JP2013006160A - Sulfur oxide removing material - Google Patents

Sulfur oxide removing material Download PDF

Info

Publication number
JP2013006160A
JP2013006160A JP2011141699A JP2011141699A JP2013006160A JP 2013006160 A JP2013006160 A JP 2013006160A JP 2011141699 A JP2011141699 A JP 2011141699A JP 2011141699 A JP2011141699 A JP 2011141699A JP 2013006160 A JP2013006160 A JP 2013006160A
Authority
JP
Japan
Prior art keywords
sulfur oxide
iron
sludge
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011141699A
Other languages
Japanese (ja)
Other versions
JP5881980B2 (en
Inventor
Tatsuhide Hamazaki
竜英 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Sangyo University
Original Assignee
Osaka Sangyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Sangyo University filed Critical Osaka Sangyo University
Priority to JP2011141699A priority Critical patent/JP5881980B2/en
Publication of JP2013006160A publication Critical patent/JP2013006160A/en
Application granted granted Critical
Publication of JP5881980B2 publication Critical patent/JP5881980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desulfurizing agent which allows compactification of a desulfurization apparatus, is easy to be filled in and removed from the desulfurization apparatus, can facilitate the maintenance of the desulfurization apparatus, and has high removal capability of a sulfur oxide.SOLUTION: Water that contains impurities including at least a minute amount of an iron component and a calcium component is treated by iron bacteria to recover sludge, and a gas that contains the sulfur oxide is made to pass through the sludge to remove the sulfur oxide in the gas.

Description

この発明は、大気や排煙等の気体からの硫黄酸化物除去材、及び大気や排煙等の気体から硫黄酸化物を除去する方法に関する。   The present invention relates to a sulfur oxide removing material from a gas such as the atmosphere or flue gas, and a method for removing sulfur oxide from a gas such as the air or flue gas.

工場等からの排煙には、硫黄成分が含有されている場合が多く、大気汚染の原因となるため、排煙脱硫装置により、排煙中の硫黄成分を除去する方法が通常行われている。   Since flue gas from factories and the like often contains sulfur components and causes air pollution, a method of removing sulfur components in flue gas using a flue gas desulfurization device is usually used. .

この排煙脱硫の方法としては、湿式石灰法や湿式ソーダ法、湿式水酸化マグネシウム法等の湿式法や、活性コークスを用いた吸着方式の乾式法等が知られている。また、脱硫装置をコンパクト化し、脱硫装置への充填・除去が容易で、脱硫装置の維持管理が簡単とする目的で、水酸化鉄を主成分とするリモナイト((株)日本リモナイト製脱硫化水素剤:リモニック(登録商標))を用いる方法が検討されている(特許文献1)。   Known methods for flue gas desulfurization include wet methods such as a wet lime method, a wet soda method, and a wet magnesium hydroxide method, and a dry method using an adsorption method using activated coke. In addition, Limonite (dehydrated hydrogen sulfide manufactured by Nihon Limonite Co., Ltd.) mainly composed of iron hydroxide is used for the purpose of making the desulfurization device compact, facilitating the filling and removal of the desulfurization device, and simplifying the maintenance of the desulfurization device A method using an agent: Limonic (registered trademark) has been studied (Patent Document 1).

特開2009−298980号公報JP 2009-298980 A

ところで、上記のリモナイトは、脱硫化水素剤であるので、硫化水素の除去は十分であると考えられるが、他の硫黄成分、例えば硫黄酸化物の除去能力については、明確でない。   By the way, since the above-mentioned limonite is a dehydrosulfurizing agent, it is considered that removal of hydrogen sulfide is sufficient, but the removal ability of other sulfur components such as sulfur oxides is not clear.

そこでこの発明は、脱硫装置をコンパクト化し、脱硫装置への充填・除去が容易で、脱硫装置の維持管理が簡単とすることができ、硫黄酸化物の除去能の高い脱硫剤を提供することを目的とする。   Therefore, the present invention provides a desulfurization agent that has a compact desulfurization device, can be easily charged and removed into the desulfurization device, can be easily maintained and managed, and has a high sulfur oxide removal capability. Objective.

この発明は、少なくとも微量の鉄成分を含む不純物を含有する水を鉄バクテリアによって処理する、鉄バクテリア法を採用することにより、不純物を汚泥として回収し、この汚泥を硫黄酸化物除去材として、硫黄酸化物を含有する気体を通過させることにより、この気体中の硫黄酸化物を除去することにより、上記の課題を解決したのである。   This invention treats water containing impurities containing at least a trace amount of iron components with iron bacteria, and employs an iron bacteria method to recover impurities as sludge. The above-mentioned problem has been solved by removing the sulfur oxide in the gas by allowing the gas containing the oxide to pass therethrough.

この発明によると、鉄バクテリア法により生じる汚泥を硫黄酸化物除去材として用いるので、脱硫装置への充填・除去が容易で、脱硫装置の維持管理が簡単となる。   According to the present invention, since sludge generated by the iron bacteria method is used as a sulfur oxide removing material, it is easy to fill and remove the desulfurization apparatus, and the maintenance and management of the desulfurization apparatus is simplified.

また、鉄バクテリア法は、微量の鉄成分及びカルシウム成分を含む不純物を含有する地下水等の水から不純物を取り除く浄水場等で使用されるが、従来、廃棄処分されていた汚泥を利用できるので、廃棄物の有効活用が可能となる。   In addition, the iron bacteria method is used in water purification plants that remove impurities from groundwater and other water containing impurities that contain trace amounts of iron and calcium components, but since sludge that has been disposed of in the past can be used, Effective use of waste becomes possible.

この発明にかかる硫黄酸化物除去材は、鉄バクテリア法により生じる汚泥からなる除去材である。   The sulfur oxide removing material according to the present invention is a removing material made of sludge produced by the iron bacteria method.

上記鉄バクテリア法とは、水処理技術における鉄バクテリア法のことであり、水中の鉄を酸化するバクテリア(一般に、「鉄バクテリア」と称される。)を用い、微量の鉄成分等の不純物を含む地下水等の水から、これらの不純物を取り除き、浄水を得るのを目的とする水の浄化方法である。   The iron bacteria method is an iron bacteria method in water treatment technology, which uses bacteria that oxidize iron in water (generally called “iron bacteria”), and removes impurities such as trace amounts of iron components. This is a water purification method for the purpose of removing these impurities from the water such as groundwater to obtain purified water.

この鉄バクテリアとしては、レプトスリックス属(Leptothrix)、ガリオネラ属(Gallionella)等があげられる。   Examples of the iron bacteria include the genus Leptothrix and the genus Galionella.

この鉄バクテリア法においては、まず、地下水等の、少なくとも微量の鉄成分を含む不純物を含有する水を、上記の鉄バクテリアが生息する生物接触担体に接触させ、上記不純物を酸化させる。これにより、上記不純物の酸化物は水中で懸濁し、吸着、ろ過等の方法で、水と固形分を分離することができる。   In this iron bacteria method, first, water containing impurities including at least a trace amount of iron components, such as ground water, is brought into contact with a biological contact carrier inhabiting the iron bacteria to oxidize the impurities. Thereby, the oxide of the impurity is suspended in water, and the water and solid content can be separated by a method such as adsorption and filtration.

得られた水は、上記不純物をほとんど含有しない浄水として、使用される。そして、固形分は、汚泥として回収される。この回収された汚泥を、硫黄酸化物除去材として使用することができる。   The obtained water is used as purified water containing almost no impurities. And solid content is collect | recovered as sludge. This recovered sludge can be used as a sulfur oxide removing material.

上記鉄バクテリア法に供される水としては、不純物として、少なくとも鉄成分を含む水であり、その他、マンガン成分等を含んでいてもよい。この不純物のうち、上記鉄成分の含有量は、一般的に、金属部分の含有量として、1ppm以上含有するのが好ましく、5ppm以上含有するのがより好ましい。1ppmより少ないと、鉄バクテリアによる鉄酸化が起きにくく、鉄分を含む汚泥が生成されないという問題点を生じる場合がある。一方、鉄成分の含有量の上限は、特に限定はなく、鉄成分の水への溶解度が上限となる。   The water supplied to the iron bacteria method is water containing at least an iron component as an impurity, and may further contain a manganese component or the like. Among these impurities, the content of the iron component is generally preferably 1 ppm or more, more preferably 5 ppm or more as the content of the metal portion. If it is less than 1 ppm, iron oxidation by iron bacteria is unlikely to occur, and there may be a problem that sludge containing iron is not generated. On the other hand, the upper limit of the content of the iron component is not particularly limited, and the solubility of the iron component in water is the upper limit.

このような鉄バクテリア法は、日本国内において、いくつかの浄水場において用いられている。このような浄水場としては、奈良県大和郡山市の北郡山浄水場、兵庫県丹波市の母坪浄水場、京都府城陽市の第3浄水場、京都府向日市の物集女浄水場内実験施設、石川県内灘町温泉病院の実験施設等があげられる。   Such iron bacteria method is used in several water purification plants in Japan. Such water purification plants include Kita-Koriyama Water Purification Plant in Yamatokoriyama City, Nara Prefecture, Otsubo Water Purification Plant in Tamba City, Hyogo Prefecture, No. 3 Water Purification Plant in Joyo City, Kyoto Prefecture, an experimental facility in the Collection Women's Water Purification Plant in Mukaichi City, Kyoto Prefecture, An experimental facility at Uchimancho Hot Spring Hospital in Ishikawa Prefecture.

上記鉄バクテリア法によって生じる汚泥に含まれる不純物の成分は、処理対象の水に含まれる不純物によっても異なるが、鉄以外に、マンガン等も含まれる。   The impurity component contained in the sludge produced by the iron bacteria method varies depending on the impurities contained in the water to be treated, but also contains manganese and the like in addition to iron.

この汚泥(固形分)に含まれる鉄成分の含有割合は、金属部分の含有話割合として、10重量%以上含有するのが好ましく、25重量%以上含有するのがより好ましい。10重量%より少ないと、鉄による硫黄酸化物の除去性能の低下という問題点を生じる場合がある。一方、鉄成分の含有量の上限は、特に限定はなく、100%であってもよい。   The content ratio of the iron component contained in the sludge (solid content) is preferably 10% by weight or more, more preferably 25% by weight or more, as the content ratio of the metal portion. If it is less than 10% by weight, there may be a problem that the performance of removing sulfur oxides by iron is lowered. On the other hand, the upper limit of the content of the iron component is not particularly limited, and may be 100%.

この汚泥を含水状態で硫黄酸化物除去材として使用してもよいが、硫黄酸化物を含む媒体が空気等の気体の場合、乾燥させた方が通過させやすい。そこで、これを乾燥させ、この乾燥物をカラム等の管に詰める。このようにすることにより、この管内に硫黄酸化物を含有する気体を通過させると、この乾燥物を通過する際、硫黄酸化物は、乾燥物に吸着されたり、乾燥物中の成分と反応したりし、乾燥物中に取り込まれる。これにより、この乾燥物を通過した気体中の硫黄酸化物量を、検出限界以下にまで減らすことができる。   Although this sludge may be used as a sulfur oxide removing material in a water-containing state, when the medium containing the sulfur oxide is a gas such as air, it is easier to pass the dried sludge. Therefore, this is dried and the dried product is packed in a tube such as a column. In this way, when a gas containing sulfur oxide is passed through the tube, the sulfur oxide is adsorbed on the dried product or reacts with components in the dried product when passing through the dried product. Or taken into the dried product. Thereby, the amount of sulfur oxides in the gas that has passed through the dried product can be reduced below the detection limit.

なお、この汚泥(固形分)適量を水に溶解又は懸濁させた水溶液又は水懸濁液を用い、硫黄酸化物を含む大気又は排煙等を水溶液又は水懸濁液に通過、または、この水溶液又は水懸濁液を、硫黄酸化物を含む大気又は排煙等に噴霧(散水)することによって、硫黄酸化物を除去することもできる。   In addition, using an aqueous solution or water suspension in which an appropriate amount of this sludge (solid content) is dissolved or suspended in water, the atmosphere or flue gas containing sulfur oxides is passed through the aqueous solution or water suspension, or this Sulfur oxide can also be removed by spraying (sprinkling) an aqueous solution or a water suspension on the atmosphere containing sulfur oxide or smoke.

上記気体中の硫黄酸化物の検出方法としては、二酸化硫黄用の検知管を用いることができる。この検知管としては、検出限界が0.05ppmの検知管を用いることができる。このため、この場合、上記の検出限界以下とは、0.05ppm未満を意味することとなる。   As a method for detecting sulfur oxide in the gas, a detector tube for sulfur dioxide can be used. As this detector tube, a detector tube having a detection limit of 0.05 ppm can be used. For this reason, in this case, below the detection limit means less than 0.05 ppm.

なお、硫黄酸化物の除去能は、汚泥中の一成分が効果を示しているのか、複数成分が相乗して効果を示しているのか、上記されていないより微量成分が何らかの効果を示しているのかは不明である。   In addition, as for the removal ability of sulfur oxide, whether one component in sludge is effective, whether multiple components are synergistically effective, or a trace amount component that is not described above has some effect It is unknown.

以下、この発明を、実施例を用いてより具体的に示す。
まずは、測定方法について説明する。
<二酸化硫黄濃度の測定>
測定対象のサンプルバックに取り付けたサンプル採取用のバルブから、検知管(ガステック(株)製:二酸化硫黄用検知管:No.5Lb、検出限界:0.05ppm)を使って、内部のガスを吸引し、二酸化硫黄濃度を測定した。
なお、カラムに供与する側のサンプリングバッグ1の吸引量は50ミリリットルであり、カラムを通過した後の空気を回収するサンプリングバッグ2の吸引量は800ミリリットルである。
Hereinafter, the present invention will be described more specifically using examples.
First, the measurement method will be described.
<Measurement of sulfur dioxide concentration>
From the sample collection valve attached to the sample bag to be measured, the internal gas is changed using a detector tube (manufactured by Gastec Corporation: detector tube for sulfur dioxide: No. 5Lb, detection limit: 0.05 ppm). Aspiration was performed and the sulfur dioxide concentration was measured.
The suction amount of the sampling bag 1 on the side to be supplied to the column is 50 ml, and the suction amount of the sampling bag 2 that collects air after passing through the column is 800 ml.

<EDX測定>
汚泥を乾燥させて圧縮固化し、これを(株)島津製作所製:エネルギー分散型蛍光X線分析装置(EDX)を用いて、鉄等の含有量を測定した。
<EDX measurement>
Sludge was dried and compressed and solidified, and the content of iron and the like was measured using an energy dispersive X-ray fluorescence analyzer (EDX) manufactured by Shimadzu Corporation.

(実施例1〜4)
下記表1に示す浄水場(実験場)における逆洗排水を採取・沈殿した後、1mmのふるいで通過したものを再度沈殿させ、沈殿物を40℃の乾燥庫で蒸発乾燥させた乾燥汚泥を乳鉢で粉砕し、これを硫黄酸化物除去材として、0.3gを、長さ100mm、内径10mmのプラスチック製カラム(Bio−Rad社)の中に詰めた(カラム高さ10mm)。なお、汚泥の両端には汚泥を飛散させないため、10デニールの化学繊維で挟み込んだ。
次いで、上記カラムの両端にバルブを設け、両側先端には1Lのサンプリングバッグ(テドラーバッグ1口付)1,2を取り付けた。なお、両端のバルブとサンプリングバッグ1,2の間にはサンプル採取用の3方バルブを取り付けた。
次に、硫黄酸化物を生成するため、適量のチオ硫酸ナトリウム水溶液(0.025mol/L)を500mLのビーカーに入れ、濃塩酸を適量混合撹拌させた後、液上部の空気をプラスチック注射器で採取し、別のサンプリングバッグ3に入れた。
カラムに取り付けた一方のサンプリングバッグ1に硫黄酸化物を取り込んだサンプリングバッグ3内の空気を、最終的にサンプリングバッグ1の硫黄酸化物濃度が7.4〜8.0ppmとなるように入れ、その後、カラムに取り付けるサンプリングバッグに1Lになるまで、エアポンプで空気を入れた。
その後、サンプリングバッグ1を手で縮め、サンプリングバッグ1内の空気をカラムに流入させ、他方のサンプリングバッグ2に空気を移動させた(流入時間は30s程度)。空気をすべて移動させた後、移動した空気の二酸化硫黄濃度を同様に測定した。この実験を3回繰り返した。
また、汚泥内の鉄含有量を測定するため、EDX測定を行った。
これらの結果を表1及び表2に示す。
(Examples 1-4)
After collecting and precipitating backwash wastewater at the water purification plant (experimental site) shown in Table 1 below, the sludge that had passed through the 1 mm sieve was precipitated again, and the dried sludge was evaporated and dried in a 40 ° C drying cabinet It grind | pulverized with the mortar, 0.3g was packed into the plastic column (Bio-Rad company) of length 100mm and internal diameter 10mm using this as a sulfur oxide removal material (column height 10mm). The sludge was sandwiched between 10 denier chemical fibers to prevent the sludge from splashing at both ends.
Next, valves were provided at both ends of the column, and 1 L sampling bags (with one Tedlar bag) 1 and 2 were attached to both ends. A three-way valve for sampling was attached between the valves at both ends and the sampling bags 1 and 2.
Next, in order to generate sulfur oxides, an appropriate amount of sodium thiosulfate aqueous solution (0.025 mol / L) is put into a 500 mL beaker, and an appropriate amount of concentrated hydrochloric acid is mixed and stirred, and then the air above the liquid is collected with a plastic syringe. And placed in another sampling bag 3.
The air in the sampling bag 3 in which the sulfur oxide is taken into one sampling bag 1 attached to the column is finally put so that the sulfur oxide concentration in the sampling bag 1 becomes 7.4 to 8.0 ppm, and then Into a sampling bag attached to the column, air was introduced with an air pump until 1 L.
Thereafter, the sampling bag 1 was shrunk by hand, the air in the sampling bag 1 was allowed to flow into the column, and the air was moved to the other sampling bag 2 (the inflow time was about 30 s). After all the air was moved, the sulfur dioxide concentration of the moved air was measured in the same manner. This experiment was repeated three times.
Moreover, in order to measure the iron content in the sludge, EDX measurement was performed.
These results are shown in Tables 1 and 2.

(比較例1〜2)
上記硫黄酸化物除去材として、表1に示す材料を用いた以外は、実施例1と同様にして硫黄酸化物の除去テストを行った。また、汚泥内の鉄含有量を測定するため、EDX測定を行った。これらの結果を表1及び表2に示す。
なお、比較例1のリモナイトは、(株)日本リモナイト製の脱硫化水素剤「リモニック」(登録商標)の原料であるリモナイトであり、これを、実施例1と同様の方法で乾燥したものを実験に供与した。
また、比較例2の火山灰は、2011年1月26日に噴火が始まった新燃岳の火山灰で、火口より10km地点に降り積もった火山灰を採取したものである。これを、実施例1と同様の方法で乾燥したものを実験に供与した。
(Comparative Examples 1-2)
A sulfur oxide removal test was performed in the same manner as in Example 1 except that the materials shown in Table 1 were used as the sulfur oxide removing material. Moreover, in order to measure the iron content in the sludge, EDX measurement was performed. These results are shown in Tables 1 and 2.
In addition, the limonite of the comparative example 1 is a limonite which is a raw material of the desulfurization agent “Limonic” (registered trademark) manufactured by Japan Limonite Co., Ltd., which is dried by the same method as in Example 1. Donated to the experiment.
Moreover, the volcanic ash of the comparative example 2 is the volcanic ash of Shinmoedake where the eruption started on January 26, 2011, and is collected from the crater and deposited at a point of 10 km. What was dried in the same manner as in Example 1 was donated to the experiment.

Figure 2013006160
Figure 2013006160

Figure 2013006160
Figure 2013006160

(結果)
実施例1〜4から明らかなように、鉄バクテリア法により得られる汚泥は、硫黄酸化物の除去能を有することが明らかとなった。
一方、比較例1の結果より、硫化水素除去材として知られるリモナイトは、実施例1〜4で用いた汚泥より、硫黄酸化物の除去能が低いことがわかった。
ところで、リモナイトは、阿蘇山から得られる褐鉄鉱である。このため、火山灰も何らかの効果を生じる可能性がある。そこで、比較例2において、火山灰を用いて実験を行った。その結果、少しの硫黄酸化物除去能を有するものの、十分ではないことが明らかとなった。
(result)
As is clear from Examples 1 to 4, it became clear that the sludge obtained by the iron bacteria method has the ability to remove sulfur oxides.
On the other hand, from the results of Comparative Example 1, it was found that limonite known as a hydrogen sulfide removing material had a lower sulfur oxide removing ability than the sludge used in Examples 1 to 4.
By the way, limonite is limonite obtained from Mt. Aso. For this reason, volcanic ash may also have some effect. Therefore, in Comparative Example 2, an experiment was performed using volcanic ash. As a result, it was found that although it has a little sulfur oxide removing ability, it is not sufficient.

Claims (2)

鉄バクテリア法により生じる汚泥からなる硫黄酸化物除去材。   A sulfur oxide removal material consisting of sludge produced by the iron bacteria method. 少なくとも微量の鉄成分を含む不純物を含有する水を鉄バクテリアによって処理して汚泥を回収し、
この汚泥に硫黄酸化物を含有する気体を通過させることにより、上記気体中の硫黄酸化物を除去する、気体からの硫黄酸化物除去方法。
Water containing impurities containing at least a trace amount of iron components is treated with iron bacteria to collect sludge,
A method for removing sulfur oxide from a gas, wherein the sulfur oxide in the gas is removed by passing a gas containing sulfur oxide through the sludge.
JP2011141699A 2011-06-27 2011-06-27 Sulfur oxide removal material Expired - Fee Related JP5881980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011141699A JP5881980B2 (en) 2011-06-27 2011-06-27 Sulfur oxide removal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011141699A JP5881980B2 (en) 2011-06-27 2011-06-27 Sulfur oxide removal material

Publications (2)

Publication Number Publication Date
JP2013006160A true JP2013006160A (en) 2013-01-10
JP5881980B2 JP5881980B2 (en) 2016-03-09

Family

ID=47674007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011141699A Expired - Fee Related JP5881980B2 (en) 2011-06-27 2011-06-27 Sulfur oxide removal material

Country Status (1)

Country Link
JP (1) JP5881980B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133221A (en) * 2013-01-11 2014-07-24 Nihon Kaisui:Kk Insolubilization material for arsenic-containing heavy metal contaminated soil, and insolubilization method therefor
JP2016098460A (en) * 2014-11-21 2016-05-30 カースル株式会社 Functional non-woven fabric
JP2018122275A (en) * 2017-02-03 2018-08-09 田中 聡 Method for producing deodorant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112163A (en) * 2001-10-05 2003-04-15 Toho Leo Co Polluted soil cleaning method
JP2005000871A (en) * 2003-06-13 2005-01-06 Kanazawa Univ Tlo Inc Arsenic adsorbing substance having excellent stability and method for decontaminating contaminated water by using the same
JP2005131481A (en) * 2003-10-29 2005-05-26 Nippon Steel Corp Removing agent of organochlorine compound and manufacturing method therefor
JP2007275761A (en) * 2006-04-06 2007-10-25 Nippon Steel Corp Method for producing removing agent of sulfur oxide in gas
JP2009073687A (en) * 2007-09-20 2009-04-09 Ikuro Takeda Method for collecting iron bacteria accumulation
WO2011074586A1 (en) * 2009-12-15 2011-06-23 国立大学法人岡山大学 Novel microorganism capable of producing oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112163A (en) * 2001-10-05 2003-04-15 Toho Leo Co Polluted soil cleaning method
JP2005000871A (en) * 2003-06-13 2005-01-06 Kanazawa Univ Tlo Inc Arsenic adsorbing substance having excellent stability and method for decontaminating contaminated water by using the same
JP2005131481A (en) * 2003-10-29 2005-05-26 Nippon Steel Corp Removing agent of organochlorine compound and manufacturing method therefor
JP2007275761A (en) * 2006-04-06 2007-10-25 Nippon Steel Corp Method for producing removing agent of sulfur oxide in gas
JP2009073687A (en) * 2007-09-20 2009-04-09 Ikuro Takeda Method for collecting iron bacteria accumulation
WO2011074586A1 (en) * 2009-12-15 2011-06-23 国立大学法人岡山大学 Novel microorganism capable of producing oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133221A (en) * 2013-01-11 2014-07-24 Nihon Kaisui:Kk Insolubilization material for arsenic-containing heavy metal contaminated soil, and insolubilization method therefor
JP2016098460A (en) * 2014-11-21 2016-05-30 カースル株式会社 Functional non-woven fabric
JP2018122275A (en) * 2017-02-03 2018-08-09 田中 聡 Method for producing deodorant

Also Published As

Publication number Publication date
JP5881980B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
Kariuki et al. Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’
Trubetskaya et al. Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black
AU2016208969B2 (en) Method for waste gas dedusting and dedusting agent
Wu et al. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash
Das et al. Removal of Cr (VI) from aqueous solution using activated cow dung carbon
Li et al. Adsorption of Cr (III) from wastewater by wine processing waste sludge
CN104741076A (en) Magnetic zeolite, and preparation method and application thereof
JP5881980B2 (en) Sulfur oxide removal material
JP2011190428A (en) Remover composition for heavy metal in soil, and method for removing heavy metal using the same
Sun et al. Characterization of Hg0 re-emission and Hg2+ leaching potential from flue gas desulfurization (FGD) gypsum
Muzarpar et al. e adsorption mechanism of activated carbon and its application-A
Gabdullin et al. Use of nanostructured materials for the sorption of heavy metals ions
Krishnan et al. A Preliminary examination of the adsorption characteristics of Pb (II) ions using sulphurised activated carbon prepared from bagasse pith
CN106492748B (en) A method of for heavy metal in water and polycyclic aromatic hydrocarbon collaboration efficient absorption removal
JP2006326405A (en) Water purifying filter
Singh Approaches for removal of arsenic from groundwater of northeastern India
CN107462532A (en) A kind of method for carrying out gas mercury measurement of concetration using modified high sulfur petroleum coke
CN208787194U (en) The processing unit of landfill leachate leaching flying ash
Gupta et al. Mercury, a silent killer to human health and environment: A review of India
Subeshan et al. Mercury recycling technologies in its’ end-of-life management: a review
CN204587349U (en) A kind of granular activated carbon filling apparatus
JP3859001B2 (en) Arsenic sorption material with excellent stability and purification method for contaminated water using the same
JP5864284B2 (en) Removal of selenium from chlorine bypass dust washed waste water
CN204709534U (en) A kind of efficient air purifier of infusion set
Kalak Effective use of slag as a product of the CFBC technology to purify water environment of copper ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5881980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees