus concentration of the solution shown in FIG. 5, the carrier 1 (the amount of iron supported on the carrier = 15.5 mg / g, the amount of phosphorus adsorbed on the carrier = 0.110 mg / g) and the carrier 2 (iron supported on the carrier). In the amount = 12.3 mg / g, the amount of phosphorus adsorbed on the carrier = 0.040 mg / g), the concentration of phosphorus was reduced by half after 19 days, but the control sample (the one in which the carrier before immersion was added to the phosphoric acid solution, In the case of phosphoric acid solution only), the phosphorus concentration was almost constant. Therefore, since the recovered wood carrier has a phosphorus adsorption ability, it can be used as a water purification agent for phosphorus. Here, the reason for measuring the total phosphorus (TP) concentration, not the phosphoric acid concentration, was that it was not adsorbed on the wooden carrier and the possibility that phosphorus was present in the water in a suspended state was considered. .

なお、鉄バクテリア集積物の付着は、クヌギ材、ナラ材、河川中の木片や水生植物、樹木の切り株、微細孔のある容器として用いたポリエステルおよびレーヨンからなる不織布、ナイロンおよびウレタン製のスポンジにおいても認められたことから、本実施例で述べた木質材料以外の有機物質を含む担体についても、本発明による鉄バクテリア集積物の収集方法に用いることができる。 In addition, the adhesion of iron bacteria accumulation is caused by scouring lumber, oak lumber, wood fragments and aquatic plants in rivers, tree stumps, polyester and rayon nonwoven fabrics, nylon and urethane sponges used as microporous containers. Therefore, a carrier containing an organic substance other than the woody material described in this example can also be used in the method for collecting an iron bacteria accumulation according to the present invention.

また、鉄バクテリア集積物には、リンのほかにヒ素、カドミウム、鉛などの重金属を吸着する性質があるので、回収した担体はリンのほか、これらの物質を吸着する水質浄化剤としても利用できる。 In addition, iron bacteria accumulation has the property of adsorbing heavy metals such as arsenic, cadmium, and lead in addition to phosphorus, so the recovered carrier can be used as a water purification agent that adsorbs these substances in addition to phosphorus. .

また、本発明は、河川、水路、沼沢などの自然水域だけでなく、これらの水を水槽や回収装置などの施設に導水して実行することも可能である。 In addition, the present invention can be carried out by introducing water to a facility such as a water tank or a recovery device as well as natural water areas such as rivers, waterways, and swamps.

本発明によれば、わずかなコストとエネルギーの投入によって、自然水域から鉄バクテリア集積物を効率的に回収することができ、また、回収した担体をリン酸肥料として利用できる。したがって、リン資源の循環利用が可能となるので、環境保全や資源循環を意図した河川整備事業や農業農村整備事業などの各種の地域整備事業に貢献できる。さらに回収した担体は、水質浄化剤として利用することができるほか、鉄バクテリア集積物が忌避される自然水域においては、本発明の実施場所の周辺で鉄バクテリア集積物の発生を抑制できる。 According to the present invention, iron bacteria accumulation can be efficiently recovered from natural waters with a small cost and energy input, and the recovered carrier can be used as a phosphate fertilizer. Therefore, it is possible to recycle phosphorus resources, which can contribute to various regional development projects such as river maintenance projects and agricultural and rural development projects intended for environmental conservation and resource recycling. Furthermore, the recovered carrier can be used as a water purification agent, and in the natural water area where the iron bacteria accumulation is avoided, the generation of iron bacteria accumulation can be suppressed around the place where the present invention is carried out.

木質担体の河川での浸漬期間と木質担体に担持した鉄の関係を示す図である。It is a figure which shows the immersion period in the river of a wooden support | carrier, and the iron carry | supported by the wooden support | carrier. 木質担体の河川での浸漬期間と木質担体に吸着したリンの関係を示す図である。It is a figure which shows the relationship between the immersion period in the river of a wooden support | carrier, and the phosphorus which adsorb | sucked to the wooden support | carrier. 回収した木質担体を用いてコマツナを栽培したときのコマツナ地上部の長さを比較する図である。It is a figure which compares the length of the Komatsuna ground part when Komatsuna is cultivated using the collect | recovered wooden support | carrier. 回収した木質担体を用いてコマツナを栽培したときのコマツナ地下部の長さを比較する図である。It is a figure which compares the length of a Komatsuna underground part when Komatsuna is cultivated using the collect | recovered wooden support | carrier. 回収した木質担体をリン酸濃度2mg/Lの溶液に添加したときの溶液のリン濃度の推移を示す図である。It is a figure which shows transition of the phosphorus concentration of a solution when the collect | recovered wooden support | carrier is added to the solution of phosphoric acid concentration 2 mg / L.

Claims (3)

鉄バクテリア集積物をリン酸肥料として利用できる形態で収集する方法であって、鉄バクテリアの生息する水中において、有機物質を含む担体を入れた微細孔のある容器を浸漬させ、鉄バクテリア集積物が担持した担体を回収することを特徴とする鉄バクテリア集積物の収集方法。 A method for collecting iron bacteria accumulation in a form that can be used as a phosphate fertilizer, in which a microporous container containing a carrier containing an organic substance is immersed in the water in which the iron bacteria live, A method for collecting iron bacteria aggregates, comprising recovering a supported carrier. 鉄バクテリア集積物を水質浄化剤として利用できる形態で収集する方法であって、鉄バクテリアの生息する水中において、有機物質を含む担体を入れた微細孔のある容器を浸漬させ、鉄バクテリア集積物が担持した担体を回収することを特徴とする鉄バクテリア集積物の収集方法。 A method for collecting iron bacteria aggregates in a form that can be used as a water purification agent, and immersing a microporous container containing a carrier containing organic substances in the water where the iron bacteria live, A method for collecting iron bacteria aggregates, comprising recovering a supported carrier. 前記の担体が木質材料を含むことを特徴とする請求項1又は2記載の鉄バクテリア集積物の収集方法。 3. The method for collecting iron bacteria aggregates according to claim 1 or 2, wherein the carrier contains a woody material.
JP2007243200A 2007-09-20 2007-09-20 Method for collecting iron bacteria accumulation Pending JP2009073687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243200A JP2009073687A (en) 2007-09-20 2007-09-20 Method for collecting iron bacteria accumulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243200A JP2009073687A (en) 2007-09-20 2007-09-20 Method for collecting iron bacteria accumulation

Publications (1)

Publication Number Publication Date
JP2009073687A true JP2009073687A (en) 2009-04-09

Family

ID=40609055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243200A Pending JP2009073687A (en) 2007-09-20 2007-09-20 Method for collecting iron bacteria accumulation

Country Status (1)

Country Link
JP (1) JP2009073687A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473340B1 (en) * 2009-10-23 2010-06-02 松尾機器産業株式会社 Method for treating water containing arsenic
JP2013006160A (en) * 2011-06-27 2013-01-10 Osaka Sangyo Univ Sulfur oxide removing material
WO2016006118A1 (en) * 2014-07-07 2016-01-14 独立行政法人石油天然ガス・金属鉱物資源機構 Mine water purification method, mine water purification system and mine water purifying agent
JP2017087085A (en) * 2015-11-02 2017-05-25 宍道湖漁業協同組合 Method to render hydrogen sulfide generated in lake bed or bay bed harmless and system thereof
JP2017177027A (en) * 2016-03-31 2017-10-05 株式会社システック Iron bacteria carrier and preparation method thereof and ph control method of basic solution using the same
JP2019018189A (en) * 2017-07-21 2019-02-07 株式会社山口土木 Adsorbent of phosphate ion, removal method of phosphate ion, and fertilizer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284794A (en) * 1994-04-14 1995-10-31 Tadahiko Kuno Active bacterium supply system for grease trap
JPH09131596A (en) * 1995-11-09 1997-05-20 Seed Consultant:Kk Method for purification of river environment
JPH09316554A (en) * 1996-05-29 1997-12-09 Ogihara Ekorojii Kk Treatment and treating device
JPH10286590A (en) * 1997-04-14 1998-10-27 Seed Consultant:Kk Lake and marsh environment improvement method
JP2002066583A (en) * 2000-08-25 2002-03-05 Toyo Denka Kogyo Co Ltd Filter medium, water treating apparatus using the filter medium, and water treatment method
JP2002205085A (en) * 2001-01-15 2002-07-23 Mac Technical Systems Kk Fixing body for immobilizing microorganism and method of manufacturing for the same and water treatment equipment
JP2003071464A (en) * 2001-08-31 2003-03-11 Hakuto Co Ltd Method for suppressing iron bacteria in aqueous system
JP2004113977A (en) * 2002-09-27 2004-04-15 Nippon Steel Chem Co Ltd Material and method for treating iron-containing acidic waste water
JP2005087833A (en) * 2003-09-16 2005-04-07 Nippon Steel Chem Co Ltd Water purifying material and its manufacturing method
JP2008100178A (en) * 2006-10-19 2008-05-01 Yuki Hakko:Kk Sewage treatment system and method
JP2009072702A (en) * 2007-09-20 2009-04-09 Fukatsu Kinzoku Kogyo Kk Iron recovery apparatus and method, and vegetation material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284794A (en) * 1994-04-14 1995-10-31 Tadahiko Kuno Active bacterium supply system for grease trap
JPH09131596A (en) * 1995-11-09 1997-05-20 Seed Consultant:Kk Method for purification of river environment
JPH09316554A (en) * 1996-05-29 1997-12-09 Ogihara Ekorojii Kk Treatment and treating device
JPH10286590A (en) * 1997-04-14 1998-10-27 Seed Consultant:Kk Lake and marsh environment improvement method
JP2002066583A (en) * 2000-08-25 2002-03-05 Toyo Denka Kogyo Co Ltd Filter medium, water treating apparatus using the filter medium, and water treatment method
JP2002205085A (en) * 2001-01-15 2002-07-23 Mac Technical Systems Kk Fixing body for immobilizing microorganism and method of manufacturing for the same and water treatment equipment
JP2003071464A (en) * 2001-08-31 2003-03-11 Hakuto Co Ltd Method for suppressing iron bacteria in aqueous system
JP2004113977A (en) * 2002-09-27 2004-04-15 Nippon Steel Chem Co Ltd Material and method for treating iron-containing acidic waste water
JP2005087833A (en) * 2003-09-16 2005-04-07 Nippon Steel Chem Co Ltd Water purifying material and its manufacturing method
JP2008100178A (en) * 2006-10-19 2008-05-01 Yuki Hakko:Kk Sewage treatment system and method
JP2009072702A (en) * 2007-09-20 2009-04-09 Fukatsu Kinzoku Kogyo Kk Iron recovery apparatus and method, and vegetation material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WATER RESEARCH, vol. 38, JPN6012050627, 2004, pages 4065 - 4074, ISSN: 0002340731 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473340B1 (en) * 2009-10-23 2010-06-02 松尾機器産業株式会社 Method for treating water containing arsenic
JP2011088091A (en) * 2009-10-23 2011-05-06 Matsuo Kiki Sangyo Kk Arsenic-containing water treatment method
JP2013006160A (en) * 2011-06-27 2013-01-10 Osaka Sangyo Univ Sulfur oxide removing material
WO2016006118A1 (en) * 2014-07-07 2016-01-14 独立行政法人石油天然ガス・金属鉱物資源機構 Mine water purification method, mine water purification system and mine water purifying agent
JP2017087085A (en) * 2015-11-02 2017-05-25 宍道湖漁業協同組合 Method to render hydrogen sulfide generated in lake bed or bay bed harmless and system thereof
JP2017177027A (en) * 2016-03-31 2017-10-05 株式会社システック Iron bacteria carrier and preparation method thereof and ph control method of basic solution using the same
JP2019018189A (en) * 2017-07-21 2019-02-07 株式会社山口土木 Adsorbent of phosphate ion, removal method of phosphate ion, and fertilizer

Similar Documents

Publication Publication Date Title
Luo et al. Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum
Tao et al. Changes of copper speciation in maize rhizosphere soil
CN103819233B (en) Modified Nano carbon associating turfgrass and sequestrant intercept enrichment compost heavy metal method
Oron et al. Secondary wastewater disposal for crop irrigation with minimal risks
Kos et al. Soil washing of Pb, Zn and Cd using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa
JP2009073687A (en) Method for collecting iron bacteria accumulation
CN101497078A (en) Method for promoting heavy metal cadmium accumulation in Calendula officinalis L. with chelant
CN101497079B (en) Method for repairing soil with cadmium pollution by hollyhock under chemical intensified condition
Sizmur et al. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost
WO2011153070A4 (en) Moderation of oil extraction waste environments
JP5855704B2 (en) Bag-shaped microbial preparation carrying sulfur bacteria and environmental purification method using the same
Takeda et al. Recovery of phosphorus from natural water bodies using iron-oxidizing bacteria and woody biomass
Liberati et al. Biochar amendment for reducing the environmental impacts of reclaimed polluted sediments
Lindberg et al. Treatment of faecal sludge from pit latrines and septic tanks using lime and urea: Pathogen die-off with respect to time of storage
JP2014214193A (en) Soil conditioner and soil improvement method
Zupančič et al. Chromium in soil layers and plants on closed landfill site after landfill leachate application
Liphadzi et al. Chelate-assisted heavy metal removal by sunflower to improve soil with sludge
Han et al. Reduction of nutrient contaminants into shallow eutrophic waters through vegetated treatment beds
Toor et al. Suitability of village pond waters for irrigation—a case study from district Ludhiana, India
Zhou et al. Nitrogen transformations in paddy fields treated with high loads of liquid cattle waste
CN109423294A (en) Soil remediation composition and application and geobiont repair method
US20130276370A1 (en) Phytoremediation test cell and method
Tabari et al. The Use of Municipal Waste Water in Afforestation: Effects on Soil Properties and Eldar Pine Trees.
CN109420673A (en) Soil remediation composition and application and geobiont repair method
Wolskil, Piotr,* Murray-Hudson, Mike,* Fernkvist, Par,** Liden, Anna,** Huntsman-MapiIa, Philippa,* Ramberg Islands in the Okavango Delta as sinks of water-borne nutrients

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219