JP2013078712A - Device and method for treating organic wastewater - Google Patents

Device and method for treating organic wastewater Download PDF

Info

Publication number
JP2013078712A
JP2013078712A JP2011219127A JP2011219127A JP2013078712A JP 2013078712 A JP2013078712 A JP 2013078712A JP 2011219127 A JP2011219127 A JP 2011219127A JP 2011219127 A JP2011219127 A JP 2011219127A JP 2013078712 A JP2013078712 A JP 2013078712A
Authority
JP
Japan
Prior art keywords
water
ammonia
pretreatment
based chemical
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011219127A
Other languages
Japanese (ja)
Other versions
JP5969749B2 (en
Inventor
Koji Fukumoto
康二 福本
Shigehide Hirata
茂英 平田
Masaru Koyama
優 小山
Takatsugu Abe
崇嗣 安部
Yoji Yamamoto
洋士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2011219127A priority Critical patent/JP5969749B2/en
Priority to CN201280047951.3A priority patent/CN103827042B/en
Priority to PCT/JP2012/005588 priority patent/WO2013051192A1/en
Publication of JP2013078712A publication Critical patent/JP2013078712A/en
Application granted granted Critical
Publication of JP5969749B2 publication Critical patent/JP5969749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent biofouling of a reverse osmosis membrane at low cost in a water treatment device whereby biologically-treated water containing ammoniacal nitrogen is treated using a reverse osmosis membrane unit.SOLUTION: A chlorinated chemical agent such as sodium hypochlorite is added to biologically-treated water containing ammoniacal nitrogen to react the ammoniacal nitrogen with the chlorinated chemical agent for 3 min or more in a water storage tank. Chloramine is generated so that an effective chlorine concentration becomes 2 ppm or more in the biologically-treated water, and the biologically-treated water containing chloramine is supplied to the reverse osmosis membrane unit.

Description

本発明は、下水又は産業廃水のような有機性廃水を生物処理等した後、逆浸透膜(RO膜)装置を用いて膜処理する水処理装置及び水処理方法であって、RO膜のバイオファウリング(生物的劣化)を低コストで予防し得る水処理装置及び水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method in which organic wastewater such as sewage or industrial wastewater is biologically treated and then subjected to membrane treatment using a reverse osmosis membrane (RO membrane) device. The present invention relates to a water treatment apparatus and a water treatment method that can prevent fouling (biological degradation) at low cost.

下水又は産業廃水のような有機物を含有する廃水(有機性廃水)は、活性汚泥法のような生物処理によって、含有される有機物を分解することが一般的な処理方法となっている。従来の活性汚泥法では、生物処理後の処理水は、固液分離手段として最終沈殿地において沈殿処理されることが一般的であったが、近年では、固液分離手段として膜分離装置を使用する方法も普及している。   A wastewater containing organic matter such as sewage or industrial wastewater (organic wastewater) is generally treated by decomposing the contained organic matter by biological treatment such as an activated sludge method. In the conventional activated sludge method, the treated water after biological treatment is generally settled at the final sedimentation site as a solid-liquid separation means, but in recent years, a membrane separation device has been used as the solid-liquid separation means. The method of doing is also widespread.

RO膜装置は、被処理水を脱塩することが可能であり、高品質の処理水を得ることが可能である。このため、膜分離装置としてRO膜装置を使用した場合、その処理水は飲料水、産業用水又は農業用水として利用されることが可能である。   The RO membrane device can desalinate the water to be treated, and can obtain high-quality treated water. For this reason, when RO membrane apparatus is used as a membrane separation apparatus, the treated water can be utilized as drinking water, industrial water, or agricultural water.

RO膜装置によって生物処理後の前処理水を処理する場合、処理水に含有される有機成分又は無機成分がRO膜を詰まらせるファウリングが問題となる。特に、生物処理後の処理水に含有される有機成分又は無機成分を栄養源とする微生物が増殖した場合には、RO膜表面に微生物又はその分泌物によって、バイオフィルムと呼ばれる構造体が形成される。このバイオフィルムは、RO膜表面に強固に付着しており、化学物質に対して耐性を持つため、完全な除去は困難とされる。   When pretreatment water after biological treatment is processed by the RO membrane device, fouling that clogs the RO membrane due to organic components or inorganic components contained in the treated water becomes a problem. In particular, when microorganisms using organic components or inorganic components contained in treated water after biological treatment as nutrients grow, structures called biofilms are formed on the RO membrane surface by the microorganisms or secretions thereof. The Since this biofilm is firmly attached to the surface of the RO membrane and has resistance to chemical substances, complete removal is difficult.

RO膜装置のRO膜にバイオフィルムが形成されるバイオファウリングが発生した場合、膜差圧が上昇して送水ポンプの負担が増大し、RO膜の透過速度が減少する。このため、RO膜の薬液洗浄が必要となる。   When biofouling in which a biofilm is formed on the RO membrane of the RO membrane device occurs, the membrane differential pressure increases, the load on the water pump increases, and the RO membrane permeation rate decreases. For this reason, chemical cleaning of the RO membrane is required.

しかし、高濃度の次亜塩素酸ナトリウムは、RO膜の材質、特に、高性能RO膜として使用されるポリアミド系高分子RO膜は、次亜塩素酸ナトリウムによる劣化が生じやすいという問題があった。   However, a high concentration of sodium hypochlorite has a problem that the material of the RO membrane, in particular, the polyamide polymer RO membrane used as a high performance RO membrane is likely to be deteriorated by sodium hypochlorite. .

常時殺菌可能な殺菌剤として、被処理水にクロラミンのような有機結合塩素化合物を添加する技術も提案されている。例えば、特許文献1は、クロラミンによる微生物増殖抑制効果を利用して、RO膜装置の運転中にバイオファウリングを防止するために、前処理を経た前処理水を貯水槽に貯水する前のいずれかの流路にクロラミンを添加する水処理方法及び水処理方法を開示している。   As a disinfectant that can be sterilized at all times, a technique of adding an organically bound chlorine compound such as chloramine to water to be treated has been proposed. For example, Patent Document 1 uses any effect before the pretreatment water that has undergone the pretreatment is stored in the water storage tank in order to prevent biofouling during operation of the RO membrane device using the effect of inhibiting microbial growth by chloramine. A water treatment method and a water treatment method for adding chloramine to the flow path are disclosed.

特許文献2は、膜分離装置の透過水中のアンモニア性窒素濃度を測定し、その濃度を指標として次亜塩素酸ナトリウム水溶液の希釈倍率を調整した上で、膜分離装置の膜を逆洗浄する洗浄方法及び洗浄装置を開示している。   Patent Document 2 measures the concentration of ammonia nitrogen in the permeated water of a membrane separation device, adjusts the dilution rate of the sodium hypochlorite aqueous solution using the concentration as an index, and performs reverse washing of the membrane of the membrane separation device. A method and cleaning apparatus are disclosed.

特開2008−29963号公報JP 2008-29963 A 特開2007−275870号公報JP 2007-275870 A

特許文献1に開示される発明では、外部からクロラミンを殺菌成分として添加するが、薬品メーカーによって市販されているクロラミンを主成分とするバイオファウリング防止剤は比較的高価な薬剤である。また、クロラミンは光によって分解し易いという性質もある。さらに、特許文献2に開示される発明は、逆洗浄に関する発明であり、RO膜装置の運転中にバイオファウリングを予防することはできない。   In the invention disclosed in Patent Document 1, chloramine is added from the outside as a bactericidal component, but a biofouling inhibitor mainly composed of chloramine marketed by a pharmaceutical manufacturer is a relatively expensive drug. Chloramine also has the property of being easily decomposed by light. Furthermore, the invention disclosed in Patent Document 2 is an invention related to backwashing, and biofouling cannot be prevented during operation of the RO membrane device.

本発明は、RO膜装置の運転中に、低コストでRO膜のバイオファウリングを予防し得る水処理装置及び水処理方法を提供することを目的とする。   An object of the present invention is to provide a water treatment apparatus and a water treatment method capable of preventing biofouling of an RO membrane at a low cost during operation of the RO membrane device.

有機性廃水を前処理した後の前処理水にはアンモニア性窒素が残存している。本発明者等は、この前処理水に塩素系化合物を添加すれば、クロラミンを水処理装置内で生成させることが可能となり、逆浸透膜のバイオファウリング予防を、低コストで連続して行うことが可能であることを見出した。また、本発明者等は、前処理水中のアンモニア濃度が高い場合には、無機塩素系薬剤のみを被処理水に添加してクロラミンを生成させ、前処理水中のアンモニア濃度が低い場合には、さらにアンモニア系薬剤も添加すれば、使用する薬剤量を必要最低限に抑制しつつ、逆浸透膜のバイオファウリングの予防が可能となることを見出し、本発明を完成させるに至った。   Ammonia nitrogen remains in the pretreated water after the organic wastewater is pretreated. If the present inventors add a chlorinated compound to the pretreated water, it becomes possible to generate chloramine in the water treatment apparatus, and continuously prevent biofouling of the reverse osmosis membrane at a low cost. I found that it was possible. In addition, when the ammonia concentration in the pretreatment water is high, the present inventors add chlorinated chemicals to the water to be treated to produce chloramine, and when the ammonia concentration in the pretreatment water is low, Furthermore, it has been found that if an ammonia-based drug is also added, biofouling of the reverse osmosis membrane can be prevented while suppressing the amount of the drug to be used to the minimum necessary, and the present invention has been completed.

具体的に、本発明の有機性廃水の処理装置は、
有機性廃水を処理する前処理装置と、
前記前処理装置によって処理された前処理水を貯水する貯水槽と、
前記貯水槽へと無機塩素系薬剤を供給する塩素供給装置と、
前記貯水槽へとアンモニア系薬剤を供給するアンモニア供給装置と、
前記貯水槽から供給される前処理水を膜分離する逆浸透膜装置とを備え、
前記貯水槽内の前処理水に無機塩素系薬剤及び/又はアンモニア系薬剤を供給することにより所定濃度でクロラミン類を生成させ、
前記クロラミン類を含む前処理水を前記逆浸透膜装置に供給することにより逆浸透膜のバイオファウリングを防止することを特徴とする。
Specifically, the organic wastewater treatment apparatus of the present invention comprises:
A pretreatment device for treating organic wastewater;
A water storage tank for storing the pretreated water treated by the pretreatment device;
A chlorine supply device for supplying an inorganic chlorine-based chemical to the water tank;
An ammonia supply device for supplying an ammonia-based chemical to the water tank;
A reverse osmosis membrane device for membrane separation of pretreated water supplied from the water tank,
Producing chloramines at a predetermined concentration by supplying an inorganic chlorine-based chemical and / or an ammonia-based chemical to the pretreated water in the water tank;
Biofouling of the reverse osmosis membrane is prevented by supplying pretreatment water containing the chloramines to the reverse osmosis membrane device.

また、本発明の有機性廃水の処理方法は、
有機性廃水を前処理する前処理工程と、
前処理された前処理水を貯水槽に貯水する貯水工程と、
前記貯水槽へと無機塩素系薬剤を供給する塩素供給工程と、
前記貯水槽へとアンモニア系薬剤を供給するアンモニア供給工程と、
前記塩素供給工程及び/又は前記アンモニア供給工程を実行して3分間以上経過させ、貯水された前処理水中に所定濃度でクロラミン類を生成させるクロラミン生成工程と、
前記クロラミン類を含む前処理水を逆浸透膜装置に供給して膜分離することにより逆浸透膜のバイオファウリングを予防するバイオファウリング防止工程と、
を有することを特徴とする。
In addition, the organic wastewater treatment method of the present invention includes:
A pretreatment process for pretreating organic wastewater;
A water storage process for storing pretreated pretreated water in a water tank;
A chlorine supply step of supplying an inorganic chlorine-based chemical to the water tank;
An ammonia supply step for supplying an ammonia-based chemical to the water tank;
The chlorine supply step and / or the ammonia supply step is performed for 3 minutes or longer, and a chloramine generation step for generating chloramines at a predetermined concentration in the stored pretreated water,
A biofouling prevention step for preventing biofouling of the reverse osmosis membrane by supplying the pretreatment water containing the chloramines to the reverse osmosis membrane device and performing membrane separation;
It is characterized by having.

クロラミンと比較すると、次亜塩素酸ナトリウムのような無機塩素系薬剤、又は硫酸アンモニウムのようなアンモニウム塩は安価である。本発明では、前処理水に対して外部からクロラミンを添加するのではなく、前処理水に含有されているアンモニア性窒素と、前処理水に添加する無機塩素系薬剤とを反応させることによって、前処理水中にクロラミンを生成させるため、クロラミンの分解が問題とならず、しかも薬剤のコストが低い。   Compared to chloramine, inorganic chlorinated drugs such as sodium hypochlorite or ammonium salts such as ammonium sulfate are less expensive. In the present invention, chloramine is not added from the outside to the pretreated water, but by reacting ammoniacal nitrogen contained in the pretreated water with an inorganic chlorine-based chemical added to the pretreated water, Since chloramine is produced in the pretreated water, degradation of chloramine is not a problem, and the cost of the drug is low.

アンモニア性窒素を含有する前処理水に無機塩素系薬剤を添加しても、すぐにはクロラミンが生成しないため、逆浸透膜装置に供給する直前に、前処理水に無機塩素系を添加しても、逆浸透膜のバイオファウリングを有効に予防することは困難である。しかし、本発明では、貯水槽に前処理水を貯水し、無機塩素系薬剤及び/又はアンモニア系薬剤を供給してから3分間以上経過させるため、前処理水中にクロラミン類を有効濃度で生成させることが可能である。このクロラミン類を含む前処理水を逆浸透膜装置に供給することで、逆浸透膜のバイオファウリングを有効に予防することが可能となる。   Even if inorganic chlorine-based chemicals are added to pretreated water containing ammonia nitrogen, chloramine is not generated immediately, so inorganic chlorine-based chemicals are added to the pretreated water immediately before being supplied to the reverse osmosis membrane device. However, it is difficult to effectively prevent biofouling of reverse osmosis membranes. However, in the present invention, since pretreatment water is stored in a water tank and an inorganic chlorine-based chemical and / or ammonia-based chemical is supplied for 3 minutes or longer, chloramines are generated in the pretreated water at an effective concentration. It is possible. By supplying the pretreated water containing the chloramines to the reverse osmosis membrane device, biofouling of the reverse osmosis membrane can be effectively prevented.

本発明では、逆浸透膜装置に供給される前処理水中のクロラミン濃度を、有効塩素濃度として2ppm以上、より好ましくは5ppm以上とすることにより、微生物の増殖を抑制し、逆浸透膜のバイオファウリングを有効に予防し得る。   In the present invention, the chloramine concentration in the pretreatment water supplied to the reverse osmosis membrane device is 2 ppm or more, more preferably 5 ppm or more as an effective chlorine concentration, thereby suppressing the growth of microorganisms and biofau of the reverse osmosis membrane. The ring can be effectively prevented.

本発明の有機性廃水の処理装置は、
前記貯水槽へと供給される前処理水の流量を測定する流量計と、
前記前処理水のアンモニア性窒素濃度を測定するアンモニア性窒素濃度測定装置と、
前記流量計及び前記アンモニア性窒素濃度測定装置の測定結果に基づいて、前記貯水槽への無機塩素系薬剤及び/又はアンモニア系薬剤の供給量を制御する制御装置とをさらに備えることが好ましい。
The organic wastewater treatment apparatus of the present invention comprises:
A flow meter for measuring a flow rate of pretreatment water supplied to the water tank;
An ammoniacal nitrogen concentration measuring device for measuring the ammoniacal nitrogen concentration of the pretreated water;
It is preferable to further include a control device that controls the supply amount of the inorganic chlorine-based chemical and / or the ammonia-based chemical to the water storage tank based on the measurement results of the flow meter and the ammonia nitrogen concentration measuring device.

同様に、本発明の有機性廃水の処理方法は、
前記貯水槽へと供給される前処理水の流量と、前記貯水槽へと供給される前処理水のアンモニア濃度とを測定する測定工程と、
前記測定工程によって測定された前処理水の流量及びアンモニア性窒素濃度に基づいて、前記貯水槽への無機塩素系薬剤及び/又はアンモニア系薬剤の供給量を制御する供給量制御工程とをさらに備えることが好ましい。
Similarly, the organic wastewater treatment method of the present invention comprises:
A measurement step of measuring a flow rate of pretreatment water supplied to the water storage tank and an ammonia concentration of the pretreatment water supplied to the water storage tank;
A supply amount control step of controlling the supply amount of the inorganic chlorine-based chemical and / or the ammonia-based chemical to the water storage tank based on the flow rate of pretreatment water and the ammoniacal nitrogen concentration measured in the measurement step. It is preferable.

前処理水中のアンモニア性窒素濃度が高い場合には、理論量の無機塩素系薬剤を添加すれば、前処理水中のクロラミン濃度を一定濃度以上に維持することが可能である。しかし、前処理水中のアンモニア性窒素濃度が低い場合には、無機塩素系薬剤の添加量を増やしても、貯水槽内の前処理水中のクロラミン濃度を一定濃度以上に維持することはできない。そこで、貯水槽へ供給される前処理水の流量及びアンモニア性窒素濃度を測定し、アンモニア性窒素濃度が低い場合には、アンモニア系薬剤を貯水槽に前処理水の流量に応じて添加し、貯水槽内の前処理水中のクロラミン濃度を一定濃度以上とすることが好ましい。   When the ammoniacal nitrogen concentration in the pretreated water is high, the chloramine concentration in the pretreated water can be maintained at a certain concentration or higher by adding a theoretical amount of an inorganic chlorine-based chemical. However, when the concentration of ammoniacal nitrogen in the pretreatment water is low, the concentration of chloramine in the pretreatment water in the water storage tank cannot be maintained above a certain level even if the amount of inorganic chlorine-based chemical added is increased. Therefore, the flow rate of pretreatment water supplied to the water tank and the ammonia nitrogen concentration are measured, and when the ammonia nitrogen concentration is low, an ammonia-based chemical is added to the water tank according to the pretreatment water flow rate, It is preferable that the chloramine concentration in the pretreatment water in the water storage tank is a certain concentration or more.

本発明の有機性廃水の処理装置は、
前記逆浸透膜装置の濃縮水を前記前処理装置へと返送する返送経路をさらに備えることが好ましい。
The organic wastewater treatment apparatus of the present invention comprises:
It is preferable to further include a return path for returning the concentrated water of the reverse osmosis membrane device to the pretreatment device.

同様に、本発明の有機性廃水の処理方法は、
前記逆浸透膜装置の濃縮水を、前記前処理工程を行う前処理装置へと返送する回収工程をさらに有することが好ましい。
Similarly, the organic wastewater treatment method of the present invention comprises:
It is preferable to further include a recovery step of returning the concentrated water of the reverse osmosis membrane device to the pretreatment device that performs the pretreatment step.

逆浸透膜装置に供給されたクロラミンを含有する前処理水は、透過水と濃縮水とに分けられる。透過水は、飲料水、産業用水又は農業用水として利用されるが、濃縮水は、前処理装置へと返送される。   The pretreatment water containing chloramine supplied to the reverse osmosis membrane device is divided into permeated water and concentrated water. The permeated water is used as drinking water, industrial water or agricultural water, but the concentrated water is returned to the pretreatment device.

本発明の処理装置及び処理方法において、
前記無機塩素系薬剤は、次亜塩素酸ナトリウムであることが好ましく、前記アンモニア系薬剤が硫酸アンモニウムであることが好ましい。
In the processing apparatus and processing method of the present invention,
The inorganic chlorinated drug is preferably sodium hypochlorite, and the ammonia-based drug is preferably ammonium sulfate.

これら薬剤は、クロラミンと比較して価格が安く、しかも入手が容易だからである。   This is because these drugs are cheaper than chloramine and are easily available.

本発明の処理装置及び処理方法によれば、逆浸透膜装置に供給される前処理水に含有されているアンモニアを利用してクロラミンを生成させるため、逆浸透膜装置のバイオファウリング予防のためのコストを低く抑えることが可能である。   According to the treatment apparatus and the treatment method of the present invention, since chloramine is generated using ammonia contained in the pretreatment water supplied to the reverse osmosis membrane apparatus, for preventing biofouling of the reverse osmosis membrane apparatus. The cost can be kept low.

本発明の水処理装置の一例を説明する概略構成図を示す。The schematic block diagram explaining an example of the water treatment apparatus of this invention is shown.

以下、本発明の実施形態について、図面を参酌しながら説明する。本発明は、以下の記載に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following description.

図1は、本発明の水処理装置の一例を説明する概略構成図を示す。生活廃水等の汚水(有機性廃水)は、経路1を経て生物処理装置2(前処理装置)へと供給され、前処理される。生物処理装置2の具体例は、活性汚泥槽、又は砂ろ過槽である。生物処理装置2によって、汚水中に含有される有機物が微生物によって好気的に分解される。生物処理装置2が活性汚泥槽の場合、余剰汚泥は、経路16から適宜外部へと排出される。   FIG. 1 is a schematic configuration diagram illustrating an example of the water treatment apparatus of the present invention. Sewage (organic wastewater) such as domestic wastewater is supplied to the biological treatment device 2 (pretreatment device) via the path 1 and pretreated. A specific example of the biological treatment apparatus 2 is an activated sludge tank or a sand filtration tank. By the biological treatment apparatus 2, organic substances contained in the sewage are aerobically decomposed by microorganisms. When the biological treatment apparatus 2 is an activated sludge tank, excess sludge is appropriately discharged from the path 16 to the outside.

生物処理装置2によって前処理された前処理水は、経路3を経て貯水槽7へと供給され、貯水される。経路3には、流量計4及びアンモニア性窒素濃度計5(アンモニア性窒素濃度測定装置)が設けられており、流量計4及びアンモニア性窒素濃度計5は、制御装置6と電気的に接続されている。制御装置6は、無機塩素系薬剤タンク8のポンプP1と電気的に接続されており、ポンプP1及びポンプP2のオン/オフ、又は出力を制御する。   The pretreated water pretreated by the biological treatment apparatus 2 is supplied to the water storage tank 7 via the path 3 and stored therein. In the path 3, a flow meter 4 and an ammonia nitrogen concentration meter 5 (ammonia nitrogen concentration measuring device) are provided, and the flow meter 4 and the ammonia nitrogen concentration meter 5 are electrically connected to the control device 6. ing. The control device 6 is electrically connected to the pump P1 of the inorganic chlorine-based chemical tank 8, and controls on / off or output of the pump P1 and the pump P2.

無機塩素系薬剤タンク8には、次亜塩素酸ナトリウム水溶液のような無機塩素系薬剤が貯留されている。無機塩素系薬剤タンク8内の無機塩素系薬剤は、ポンプP1によって、経路10から貯水槽7へと注入される。塩素供給装置17は、無機塩素系薬剤が貯留される無機塩素系薬剤タンク8と、この無機塩素系薬剤を貯水槽7へと供給するポンプP1を有する。アンモニア系薬剤タンク9には、硫酸アンモニウム水溶液のようなアンモニア系薬剤が貯留されている。アンモニア系薬剤タンク9内のアンモニア系薬剤は、ポンプP2によって、経路11から貯水槽7へと注入される。アンモニア供給装置18は、アンモニア系薬剤が貯留されるアンモニア系薬剤タンク9と、このアンモニア系薬剤を貯水槽7へと供給するポンプP2を有する。   The inorganic chlorine-based chemical tank 8 stores an inorganic chlorine-based chemical such as a sodium hypochlorite aqueous solution. The inorganic chlorine-based chemical in the inorganic chlorine-based chemical tank 8 is injected from the passage 10 into the water storage tank 7 by the pump P1. The chlorine supply device 17 includes an inorganic chlorine-based chemical tank 8 in which the inorganic chlorine-based chemical is stored, and a pump P1 that supplies this inorganic chlorine-based chemical to the water storage tank 7. The ammonia-based drug tank 9 stores an ammonia-based drug such as an ammonium sulfate aqueous solution. The ammonia-based drug in the ammonia-based drug tank 9 is injected from the path 11 into the water tank 7 by the pump P2. The ammonia supply device 18 includes an ammonia-based chemical tank 9 in which the ammonia-based chemical is stored, and a pump P <b> 2 that supplies the ammonia-based chemical to the water storage tank 7.

貯水槽7内の前処理水にアンモニア性窒素が含有されていると、無機塩素系薬剤として次亜塩素酸ナトリウム水溶液を貯水槽7に添加した場合、下記化学式に示される反応によってクロラミンが生成する。この反応は、瞬時には完了しないため、本発明では、無機塩素系薬剤を貯水槽7へ注入し、3分間以上経過した後、貯水槽7内の前処理水を、経路12を経てRO膜装置13(逆浸透膜装置)へと供給する。このとき、貯水槽7内の前処理水を攪拌することが好ましい。経路12には、ポンプP3が設けられており、経路12内の前処理水を、RO膜装置13の運転条件に適合する水圧に昇圧して、RO膜装置13に供給する。   If ammoniacal nitrogen is contained in the pretreatment water in the water tank 7, chloramine is generated by the reaction shown in the following chemical formula when an aqueous sodium hypochlorite solution is added to the water tank 7 as an inorganic chlorine-based chemical. . Since this reaction is not completed instantaneously, in the present invention, an inorganic chlorinated chemical is injected into the water tank 7, and after 3 minutes or more has passed, the pretreated water in the water tank 7 is passed through the route 12 to the RO membrane. It supplies to the apparatus 13 (reverse osmosis membrane apparatus). At this time, it is preferable to stir the pretreatment water in the water tank 7. A pump P <b> 3 is provided in the path 12, and the pretreated water in the path 12 is boosted to a water pressure suitable for the operating conditions of the RO membrane device 13 and supplied to the RO membrane device 13.

Figure 2013078712
Figure 2013078712

上記化学式では、理論上、アンモニア1molと次亜塩素酸ナトリウム1molからクロラミン類1molが生成する。しかし、実用上は、次亜塩素酸ナトリウムが前処理水中に残存しないように、アンモニアのモル数を次亜塩素酸ナトリウムのモル数の2倍以上とすることが好ましい。   In the above chemical formula, theoretically, 1 mol of chloramines is produced from 1 mol of ammonia and 1 mol of sodium hypochlorite. However, in practice, the number of moles of ammonia is preferably at least twice the number of moles of sodium hypochlorite so that sodium hypochlorite does not remain in the pretreated water.

RO膜装置13のRO膜のバイオファウリングを効果的に予防するためには、経路12を経て供給される前処理水中のクロラミン濃度を、有効塩素濃度として2ppm以上、より好ましくは5ppm以上とする。経路3を流れる前処理水中のアンモニア濃度が2ppm以上であれば、流量計4及びアンモニア性窒素濃度計5の測定値に基づいて、貯水槽7内の前処理水中の有効塩素濃度が2ppmとなるように、経路10から貯水槽7へと供給する無機塩素系薬剤量を、制御装置7がポンプP1のオン/オフ、又は出力を調整することによって制御する。   In order to effectively prevent biofouling of the RO membrane of the RO membrane device 13, the chloramine concentration in the pretreated water supplied via the route 12 is set to 2 ppm or more, more preferably 5 ppm or more as the effective chlorine concentration. . If the ammonia concentration in the pretreatment water flowing through the path 3 is 2 ppm or more, the effective chlorine concentration in the pretreatment water in the water tank 7 is 2 ppm based on the measured values of the flow meter 4 and the ammonia nitrogen concentration meter 5. Thus, the control device 7 controls the amount of the inorganic chlorine-based chemical supplied from the path 10 to the water tank 7 by adjusting the output of the pump P1.

RO膜装置13の透過水は、経路14から外部へと供給され、飲料水、工業用水又は農業用水として利用される。透過水の水質に応じて、さらなる高度処理を行うことも可能である。   The permeated water of the RO membrane device 13 is supplied from the path 14 to the outside and used as drinking water, industrial water, or agricultural water. Depending on the quality of the permeated water, further advanced treatment can be performed.

一方、RO膜装置13の濃縮水は、返送経路15を経て生物処理装置2へ返送される。   On the other hand, the concentrated water of the RO membrane device 13 is returned to the biological treatment device 2 via the return path 15.

返送される濃縮水には、無機塩類も含有されているため、水処理装置の運転を継続すると、生物処理装置2内の無機塩類濃度が上昇するが、余剰汚泥を経路16から外部に排出する際に、無機塩類も一緒に排出することが可能である。   Since the concentrated water to be returned contains inorganic salts, if the operation of the water treatment device is continued, the concentration of inorganic salts in the biological treatment device 2 increases, but excess sludge is discharged from the path 16 to the outside. In this case, inorganic salts can be discharged together.

ここで、経路3を流れる生物処理水中のアンモニア性窒素濃度が2ppm未満であれば、貯水槽7へ無機塩素系薬剤タンク8から塩素系薬剤を供給しても、貯水槽内の前処理水のクロラミンを有塩素濃度2ppm以上とすることはできない。このような場合、流量計4及びアンモニア性窒素濃度計5の測定値に基づいて、貯水槽7内の前処理水中のアンモニア性窒素濃度が2ppm以上となるように、経路11から貯水槽7へと供給するアンモニア系薬剤量を、制御装置7がポンプP2のオン/オフ、又は出力を調整することによって制御する。   Here, if the concentration of ammoniacal nitrogen in the biologically treated water flowing through the path 3 is less than 2 ppm, the pretreated water in the water tank is supplied even if the chlorine based chemical is supplied from the inorganic chlorine based chemical tank 8 to the water tank 7. Chloramine cannot be made to have a chlorine concentration of 2 ppm or more. In such a case, based on the measured values of the flow meter 4 and the ammonia nitrogen concentration meter 5, the path 11 is connected to the water tank 7 so that the ammonia nitrogen concentration in the pretreated water in the water tank 7 is 2 ppm or more. The amount of the ammonia-based chemical supplied is controlled by the control device 7 by turning on / off the pump P2 or adjusting the output.

同時に、貯水槽7内の前処理水中の有効塩素濃度が2ppm以上となるように、経路10から貯水槽7へと供給する無機塩素系薬剤量を、制御装置7がポンプP1のオン/オフ、又は出力を調整することによって制御する。   At the same time, the control device 7 turns on / off the pump P1 to control the amount of inorganic chlorine-based chemicals supplied from the passage 10 to the water tank 7 so that the effective chlorine concentration in the pretreatment water in the water tank 7 is 2 ppm or more. Alternatively, control is performed by adjusting the output.

なお、図1においては、ポンプP1及びポンプP2のオン/オフ、又は出力を制御することにより、貯水槽7への無機塩素系薬剤及び/又はアンモニア系薬剤の供給量を制御する場合について説明したが、経路10及び経路11にバルブを設け、バルブの開閉を制御することによって、貯水槽7への無機塩素系薬剤及び/又はアンモニア系薬剤の供給量を制御してもよい。   In addition, in FIG. 1, the case where the supply amount of the inorganic chlorine type | system | group chemical | medical agent and / or ammonia type chemical | medical agent to the water tank 7 was controlled by controlling on / off of the pump P1 and the pump P2 or an output was demonstrated. However, the supply amount of the inorganic chlorine-based chemical and / or the ammonia-based chemical to the water tank 7 may be controlled by providing valves in the paths 10 and 11 and controlling the opening and closing of the valves.

(具体例)
RO膜装置に供給される生物処理水中の有効塩素濃度が2ppmとするとき、前処理水中のクロラミン類のモル濃度は、2/35.5×10-3=5.63×10-5 mol/Lとなる。この場合、生物処理水1m3当たりのクロラミン量は、5.63×10-2 molとなる。
(Concrete example)
When the effective chlorine concentration in the biologically treated water supplied to the RO membrane device is 2 ppm, the molar concentration of chloramines in the pretreated water is 2 / 35.5 × 10 −3 = 5.63 × 10 −5 mol / L. In this case, the amount of chloramine per 1 m 3 of biologically treated water is 5.63 × 10 -2 mol.

無機塩素系薬剤として次亜塩素酸ナトリウム、アンモニア系薬剤として硫酸アンモニウムを使用する場合、RO膜装置に供給される前処理水1m3当たりに使用される次亜塩素酸ナトリウムは5.63×10-2×(23+35.5+16)=4.20gとなり、硫酸アンモニウムは5.63×10-2×((14+1×4)×2+32+16×4)=7.44gとなる。1日の処理水量が1万tのRO処理設備における使用量は、次亜塩素酸ナトリウム42.0kg、硫酸アンモニウム74.4kgとなる。市場価格を12%次亜塩素酸ナトリウム28円/kg、硫酸アンモニウム30円/gとすると、1日当たりの薬剤コストは、(42.0/0.12×28)+(74.4×30)=12024円と算出される。なお、前処理水中のアンモニア濃度が1.5ppm以上であれば、硫酸アンモニウムの添加は不要である。 When sodium hypochlorite is used as an inorganic chlorine-based chemical and ammonium sulfate is used as an ammonia-based chemical, sodium hypochlorite used per 1 m 3 of pretreatment water supplied to the RO membrane device is 5.63 × 10 -2 × (23 + 35.5 + 16) = 4.20 g, and ammonium sulfate is 5.63 × 10 −2 × ((14 + 1 × 4) × 2 + 32 + 16 × 4) = 7.44 g. The amount used in the RO treatment facility with a daily treatment water volume of 10,000 tons is 42.0 kg of sodium hypochlorite and 74.4 kg of ammonium sulfate. If the market price is 12% sodium hypochlorite 28 yen / kg and ammonium sulfate 30 yen / g, the drug cost per day is calculated as (42.0 / 0.12 × 28) + (74.4 × 30) = 12024 yen . If the ammonia concentration in the pretreated water is 1.5 ppm or more, it is not necessary to add ammonium sulfate.

一方、本発明では、前処理水に含有されるアンモニア(アンモニウム塩)を利用するため、RO膜装置に供給する生物処理水中のアンモニア濃度が3mg/Lとすれば、アンモニアのモル濃度は、3/1000/14=2.14×10-4mol/Lとなり、有効塩素濃度2ppmとするためのクロラミン類の必要濃度である5.63×10-2 mol/L以上の濃度であるため、硫酸アンモニウムの添加は不要となる。従って、この場合、1日の処理水量が1万tの処理設備における薬剤コストは、次亜塩素酸ナトリウムのコスト42.0/0.12×28=9800円のみと算出される。 On the other hand, in the present invention, since ammonia (ammonium salt) contained in the pretreatment water is used, if the ammonia concentration in the biological treatment water supplied to the RO membrane device is 3 mg / L, the molar concentration of ammonia is 3 /1000/14=2.14×10 −4 mol / L, which is more than 5.63 × 10 −2 mol / L, which is the required concentration of chloramines to achieve an effective chlorine concentration of 2 ppm, so the addition of ammonium sulfate is unnecessary It becomes. Therefore, in this case, the chemical cost in the treatment facility with a daily treatment water amount of 10,000 t is calculated as only sodium hypochlorite cost 42.0 / 0.12 × 28 = 9800 yen.

また、バイオファウリング防止剤として市販されているクロラミン製剤は、RO膜装置へ供給される前処理水の水質に応じて10〜20ppmの濃度で添加される。中間値である15ppm添加する場合、前処理水1m3当たりに使用されるクロラミン製剤は、15/1000×1000=15gとなる。1日の処理水量が1万tのRO処理設備における使用量は、150kgとなり、市販価格を300円/kgとすると、1日当たりの薬剤コストは、150×300=45000円となる。 Moreover, the chloramine formulation marketed as a biofouling prevention agent is added by the density | concentration of 10-20 ppm according to the quality of the pretreatment water supplied to RO membrane apparatus. In the case of adding an intermediate value of 15 ppm, the chloramine preparation used per 1 m 3 of pretreated water is 15/1000 × 1000 = 15 g. The amount of water used in an RO treatment facility with a daily treatment water volume of 10,000 tons is 150 kg, and if the market price is 300 yen / kg, the drug cost per day is 150 x 300 = 45000 yen.

このように、本発明では、クロラミン製剤を外部から添加する場合と比較して、RO膜装置へ供給される前処理水中の有効塩素濃度を同じ2ppmとする場合に、薬剤コストを1/4以下に削減することが可能である。   Thus, in the present invention, compared to the case where the chloramine preparation is added from the outside, the drug cost is 1/4 or less when the effective chlorine concentration in the pretreatment water supplied to the RO membrane device is the same 2 ppm. Can be reduced.

本発明の有機性廃水の処理装置及び処理方法は、有機物を含有する廃水処理分野に置いて有用である。   The treatment apparatus and treatment method for organic wastewater of the present invention are useful in the field of treatment of wastewater containing organic matter.

1,3,10,11,12,14:経路
2:生物処理装置(前処理装置)
4:流量計
5:アンモニア性窒素濃度計(アンモニア性窒素濃度測定装置)
6:制御装置
7:貯水槽
8:無機塩素系薬剤タンク
9:アンモニア系薬剤タンク
13:RO膜装置(逆浸透膜装置)
15:返送経路
17:塩素供給装置
18:アンモニア供給装置
P1,P2,P3:ポンプ
1, 3, 10, 11, 12, 14: Path 2: Biological treatment device (pretreatment device)
4: Flow meter 5: Ammonia nitrogen concentration meter (ammonia nitrogen concentration measuring device)
6: Control device 7: Water tank 8: Inorganic chlorine-based chemical tank 9: Ammonia-based chemical tank 13: RO membrane device (reverse osmosis membrane device)
15: Return path 17: Chlorine supply device 18: Ammonia supply device P1, P2, P3: Pump

Claims (8)

有機性廃水の処理装置であって、
有機性廃水を処理する前処理装置と、
前記前処理装置によって処理された前処理水を貯水する貯水槽と、
前記貯水槽へと無機塩素系薬剤を供給する塩素供給装置と、
前記貯水槽へとアンモニア系薬剤を供給するアンモニア供給装置と、
前記貯水槽から供給される前処理水を膜分離する逆浸透膜装置とを備え、
前記貯水槽内の前処理水に無機塩素系薬剤及び/又はアンモニア系薬剤を供給することにより所定濃度でクロラミン類を生成させ、
前記クロラミン類を含む前処理水を前記逆浸透膜装置に供給することにより逆浸透膜のバイオファウリングを防止することを特徴とする有機性廃水の処理装置。
An organic wastewater treatment device,
A pretreatment device for treating organic wastewater;
A water storage tank for storing the pretreated water treated by the pretreatment device;
A chlorine supply device for supplying an inorganic chlorine-based chemical to the water tank;
An ammonia supply device for supplying an ammonia-based chemical to the water tank;
A reverse osmosis membrane device for membrane separation of pretreated water supplied from the water tank,
Producing chloramines at a predetermined concentration by supplying an inorganic chlorine-based chemical and / or an ammonia-based chemical to the pretreated water in the water tank;
An organic wastewater treatment apparatus that prevents biofouling of a reverse osmosis membrane by supplying pretreatment water containing the chloramines to the reverse osmosis membrane device.
前記貯水槽へと供給される前処理水の流量を測定する流量計と、
前記前処理水のアンモニア性窒素濃度を測定するアンモニア性窒素濃度測定装置と、
前記流量計及び前記アンモニア性窒素濃度測定装置の測定結果に基づいて、前記貯水槽への無機塩素系薬剤及び/又はアンモニア系薬剤の供給量を制御する制御装置とをさらに備える、請求項1に記載の有機性廃水の処理装置。
A flow meter for measuring a flow rate of pretreatment water supplied to the water tank;
An ammoniacal nitrogen concentration measuring device for measuring the ammoniacal nitrogen concentration of the pretreated water;
The apparatus according to claim 1, further comprising: a control device that controls a supply amount of the inorganic chlorine-based chemical and / or the ammonia-based chemical to the water storage tank based on a measurement result of the flow meter and the ammonia nitrogen concentration measuring device. The organic wastewater treatment apparatus as described.
前記逆浸透膜装置の濃縮水を前記前処理装置へと返送する返送経路をさらに備える、請求項1又は2に記載の有機性廃水の処理装置。   The organic wastewater treatment device according to claim 1, further comprising a return path for returning the concentrated water of the reverse osmosis membrane device to the pretreatment device. 前記無機塩素系薬剤が次亜塩素酸ナトリウムであり、前記アンモニア系薬剤が硫酸アンモニウムである、請求項1乃至3のいずれか1項に記載の有機性廃水の処理装置。   The organic wastewater treatment apparatus according to any one of claims 1 to 3, wherein the inorganic chlorine-based chemical is sodium hypochlorite and the ammonia-based chemical is ammonium sulfate. 有機性廃水の処理方法であって、
有機性廃水を前処理する前処理工程と、
前処理された前処理水を貯水槽に貯水する貯水工程と、
前記貯水槽へと無機塩素系薬剤を供給する塩素供給工程と、
前記貯水槽へとアンモニア系薬剤を供給するアンモニア供給工程と、
前記塩素供給工程及び/又は前記アンモニア供給工程を実行して3分間以上経過させ、貯水された前処理水中に所定濃度でクロラミン類を生成させるクロラミン生成工程と、
前記クロラミン類を含む前処理水を逆浸透膜装置に供給して膜分離することにより逆浸透膜のバイオファウリングを予防するバイオファウリング防止工程と、
を有することを特徴とする有機性廃水の処理方法。
A method for treating organic wastewater,
A pretreatment process for pretreating organic wastewater;
A water storage process for storing pretreated pretreated water in a water tank;
A chlorine supply step of supplying an inorganic chlorine-based chemical to the water tank;
An ammonia supply step for supplying an ammonia-based chemical to the water tank;
The chlorine supply step and / or the ammonia supply step is performed for 3 minutes or longer, and a chloramine generation step for generating chloramines at a predetermined concentration in the stored pretreated water,
A biofouling prevention step for preventing biofouling of the reverse osmosis membrane by supplying the pretreatment water containing the chloramines to the reverse osmosis membrane device and performing membrane separation;
A method for treating organic wastewater, comprising:
前記貯水槽へと供給される前処理水の流量と、前記貯水槽へと供給される前処理水のアンモニア濃度とを測定する測定工程と、
前記測定工程によって測定された前処理水の流量及びアンモニア性窒素濃度に基づいて、前記貯水槽への無機塩素系薬剤及び/又はアンモニア系薬剤の供給量を制御する供給量制御工程と、
をさらに備える、請求項5に記載の有機性廃水の処理方法。
A measurement step of measuring a flow rate of pretreatment water supplied to the water storage tank and an ammonia concentration of the pretreatment water supplied to the water storage tank;
A supply amount control step of controlling the supply amount of the inorganic chlorine-based chemical and / or the ammonia-based chemical to the water tank based on the flow rate of pretreatment water and the ammoniacal nitrogen concentration measured by the measurement step;
The processing method of the organic waste water of Claim 5 further provided.
前記逆浸透膜装置の濃縮水を、前記前処理工程を行う前処理装置へと返送する回収工程をさらに有する、請求項5又は6に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 5 or 6, further comprising a recovery step of returning the concentrated water of the reverse osmosis membrane device to a pretreatment device that performs the pretreatment step. 前記無機塩素系薬剤が次亜塩素酸ナトリウムであり、前記アンモニア系薬剤が硫酸アンモニウムである、請求項5乃至7のいずれか1項に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to any one of claims 5 to 7, wherein the inorganic chlorine-based chemical is sodium hypochlorite and the ammonia-based chemical is ammonium sulfate.
JP2011219127A 2011-10-03 2011-10-03 Organic wastewater treatment apparatus and treatment method Active JP5969749B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011219127A JP5969749B2 (en) 2011-10-03 2011-10-03 Organic wastewater treatment apparatus and treatment method
CN201280047951.3A CN103827042B (en) 2011-10-03 2012-09-04 The treatment unit of organic wastewater and treatment process
PCT/JP2012/005588 WO2013051192A1 (en) 2011-10-03 2012-09-04 Device for treating organic waste water and method for treating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219127A JP5969749B2 (en) 2011-10-03 2011-10-03 Organic wastewater treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2013078712A true JP2013078712A (en) 2013-05-02
JP5969749B2 JP5969749B2 (en) 2016-08-17

Family

ID=48043378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219127A Active JP5969749B2 (en) 2011-10-03 2011-10-03 Organic wastewater treatment apparatus and treatment method

Country Status (3)

Country Link
JP (1) JP5969749B2 (en)
CN (1) CN103827042B (en)
WO (1) WO2013051192A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449659B1 (en) 2013-07-25 2014-10-14 한국과학기술연구원 Apparatus and method for cultivating micro-algae using production and reduction reaction of chloramine
KR101478305B1 (en) * 2014-01-28 2014-12-31 최홍배 Inorganic coagulant for treating waste-water and preparation method of the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20211603T1 (en) 2014-10-28 2022-01-21 Innogreen S.R.L. Plant for the production of monochloramine and process thereof
IT201600092675A1 (en) * 2016-09-14 2018-03-14 Acel S R L MONOCLORAMINE PRODUCTION PLANT FOR FLUID TREATMENT
CN109133324A (en) * 2018-11-13 2019-01-04 上海城市水资源开发利用国家工程中心有限公司 A kind of drinking water treatment equipment and method
WO2021087349A1 (en) * 2019-11-01 2021-05-06 Ecolab Usa Inc. Accurate biocide dosing for low concentration membrane biofouling control applications
EP4139027A1 (en) 2020-04-20 2023-03-01 Ecolab USA Inc. Charge neutral biocide dosing control for membrane biofouling control applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104310A (en) * 1987-10-14 1989-04-21 Kurita Water Ind Ltd Membrane separation
JPH07124559A (en) * 1993-11-08 1995-05-16 Toyobo Co Ltd Sterilization of water to be treated in seawater desalting process
JPH11319492A (en) * 1998-05-21 1999-11-24 Nitto Denko Corp Treatment of sewage
JP2000246259A (en) * 1999-03-02 2000-09-12 Yokogawa Electric Corp Water treatment apparatus
JP2005152688A (en) * 2003-11-20 2005-06-16 Kurita Water Ind Ltd Membrane separation method
JP2007275870A (en) * 2006-03-16 2007-10-25 Ngk Insulators Ltd Separative membrane-cleaning method/device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318020B2 (en) * 2006-03-16 2012-11-27 Metawater Co., Ltd. Washing method and apparatus of separation membrane
JP5190908B2 (en) * 2006-07-28 2013-04-24 日東電工株式会社 Water treatment method and water treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104310A (en) * 1987-10-14 1989-04-21 Kurita Water Ind Ltd Membrane separation
JPH07124559A (en) * 1993-11-08 1995-05-16 Toyobo Co Ltd Sterilization of water to be treated in seawater desalting process
JPH11319492A (en) * 1998-05-21 1999-11-24 Nitto Denko Corp Treatment of sewage
JP2000246259A (en) * 1999-03-02 2000-09-12 Yokogawa Electric Corp Water treatment apparatus
JP2005152688A (en) * 2003-11-20 2005-06-16 Kurita Water Ind Ltd Membrane separation method
JP2007275870A (en) * 2006-03-16 2007-10-25 Ngk Insulators Ltd Separative membrane-cleaning method/device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449659B1 (en) 2013-07-25 2014-10-14 한국과학기술연구원 Apparatus and method for cultivating micro-algae using production and reduction reaction of chloramine
KR101478305B1 (en) * 2014-01-28 2014-12-31 최홍배 Inorganic coagulant for treating waste-water and preparation method of the same

Also Published As

Publication number Publication date
WO2013051192A1 (en) 2013-04-11
CN103827042A (en) 2014-05-28
CN103827042B (en) 2016-02-17
JP5969749B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5969749B2 (en) Organic wastewater treatment apparatus and treatment method
JP5691519B2 (en) Fresh water generation method
JP5099045B2 (en) Reverse osmosis membrane separation method
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
TWI415801B (en) The treatment method and the processing device of the water containing the organic matter
KR20170131389A (en) Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system
US10118131B2 (en) Method for preventing microbial growth on a filtration membrane
JPWO2011125762A1 (en) Combined chlorine agent, its production and use
JP5807634B2 (en) Reverse osmosis membrane treatment method
WO2016104356A1 (en) Method for controlling slime on separation membrane
JP2008183510A (en) Purified water production method and apparatus
JP6447133B2 (en) Fresh water generation system and fresh water generation method
JPWO2012133620A1 (en) Membrane separation method
JP6379571B2 (en) Fresh water generation method and fresh water generation apparatus
JP5163760B2 (en) Reclaimed water production apparatus and method
JP2008259967A (en) Method and apparatus for modifying separation membrane, modified separation membrane and method and device for operating separation membrane
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP2014221450A (en) Method for producing fresh water
JP2015186773A (en) Fresh water generation method and fresh water generator
JP2015123430A (en) Water producing method
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP2007260638A (en) Water treatment method using reverse osmosis membrane
Trussell et al. Process benefits of ozone/BAC as pretreatment to membrane-based advanced treatment for direct potable reuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5969749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250