JP2013076977A - 現像装置及び画像形成装置 - Google Patents
現像装置及び画像形成装置 Download PDFInfo
- Publication number
- JP2013076977A JP2013076977A JP2012162004A JP2012162004A JP2013076977A JP 2013076977 A JP2013076977 A JP 2013076977A JP 2012162004 A JP2012162004 A JP 2012162004A JP 2012162004 A JP2012162004 A JP 2012162004A JP 2013076977 A JP2013076977 A JP 2013076977A
- Authority
- JP
- Japan
- Prior art keywords
- toner
- developer
- developing roller
- developing
- roller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dry Development In Electrophotography (AREA)
Abstract
【課題】表面に規則的な凹凸形状を有する現像剤担持体を有する現像装置で、現像剤担持体の表面に現像剤が固着することに起因する現像時の濃度ムラの発生を抑制することが出来る現像装置、並びにこの現像装置を備えた画像形成装置を提供する。
【解決手段】現像ローラ42の表面に凸部42aの高さや凹部42bの深さが実質的に一定の規則的な凹凸形状を備え、現像領域αを通過したトナーTが、供給ローラ44によって回収される現像装置4において、現像ローラ42と供給ローラ44とが対向する供給ニップβでは、現像ローラ42の表面移動方向と供給ローラ44の表面移動方向とが逆方向である。
【選択図】図1
【解決手段】現像ローラ42の表面に凸部42aの高さや凹部42bの深さが実質的に一定の規則的な凹凸形状を備え、現像領域αを通過したトナーTが、供給ローラ44によって回収される現像装置4において、現像ローラ42と供給ローラ44とが対向する供給ニップβでは、現像ローラ42の表面移動方向と供給ローラ44の表面移動方向とが逆方向である。
【選択図】図1
Description
本発明は、複写機、ファクシミリ、プリンタ等に用いられる現像装置並びにこれを用いた画像形成装置に関するものである。
特許文献1及び2には、現像ローラの表面上に凸部の高さや凹部の深さが一定で規則的なパターンからなる凹凸を形成した現像装置が記載されている。
特許文献1及び2に記載の現像装置では、供給ローラと現像ローラとが対向する領域である供給ニップで現像ローラへのトナーの供給がなされる。現像ローラに供給されたトナーは現像ローラの表面移動に伴い現像領域を通過して、供給ニップに戻り、供給ニップで供給ローラに回収される。しかしながら、この現像装置では、供給ニップにおける供給ローラと現像ローラとの表面移動方向が同じ方向であるため、現像ローラ表面上の現像剤を供給ローラで回収する供給ニップでの現像ローラと供給ローラとの線速差が付け難い。線速差が小さいと、供給ローラによる現像ローラの回収性能が低く、現像ローラの表面上に規則的に形成された凹部に担持されたトナーを回収し切れず、現像領域を通過したトナーが現像ローラの表面上に残留したまま、供給ニップを通過することがあった。
このように、現像領域を通過したトナーが供給ニップを通過し、現像ローラに担持されたままとなると、トナーが現像ローラに固着してトナーフィルミングが発生し、現像ローラ上のトナーの単位重量当たりの帯電量や現像ローラの単位面積当たりのトナー量が不安定になり、現像時の濃度ムラの発生の原因となるおそれがある。
本発明は以上の問題点に鑑みなされたものであり、その目的は、表面に規則的な凹凸形状を有する現像剤担持体を有する現像装置で、現像剤担持体の表面に現像剤が固着することに起因する現像時の濃度ムラの発生を抑制することが出来る現像装置、並びにこの現像装置を備えた画像形成装置を提供することである。
上記目的を達成するために、請求項1の発明は、非磁性または磁性の一成分の現像剤を表面上に担持して表面移動し、潜像担持体と対向する現像領域で該潜像担持体の表面の潜像に現像剤を供給して現像する現像剤担持体と、該現像剤担持体の表面に供給する現像剤を収容する現像剤収容部と、表面移動することにより、該現像剤収容部内の現像剤を該現像剤担持体に対向する領域に搬送し、該現像剤担持体の表面に現像剤を供給する現像剤供給部材と、を有し、該現像剤担持体の表面に凹凸形状を備え、該現像領域を通過した現像剤が、該現像剤供給部材によって回収される現像装置において、上記現像剤担持体と上記現像剤供給部材とが対向する領域では、該現像剤担持体の表面移動方向と該現像剤供給部材の表面移動方向とが逆方向であることを特徴とするものである。
本発明においては、現像剤担持体の表面移動方向と現像剤供給部材の表面移動方向とが逆方向であるため、現像剤担持体と現像剤供給部材とが対向する領域での現像剤担持体と現像剤供給部材との線速差が大きくなる。これにより、現像剤担持体と現像剤供給部材とが対向する領域での現像剤供給部材による現像剤担持体表面上の現像剤の回収性能の向上を図ることができる。よって、現像剤が現像剤担持体に担持されたままとなることを抑制し、現像剤担持体の表面に現像剤が固着することを抑制できる。
本発明によれば、現像剤が現像剤担持体に固着することを抑制できるため、現像剤担持体の表面に現像剤が固着することに起因する現像時の濃度ムラの発生を抑制することが出来るという優れた効果がある。
〔実施形態1〕
以下、本発明を画像形成装置としての複写機(以下、複写機500という)に適用した、本発明の一つ目の実施形態(以下、実施形態1という)について説明する。
図2は、実施形態1の複写機500の概略構成図である。複写機500は、複写装置本体(以下、プリンタ部100という)、給紙テーブル(以下、給紙部200という)及びプリンタ部100上に取り付けるスキャナ(以下、スキャナ部300という)から構成される。
以下、本発明を画像形成装置としての複写機(以下、複写機500という)に適用した、本発明の一つ目の実施形態(以下、実施形態1という)について説明する。
図2は、実施形態1の複写機500の概略構成図である。複写機500は、複写装置本体(以下、プリンタ部100という)、給紙テーブル(以下、給紙部200という)及びプリンタ部100上に取り付けるスキャナ(以下、スキャナ部300という)から構成される。
プリンタ部100は、四つのプロセスユニットとしてのプロセスカートリッジ1(Y,M,C,K)、複数の張架ローラに張架されて図2中の矢印A方向に移動する中間転写体としての中間転写ベルト7、露光手段としての露光装置6、定着手段としての定着装置12等を備えている。
四つのプロセスカートリッジ1の、符号の後に付されたY,M,C,Kという添字は、イエロー,マゼンタ,シアン,黒用の仕様であることを示している。4つのプロセスカートリッジ1(Y,M,C,K)は、それぞれ使用するトナーの色が異なる他はほぼ同様の構成になっているので、以下、K,Y,M,Cという添字を省略して説明する。
四つのプロセスカートリッジ1の、符号の後に付されたY,M,C,Kという添字は、イエロー,マゼンタ,シアン,黒用の仕様であることを示している。4つのプロセスカートリッジ1(Y,M,C,K)は、それぞれ使用するトナーの色が異なる他はほぼ同様の構成になっているので、以下、K,Y,M,Cという添字を省略して説明する。
プロセスカートリッジ1は、潜像担持体である感光体2、帯電手段である帯電部材3、現像手段である現像装置4、及び、クリーニング手段である感光体クリーニング装置5を一体的に支持してユニット状とした構成となっている。各プロセスカートリッジ1は、それぞれの不図示のストッパーを解除することにより、複写機500本体に対して着脱可能となっている。
感光体2は、図中の矢印で示すように、図中の時計周り方向に回転する。帯電部材3は、ローラ状の帯電ローラであり、感光体2の表面に圧接されており、感光体2の回転により従動回転する。作像時には、帯電部材3には図示しない高圧電源により所定のバイアスが印加され、感光体2の表面を帯電する。実施形態1のプロセスカートリッジ1は、帯電手段として、感光体2の表面に接触するローラ状の帯電部材3を用いているが、帯電手段としてはこれに限るものではなく、コロナ帯電などの非接触帯電方式を用いてもよい。
露光装置6は、スキャナ部300で読み込んだ原稿画像の画像情報またはパーソナルコンピュータ等の外部装置から入力される画像情報に基づいて、感光体2の表面に対して露光し、感光体2の表面に静電潜像を形成する。プリンタ部100が備える露光装置6は、レーザーダイオードを用いたレーザービームスキャナ方式を用いているが、露光手段としてはLEDアレイを用いるものなど他の構成でも良い。
感光体クリーニング装置5は、中間転写ベルト7と対向する位置を通過した感光体2の表面上に残留する転写残トナーのクリーニングを行う。
感光体クリーニング装置5は、中間転写ベルト7と対向する位置を通過した感光体2の表面上に残留する転写残トナーのクリーニングを行う。
四つのプロセスカートリッジ1は、それぞれイエロー、シアン、マゼンタ、ブラックの各色ごとのトナー像を感光体2上に形成する。四つのプロセスカートリッジ1は、中間転写ベルト7の表面移動方向に並列に配設され、それぞれの感光体2上に形成されたトナー像を中間転写ベルト7に順に重ね合わせるように転写し、中間転写ベルト7上に可視像を形成する。
図2において、各感光体2に対して中間転写ベルト7を挟んで対向する位置には一次転写手段としての一次転写ローラ8が配置されている。一次転写ローラ8には不図示の高圧電源により一次転写バイアスが印加され、感光体2との間で一次転写電界を形成する。感光体2と一次転写ローラ8との間で一次転写電界が形成されることにより、感光体2の表面上に形成されたトナー像が中間転写ベルト7の表面に転写される。中間転写ベルト7を張架する複数の張架ローラのうちの一つが不図示の駆動モータによって回転することによって中間転写ベルト7が図中の矢印A方向に表面移動する。表面移動する中間転写ベルト7の表面上に各色のトナー像が順次重ねて転写されることによって、中間転写ベルト7の表面上にフルカラー画像が形成される。
四つのプロセスカートリッジ1が中間転写ベルト7と対向する位置に対して、中間転写ベルト7の表面移動方向下流側には、張架ローラの一つである二次転写対向ローラ9aに対して中間転写ベルト7を挟んで対向する位置に二次転写ローラ9が配置され、中間転写ベルト7との間で二次転写ニップを形成する。二次転写ローラ9と二次転写対向ローラ9aとの間に所定の電圧を印加して二次転写電界を形成する。給紙部200から給紙され、図1中の矢印C方向に搬送される転写材である転写紙Pが二次転写ニップを通過する際に、中間転写ベルト7の表面上に形成されたフルカラー画像が、二次転写ローラ9と二次転写対向ローラ9aとの間に形成された二次転写電界によって転写紙Pに転写される。
二次転写ニップに対して転写紙Pの搬送方向下流側に、定着装置12が配置されている。二次転写ニップを通過した転写紙Pは定着装置12に到達し、定着装置12における加熱及び加圧によって転写紙P上に転写されたフルカラー画像が定着され、画像が定着された転写紙Pは複写機500の装置外に出力される。
一方、二次転写ニップで転写紙Pに転写されず中間転写ベルト7の表面上に残留したトナーは、転写ベルトクリーニング装置11によって回収される。
一方、二次転写ニップで転写紙Pに転写されず中間転写ベルト7の表面上に残留したトナーは、転写ベルトクリーニング装置11によって回収される。
図2に示すように、中間転写ベルト7の上方には、各色トナーを収容するトナーボトル400(Y,M,C,K)が複写機500本体に対して着脱可能に配置されている。
各色トナーボトル400に収容されたトナーは、各色に対応する不図示のトナー補給装置によって、各色の現像装置4に供給される。
各色トナーボトル400に収容されたトナーは、各色に対応する不図示のトナー補給装置によって、各色の現像装置4に供給される。
図1は、実施形態1の現像装置4の概略構成を示す模式図であり、図2中の紙面奥側から見た断面図である。
図3及び図4は、現像装置4の斜視説明図であり、それぞれ異なる方向の斜め上方から現像装置4を見た斜視説明図である。
現像装置4の外形を形成する現像ケーシング41は、上ケース411、中ケース412及び下ケース413が組み合わさることで形成される。中ケース412はトナー収容部43を形成し、上ケース411にはトナー収容部43と外部とを連通する現像剤補給部であるトナー補給口55が形成されている。また、上ケース411には、現像ローラ42と上ケース411との隙間をシールする入口シール47が設けられている。
図3及び図4は、現像装置4の斜視説明図であり、それぞれ異なる方向の斜め上方から現像装置4を見た斜視説明図である。
現像装置4の外形を形成する現像ケーシング41は、上ケース411、中ケース412及び下ケース413が組み合わさることで形成される。中ケース412はトナー収容部43を形成し、上ケース411にはトナー収容部43と外部とを連通する現像剤補給部であるトナー補給口55が形成されている。また、上ケース411には、現像ローラ42と上ケース411との隙間をシールする入口シール47が設けられている。
図5は、図1と同じ方向から見た現像装置4の断面説明図であり、図6は、現像装置4の一部を拡大した斜視図であり、その一部をZ−X断面図で示す説明図である。
中ケース412には、現像ローラ42、供給ローラ44、ドクタブレード45、パドル46、供給スクリュ48及びトナー残量センサ49等が設けられている。
現像装置4には、内部と外部とを連通する開口部56が長手方向(図中Y軸方向)に沿って設けられている。開口部56内にはトナーを内部から外部(感光体と対向する現像領域α)まで担持搬送する円筒状の現像ローラ42が設けられている。
現像装置4には、内部と外部とを連通する開口部56が長手方向(図中Y軸方向)に沿って設けられている。開口部56内にはトナーを内部から外部(感光体と対向する現像領域α)まで担持搬送する円筒状の現像ローラ42が設けられている。
図7は、下ケース413の図示を省略した現像装置4の一方の端部(図2中の奥側端部)近傍の拡大斜視図であり、図8は、図7の状態から現像ローラ42の図示を省略した現像装置4の拡大斜視図である。
図9は、下ケース413の図示を省略した現像装置4の他方の端部(図2中の手前側端部)近傍の拡大斜視図であり、図10は、図9の状態から現像ローラ42の図示を省略した現像装置4の拡大斜視図である。
図9は、下ケース413の図示を省略した現像装置4の他方の端部(図2中の手前側端部)近傍の拡大斜視図であり、図10は、図9の状態から現像ローラ42の図示を省略した現像装置4の拡大斜視図である。
現像装置4では、供給ローラ44が図1中の矢印C方向(図1中の時計回り方向)に回転して表面移動することにより、トナー収容部43内のトナーTを現像ローラ42に対向する領域である供給ニップβに搬送し、現像ローラ42の表面にトナーを供給する。現像ローラ42は、供給されたトナーを表面上に担持して、図1中の矢印B方向(図1中の時計回り方向)に回転して表面移動することにより、現像ローラ42上のトナーを所定量に規制するドクタブレード45との対向部までトナーを搬送する。ドクタブレード45との対向部で所定量に規制されたトナーは、現像ローラ42の回転によって感光体2との対向部である現像領域αに到達する。
また、供給ニップβでは、供給ローラ44の表面は下方から上方に向かって移動し、現像ローラ42の表面は上方から下方に向かって移動する。
また、供給ニップβでは、供給ローラ44の表面は下方から上方に向かって移動し、現像ローラ42の表面は上方から下方に向かって移動する。
現像領域αでは、現像バイアス電源142から現像ローラ42に印加された現像バイアスと感光体2表面上の潜像との電位差によって形成される現像電界に応じて、現像ローラ42の表面上のトナーTが感光体2の表面に移動し、感光体2の表面上の静電潜像部分にトナーが付着し、現像が行われる。感光体2は、現像ローラ42に対して非接触で、図1中の矢印D方向に回転する。このため、現像領域αにおいて、現像ローラ42の表面移動方向と感光体2の表面移動方向とは同方向となる。
また、現像バイアス電源142は、現像領域αに搬送されたトナーによる潜像の現像のために、現像ローラ42から感光体2へトナーを向かわせるための第一電圧と、感光体2から現像ローラ42へトナーを向かわせるための第二電圧とを備えた交番電圧を現像ローラ42に印加する電圧印加部である。
また、現像バイアス電源142は、現像領域αに搬送されたトナーによる潜像の現像のために、現像ローラ42から感光体2へトナーを向かわせるための第一電圧と、感光体2から現像ローラ42へトナーを向かわせるための第二電圧とを備えた交番電圧を現像ローラ42に印加する電圧印加部である。
詳細は後述するが、現像ローラ42の表面には凸部42aの高さや凹部42bの深さが実質的に一定の規則的な凹凸形状を有している。
現像領域αで現像に寄与せず、現像領域αを通過した現像ローラ42の表面上のトナーTは、供給ニップβで供給ローラ44によって回収され、現像ローラ42表面のリセットがなされる。
現像領域αで現像に寄与せず、現像領域αを通過した現像ローラ42の表面上のトナーTは、供給ニップβで供給ローラ44によって回収され、現像ローラ42表面のリセットがなされる。
現像ローラ42の表面上に規則的に形成された凹部42bに担持されたトナーTは回収され難い。そして、現像領域αを通過したトナーTが供給ニップβを通過し、現像ローラ42に担持されたままとなると、トナーTが現像ローラ42に固着してトナーフィルミングが発生する。トナーフィルミングが発生すると、現像ローラ42上のトナーTの単位重量当たりの帯電量や現像ローラ42の単位面積当たりのトナー量が不安定になり、現像時の濃度ムラの発生の原因となる。
実施形態1の現像装置4では、現像ローラ42と供給ローラ44とが対向する供給ニップβでは、現像ローラ42の表面移動方向と供給ローラ44の表面移動方向とが逆方向となっている。これにより、供給ニップβにおける現像ローラ42の表面と供給ローラ44の表面との線速差が大きくなり、供給ニップβでの供給ローラ44による回収性能の向上を図ることが出来る。よって、トナーが現像ローラ42に担持されたままとなることを抑制し、現像ローラ42の表面にトナーが固着することを抑制でき、現像剤担持体の表面に現像剤が固着することに起因する現像時の濃度ムラの発生を抑制することが出来る。
また、実施形態1の現像装置4では、現像ローラ42と供給ローラ44との線速比は、現像ローラ42の表面移動速度:供給ローラ44の表面移動速度=1:0.85となっているが、線速比としてはこの値に限るものではない。
実施形態1の現像装置4では、現像ローラ42と供給ローラ44とが対向する供給ニップβでは、現像ローラ42の表面移動方向と供給ローラ44の表面移動方向とが逆方向となっている。これにより、供給ニップβにおける現像ローラ42の表面と供給ローラ44の表面との線速差が大きくなり、供給ニップβでの供給ローラ44による回収性能の向上を図ることが出来る。よって、トナーが現像ローラ42に担持されたままとなることを抑制し、現像ローラ42の表面にトナーが固着することを抑制でき、現像剤担持体の表面に現像剤が固着することに起因する現像時の濃度ムラの発生を抑制することが出来る。
また、実施形態1の現像装置4では、現像ローラ42と供給ローラ44との線速比は、現像ローラ42の表面移動速度:供給ローラ44の表面移動速度=1:0.85となっているが、線速比としてはこの値に限るものではない。
また、現像ローラ42の線速が速いことが望ましい。図1に示すように、現像装置4では供給ローラ44をトナー収容部43の上部に配置し、供給ローラ44の少なくとも一部がパドル46の回転を停止した状態のトナー収容部43内のトナーTの剤面よりも上方となるようになっている。そして、供給ニップβに対して供給ローラ44の表面移動方向下流側の領域(以下、供給ニップ下流側領域と呼ぶ。)がトナーTの剤面よりも上方となっている。特許文献1の図4に記載の構成のように、供給ニップ下流側領域にトナーが充填されていると、供給ニップ下流側領域に充填された状態のトナーが新たなトナーが供給ニップ下流側領域に入ってくることを阻害し、供給ニップβにおける現像ローラ42からのトナーの回収効率を低下させるおそれがある。一方、実施形態1の現像装置4は図1に示すように、供給ニップ下流側領域がトナーTの剤面よりも上方となっているため、供給ニップ下流側領域にはトナーが充填されておらず、供給ニップ下流側領域に存在するトナーによって、供給ニップβにおける現像ローラ42からのトナーの回収を阻害されることがなく、効率的にトナーの回収を行うことができ、トナーのリセット性を向上できる。
次に、現像ローラ42について説明する。
図11は、現像ローラ42の斜視説明図であり、図12は、現像ローラ42の側面図である。また、図13は、現像ローラ42の表面形状の説明図であり、図13(a)は、現像ローラ42全体の概略図であり、図13(b)は、図13(a)に示した現像ローラ42の表面の一部の拡大図である。
図11は、現像ローラ42の斜視説明図であり、図12は、現像ローラ42の側面図である。また、図13は、現像ローラ42の表面形状の説明図であり、図13(a)は、現像ローラ42全体の概略図であり、図13(b)は、図13(a)に示した現像ローラ42の表面の一部の拡大図である。
現像ローラ42は、現像ローラ軸421に表面にトナーを担持する現像ローラ円筒部420を設けた構成であり、現像ローラ円筒部420に対して軸方向外側である軸方向両端部近傍の現像ローラ軸421には、スペーサー422が設けられている。
現像ローラ42は、現像ローラ軸421を中心に回転可能に設けられており、現像ローラ軸421の軸方向が現像装置4の長手方向(図中Y軸方向)と平行になるように配置されている。現像ローラ42の現像ローラ軸421の軸方向両端は中ケース412の側壁部412sに対して回転可能に取り付けられている。現像ローラ42の表面の一部は開口部56から現像装置4の外部に露出し、この露出した表面が下方から上方に表面移動してトナーを搬送するように、現像ローラ42は図1中の矢印B方向に回転する。
また、現像ローラ42は、軸方向両端部近傍に設けられたスペーサー422が感光体2の表面に接触することにより、現像領域αにおける現像ローラ円筒部420の表面と感光体2の表面との距離(現像ギャップ)を一定に保っている。
現像ローラ42は、現像ローラ軸421を中心に回転可能に設けられており、現像ローラ軸421の軸方向が現像装置4の長手方向(図中Y軸方向)と平行になるように配置されている。現像ローラ42の現像ローラ軸421の軸方向両端は中ケース412の側壁部412sに対して回転可能に取り付けられている。現像ローラ42の表面の一部は開口部56から現像装置4の外部に露出し、この露出した表面が下方から上方に表面移動してトナーを搬送するように、現像ローラ42は図1中の矢印B方向に回転する。
また、現像ローラ42は、軸方向両端部近傍に設けられたスペーサー422が感光体2の表面に接触することにより、現像領域αにおける現像ローラ円筒部420の表面と感光体2の表面との距離(現像ギャップ)を一定に保っている。
現像ローラ42は、アルミ合金、鉄合金等からなる部材である。
現像ローラ42の現像ローラ円筒部420は、図13(a)に示すように、その表面の構造の相違に基づき、主として、2つの部分(溝形成部420a、非溝形成部420b)に分けられる。
溝形成部420aは、現像ローラ42の軸方向において中央部を含む部分であり、トナーを適切に担持させるために凹凸加工がその表面に施されている。実施形態1においては、凹凸加工として所謂転造加工が用いられ、凸部42aは互いに巻き方向の異なる螺旋状の第一溝L1および第二溝L2に囲まれて形成されている。実施形態1の現像ローラ42では、凸部42aの軸方向のピッチ幅W1は80[μm]であり、凸部42aの頂面の軸方向長さW2は40[μm]である。さらに、凹部42bから凸部42aの頂面までの高さである凹部深さ(後述する図29中の「W3」)は10[μm]である。ピッチ幅W1、頂面の軸方向長さW2及び凹部深さの値は一例であり、この値に限られるものではない。
現像ローラ42の現像ローラ円筒部420は、図13(a)に示すように、その表面の構造の相違に基づき、主として、2つの部分(溝形成部420a、非溝形成部420b)に分けられる。
溝形成部420aは、現像ローラ42の軸方向において中央部を含む部分であり、トナーを適切に担持させるために凹凸加工がその表面に施されている。実施形態1においては、凹凸加工として所謂転造加工が用いられ、凸部42aは互いに巻き方向の異なる螺旋状の第一溝L1および第二溝L2に囲まれて形成されている。実施形態1の現像ローラ42では、凸部42aの軸方向のピッチ幅W1は80[μm]であり、凸部42aの頂面の軸方向長さW2は40[μm]である。さらに、凹部42bから凸部42aの頂面までの高さである凹部深さ(後述する図29中の「W3」)は10[μm]である。ピッチ幅W1、頂面の軸方向長さW2及び凹部深さの値は一例であり、この値に限られるものではない。
現像ローラ42としては、その表面がトナーを正規帯電させる材料であることことが望ましい。フィルミングによって低帯電トナーが生まれた場合においても、ジャンピングしたトナーTによってたたき出された低帯電トナーが、凸部42aや凹部42bのフィルミングがおきていない部分で帯電できるため、低帯電トナーを減少させることができ、画像濃度が安定化する。
また、現像ローラ42としては、その表層材料がドクタブレード45(ブレード部材450)よりも硬い材質であることが望ましい。これにより、現像ローラ42の表面の凸部42aがドクタブレード45によって削れ難くなるため、凸部42aとドクタブレード45で囲まれる凹部42bの体積が変わりにくくなり、M/A値(現像ローラ表面上の単位面積当りのトナーの担持量)が安定する。
また、現像ローラ42の凸部42aの高さとして、使用するトナーTの重量平均粒径よりも大きいことが望ましい。平均的な大きさのトナーTが凹部42b内に収まるため、粒径の選択が起こりにくくなり、経時でのM/A値(現像ローラ表面上の単位面積当りのトナーの担持量)が安定する。
次に、供給ローラ44について説明する。
図14は、供給ローラ44の斜視説明図であり、図15は、供給ローラ44の側面図である。現像装置4の内部のトナー収容部43の上方の現像ローラ42側には、円筒状の供給ローラ44が設けられている。供給ローラ44は、その軸部である供給ローラ軸441を中心に円筒状の発泡材が巻きついた構成であり、この円筒状の発泡材が表面にトナーを担持する供給ローラ円筒部440となる。
図14は、供給ローラ44の斜視説明図であり、図15は、供給ローラ44の側面図である。現像装置4の内部のトナー収容部43の上方の現像ローラ42側には、円筒状の供給ローラ44が設けられている。供給ローラ44は、その軸部である供給ローラ軸441を中心に円筒状の発泡材が巻きついた構成であり、この円筒状の発泡材が表面にトナーを担持する供給ローラ円筒部440となる。
供給ローラ44は、供給ローラ軸441を中心に回転可能に構成され、当該軸は中ケース412の側壁部412sに対して回転可能に取り付けられている。供給ローラ44は、供給ローラ円筒部440の外周面の一部は、現像ローラ42の現像ローラ円筒部420の外周面と供給ニップβで接触するように配置されており、図1及び図5に示すように、供給ローラ軸441は、現像ローラ軸421よりも上方に配置されている。
また、上述したように、供給ローラ44は現像ローラ42と対向する箇所である供給ニップβで現像ローラ42の表面移動方向に対して逆方向に表面が移動するように回転する。さらに、現像装置4は、図1に示すように、供給ニップβの位置が、現像ローラ42に対するドクタブレード45の当接位置に対して、上方に位置する配置となっている。
また、上述したように、供給ローラ44は現像ローラ42と対向する箇所である供給ニップβで現像ローラ42の表面移動方向に対して逆方向に表面が移動するように回転する。さらに、現像装置4は、図1に示すように、供給ニップβの位置が、現像ローラ42に対するドクタブレード45の当接位置に対して、上方に位置する配置となっている。
供給ローラ44は、の供給ローラ円筒部440に発泡材料を用いており、現像ローラ42に接触する表面層は表面に多数の微小孔が分散しているスポンジ層となっている。供給ローラ44の表面層をスポンジ状にすることで、凹部42bの底まで供給ローラ44が届きやすくなるため、現像ローラ42上トナーのリセット性が向上する。
また、供給ローラ44の現像ローラ42に対する食い込み量(「現像ローラ42の半径」+「供給ローラ44の半径」−「現像ローラ42と供給ローラ44との軸間距離」)は、現像ローラ42の凸部42aの高さよりも大きくなるように設定している。凸部42aの高さよりも供給ローラ44の食い込み量を大きくすることで、凹部42bにおけるトナーのリセット性を向上できる。なお、供給ローラ44の現像ローラ42に対する食い込み量が凸部42aの高さに対して大きすぎると、トナーが凹部42bに押し込まれてしまい、凝集の原因となるため、食い込み量が大きくなりすぎないように設定する必要がある。
供給ローラ44の供給ローラ円筒部440に用いる発泡材料は、103〜1014[Ω]の電気抵抗値に設定されている。
供給ローラ44には、供給バイアス電源144によって供給バイアスが印加され、供給ニップβで予備帯電されたトナーを現像ローラ42に押し付ける作用を補助する。供給ローラ44は図1及び図5中の時計回りの方向に回転し、表面に付着させた現像剤を現像ローラ42の表面に塗布供給する。
供給ローラ44には、供給バイアス電源144によって供給バイアスが印加され、供給ニップβで予備帯電されたトナーを現像ローラ42に押し付ける作用を補助する。供給ローラ44は図1及び図5中の時計回りの方向に回転し、表面に付着させた現像剤を現像ローラ42の表面に塗布供給する。
また、供給バイアス電源144が供給ローラ44に印加する電圧としては、現像ローラ42に印加された交番電圧に対して、トナーの正規帯電極性(実施形態1のトナーTではマイナス極性)に対して逆極性(プラス極性)の直流電圧を印加する。このとき、現像ローラ42に印加する電圧よりも供給ローラ44に印加する電圧の方がトナーの正規帯電極性に対して逆極性(プラス極性)となる。これにより、現像ローラ42に対して供給ローラ44側にトナーTを引き付ける方向の電界を供給ニップβに形成し、現像ローラ42上トナーのリセット性を向上することができる。なお、供給バイアス電源144を備える構成では、直流電源を別途必要となり、コスト高となるため、現像装置4の仕様に応じて、供給バイアス電源144を設けない構成としても良い。
次に、ドクタブレード45について説明する。
図16は、ドクタブレード45の斜視説明図であり、図17は、ドクタブレード45の側面図である。
図5〜図10に示すように、現像ローラ42の下方で下ケース413の内側となる中ケース412には、ドクタブレード45が設けられている。
ドクタブレード45は、薄い板状の金属部材であるブレード部材450と、ブレード部材450の一端が固定されている金属製の台座部452とを有する。そして、ブレード部材450の他端側が現像ローラ42に接触するように構成されている。ブレード部材450の現像ローラ42に対する接触状態は、先端が接触する先端当て状態、及び、先端よりも根元側の面部が接触する腹当て状態、の何れでもよい。しかし、先端当て状態の方が、凸部42aの頂面に存在するトナーをすり切ることができ、凹部42bに存在するトナーのみを現像領域αに搬送することで、現像領域αに搬送するトナー量が安定するため、より好ましい。
図16は、ドクタブレード45の斜視説明図であり、図17は、ドクタブレード45の側面図である。
図5〜図10に示すように、現像ローラ42の下方で下ケース413の内側となる中ケース412には、ドクタブレード45が設けられている。
ドクタブレード45は、薄い板状の金属部材であるブレード部材450と、ブレード部材450の一端が固定されている金属製の台座部452とを有する。そして、ブレード部材450の他端側が現像ローラ42に接触するように構成されている。ブレード部材450の現像ローラ42に対する接触状態は、先端が接触する先端当て状態、及び、先端よりも根元側の面部が接触する腹当て状態、の何れでもよい。しかし、先端当て状態の方が、凸部42aの頂面に存在するトナーをすり切ることができ、凹部42bに存在するトナーのみを現像領域αに搬送することで、現像領域αに搬送するトナー量が安定するため、より好ましい。
ドクタブレード45のブレード部材450は台座部452に対して複数のリベット451によって固定されている。台座部452はブレード部材450よりも厚い金属で構成されており、ブレード部材450を現像装置4の本体(中ケース412の側面部)に固定するための基板として機能している。台座部452の長手方向端部にはピン穴454が設けられており、一方は真円形状の主基準穴454aであり、もう一方は主基準穴454a方向に長径を有する楕円形状の従基準穴454bである。主基準穴454aに不図示のピンが入ることで台座部452の現像装置4本体に対する位置が決定し、従基準穴454bで支えられる。ブレード部材450が固定された台座部452が、現像装置4本体(中ケース412)にドクタ固定ネジ455で固定されることによってブレード部材450が現像装置4に固定されることになる。
ドクタブレード45のブレード部材450は、SUS304CSPやSUS301CSP、またはリン青銅等の金属板バネ材料を用い、自由端側を現像ローラ42表面に10〜100[N/m]の押圧力で当接させたもので、その押圧力下を通過したトナーを所定量に規制すると共に摩擦帯電によって電荷を付与する。さらにブレード部材450には、摩擦帯電を補助するために、ドクタバイアス電源145からバイアスが印加される。
また、ドクタブレード45のブレード部材450としては、導電性を有するものであることが望ましい。ブレード部材450が導電性であることにより、Q/M値(単位体積当りの帯電量)が大きなトナーTの帯電量を下げることが出来、トナーTのQ/M値の均一化を図ることができる。これにより、トナーTの現像ローラ42に対する張り付きを防ぐことが出来る。
また、ドクタバイアス電源145ブレード部材450に印加する電圧としては、現像ローラ42に印加された交番電圧に対して、±200[V]の範囲で直流電圧を印加できる構成とし、使用環境により直流電圧の値を制御出来る構成としても良い。これにより、環境変動によるM/A値(現像ローラ表面上の単位面積当りのトナーの担持量)の変動を抑制することができる。
次に、パドル46について説明する。
図18は、パドル46の斜視説明図であり、図19は、パドル46の側面図である。
現像装置4内には、トナーが収容される空間としてトナー収容部43が設けられており、このトナー収容部43内にはパドル46が現像ケーシング41に対して回転可能に取り付けられている。
図18は、パドル46の斜視説明図であり、図19は、パドル46の側面図である。
現像装置4内には、トナーが収容される空間としてトナー収容部43が設けられており、このトナー収容部43内にはパドル46が現像ケーシング41に対して回転可能に取り付けられている。
パドル46は、その軸部であるパドル軸461と、マイラー等の弾性シート材からなる薄い羽部材としてのパドル羽460とを備える。パドル軸461は、向かい合う二つの平面部を有し、この二つの平面部にパドル羽460がそれぞれ取り付けられている。二枚のパドル羽460は、パドル軸461を中心に互いに反対方向に突出するように、パドル軸461の平面部に固定されている。
パドル羽460の付け根部分には穴が複数の穴がパドル軸461の軸方向に平行になるように並べて設けられており、パドル軸461は、そのの軸方向に平行になるように複数の凸部が並べて設けられている。そして、パドル羽460の穴にパドル軸461の凸部を挿入して、熱カシメすることによって、パドル軸461に対してパドル羽460を固定する。
パドル羽460の付け根部分には穴が複数の穴がパドル軸461の軸方向に平行になるように並べて設けられており、パドル軸461は、そのの軸方向に平行になるように複数の凸部が並べて設けられている。そして、パドル羽460の穴にパドル軸461の凸部を挿入して、熱カシメすることによって、パドル軸461に対してパドル羽460を固定する。
パドル46は、パドル軸461の軸方向が現像装置4の長手方向(図中Y軸方向)と平行になるように配置されている。パドル軸461の軸方向両端は中ケース412の側壁部412sに対して回転可能に取り付けられている。
パドル46は、パドル軸461から伸びるパドル羽460の先端がトナー収容部43の内壁面に接触する程度の長さにパドル羽460の突出量が設定されている。図1及び図5等に示すように、トナー収容部43の底面部43bはパドル46の回転方向に沿った円弧状であり、パドル46の回転に伴う摺擦動作でパドル羽460がトナー収容部43の底面部43bに引っかからないようになっている。
トナー収容部43の現像ローラ42側には底面部43bから垂直に立ち上がる側壁面部43sが形成されており、この側壁面部43sはパドル軸461の中心と同等若しくは若干低い程度のところでX軸に平行なローラに向かう方向に水平になり、段部50を形成している。
トナー収容部43の現像ローラ42側には底面部43bから垂直に立ち上がる側壁面部43sが形成されており、この側壁面部43sはパドル軸461の中心と同等若しくは若干低い程度のところでX軸に平行なローラに向かう方向に水平になり、段部50を形成している。
側壁面部43sとパドル軸461との距離は、底面部43bとパドル軸461との距離よりも短く設定されている。そのため、底面部43bを摺擦してきたパドル羽460は側壁面部43sに突き当たり、より大きくたわむことになる。その後、段部50にパドル羽460の先端部が差し掛かるとパドル羽460を押さえるものが無くなり、パドル羽460の先端部は開放されることで上方に跳ね上がる。このようなパドル羽460の動きによってトナーは上方へと跳ね上げられ攪拌、搬送、供給される。
段部50は、X−Y平面に平行な水平面で、現像装置4の長手方向(図中Y軸方向)に延在するように形成されている。実施形態1の現像装置4では、段部50が幅方向の全域に設けられているが、パドル羽460が跳ね上がるようになっていれば、現像装置4内の一部分に設けられていても良い。
供給スクリュ48は、供給スクリュ軸481と、この供給スクリュ軸481に固定された螺旋状の羽部である供給スクリュ羽部480となるスクリュ部材である。供給スクリュ軸481を中心に回転可能に設けられており、供給スクリュ軸481の軸方向が現像装置4の長手方向(図中Y軸方向)と平行になるように配置されている。供給スクリュ軸481の軸方向両端は中ケース412の側壁部412sに対して回転可能に取り付けられている。
供給スクリュ48の軸方向端部は、現像装置4の長手方向端部に形成されたトナー補給口55の下方に位置している。そして、供給スクリュ48が回転することによって螺旋状の供給スクリュ羽部480がトナー補給口55から補給されたトナーを長手方向における現像装置4の中央部方向に搬送する。
上ケース411の開口部56を形成する縁部分には、入口シール47としてマイラー等のシート部材が長手方向に沿って貼着されている。入口シール47は略矩形のシートであってその短手の一端が上ケース411の縁部分に貼着され、他端は自由端とされている。入口シール47の自由端側は現像装置4の内部方向に突出されており、さらに、現像ローラ42に接触するように設けられている。入口シール47は、現像ローラ42の回転方向上流側が上ケース411に固定されており、現像ローラ42の回転方向下流側が自由端とされ、現像ローラ42に対して、入口シール47の面部分が接触するように配置している。また、上ケース411の現像装置4の内部側は供給ローラ44の上部形状に沿うように湾曲形状をしており、上ケース411の湾曲形状の表面と供給ローラ44の表面との隙間は、1.0[mm]である。
図7〜図10に示すように、現像装置4の開口部56の長手方向両端部にあたる中ケース412の一部にはサイドシール59が貼着されている。サイドシール59は、現像ローラ42の軸方向両端近傍に設けられたスペーサー422よりも軸方向における内側で、且つ、現像ローラ42にドクタブレード45が接触する軸方向の端部が重なる領域に設けられている。このようなサイドシール59によって現像ケーシング41における開口部56の長手方向端部からトナーが漏れ出ることを防止している。
また、中ケース412に設けられたトナー残量センサ49は、トナー収容部43内のトナーの量を検知するものである。
また、中ケース412に設けられたトナー残量センサ49は、トナー収容部43内のトナーの量を検知するものである。
次に、現像装置4内でのトナーの動きについて説明する。
トナー補給口55から現像装置4内に補給されたトナーは、供給スクリュ48によってトナー収容部43に供給され、パドル46によって攪拌される。また、パドル46の跳ね上げによって現像ローラ42及び供給ローラ44の方向に跳ね上げ、搬送される。供給ローラ44に供給されたトナーは、供給ローラ44が現像ローラ42と接触する供給ニップβで現像ローラ42の表面に受け渡される。現像ローラ42の表面に受け渡されたトナーのうち現像領域αに搬送する所定量を超えた分のトナーは、ドクタブレード45によって現像ローラ42の表面から掻き落とされる。
トナー補給口55から現像装置4内に補給されたトナーは、供給スクリュ48によってトナー収容部43に供給され、パドル46によって攪拌される。また、パドル46の跳ね上げによって現像ローラ42及び供給ローラ44の方向に跳ね上げ、搬送される。供給ローラ44に供給されたトナーは、供給ローラ44が現像ローラ42と接触する供給ニップβで現像ローラ42の表面に受け渡される。現像ローラ42の表面に受け渡されたトナーのうち現像領域αに搬送する所定量を超えた分のトナーは、ドクタブレード45によって現像ローラ42の表面から掻き落とされる。
ドクタブレード45との対向部を通過した現像ローラ42の表面に残ったトナーは、そのまま現像ローラ42の回転による表面移動方によって搬送され、感光体2と対向する現像領域αに到達する。現像に用いられることなく現像領域αを通過したトナーは、入口シール47が接触する位置を通過し、供給ローラ44との対向位置である供給ニップβにまで搬送される。現像ローラ42によって供給ニップβに到達したトナーは、供給ローラ44によって現像ローラ42の表面から掻き取られ、供給ローラ44によって搬送される。
次に、実施形態1に係る複写機500に用いるトナーについて説明する。複写機500で用いるトナーとしては、高速のトナー搬送に対応できるよう流動性の高いトナーを用いている。具体的には、加速凝集度が40[%]以下のトナーを用いている。この加速凝集度とは、トナーの流動性を示す指数である。
トナーの加速凝集度の測定方法を以下に示す。
<測定装置>
・ホソカワミクロン製 パウダテスタ
<測定方法>
・測定対象サンプルを恒温槽に放置(35±2[℃],24±1[h])
・パウダテスタを用いて測定
・目開きの異なる三種の篩を使用(例えば、75[μm],44[μm],22[μm])
・篩ったときのトナー残量から算出、以下の計算により、凝集度を求める。
{(上段の篩に残ったトナー重量)/(試料採取量)}×100
{(中段の篩に残ったトナー重量)/(試料採取量)}×100×3/5
{(下段の篩に残ったトナー重量)/(試料採取量)}×100×1/5
上記三つの計算値の合計をもって加熱凝集度[%]とする。
<測定装置>
・ホソカワミクロン製 パウダテスタ
<測定方法>
・測定対象サンプルを恒温槽に放置(35±2[℃],24±1[h])
・パウダテスタを用いて測定
・目開きの異なる三種の篩を使用(例えば、75[μm],44[μm],22[μm])
・篩ったときのトナー残量から算出、以下の計算により、凝集度を求める。
{(上段の篩に残ったトナー重量)/(試料採取量)}×100
{(中段の篩に残ったトナー重量)/(試料採取量)}×100×3/5
{(下段の篩に残ったトナー重量)/(試料採取量)}×100×1/5
上記三つの計算値の合計をもって加熱凝集度[%]とする。
トナーの加速凝集度は上述のように目開きの異なる三種類のメッシュを目開きの大きい順に積み重ね、最上段に粒子をおき、一定の振動でふるい、各メッシュ上のトナー重量から求める指数である。
また、実施形態1では、平均円形度が0.90以上のトナー(0.90〜1.00のトナー)を用いている。
実施形態1では、下記(1)式より得られた値を円形度aと定義する。この円形度はトナー粒子の凹凸の度合いの指標であり、トナーが完全な球形の場合1.00を示し、表面形状が複雑になるほど円形度は小さな値となる。
実施形態1では、下記(1)式より得られた値を円形度aと定義する。この円形度はトナー粒子の凹凸の度合いの指標であり、トナーが完全な球形の場合1.00を示し、表面形状が複雑になるほど円形度は小さな値となる。
円形度a=L0/L・・・・(1)
(L0:粒子像と同じ投影面積をもつ円の周囲長、L:粒子の投影像の周囲長)
(L0:粒子像と同じ投影面積をもつ円の周囲長、L:粒子の投影像の周囲長)
平均円形度が0.90〜1.00の範囲では、トナー粒子の表面は滑らかであり、トナー粒子同士、トナー粒子と感光体2との接触面積が小さいために転写性に優れる。
平均円形度が0.90〜1.00の範囲では、トナー粒子に角がないため、現像装置4内での現像剤(トナー)の攪拌トルクが小さく、攪拌の駆動が安定するために異常画像の発生を防止できる。
また、ドットを形成するトナーの中に、角張ったトナー粒子がいないため、転写で転写媒体に圧接する際に、その圧がドットを形成するトナー全体に均一にかかり、転写中抜けが生じにくい。
さらに、トナー粒子が角張っていないことから、トナー粒子そのものの研磨力が小さく、感光体2や、帯電部材3等の表面を傷つけたり、摩耗させたりすることを防止できる。
平均円形度が0.90〜1.00の範囲では、トナー粒子に角がないため、現像装置4内での現像剤(トナー)の攪拌トルクが小さく、攪拌の駆動が安定するために異常画像の発生を防止できる。
また、ドットを形成するトナーの中に、角張ったトナー粒子がいないため、転写で転写媒体に圧接する際に、その圧がドットを形成するトナー全体に均一にかかり、転写中抜けが生じにくい。
さらに、トナー粒子が角張っていないことから、トナー粒子そのものの研磨力が小さく、感光体2や、帯電部材3等の表面を傷つけたり、摩耗させたりすることを防止できる。
次に円形度の測定方法について説明する。円形度は、東亜医用電子製フロー式粒子像分析装置FPIA−1000を用いて測定することができる。
具体的な測定方法としては、容器中の予め不純固形物を除去した水100〜150[ml]中に分散剤として界面活性剤、好ましくはアルキルベンゼンスフォン酸塩を0.1〜0.5[ml]加え、更に測定試料を0.1〜0.5[g]程度加える。試料を分散した懸濁液は超音波分散器で約1〜3分間分散処理を行ない、分散液濃度を3000〜10000[個/μl]として前記装置によりトナーの形状、粒度を測定する。
600[dpi]以上の微少ドットを再現するためには、トナーの重量平均粒径(D4)として3〜8[μm]が好ましい。この範囲では、微小な潜像ドットに対して、十分に小さい粒径のトナー粒子を有していることから、ドット再現性に優れる。重量平均粒径(D4)が3[μm]未満では、転写効率の低下、ブレードクリーニング性の低下といった現象が発生しやすい。
重量平均粒径(D4)が8[μm]を超えると、文字やラインの飛び散りを抑えることが難しい。また、重量平均粒径(D4)と個数平均粒径(D1)との比(D4/D1)は1.00〜1.40の範囲にあることが好ましい。(D4/D1)が1.00に近いほど粒径分布がシャープであることを示す。このような小粒径で粒径分布の狭いトナーでは、トナーの帯電量分布が均一になり、地肌かぶりの少ない高品位な画像を得ることができ、また、静電転写方式では転写率を高くすることができる。
次に、トナー粒子の粒度分布の測定方法について説明する。コールターカウンター法によるトナー粒子の粒度分布の測定装置としては、コールターカウンターTA−IIやコールターマルチサイザーII(いずれもコールター社製)があげられる。以下に測定方法について述べる。
まず、電解水溶液100〜150[ml]中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルフォン酸塩)を0.1〜5[ml]加える。ここで、電解液とは1級塩化ナトリウムを用いて約1[%]NaCl水溶液を調製したもので、例えばISOTON−II(コールター社製)が使用できる。ここで、更に測定試料を2〜20[mg]加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行ない、前記測定装置により、アパーチャーとして100[μm]アパーチャーを用いて、トナー粒子又はトナーの重量、個数を測定して、重量分布と個数分布を算出する。得られた分布から、トナーの重量平均粒径(D4)、個数平均粒径(D1)を求めることができる。
チャンネルとしては、2.00〜2.52[μm]未満;2.52〜3.17[μm]未満;3.17〜4.00[μm]未満;4.00〜5.04[μm]未満;5.04〜6.35[μm]未満;6.35〜8.00[μm]未満;8.00〜10.08[μm]未満;10.08〜12.70[μm]未満;12.70〜16.00[μm]未満;16.00〜20.20[μm]未満;20.20〜25.40[μm]未満;25.40〜32.00[μm]未満;32.00〜40.30[μm]未満の13チャンネルを使用し、粒径2.00[μm]以上乃至40.30[μm]未満の粒子を対象とする。
実施形態1で用いられるトナーは、少なくとも、窒素原子を含む官能基を有するポリエステルプレポリマー、ポリエステル、着色剤、離型剤とを有機溶媒中に分散させたトナー材料液を、水系溶媒中で架橋及び/又は伸長反応させて得られるトナーであり、重合トナーと呼ばれる。以下に、トナーの構成材料及び製造方法について説明する。
<ポリエステル>
ポリエステルは、多価アルコール化合物と多価カルボン酸化合物との重縮合反応によって得られる。多価アルコール化合物(PO)としては、2価アルコール(DIO)および3価以上の多価アルコール(TO)が挙げられ、(DIO)単独、または(DIO)と少量の(TO)との混合物が好ましい。2価アルコール(DIO)としては、アルキレングリコール(エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなど);アルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど);上記脂環式ジオールのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物;上記ビスフェノール類のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物などが挙げられる。これらのうち好ましいものは、炭素数2〜12のアルキレングリコールおよびビスフェノール類のアルキレンオキサイド付加物であり、特に好ましいものはビスフェノール類のアルキレンオキサイド付加物、およびこれと炭素数2〜12のアルキレングリコールとの併用である。3価以上の多価アルコール(TO)としては、3〜8価またはそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなど);3価以上のフェノール類(トリスフェノールPA、フェノールノボラック、クレゾールノボラックなど);上記3価以上のポリフェノール類のアルキレンオキサイド付加物などが挙げられる。
ポリエステルは、多価アルコール化合物と多価カルボン酸化合物との重縮合反応によって得られる。多価アルコール化合物(PO)としては、2価アルコール(DIO)および3価以上の多価アルコール(TO)が挙げられ、(DIO)単独、または(DIO)と少量の(TO)との混合物が好ましい。2価アルコール(DIO)としては、アルキレングリコール(エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなど);アルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど);上記脂環式ジオールのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物;上記ビスフェノール類のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物などが挙げられる。これらのうち好ましいものは、炭素数2〜12のアルキレングリコールおよびビスフェノール類のアルキレンオキサイド付加物であり、特に好ましいものはビスフェノール類のアルキレンオキサイド付加物、およびこれと炭素数2〜12のアルキレングリコールとの併用である。3価以上の多価アルコール(TO)としては、3〜8価またはそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなど);3価以上のフェノール類(トリスフェノールPA、フェノールノボラック、クレゾールノボラックなど);上記3価以上のポリフェノール類のアルキレンオキサイド付加物などが挙げられる。
多価カルボン酸(PC)としては、2価カルボン酸(DIC)および3価以上の多価カルボン酸(TC)が挙げられ、(DIC)単独、および(DIC)と少量の(TC)との混合物が好ましい。2価カルボン酸(DIC)としては、アルキレンジカルボン酸(コハク酸、アジピン酸、セバシン酸など);アルケニレンジカルボン酸(マレイン酸、フマール酸など);芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。これらのうち好ましいものは、炭素数4〜20のアルケニレンジカルボン酸および炭素数8〜20の芳香族ジカルボン酸である。3価以上の多価カルボン酸(TC)としては、炭素数9〜20の芳香族多価カルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。なお、多価カルボン酸(PC)としては、上述のものの酸無水物または低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いて多価アルコール(PO)と反応させてもよい。
多価アルコール(PO)と多価カルボン酸(PC)の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、通常2/1〜1/1、好ましくは1.5/1〜1/1、さらに好ましくは1.3/1〜1.02/1である。 多価アルコール(PO)と多価カルボン酸(PC)の重縮合反応は、テトラブトキシチタネート、ジブチルチンオキサイドなど公知のエステル化触媒の存在下、150〜280[℃]に加熱し、必要により減圧としながら生成する水を留去して、水酸基を有するポリエステルを得る。ポリエステルの水酸基価は5以上であることが好ましく、ポリエステルの酸価は通常1〜30、好ましくは5〜20である。酸価を持たせることで負帯電性となりやすく、さらには記録紙への定着時、記録紙とトナーの親和性がよく低温定着性が向上する。しかし、酸価が30を超えると帯電の安定性、特に環境変動に対し悪化傾向がある。
また、重量平均分子量1万〜40万、好ましくは2万〜20万である。重量平均分子量が1万未満では、耐オフセット性が悪化するため好ましくない。また、40万を超えると低温定着性が悪化するため好ましくない。
また、重量平均分子量1万〜40万、好ましくは2万〜20万である。重量平均分子量が1万未満では、耐オフセット性が悪化するため好ましくない。また、40万を超えると低温定着性が悪化するため好ましくない。
ポリエステルには、上記の重縮合反応で得られる未変性ポリエステルの他に、ウレア変性のポリエステルが好ましく含有される。ウレア変性のポリエステルは、上記の重縮合反応で得られるポリエステルの末端のカルボキシル基や水酸基等と多価イソシアネート化合物(PIC)とを反応させ、イソシアネート基を有するポリエステルプレポリマー(A)を得、これとアミン類との反応により分子鎖が架橋及び/又は伸長されて得られるものである。
多価イソシアネート化合物(PIC)としては、脂肪族多価イソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエートなど);脂環式ポリイソシアネート(イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネートなど);芳香族ジイソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネートなど);芳香脂肪族ジイソシアネート(α,α,α’,α’−テトラメチルキシリレンジイソシアネートなど);イソシアネート類;前記ポリイソシアネートをフェノール誘導体、オキシム、カプロラクタムなどでブロックしたもの;およびこれら2種以上の併用が挙げられる。
多価イソシアネート化合物(PIC)の比率は、イソシアネート基[NCO]と、水酸基を有するポリエステルの水酸基[OH]の当量比[NCO]/[OH]として、通常5/1〜1/1、好ましくは4/1〜1.2/1、さらに好ましくは2.5/1〜1.5/1である。[NCO]/[OH]が5を超えると低温定着性が悪化する。[NCO]のモル比が1未満では、ウレア変性ポリエステルを用いる場合、そのエステル中のウレア含量が低くなり、耐ホットオフセット性が悪化する。
イソシアネート基を有するポリエステルプレポリマー(A)中の多価イソシアネート化合物(PIC)構成成分の含有量は、通常0.5〜40[wt%]、好ましくは1〜30[wt%]、さらに好ましくは2〜20[wt%]である。0.5[wt%]未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。また、40[wt%]を超えると低温定着性が悪化する。
イソシアネート基を有するポリエステルプレポリマー(A)中の1分子当たりに含有されるイソシアネート基は、通常1個以上、好ましくは、平均1.5〜3個、さらに好ましくは、平均1.8〜2.5個である。1分子当たり1個未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。
次に、ポリエステルプレポリマー(A)と反応させるアミン類(B)としては、2価アミン化合物(B1)、3価以上の多価アミン化合物(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、およびB1〜B5のアミノ基をブロックしたもの(B6)などが挙げられる。
2価アミン化合物(B1)としては、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’−ジアミノジフェニルメタンなど);脂環式ジアミン(4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミンなど);および脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)などが挙げられる。
3価以上の多価アミン化合物(B2)としては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。アミノアルコール(B3)としては、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。アミノメルカプタン(B4)としては、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。
アミノ酸(B5)としては、アミノプロピオン酸、アミノカプロン酸などが挙げられる。B1〜B5のアミノ基をブロックしたもの(B6)としては、前記B1〜B5のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。これらアミン類(B)のうち好ましいものは、B1およびB1と少量のB2の混合物である。
アミン類(B)の比率は、イソシアネート基を有するポリエステルプレポリマー(A)中のイソシアネート基[NCO]と、アミン類(B)中のアミノ基[NHx]の当量比[NCO]/[NHx]として、通常1/2〜2/1、好ましくは1.5/1〜1/1.5、さらに好ましくは1.2/1〜1/1.2である。
[NCO]/[NHx]が2を超えたり1/2未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。また、ウレア変性ポリエステル中には、ウレア結合と共にウレタン結合を含有していてもよい。ウレア結合含有量とウレタン結合含有量のモル比は、通常100/0〜10/90であり、好ましくは80/20〜20/80、さらに好ましくは、60/40〜30/70である。ウレア結合のモル比が10[%]未満では、耐ホットオフセット性が悪化する。
ウレア変性ポリエステルは、ワンショット法、などにより製造される。多価アルコール(PO)と多価カルボン酸(PC)を、テトラブトキシチタネート、ジブチルチンオキサイドなど公知のエステル化触媒の存在下、150〜280[℃]に加熱し、必要により減圧としながら生成する水を留去して、水酸基を有するポリエステルを得る。次いで40〜140[℃]にて、これに多価イソシアネート(PIC)を反応させ、イソシアネート基を有するポリエステルプレポリマー(A)を得る。さらにこの(A)にアミン類(B)を0〜140[℃]にて反応させ、ウレア変性ポリエステルを得る。
多価イソシアネート化合物(PIC)を反応させる際、及び(A)と(B)を反応させる際には、必要により溶剤を用いることもできる。使用可能な溶剤としては、芳香族溶剤(トルエン、キシレンなど);ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど);エステル類(酢酸エチルなど);アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)およびエーテル類(テトラヒドロフランなど)などの多価イソシアネート化合物(PIC)に対して不活性なものが挙げられる。
また、ポリエステルプレポリマー(A)とアミン類(B)との架橋及び/又は伸長反応には、必要により反応停止剤を用い、得られるウレア変性ポリエステルの分子量を調整することができる。反応停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、およびそれらをブロックしたもの(ケチミン化合物)などが挙げられる。
ウレア変性ポリエステルの重量平均分子量は、通常1万以上、好ましくは2万〜1000万、さらに好ましくは3万〜100万である。1万未満では耐ホットオフセット性が悪化する。ウレア変性ポリエステル等の数平均分子量は、先の未変性ポリエステルを用いる場合は特に限定されるものではなく、前記重量平均分子量とするのに得やすい数平均分子量でよい。ウレア変性ポリエステルを単独で使用する場合は、その数平均分子量は、通常2000〜15000、好ましくは2000〜10000、さらに好ましくは2000〜8000である。20000を超えると低温定着性およびフルカラー装置に用いた場合の光沢性が悪化する。
未変性ポリエステルとウレア変性ポリエステルとを併用することで、低温定着性および複写機500に用いた場合の光沢性が向上するので、ウレア変性ポリエステルを単独で使用するよりも好ましい。尚、未変性ポリエステルはウレア結合以外の化学結合で変性されたポリエステルを含んでも良い。
未変性ポリエステルとウレア変性ポリエステルとは、少なくとも一部が相溶していることが低温定着性、耐ホットオフセット性の面で好ましい。従って、未変性ポリエステルとウレア変性ポリエステルとは類似の組成であることが好ましい。
また、未変性ポリエステルとウレア変性ポリエステルとの重量比は、通常20/80〜95/5、好ましくは70/30〜95/5、さらに好ましくは75/25〜95/5、特に好ましくは80/20〜93/7である。ウレア変性ポリエステルの重量比が5[%]未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。
未変性ポリエステルとウレア変性ポリエステルとを含むバインダー樹脂のガラス転移点(Tg)は、通常45〜65[℃]、好ましくは45〜60[℃]である。45[℃]未満ではトナーの耐熱性が悪化し、65[℃]を超えると低温定着性が不十分となる。
また、ウレア変性ポリエステルは、得られるトナー母体粒子の表面に存在しやすいため、公知のポリエステル系トナーと比較して、ガラス転移点が低くても耐熱保存性が良好な傾向を示す。
<着色剤>
着色剤としては、公知の染料及び顔料が全て使用でき、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ピグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びそれらの混合物が使用できる。着色剤の含有量はトナーに対して通常1〜15重量[%]、好ましくは3〜10重量[%]である。
着色剤としては、公知の染料及び顔料が全て使用でき、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ピグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びそれらの混合物が使用できる。着色剤の含有量はトナーに対して通常1〜15重量[%]、好ましくは3〜10重量[%]である。
着色剤は樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチの製造、またはマスターバッチとともに混練されるバインダー樹脂としては、ポリスチレン、ポリ−p−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体、あるいはこれらとビニル化合物との共重合体、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックスなどが挙げられ、単独あるいは混合して使用できる。
<荷電制御剤>
荷電制御剤としては公知のものが使用でき、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。具体的にはニグロシン系染料のボントロン03、4級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、4級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、4級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、4級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、4級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。このうち、特にトナーを負極性に制御する物質が好ましく使用される。
荷電制御剤としては公知のものが使用でき、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。具体的にはニグロシン系染料のボントロン03、4級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、4級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、4級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、4級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、4級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。このうち、特にトナーを負極性に制御する物質が好ましく使用される。
荷電制御剤の使用量は、バインダー樹脂の種類、必要に応じて使用される添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくはバインダー樹脂100重量部に対して、0.1〜10重量部の範囲で用いられる。好ましくは、0.2〜5重量部の範囲がよい。10重量部を超える場合にはトナーの帯電性が大きすぎ、荷電制御剤の効果を減退させ、現像ローラ42との静電的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招く。
<離型剤>
離型剤としては、融点が50〜120[℃]の低融点のワックスが、バインダー樹脂との分散の中でより離型剤として効果的に定着装置12の定着ローラとトナー界面との間で働き、これにより定着ローラにオイルの如き離型剤を塗布することなく高温オフセットに対し効果を示す。このようなワックス成分としては、以下のものが挙げられる。ロウ類及びワックス類としては、カルナバワックス、綿ロウ、木ロウ、ライスワックス等の植物系ワックス、ミツロウ、ラノリン等の動物系ワックス、オゾケライト、セルシン等の鉱物系ワックス、及びおよびパラフィン、マイクロクリスタリン、ペトロラタム等の石油ワックス等が挙げられる。また、これら天然ワックスの外に、フィッシャー・トロプシュワックス、ポリエチレンワックス等の合成炭化水素ワックス、エステル、ケトン、エーテル等の合成ワックス等が挙げられる。さらに、12−ヒドロキシステアリン酸アミド、ステアリン酸アミド、無水フタル酸イミド、塩素化炭化水素等の脂肪酸アミド及び、低分子量の結晶性高分子樹脂である、ポリ−n−ステアリルメタクリレート、ポリ−n−ラウリルメタクリレート等のポリアクリレートのホモ重合体あるいは共重合体(例えば、n−ステアリルアクリレート−エチルメタクリレートの共重合体等)等、側鎖に長いアルキル基を有する結晶性高分子等も用いることができる。
離型剤としては、融点が50〜120[℃]の低融点のワックスが、バインダー樹脂との分散の中でより離型剤として効果的に定着装置12の定着ローラとトナー界面との間で働き、これにより定着ローラにオイルの如き離型剤を塗布することなく高温オフセットに対し効果を示す。このようなワックス成分としては、以下のものが挙げられる。ロウ類及びワックス類としては、カルナバワックス、綿ロウ、木ロウ、ライスワックス等の植物系ワックス、ミツロウ、ラノリン等の動物系ワックス、オゾケライト、セルシン等の鉱物系ワックス、及びおよびパラフィン、マイクロクリスタリン、ペトロラタム等の石油ワックス等が挙げられる。また、これら天然ワックスの外に、フィッシャー・トロプシュワックス、ポリエチレンワックス等の合成炭化水素ワックス、エステル、ケトン、エーテル等の合成ワックス等が挙げられる。さらに、12−ヒドロキシステアリン酸アミド、ステアリン酸アミド、無水フタル酸イミド、塩素化炭化水素等の脂肪酸アミド及び、低分子量の結晶性高分子樹脂である、ポリ−n−ステアリルメタクリレート、ポリ−n−ラウリルメタクリレート等のポリアクリレートのホモ重合体あるいは共重合体(例えば、n−ステアリルアクリレート−エチルメタクリレートの共重合体等)等、側鎖に長いアルキル基を有する結晶性高分子等も用いることができる。
荷電制御剤、離型剤はマスターバッチ、バインダー樹脂とともに溶融混練することもできるし、もちろん有機溶剤に溶解、分散する際に加えても良い。
<外添剤>
トナー粒子の流動性や現像性、帯電性を補助するための外添剤として、無機微粒子が好ましく用いられる。この無機微粒子の一次粒子径は、5×10−3〜2[μm]であることが好ましく、特に5×10−3〜0.5[μm]であることが好ましい。また、BET法による比表面積は、20〜500[m2/g]であることが好ましい。この無機微粒子の使用割合は、トナーの0.01〜5[wt%]であることが好ましく、特に0.01〜2.0[wt%]であることが好ましい。
トナー粒子の流動性や現像性、帯電性を補助するための外添剤として、無機微粒子が好ましく用いられる。この無機微粒子の一次粒子径は、5×10−3〜2[μm]であることが好ましく、特に5×10−3〜0.5[μm]であることが好ましい。また、BET法による比表面積は、20〜500[m2/g]であることが好ましい。この無機微粒子の使用割合は、トナーの0.01〜5[wt%]であることが好ましく、特に0.01〜2.0[wt%]であることが好ましい。
無機微粒子の具体例としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などを挙げることができる。中でも、流動性付与剤としては、疎水性シリカ微粒子と疎水性酸化チタン微粒子を併用するのが好ましい。特に両微粒子の平均粒径が5×10−2[μm]以下のものを使用して攪拌混合を行った場合、トナーとの静電力、ファンデルワールス力は格段に向上することより、所望の帯電レベルを得るために行われる現像装置4内部の攪拌混合によっても、トナーから流動性付与剤が脱離することなく、ホタルなどが発生しない良好な画像品質が得られて、さらに転写残トナーの低減が図られる。
酸化チタン微粒子は、環境安定性、画像濃度安定性に優れている反面、帯電立ち上がり特性の悪化傾向にあることより、酸化チタン微粒子添加量がシリカ微粒子添加量よりも多くなると、この副作用の影響が大きくなることが考えられる。
しかし、疎水性シリカ微粒子及び疎水性酸化チタン微粒子の添加量が0.3〜1.5[wt%]の範囲では、帯電立ち上がり特性が大きく損なわれず、所望の帯電立ち上がり特性が得られ、すなわち、コピーの繰り返しを行っても、安定した画像品質が得られる。
次に、トナーの製造方法について説明する。ここでは、好ましい製造方法について示すが、これに限られるものではない。
<トナーの製造方法>
(1)着色剤、未変性ポリエステル、イソシアネート基を有するポリエステルプレポリマー、離型剤を有機溶媒中に分散させトナー材料液を作る。有機溶媒は、沸点が100[℃]未満の揮発性であることが、トナー母体粒子形成後の除去が容易である点から好ましい。具体的には、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどを単独あるいは2種以上組合せて用いることができる。特に、トルエン、キシレン等の芳香族系溶媒および塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素が好ましい。有機溶媒の使用量は、ポリエステルプレポリマー100重量部に対し、通常0〜300重量部、好ましくは0〜100重量部、さらに好ましくは25〜70重量部である。
(1)着色剤、未変性ポリエステル、イソシアネート基を有するポリエステルプレポリマー、離型剤を有機溶媒中に分散させトナー材料液を作る。有機溶媒は、沸点が100[℃]未満の揮発性であることが、トナー母体粒子形成後の除去が容易である点から好ましい。具体的には、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどを単独あるいは2種以上組合せて用いることができる。特に、トルエン、キシレン等の芳香族系溶媒および塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素が好ましい。有機溶媒の使用量は、ポリエステルプレポリマー100重量部に対し、通常0〜300重量部、好ましくは0〜100重量部、さらに好ましくは25〜70重量部である。
(2)トナー材料液を界面活性剤、樹脂微粒子の存在下、水系媒体中で乳化させる。水系媒体は、水単独でも良いし、アルコール(メタノール、イソプロピルアルコール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)などの有機溶媒を含むものであってもよい。
トナー材料液100重量部に対する水系媒体の使用量は、通常50〜2000重量部、好ましくは100〜1000重量部である。50重量部未満ではトナー材料液の分散状態が悪く、所定の粒径のトナー粒子が得られない。20000重量部を超えると経済的でない。
また、水系媒体中の分散を良好にするために、界面活性剤、樹脂微粒子等の分散剤を適宜加える。界面活性剤としては、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、リン酸エステルなどのアニオン性界面活性剤、アルキルアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリンなどのアミン塩型や、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウムなどの4級アンモニウム塩型のカチオン性界面活性剤、脂肪酸アミド誘導体、多価アルコール誘導体などの非イオン界面活性剤、例えばアラニン、ドデシルジ(アミノエチル)グリシン、ジ(オクチルアミノエチル)グリシンやN−アルキル−N,N−ジメチルアンモニウムべタインなどの両性界面活性剤が挙げられる。
また、フルオロアルキル基を有する界面活性剤を用いることにより、非常に少量でその効果をあげることができる。好ましく用いられるフルオロアルキル基を有するアニオン性界面活性剤としては、炭素数2〜10のフルオロアルキルカルボン酸及びその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[ω−フルオロアルキル(C6〜C11)オキシ]−1−アルキル(C3〜C4)スルホン酸ナトリウム、3−[ω−フルオロアルカノイル(C6〜C8)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(C11〜C20)カルボン酸及び金属塩、パーフルオロアルキルカルボン酸(C7〜C13)及びその金属塩、パーフルオロアルキル(C4〜C12)スルホン酸及びその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピル−N−(2−ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C6〜C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C6〜C10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(C6〜C16)エチルリン酸エステルなどが挙げられる。
商品名としては、サーフロンS−111、S−112、S−113(旭硝子社製)、フロラードFC−93、FC−95、FC−98、FC−129(住友3M社製)、ユニダインDS−101、DS−102(ダイキン工業社製)、メガファックF−110、F−120、F−113、F−191、F−812、F−833(大日本インキ社製)、エクトップEF−102、103、104、105、112、123A、123B、306A、501、201、204、(トーケムプロダクツ社製)、フタージェントF−100、F150(ネオス社製)などが挙げられる。
また、カチオン性界面活性剤としては、フルオロアルキル基を右する脂肪族1級、2級もしくは2級アミン酸、パーフルオロアルキル(C6−C10)スルホンアミドプロピルトリメチルアンモニウム塩などの脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩、商品名としてはサーフロンS−121(旭硝子社製)、フロラードFC−135(住友3M社製)、ユニダインDS−202(ダイキンエ業杜製)、メガファックF−150、F−824(大日本インキ社製)、エクトップEF−132(トーケムプロダクツ社製)、フタージェントF−300(ネオス社製)などが挙げられる。
樹脂微粒子は、水系媒体中で形成されるトナー母体粒子を安定化させるために加えられる。このために、トナー母体粒子の表面上に存在する被覆率が10〜90[%]の範囲になるように加えられることが好ましい。例えば、ポリメタクリル酸メチル微粒子1[μm]、及び3[μm]、ポリスチレン微粒子0.5[μm]及び2[μm]、ポリ(スチレン―アクリロニトリル)微粒子1[μm]、商品名では、PB−200H(花王社製)、SGP(総研社製)、テクノポリマーSB(積水化成品工業社製)、SGP−3G(総研社製)、ミクロパール(積水ファインケミカル社製)等がある。
また、リン酸三カルシウム、炭酸カルシウム、酸化チタン、コロイダルシリカ、ヒドロキシアパタイト等の無機化合物分散剤も用いることができる。
上記の樹脂微粒子、無機化合物分散剤と併用して使用可能な分散剤として、高分子系保護コロイドにより分散液滴を安定化させても良い。例えばアクリル酸、メタクリル酸、α−シアノアクリル酸、α−シアノメタクリル酸、イタコン酸、クロトン酸、フマール酸、マレイン酸または無水マレイン酸などの酸類、あるいは水酸基を含有する(メタ)アクリル系単量体、例えばアクリル酸−β−ヒドロキシエチル、メタクリル酸−β−ヒドロキシエチル、アクリル酸−β−ヒドロキシプロビル、メタクリル酸−β−ヒドロキシプロピル、アクリル酸−γ−ヒドロキシプロピル、メタクリル酸−γ−ヒドロキシプロピル、アクリル酸−3−クロロ2−ヒドロキシプロビル、メタクリル酸−3−クロロ−2−ヒドロキシプロピル、ジエチレングリコールモノアクリル酸エステル、ジエチレングリコールモノメタクリル酸エステル、グリセリンモノアクリル酸エステル、グリセリンモノメタクリル酸エステル、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなど、ビニルアルコールまたはビニルアルコールとのエーテル類、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテルなど、またはビニルアルコールとカルボキシル基を含有する化合物のエステル類、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなど、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドあるいはこれらのメチロール化合物、アクリル酸クロライド、メタクリル酸クロライドなどの酸クロライド類、ビニルピリジン、ビニルピロリドン、ビニルイミダゾール、エチレンイミンなどの含窒素化合物、またはその複素環を有するものなどのホモポリマーまたは共重合体、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレンアルキルアミド、ポリオキシプロピレンアルキルアミド、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンステアリルフェニルエステル、ポリオキシエチレンノニルフェニルエステルなどのポリオキシエチレン系、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース類などが使用できる。
分散の方法としては特に限定されるものではないが、低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備が適用できる。この中でも、分散体の粒径を2〜20[μm]にするために高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は特に限定はないが、通常1000〜30000[rpm]、好ましくは5000〜20000[rpm]である。分散時間は特に限定はないが、バッチ方式の場合は、通常0.1〜5[分]である。分散時の温度としては、通常、0〜150[℃](加圧下)、好ましくは40〜98[℃]である。
(3)乳化液の作製と同時に、アミン類(B)を添加し、イソシアネート基を有するポリエステルプレポリマー(A)との反応を行わせる。この反応は、分子鎖の架橋及び/又は伸長を伴う。反応時間は、ポリエステルプレポリマー(A)の有するイソシアネート基構造とアミン類(B)との反応性により選択されるが、通常10分〜40時間、好ましくは2〜24時間である。反応温度は、通常、0〜150[℃]、好ましくは40〜98[℃]である。また、必要に応じて公知の触媒を使用することができる。具体的にはジブチルチンラウレート、ジオクチルチンラウレートなどが挙げられる。
(4)反応終了後、乳化分散体(反応物)から有機溶媒を除去し、洗浄、乾燥してトナー母体粒子を得る。有機溶媒を除去するためには、系全体を徐々に層流の攪拌状態で昇温し、一定の温度域で強い攪拌を与えた後、脱溶媒を行うことで紡錘形のトナー母体粒子が作製できる。また、分散安定剤としてリン酸カルシウム塩などの酸、アルカリに溶解可能な物を用いた場合は、塩酸等の酸により、リン酸カルシウム塩を溶解した後、水洗するなどの方法によって、トナー母体粒子からリン酸カルシウム塩を除去する。その他酵素による分解などの操作によっても除去できる。
(5)上記で得られたトナー母体粒子に、荷電制御剤を打ち込み、ついで、シリカ微粒子、酸化チタン微粒子等の無機微粒子を外添させ、トナーを得る。荷電制御剤の打ち込み、及び無機微粒子の外添は、ミキサー等を用いた公知の方法によって行われる。これにより、小粒径であって、粒径分布のシャープなトナーを容易に得ることができる。さらに、有機溶媒を除去する工程で強い攪拌を与えることで、真球状からラクビーボール状の間の形状を制御することができ、さらに、表面のモフォロジーも滑らかなものから梅干形状の間で制御することができる。
次に、実施形態1の現像装置4の現像ローラ42とドクタブレード45とについて、さらに説明する。
図29は、現像ローラ42の表面形状の説明図であり、図29(a)は、現像ローラ42全体の概略図であり、図29(b)は、図29(a)に示した現像ローラ42の表面の一部の拡大図である。図29(c)は、図29(b)中のL11またはL13で示す断面での現像ローラ42の表面層42f(図32参照)の断面図であり、図29(d)は、図29(b)中のL12またはL14で示す断面での現像ローラ42の表面層42fの断面図である。
図29は、現像ローラ42の表面形状の説明図であり、図29(a)は、現像ローラ42全体の概略図であり、図29(b)は、図29(a)に示した現像ローラ42の表面の一部の拡大図である。図29(c)は、図29(b)中のL11またはL13で示す断面での現像ローラ42の表面層42f(図32参照)の断面図であり、図29(d)は、図29(b)中のL12またはL14で示す断面での現像ローラ42の表面層42fの断面図である。
上述したように、実施形態1の現像装置4が備える現像ローラ42の表面上には、凸部の高さや凹部の深さ(W3)が一定で規則的なパターンからなる凹凸が形成されている。従来の一成分現像装置としては、現像ローラの表面にサウンドブラスト処理等の粗面処理を施して表面に凹凸形状を形成したものがある。このように、現像ローラの表面に粗面処理を施すことにより、現像ローラがトナーを担持し、搬送する性能を向上させていた。しかしながら、粗面処理によって現像ローラの表面上に形成される凹凸は、凸部の高さ、凹部の深さ及び凹凸のパターンが不規則となる。凹部のパターンや深さが不規則であると、現像ローラ表面上のトナー担持量が安定せず、感光体上の潜像を現像したときに濃度ムラとなることがあった。一方、実施形態1の現像装置4では、凹部の深さ(W3)が一定で、その形成パターンが規則的であるため、現像ローラ42表面上のトナー担持量が安定し、現像時の濃度ムラの発生を抑制することができる。
ここで、規則的な凹凸とはトナーの付着量が偏らずに、濃度ムラが抑えられている程度に凹凸が連続していれば良い。
また、例えば感光体2上の潜像に注目して、潜像が格子状に区画された領域に形成されたドット上潜像を有し、格子は軸方向において、複数種類のピッチで形成可能であり、奥部の軸方向におけるピッチが前記格子における複数種類のピッチのうち最長ピッチより短いものが連続しているようなものでも良い。
また、本発明は、現像ローラ42の表面上の凹凸形状が、規則的な凹凸以外のものでも効果は奏することが可能であるが、規則的な凹凸を有するものであれば、画像面から好ましい。
また、例えば感光体2上の潜像に注目して、潜像が格子状に区画された領域に形成されたドット上潜像を有し、格子は軸方向において、複数種類のピッチで形成可能であり、奥部の軸方向におけるピッチが前記格子における複数種類のピッチのうち最長ピッチより短いものが連続しているようなものでも良い。
また、本発明は、現像ローラ42の表面上の凹凸形状が、規則的な凹凸以外のものでも効果は奏することが可能であるが、規則的な凹凸を有するものであれば、画像面から好ましい。
ここで、ドクタ部において現像ローラ42の表面が下方から上方に移動する従来例の問題点について説明する。図41は、従来例の現像装置4の概略構成図であり、図42は、従来例の現像装置4における現像ローラ42とドクタブレード45とが対向するドクタ部の拡大説明図である。
図42において、矢印Bは現像ローラ42の回転方向であり、矢印Fgは現像ローラ42の凹部42b内のトナーの自重を示し、矢印Fbは撓んだ状態で現像ローラ42にと右折するドクタブレード45による応力を示す。また、図42中の矢印Fは、Fgで示す力とFbで示す力との合力を示している。
図41及び図42にしめすように、従来例の現像装置4では、図中矢印B方向が回転方向である現像ローラ42がドクタ部において下方から上方に移動する。このような場合には、現像ローラ42とドクタブレード45との当接位置で現像ローラ42が下から上へ移動することで、トナーTに働く自重によってトナーには下方向の力(Fg)が加わるため、ドクタブレード45の応力(Fb)によるトナーに対する圧縮力を増長させてしまう。これにより、現像ローラ42の凸部42aにおける現像ローラ42の表面移動方向下流側の部分(図中の42cの部分)にトナーが凝集し易くなり、現像ローラ42上にフィルミングが起き易くなる。フィルミングが発生すると、現像ローラ42上でのQ/M値(トナーの単位重量当りの帯電量)の減少やM/A値(現像ローラ表面上の単位面積当りのトナーの担持量)の減少が起きてしまう。
これに対して、実施形態1の現像装置4では、図1に示すように、現像ローラ42とドクタブレード45とが対向するドクタ部において、現像ローラ42の表面が上方から下方に移動する。図20は、実施形態1の現像装置4のドクタ部の拡大説明図である。
図20において、矢印B、矢印Fg、矢印Fb及び矢印Fは、図42で示した構成と同様に、それぞれ、現像ローラの回転方向、トナーの自重、ブレードの応力及びFgとFbとの合力を示している。
図20において、矢印B、矢印Fg、矢印Fb及び矢印Fは、図42で示した構成と同様に、それぞれ、現像ローラの回転方向、トナーの自重、ブレードの応力及びFgとFbとの合力を示している。
図1及び図20に示すように、実施形態1の現像装置4では、図中矢印B方向が回転方向である現像ローラ42がドクタ部において上方から下方に移動する。このような場合には、トナーTに働く自重によってトナーには下方向の力(Fg)が加わるため、ドクタブレード45の応力(Fb)によるトナーに対する圧縮力を減少させることが出来る。よって、現像ローラ42の凸部42aにおける現像ローラ42の表面移動方向下流側の部分(図20中の42cの部分)にトナーが凝集することを抑制できる。これにより、フィルミングの発生を抑制することができ、現像ローラ42上でのQ/M値やM/A値の変動を抑制することができる。
また、現像装置4で用いる現像剤であるトナーとして、加速凝集度が40[%]以下となるトナーを用いることで、現像ローラ42の凸部42aにおける現像ローラ42の表面移動方向下流側の部分(図20中の42cの部分)でのトナーの凝集をより緩和することが可能となる。なお、図20で示すドクタ部では、ドクタブレード45が現像ローラ42の表面に対して腹当て状態となっている。ドクタブレード45の現像ローラ42の表面に対する当接状態としては、図21に示すように、先端当て状態である方が、凸部42aの頂面に存在するトナーTをすり切ることができ、より好ましい。
図22に示すように、現像ローラ42の凸部42aと凹部42bとの成す角γが90[°]未満の場合は、凹部42bの全体に供給ローラ44が当接する確率が減少してしまう。また、図23のように、一部でも凸部42aと凹部42bとの成す角が90[°]未満の場合も、凹部42bの全体に供給ローラ44が当接する確率が減少してしまう。
これに対して、実施形態1の現像装置4が備える現像ローラ42は、図24に示すように、現像ローラ42の凸部42aと凹部42bとが成す角γが90[°]以上としている。図24に示すように、角γが90[°]以上の場合は、供給ローラ44が現像ローラ42上のトナーに当たる確率が増加するため、リセット性が向上する。
これに対して、実施形態1の現像装置4が備える現像ローラ42は、図24に示すように、現像ローラ42の凸部42aと凹部42bとが成す角γが90[°]以上としている。図24に示すように、角γが90[°]以上の場合は、供給ローラ44が現像ローラ42上のトナーに当たる確率が増加するため、リセット性が向上する。
図25は、凸部42aと凹部42bとが成す角γのうち、凸部42aにおける現像ローラ42の表面移動方向下流側の角γ(以下、「凸部下流角γ1」と呼ぶ)と、凸部42aにおける現像ローラ42の表面移動方向上流側の角γ(以下、「凸部上流角γ2」と呼ぶ)とが共に90[°]の構成の説明図である。
図25に示すように、ドクタブレード45の応力は図中矢印Fb方向に作用する。現像ローラ42が図中矢印Bで示す方向に表面移動するため、凹部42bに担持されたトナーTは、ドクタブレード45の応力によって図25中の矢印Faで示す方向の圧縮力が作用する。このため、凸部42aにおける現像ローラ42の表面移動方向下流側の壁面に接触するトナーが入れ替わらないと、特定のトナーに対して繰り替えし圧縮力が作用することとなり、トナーが凝集するおそれがある。
図25に示すように、ドクタブレード45の応力は図中矢印Fb方向に作用する。現像ローラ42が図中矢印Bで示す方向に表面移動するため、凹部42bに担持されたトナーTは、ドクタブレード45の応力によって図25中の矢印Faで示す方向の圧縮力が作用する。このため、凸部42aにおける現像ローラ42の表面移動方向下流側の壁面に接触するトナーが入れ替わらないと、特定のトナーに対して繰り替えし圧縮力が作用することとなり、トナーが凝集するおそれがある。
これに対して、実施形態1の現像装置4が備える現像ローラ42は、図26に示すように、凸部42aと凹部42bとが成す角γのうち、少なくとも凸部下流角γ1が鈍角となるように形成している。凸部下流角γ1が鈍角であることにより、凸部42aにおける現像ローラ42の表面移動方向下流側の壁面に接触するトナーに対して、供給ローラ44による掻き出しが行われ易くなり、トナーの入れ替わりを促すことができる。この壁面に接触するトナーが入れ替わることで、特定のトナーに対して繰り替えし圧縮力が作用することを防止し、トナーが凝集することを防止することができる。
なお、図26で示す現像ローラ42表面の拡大断面図では、ドクタブレード45が現像ローラ42の表面に対して腹当て状態となっている。ドクタブレード45の現像ローラ42の表面に対する当接状態としては、図27に示すように、先端当て状態である方が、凸部42aの頂面42tに存在するトナーTをすり切ることができ、より好ましい。
現像ローラ42の表面にひし形上の凸部42aを形成する構成において、図28に示すように、凸部42aのひし形状の頂面42tが有する二組の平行線のうちどちらか一方が現像ローラ42の表面移動方向と平行である場合には、凸部42aにおける現像ローラ42の表面移動方向下流側の部分(図28中の42cの部分)でトナーが圧縮されやすくなるため、フィルミングが増加する傾向にある。
これに対して、実施形態1の現像装置4が備える現像ローラ42は、図13(b)に示すように、凸部42aのひし形状の頂面42tが有する二組の平行線の何れもが、現像ローラ42の表面移動方向に対して角度がある形状である。凸部42aのひし形状の頂面42tが有する二組の平行線(凸部42aのひし形状の頂面42tの辺)と当接するドクタブレード45の摺擦方向とに角度があるため、凸部42aにおける現像ローラ42の表面移動方向下流側の部分(図13(b)中の42cの部分)でトナーが圧縮され難くなる。実施形態1の現像装置4では、凸部42aのひし形状の頂面42tの辺と現像ローラ42の表面移動方向とが成す角の角度は、45[°]となっている。
これに対して、実施形態1の現像装置4が備える現像ローラ42は、図13(b)に示すように、凸部42aのひし形状の頂面42tが有する二組の平行線の何れもが、現像ローラ42の表面移動方向に対して角度がある形状である。凸部42aのひし形状の頂面42tが有する二組の平行線(凸部42aのひし形状の頂面42tの辺)と当接するドクタブレード45の摺擦方向とに角度があるため、凸部42aにおける現像ローラ42の表面移動方向下流側の部分(図13(b)中の42cの部分)でトナーが圧縮され難くなる。実施形態1の現像装置4では、凸部42aのひし形状の頂面42tの辺と現像ローラ42の表面移動方向とが成す角の角度は、45[°]となっている。
実施形態1の現像装置4は、規制部材であるドクタブレード45(ブレード部材450)の材料が金属製である。
特許文献3や特許文献4に記載の現像装置では、一定の規則的な凹凸形状が形成された現像ローラに接触する規制部材としてゴム製のものを用いていた。しかしながら、ゴム製の規制部材を用いた構成では、製造時の組み付け公差や経時使用のブレードの削れによって、規制部材の突き出し量が変化すると、現像ローラ上のトナー量がばらつくことがあった。具体的には、現像ローラ上のトナーが極端に少なくなって、画像濃度が薄くなったり、逆に、現像ローラ上トナー量が多くなってしまい、帯電不良が発生して、画像の地肌部が汚れる地汚れが発生したりすることがあった。
これに対して、実施形態1の現像装置4のように、ドクタブレード45として、金属製のブレードを用いることにより、ドクタブレード45の突き出し量がある程度の範囲で変化しても、現像ローラ42上のトナー量を安定させることができる。
特許文献3や特許文献4に記載の現像装置では、一定の規則的な凹凸形状が形成された現像ローラに接触する規制部材としてゴム製のものを用いていた。しかしながら、ゴム製の規制部材を用いた構成では、製造時の組み付け公差や経時使用のブレードの削れによって、規制部材の突き出し量が変化すると、現像ローラ上のトナー量がばらつくことがあった。具体的には、現像ローラ上のトナーが極端に少なくなって、画像濃度が薄くなったり、逆に、現像ローラ上トナー量が多くなってしまい、帯電不良が発生して、画像の地肌部が汚れる地汚れが発生したりすることがあった。
これに対して、実施形態1の現像装置4のように、ドクタブレード45として、金属製のブレードを用いることにより、ドクタブレード45の突き出し量がある程度の範囲で変化しても、現像ローラ42上のトナー量を安定させることができる。
現像ローラ42としては、炭素鋼(STKM等)、Al(アルミニウム)、SUSなど、汎用的な材料を用いることができる。また、規制ブレードとしては、リン青銅(C5210)、銅(C1202)、ベリリウム銅(C1720)、ステンレス(SUS301、SUS304)などの材料を用いることができる。
〔実験1〕
次に、ドクタブレード45として、金属製のブレードを用いた場合と、ゴム製のブレードを用いた場合とについて、ドクタブレード45の突き出し量の変化に対する現像ローラ42上のトナー量の安定性を比較した実験1について説明する。
ここで、図30を用いてドクタブレード45の突き出し量を変化させる方法について説明する。
次に、ドクタブレード45として、金属製のブレードを用いた場合と、ゴム製のブレードを用いた場合とについて、ドクタブレード45の突き出し量の変化に対する現像ローラ42上のトナー量の安定性を比較した実験1について説明する。
ここで、図30を用いてドクタブレード45の突き出し量を変化させる方法について説明する。
まず、現像ローラ42に対して初期接触位置Q1でにおける接線方向(図30中の上下方向)にドクタブレード45が延在するように、ドクタブレード45をエッジ当ての状態で現像ローラ42に接触させる。ここで、エッジ当てとは、ドクタブレード45の対向面45bと先端面45aとの間の稜線を形成するエッジ部が現像ローラ42の表面(凸部42aの表面である頂面42t)に接触する状態である。ここで、エッジ部45eは、ドクタブレード45の対向面45bと、先端面45aとをそれぞれ延長させた二つの仮想平面が交差する仮想直線近傍を示す。そして、仮想直線近傍となる稜線を形成するエッジ部45eとしては、稜線が丸みを帯びていても良いし、面取りされていても良い。
具体的には平板状のドクタブレード45の自由端側の先端の現像ローラ42側の角部(エッジ部45e、丸みがあっても良いし、面取りされていても良い)が現像ローラ42の凸部42aに接触するようになっていれば良い。
具体的には平板状のドクタブレード45の自由端側の先端の現像ローラ42側の角部(エッジ部45e、丸みがあっても良いし、面取りされていても良い)が現像ローラ42の凸部42aに接触するようになっていれば良い。
また、エッジ当て方向としては、図1及び図21等に示すように、ドクタブレード45が固定されている部分(ブレードフォルダ45c)は、ドクタブレード45が現像ローラ42に接触している部分よりも現像ローラ42の回転方向下流側に位置している。つまり、自由端の先端が現像ローラ42の回転に対して突き当たるように構成されている。
ここで、ドクタブレード45を接触させる方法としては、平板状のブレード部材を折り曲げて、その曲げ部分を接触させる方法もあるが、トナーをすりきる効果については上述のようにブレード部材の自由端側の先端を接触させる方法のほうが、効果が高く望ましい。ドクタブレード45は現像ローラ42の表面移動方向下流側から突出して、エッジ当てとされる。
ここで、ドクタブレード45を接触させる方法としては、平板状のブレード部材を折り曲げて、その曲げ部分を接触させる方法もあるが、トナーをすりきる効果については上述のようにブレード部材の自由端側の先端を接触させる方法のほうが、効果が高く望ましい。ドクタブレード45は現像ローラ42の表面移動方向下流側から突出して、エッジ当てとされる。
次に、ドクタブレード45の根元を支持するブレードフォルダ45c(台座部452)を初期接触位置Q1における現像ローラ42の法線方向(図30(a)中の矢印X方向)に沿って現像ローラ42側に移動させる。これにより、図30(b)に示すように、ドクタブレード45における現像ローラ42に対して接触する位置が根元側に移動しつつ、ドクタブレード45が撓み、ドクタブレード45が、腹当てで撓んだ状態で接触する。ここで、腹当てとは、ドクタブレード45における現像ローラ42と対向する対向面45bが接触し、且つ、エッジ部が接触していない状態である。また、このときの現像ローラ42の表面上におけるドクタブレード45の接触位置Qは、初期接触位置Q1から図30中の上方に変異する。
図30(b)に示す状態からブレードフォルダ45cを初期接触位置Q1における法線方向に対して直行する方向(図30中の上下方向)に沿って現像ローラ42から離れる方向(図30中の矢印Z方向)に移動させると、突き出し量が徐々に少なくる。そして、図30(c)に示すように、ドクタブレード45が撓んだままの状態でエッジ当ての状態となる。図30(c)に示す状態からさらに突き出し量が徐々に少なくするようにZ方向にブレードフォルダ45cを移動させると、ドクタブレード45が現像ローラ42から離間するまでは、ドクタブレード45の撓み量が小さくなりつつ、エッジ当ての状態は維持される。
ドクタブレード45が、金属製(りん青銅)の金属ブレードである場合と、ウレタンゴム製のゴムブレードである場合とについて、図30を用いて説明した突き出し量を変化させる方法によって突き出し量を変化させたときの、現像ローラ42上トナー搬送量の変化を測定した実験結果を図31に示す。
図31に示すグラフでは、ドクタブレード45が腹当ての状態からエッジ当ての状態となった、図30(c)に示す状態におけるドクタブレード45の位置をゼロとした。そして、このゼロの位置よりもブレードフォルダ45cを図30中の矢印Z方向に移動させたときの変位を−(マイナス)とし、図30中の矢印Z方向とは逆方向に移動させたときの変位を+(プラス)として示している。すなわち、図31中の図中右側ほど突き出し量が多い条件となる。
図31中の破線で示すグラフは、ゴムブレードを用いた場合の実験結果であり、実線で示すグラフは、金属ブレードを用いた場合の実験結果である。
図31中の破線で示すグラフは、ゴムブレードを用いた場合の実験結果であり、実線で示すグラフは、金属ブレードを用いた場合の実験結果である。
図31に示すように、ドクタブレード45の位置が、+(プラス)方向にあるときには、金属ブレード、ゴムブレード共に位置がプラスに大きくなるにつれて、トナー搬送量が増加する。
これに対して、ドクタブレード45の位置が、−(マイナス)方向にあるときには、金属ブレードの場合(実線)は、図31に示すように安定した搬送量を示す領域がある。一方、従来の現像装置で用いられていたゴムブレードの場合(破線)、−(マイナス)方向の位置のときは、現像ローラ42上にほとんどトナーが搬送されなかった。
これに対して、ドクタブレード45の位置が、−(マイナス)方向にあるときには、金属ブレードの場合(実線)は、図31に示すように安定した搬送量を示す領域がある。一方、従来の現像装置で用いられていたゴムブレードの場合(破線)、−(マイナス)方向の位置のときは、現像ローラ42上にほとんどトナーが搬送されなかった。
図31を用いて説明した実験1によって、表面に規則的な凹凸形状を有する現像ローラ42に対する突き出し量について、ゴム製よりも金属製のドクタブレード45の方が現像ローラ42上のトナー量が所望量となる突き出し量の範囲が広いことがわかった。
よって、本発明のようにドクタブレード45として金属製のブレードを用いることにより、ドクタブレード45の取り付け時の、図30中のZ方向の設計公差の余裕度が上がるため、組み付け性が向上する。さらに、メカ公差の余裕度が上がり、部品を低コスト化できる。
よって、本発明のようにドクタブレード45として金属製のブレードを用いることにより、ドクタブレード45の取り付け時の、図30中のZ方向の設計公差の余裕度が上がるため、組み付け性が向上する。さらに、メカ公差の余裕度が上がり、部品を低コスト化できる。
図32は、エッジ当ての状態におけるドクタブレード45と現像ローラ42との接触位置Qの拡大説明図である。
図31を用いて説明したように、ドクタブレード45として金属ブレードを用いた場合に、トナー量が安定する領域が得られるのは、ドクタブレード45の先端であるエッジ部45eが現像ローラ42に接触するためである。具体的には図32に示すように、エッジ部45eが当たる場合は、トナーTがドクタブレード45によりすり切られるように薄層化するため、現像ローラ42の規則的な凹凸形状の凹部42bに埋まったトナーTのみが搬送されることとなる。このため、現像ローラ42表面のトナー量を凹部42bの体積に応じた所望量とすることができ、現像ローラ42によるトナーの搬送量を安定させることができる。また、金属ブレードであれば、ある程度の剛性を有しているため、その弾性によって現像ローラ42の凹部42bに食い込んで、凹部42b内のトナーを掻き出す可能性がゴムのような樹脂のものよりも低く、現像ローラ42によるトナーの搬送量を安定させることができる。
図31を用いて説明したように、ドクタブレード45として金属ブレードを用いた場合に、トナー量が安定する領域が得られるのは、ドクタブレード45の先端であるエッジ部45eが現像ローラ42に接触するためである。具体的には図32に示すように、エッジ部45eが当たる場合は、トナーTがドクタブレード45によりすり切られるように薄層化するため、現像ローラ42の規則的な凹凸形状の凹部42bに埋まったトナーTのみが搬送されることとなる。このため、現像ローラ42表面のトナー量を凹部42bの体積に応じた所望量とすることができ、現像ローラ42によるトナーの搬送量を安定させることができる。また、金属ブレードであれば、ある程度の剛性を有しているため、その弾性によって現像ローラ42の凹部42bに食い込んで、凹部42b内のトナーを掻き出す可能性がゴムのような樹脂のものよりも低く、現像ローラ42によるトナーの搬送量を安定させることができる。
〔実験2〕
次に、ドクタブレード45に金属ブレードを用いて、図30中の初期接触位置Q1における法線方向の移動距離X1の値を変化させたときのエッジ当てを維持できるドクタブレード45の位置の範囲を測定した実験2について説明する。
次に、ドクタブレード45に金属ブレードを用いて、図30中の初期接触位置Q1における法線方向の移動距離X1の値を変化させたときのエッジ当てを維持できるドクタブレード45の位置の範囲を測定した実験2について説明する。
図33は、実験2の実験結果を示すグラフである。
図33のグラフでは、ドクタブレード45が接触位置Qにおいて、現像ローラ42表面の接線方向にあるときのドクタブレード45の位置をゼロとして、図30(a)から図30(b)へのブレードフォルダ45cの移動距離X1の値を横軸としている。また、図33のグラフでは、図30(b)に示す状態からブレードフォルダ45cを図中矢印Z方向に移動させ、図30(c)の状態になったときを縦軸のゼロとしている。そして、図30(c)に示す状態からさらにブレードフォルダ45cを図中矢印Z方向に移動させ、ドクタブレード45が現像ローラ42の表面から離間するまでの図中Z方向のブレードフォルダ45cの移動距離を縦軸としている。
図33のグラフでは、ドクタブレード45が接触位置Qにおいて、現像ローラ42表面の接線方向にあるときのドクタブレード45の位置をゼロとして、図30(a)から図30(b)へのブレードフォルダ45cの移動距離X1の値を横軸としている。また、図33のグラフでは、図30(b)に示す状態からブレードフォルダ45cを図中矢印Z方向に移動させ、図30(c)の状態になったときを縦軸のゼロとしている。そして、図30(c)に示す状態からさらにブレードフォルダ45cを図中矢印Z方向に移動させ、ドクタブレード45が現像ローラ42の表面から離間するまでの図中Z方向のブレードフォルダ45cの移動距離を縦軸としている。
図33に示すグラフより、移動距離X1がゼロ以上のときは、初期接触位置Q1における現像ローラ42表面の法線方向の移動距離X1が大きいほど、ドクタブレード45がエッジ当てを維持することができる範囲を広げることができる。移動距離X1がゼロ以上のときはドクタブレード45は、現像ローラ42との接触によって撓んだ状態となるように配置される。このように配置されることにより、ドクタブレード45の取り付けに際し、図30中の上下方向の設計公差の余裕度が上がるため、組み付け性が向上する。さらに、メカ公差の余裕度が上がり、部品を低コスト化できる。
〔実験3〕
次に、ドクタブレード45に用いる金属ブレードとして、その材料がりん青銅である場合と、ステンレス(SUS)である場合とで、スジ画像の発生の有無を確認した。本実験においては、現像ローラ42表層(表面層42f)のビッカース硬度をりん青銅よりも大きく、ステンレスよりも小さく設定している。具体的には表面層がアルミニウムで形成されている現像ローラ42を使用した。なお、ビッカース硬度の測定方法としては、JIS Z 2244に規定の方法を用いることができる。
本実験で用いたりん青銅のビッカース硬度は80[Hv]である。ドクタブレード45としてこれよりも低い硬度の金属ブレードを用いれば、本実験のりん青銅を用いたドクタブレード45と同様に固着を抑制する効果があると考えられる。また、硬度に関しては、本実験ではビッカース硬度を採用しているが、材質、形状に応じて、ブリネル硬度、ロックウェル硬度を計測する方法で比較しても良い。
次に、ドクタブレード45に用いる金属ブレードとして、その材料がりん青銅である場合と、ステンレス(SUS)である場合とで、スジ画像の発生の有無を確認した。本実験においては、現像ローラ42表層(表面層42f)のビッカース硬度をりん青銅よりも大きく、ステンレスよりも小さく設定している。具体的には表面層がアルミニウムで形成されている現像ローラ42を使用した。なお、ビッカース硬度の測定方法としては、JIS Z 2244に規定の方法を用いることができる。
本実験で用いたりん青銅のビッカース硬度は80[Hv]である。ドクタブレード45としてこれよりも低い硬度の金属ブレードを用いれば、本実験のりん青銅を用いたドクタブレード45と同様に固着を抑制する効果があると考えられる。また、硬度に関しては、本実験ではビッカース硬度を採用しているが、材質、形状に応じて、ブリネル硬度、ロックウェル硬度を計測する方法で比較しても良い。
実験3では、それぞれの材料からなるドクタブレード45を図30(c)に示す状態で配置し、実施形態1の複写機500を用いてベタ画像の画像形成を行ってスジ画像の発生の有無を確認した。実験3の結果、金属ブレードの材料としてりん青銅を用いた場合はスジ画像が発生せず、SUSを用いた場合はスジ画像が発生した。
ここで、実験3で用いたドクタブレード45を確認したところ、スジ画像が発生したSUS製のドクタブレード45にはトナーが固着しており、スジ画像が発生しなかった、りん青銅製のドクタブレード45にはトナー固着がほとんど確認されなかった。
ここで、実験3で用いたドクタブレード45を確認したところ、スジ画像が発生したSUS製のドクタブレード45にはトナーが固着しており、スジ画像が発生しなかった、りん青銅製のドクタブレード45にはトナー固着がほとんど確認されなかった。
図34は、実験3で用いた各材料のドクタブレード45について、現像ローラ42の回転時間に対するドクタブレード45の削れ量を測定した結果を示すグラフである。図34中の破線で示すグラフはSUS製のブレードを用いた場合の削れ量を示し、実線で示すグラフはりん青銅製のブレードを用いた場合の削れ量である。
図34より、りん青銅はSUSに比べて削れ易いことがわかる。
りん青銅製のドクタブレード45を用いた場合、トナーが軽度に固着を起こしても、そのトナーの固着が成長する前に、現像ローラ42との摺擦によってドクタブレード45ごと固着したトナーが削られるため、固着が成長せず、画像上問題になるスジが発生しないものと考えられる。
図34より、りん青銅はSUSに比べて削れ易いことがわかる。
りん青銅製のドクタブレード45を用いた場合、トナーが軽度に固着を起こしても、そのトナーの固着が成長する前に、現像ローラ42との摺擦によってドクタブレード45ごと固着したトナーが削られるため、固着が成長せず、画像上問題になるスジが発生しないものと考えられる。
現像ローラ42の表層部分(表面層42f)の硬度がドクタブレード45の当接部分の硬度よりも硬く設定されていると、ドクタブレード45を削る作用が生じ、上述したように固着を解消し易くなると言う効果が生じる。
ここで、現像ローラ42の表層の硬度を高くするためにニッケル鍍金等を施しても良い。また、現像ローラ42の表層の硬度を高くした場合においても、ステンレスよりも、りん青銅のほうが削れ易いため、トナー固着に対してはりん青銅を利用することがより望ましいと考えられる。また、りん青銅よりも低い硬度(ビッカース硬度80[Hv]以下)の金属であれば固着を抑制する効果があると考えられる。
ここで、現像ローラ42の表層の硬度を高くするためにニッケル鍍金等を施しても良い。また、現像ローラ42の表層の硬度を高くした場合においても、ステンレスよりも、りん青銅のほうが削れ易いため、トナー固着に対してはりん青銅を利用することがより望ましいと考えられる。また、りん青銅よりも低い硬度(ビッカース硬度80[Hv]以下)の金属であれば固着を抑制する効果があると考えられる。
実験3について説明したように、実施形態1の現像装置4でスジ画像の発生を防止する構成として、現像ローラ42との摺擦によってドクタブレード45ごと軽度の固着状態のトナーが削られる構成であるため、ドクタブレード45の幅方向全域で削られる必要がある。
実施形態1の現像ローラ42は、感光体2に供給するトナーを担持する表面である溝形成部420aの表面上における幅方向(表面移動方向に直行する方向)についての何れの位置においても、現像ローラ42の表面移動方向一周分の間に、凸部42aの高さ方向についての最上部となる表面である頂面42tが一箇所以上存在する。
実施形態1の現像ローラ42は、感光体2に供給するトナーを担持する表面である溝形成部420aの表面上における幅方向(表面移動方向に直行する方向)についての何れの位置においても、現像ローラ42の表面移動方向一周分の間に、凸部42aの高さ方向についての最上部となる表面である頂面42tが一箇所以上存在する。
このような条件を満たす構成として、現像ローラ42のある位置(L11の位置等)における表面上の凹凸形状は、幅方向に凸部42aと凹部42bとが周期的な列状に配置され、この位置に対して表面移動方向について隣り合う位置(L12の位置等)の凹凸形状は、規則的な列状の配置が半周期分ずれた配置である(図29参照)。言い換えると、列L11及び列L13に対して、回転方向について隣り合うL12及びL14の列は、幅方向の凹凸の周期を半周期分シフトさせた形状となっている。さらに、頂面42tの軸方向長さW2はピッチ幅W1の1/2以上の大きさとなるように形成している。このような形状を現像ローラ42の回転方向に繰り返すような表面形状となっている。
このような構成により、ドクタブレード45において、現像ローラ42のL11の位置が接触したときに、頂面42tが接触しなかった個所は、L12の位置が接触するときに頂面42tが接触する。このような構成により、現像ローラ42が一周する間に、ドクタブレード45の幅方向についての全域に渡って一度は現像ローラ42の頂面42tを接触させる構成を実現できる。このように、ドクタブレード45の幅方向の位置が何れの位置においても、現像ローラ42が一周する間に頂面42tが接触することとなり、効率よくドクタブレード45を削る事が可能となり、トナー固着に起因するスジ画像の発生をより確実に防止することができる。
現像ローラ42の表面を感光体2に接触させて現像を行な構成では、現像ローラ42と感光体2とが共に、弾性が無いため、現像ローラ42や感光体2の精度により、感光体2と現像ローラ42が接触しない部分が発生する。その場合、感光体2と現像ローラ42が接触していない部分だけトナーが現像せず、画像欠損が起こる。これを防止するために、実施形態1の現像装置4では、感光体2に対して現像ローラ42がギャップを形成するように配置し、現像バイアス電源142によって、現像ローラ42に直流バイアスに交流バイアスを重畳させた電圧を印加するしている。これにより、トナーTを現像ローラ42から感光体2にジャンピングさせて潜像を現像する構成とし、現像ローラ42の感光体2に対する位置の精度に関わらず、画像欠損を防止することができる。
また、実施形態1における画像形成装置である複写機500としては、現像装置4の駆動状況に応じて予め設定された寿命を迎えた現像装置4の交換を使用者に報知する報知システムを備えてもよい。
図35は、現像装置4の交換を報知する報知システムのフローチャートである。また、図36は、交換時期が近づいた現像装置4が備えるドクタブレード45と現像ローラ42との拡大説明図である。
図35は、現像装置4の交換を報知する報知システムのフローチャートである。また、図36は、交換時期が近づいた現像装置4が備えるドクタブレード45と現像ローラ42との拡大説明図である。
図35に示すように、現像装置4の駆動時間をカウントし(S1)、予め定められた駆動時間を迎えたと判断されると(S1でY)、現像装置4は寿命が来たものとして、使用者に対し交換または、当該現像装置に寿命が来たことをランプ、若しくは液晶画面等の報知機器を介して報知する(S3)ものである。ここで、寿命と判断するパラメータに関しては、現像ローラ42の駆動時間、通紙枚数、現像装置への通電時間等が考えられる。
図36に示すように、実施形態1の現像装置4が備える現像ローラ42にエッジ当てされているドクタブレード45は現像ローラ42によって当接部分(図36中の破線「45d」で示す部分)が削られてゆく。ここで、ドクタブレード45の厚さに関して、寿命による交換報知が行われたときに先端面45aが残っているように設定されていることが望ましい。つまり、寿命と判断するためのパラメータが寿命時期に達しても先端面45aが残っていられるようにパラメータに対して余裕を持って厚みが設定されている。削られることで先端面45aがなくなってしまうと、それ以降はドクタブレード45と現像ローラ42との接触位置が変化してしまうおそれがある。また、鋭角になったドクタブレード45の先端が現像ローラ42に食い込むおそれもある。そのため、ドクタブレード45の先端面45aが残っている状態で交換することが望ましい。
実施形態1の現像装置4は、非磁性または磁性の一成分の現像剤であるトナーTを表面上に担持して表面が無端移動し、潜像担持体である感光体2と対向する現像領域αで感光体2の表面の潜像にトナーTを供給して現像する現像剤担持体である現像ローラ42を有する。また、現像装置4は、一端が支持部材であるブレードフォルダ45cによって支持された板状部材であって、その自由端側が現像ローラ42の表面に接触し、現像領域αに向かうトナーTの量を規制する規制部材であるドクタブレード45を有する。さらに、現像装置4は、現像ローラ42の表面に凹凸形状である凹部42b及び凸部42aを備えている。このような現像装置4において、規制部材であるドクタブレード45の材質が金属製であり、その自由端側の先端部であるエッジ部45eが現像ローラ42の表面に接触している。
また、現像装置4としては、材質が金属製のドクタブレード45の現像ローラ42に接触する部分の材質は、現像ローラ42の表面の材質よりも硬度が低い材質であることが望ましい。
また、現像装置4としては、材質が金属製のドクタブレード45の現像ローラ42に接触する部分の材質は、現像ローラ42の表面の材質よりも硬度が低い材質であることが望ましい。
〔実施形態2〕
以下、本発明を画像形成装置としてのプリンタ(以下、プリンタ600という)に適用した、本発明の二つ目の実施形態(以下、実施形態2という)について説明する。
図37は、実施形態2のプリンタ600の要部の概略断面図である。図37に示すように、プリンタ600は、4つのプロセスユニットとしてのプロセスカートリッジ1、複数の張架ローラに張架されて図37中の矢印A方向に移動する中間転写体としての中間転写ベルト7、露光手段としての露光装置6、及び、定着手段としての定着装置12等を備えている。
以下、本発明を画像形成装置としてのプリンタ(以下、プリンタ600という)に適用した、本発明の二つ目の実施形態(以下、実施形態2という)について説明する。
図37は、実施形態2のプリンタ600の要部の概略断面図である。図37に示すように、プリンタ600は、4つのプロセスユニットとしてのプロセスカートリッジ1、複数の張架ローラに張架されて図37中の矢印A方向に移動する中間転写体としての中間転写ベルト7、露光手段としての露光装置6、及び、定着手段としての定着装置12等を備えている。
各プロセスカートリッジ1は、潜像担持体としてのドラム状の感光体2と、帯電手段としての帯電部材3と、現像剤としてのトナーTを用いて感光体2上の潜像を現像する現像装置4と、感光体クリーニング装置5とを一体的に支持してユニット状とした構成となっている。各プロセスカートリッジ1は、それぞれの不図示のストッパーを解除することにより、プリンタ600本体に対して着脱可能となっている。
感光体2は、図中の矢印で示すように、図中の時計周り方向に回転する。帯電部材3は、ローラ状の帯電ローラであり、感光体2の表面に圧接されており、感光体2の回転により従動回転する。作像時には、帯電部材3には図示しない高圧電源により所定のバイアスが印加され、感光体2の表面を帯電する。実施形態2のプロセスカートリッジ1は、帯電手段として、感光体2の表面に接触するローラ状の帯電部材3を用いているが、帯電手段としてはこれに限るものではなく、コロナ帯電などの非接触帯電方式を用いてもよい。
露光装置6は、感光体2の表面に対して画像情報に基づいて露光し、感光体2の表面に静電潜像を形成する。プリンタ600が備える露光装置6は、レーザーダイオードを用いたレーザービームスキャナ方式を用いているが、露光手段としてはLEDアレイを用いるものなど他の構成でも良い。
感光体クリーニング装置5は、中間転写ベルト7と対向する位置を通過した感光体2の表面上に残留する転写残トナーのクリーニングを行う。
四つのプロセスカートリッジ1は、それぞれイエロー、シアン、マゼンタ、ブラックの各色ごとのトナー像を感光体2上に形成する。四つのプロセスカートリッジ1は、中間転写ベルト7の表面移動方向に並列に配設され、それぞれの感光体2上に形成されたトナー像を中間転写ベルト7に順に重ね合わせるように転写し、中間転写ベルト7上に可視像を形成する。
図37において、各感光体2に対して中間転写ベルト7を挟んで対向する位置には一次転写手段としての一次転写ローラ8が配置されており、一次転写ローラ8には不図示の高圧電源により一次転写バイアスが印加され、感光体2との間で一次転写電界を形成する。感光体2と一次転写ローラ8との間で一次転写電界が形成されることにより、感光体2の表面上に形成されたトナー像が中間転写ベルト7の表面に転写される。中間転写ベルト7を張架する複数の張架ローラのうちの一つが不図示の駆動モータによって回転することによって中間転写ベルト7が図中の矢印A方向に表面移動する。表面移動する中間転写ベルト7の表面上に各色のトナー像が順次重ねて転写されることによって、中間転写ベルト7の表面上にフルカラー画像が形成される。
4つのプロセスカートリッジ1が中間転写ベルト7と対向する位置に対して、中間転写ベルト7の表面移動方向下流側には、張架ローラの一つである二次転写対向ローラ9aに対して中間転写ベルト7を挟んで対向する位置に二次転写ローラ9が配置され、中間転写ベルト7との間で二次転写ニップを形成する。二次転写ローラ9と二次転写対向ローラ9aとの間に所定の電圧を印加して二次転写電界を形成することにより、図37中の矢印B方向に搬送される転写材である転写紙Pが二次転写ニップを通過する際に、中間転写ベルト7の表面上に形成されたフルカラー画像が転写紙Pに転写される。
二次転写ニップに対して転写紙Pの搬送方向下流側に、定着装置12が配置されている。二次転写ニップを通過した転写紙Pは定着装置12に到達し、定着装置12における加熱及び加圧によって転写紙P上に転写されたフルカラー画像が定着され、画像が定着された転写紙Pはプリンタ600の装置外に出力される。
一方、二次転写ニップで転写紙Pに転写されず中間転写ベルト7の表面上に残留したトナーTは、転写ベルトクリーニング装置11によって回収される。
次に、図38〜図40を用いて、プロセスカートリッジ1が備える現像装置4について説明する。図38及び図39は、四つのプロセスカートリッジ1のうちの一つの拡大断面図であり、図38は現像ローラ42の軸方向中央部近傍の断面図であり、図39は、軸方向端部近傍のサイドシール59が配置された位置における断面図である。また、図40は、現像装置4において、鉛直方向に略直線状に配置された、トナーTを搬送するトナー搬送部材106、トナー撹拌部材108及び供給ローラ44の回転軸近傍の断面説明図である。
現像装置4は、現像剤であるトナーTを収容するトナー収容室101と、トナー収容室101の下方に設けられたトナー供給室102とから構成され、トナー収容室101とトナー供給室102とを仕切るように仕切り部材110が設けられている。仕切り部材110には、図40に示すように、複数の開口部が設けられている。この仕切り部材110の複数の開口部として、トナー収容室101内のトナーTをトナー供給室102へ供給する供給口111と、トナー供給室102内のトナーTをトナー収容室101に戻す返送口107とが設けられている。
トナー供給室102の下部には、現像剤担持体である現像ローラ42が設けられている。また、トナー供給室102には、現像ローラ42の表面にトナーTを供給する現像剤供給部材である供給ローラ44が現像ローラ42の表面に当接するように設けられている。さらに、トナー供給室102には、供給ローラ44によって現像ローラ42の表面上に供給され、感光体2と現像ローラ42との対向部に向かうトナーTの量(層厚)を規制する規制部材としてのドクタブレード45が現像ローラ42の表面に当接して設けられている。
現像ローラ42は、感光体2に対して非接触で配置されており、図示しない高圧電源から所定のバイアスが印加される。
トナー収容室101内にはトナー収容室101内のトナーTを感光体2の回転軸に平行な方向(図38中の紙面に直交する方向)に搬送するトナー搬送部材106が設けられている。
また、トナー収容室101に収容するトナーTは、重合法で作成したものを用いている。このトナーTは、例えば、平均粒径が6.5[μm]で、円形度が0.98、安息角33[°]、外添剤としてチタン酸ストロンチウムを含有しているトナーTである。なお、実施形態2のプリンタ600に用いるトナーTとしては、これに限るものではない。
トナー収容室101内に設けられたトナー搬送部材106は、図40に示すように搬送スクリュ形状部106aと搬送板形状部106bとを組み合わせた回転軸を有した部材である。トナー搬送部材106は、搬送スクリュ形状部106aの回転動作によりトナー収容室101内のトナーTをトナー搬送部材106の回転軸に平行な略水平方向(図40中の矢印H方向)に搬送できる構成となっている。現像装置4では、トナー搬送部材106の回転軸に平行な方向にトナーTを搬送する搬送スクリュ形状部106aを備えた構成であるが、現像剤搬送部材としてはこれに限ったものでなく、搬送ベルトやコイル状の回転体等の搬送機能を有するものを用いることができる。さらにこれらの搬送機能を有するものと、羽根のような板部材や針金を曲げて構成したパドルのようなもの等のほぐし機能を有するものを組み合わせたものでも良い。
また、実施形態2の現像装置4では、トナー収容室101から供給ローラ44に向けて、トナーTをトナー搬送部材106の回転軸に直交し、且つ、略鉛直下方にトナーTを搬送する構成となっている。トナーTの搬送方向としては、トナー搬送部材106の回転軸に直交し、且つ、略水平方向に搬送する構成としてもよい。
仕切り部材110の鉛直下方のトナー供給室102内にはトナー撹拌部材108が配置されている。トナー撹拌部材108は、図40に示すように撹拌スクリュ形状部108aと撹拌板形状部108bとを組み合わせた回転軸を有した部材である。トナー撹拌部材108は、撹拌スクリュ形状部108aの回転動作によりトナー供給室102内のトナーTをトナー撹拌部材108の回転軸に平行な略水平方向(図40中の矢印IまたはJ方向)に搬送できる構成となっている。
図40に示すように、トナー撹拌部材108の撹拌スクリュ形状部108aは、軸方向について供給口111を挟んで外側に向かう方向(図40中の矢印I方向)にトナーTを搬送するように螺旋状の羽部が設けられている。さらに、トナー撹拌部材108の撹拌スクリュ形状部108aは、軸方向について二つの返送口107よりも外側と内側とは螺旋状の羽部が逆巻きになっている。このため、供給口111からトナー供給室102に供給されたトナーTはトナー撹拌部材108の撹拌スクリュ形状部108aの回転によって軸方向外側(矢印I方向)に搬送され、返送口107よりも外側に到達したトナーTは羽部が逆巻きの撹拌スクリュ形状部108aによって返送口107に向かって(矢印J方向に)搬送される。返送口107を挟んで軸方向の外側と内側とでは、撹拌スクリュ形状部108aによるトナーTの搬送方向が逆であり、返送口107に向かうようにトナーTに搬送力を付与するため、返送口107の下方ではトナーTが軸方向両側から集められ、山状に押し上げられる。これにより、トナー収容室101から供給口111または返送口107を通過してトナー供給室102に供給されたトナーTが過剰である場合は、返送口107で山状に押し上げられたトナーTがトナー供給室102から返送口107を通ってトナー収容室101に戻される。また、トナー撹拌部材108は、トナー供給室102にあるトナーTを攪拌し、さらに下部にある供給ローラ44や現像ローラ42にトナーTを供給する役割を持つ。
供給ローラ44の表面には空孔(セル)を有した構造の発泡材料が被覆されており、トナー供給室102内に供給されたトナーTを効率よく付着させて取り込むと共に、現像ローラ42との当接部での圧力集中によるトナーTの劣化を防止している。なお、この発泡材料は103〜1014[Ω]の電気抵抗値に設定される。供給ローラ44には、供給バイアスが印加され、現像ローラ42との当接部ある供給ニップβで予備帯電されたトナーTを現像ローラ42に押し付ける作用を補助する。供給ローラ44は図38中の矢印で示すように図38中の反時計回りの方向に回転し、表面に付着させたトナーTを現像ローラ42の表面に塗布するように供給する。
供給ニップβに対して現像ローラ42の表面移動方向下流側の現像ローラ42の表面に接触するように、規制部材であるドクタブレード45が配置されている。供給ローラ44から現像ローラ42の表面に供給されたトナーTは、現像ローラ42の回転によってドクタブレード45が接触する位置に搬送される。
ドクタブレード45としては、SUS304CSPやSUS301CSPまたはリン青銅等の金属板バネ材料を用いることができ、その自由端側を現像ローラ42の表面に10〜100[N/m]の押圧力で当接させたもので、現像ローラ42上のトナーTに対してその押圧力下を通過させることで、トナー層を薄層化すると共に、摩擦帯電によってトナーTに電荷を付与する。また、ドクタブレード45には、トナーTの摩擦帯電を補助するために、図示しないバイアス電源によりバイアスが印加される。
感光体2は現像ローラ42と非接触であり、図38中の時計回りの方向に回転している。このため、現像ローラ42と感光体2とが対向する現像領域αにおいては、現像ローラ42の表面移動方向と感光体2の表面移動方向とが同方向となる。
現像ローラ42上の薄層化されたトナー層は、現像ローラ42の回転によって現像領域αへ搬送され、現像ローラ42に印加されたバイアスと感光体2上の静電潜像によって形成される潜像電界に応じて、感光体2の表面に移動して感光体2の表面上の静電潜像が現像される。
現像領域αで現像に用いられず、現像ローラ42上に残されたトナーTが再びトナー供給室102内へと戻る箇所には、現像剤除電部材である下シール部材としての除電シール109が現像ローラ42に当接して設けられ、トナーTが現像装置4の外部に漏れ出ないように封止される。除電シール109には、除電能力を補助するため図示しないバイアス電源よりバイアスが印加される。
上述した現像装置4において、現像ローラ42上のトナーTを用いた感光体2上の潜像の現像は、次のように行われる。供給ニップβで現像ローラ42の表面上に供給されたトナーTは、現像ローラ42の回転に伴って、供給ニップβから現像領域αに向けて搬送され、その途中にあるドクタブレード45を通過し、所定量に規制される。所定量に規制されたトナーTは、さらに、現像領域αまで搬送され、現像ローラ42と感光体2上の静電潜像との間の現像電界によって、感光体2の表面上の静電潜像部分に付着し、これにより現像が行われる。現像電界には、トナーが感光体2の方向に向かう電圧と現像ローラ42に戻ってくる電圧が交互に繰り返されるようなACバイアスをもちいる。実施形態2では、f=500〜10000[Hz]、Vpp=500〜3000[V]、Duty=50〜90[%]の矩形波を用いた。その後、現像に寄与しなかったトナーTは、現像ローラ42の回転によってさらに搬送され、トナーTが再びトナー供給室102に戻り、繰り返し利用される。
実施形態2の現像装置4においても、上述した実施形態1で説明した現像ローラ42、及び、ドクタブレード45についての本発明の特徴部を備えた構成を適用することが出来る。
以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
〔態様A〕
トナーT等の非磁性または磁性の一成分の現像剤を表面上に担持して表面移動し、感光体2等の潜像担持体と対向する現像領域α等の現像領域で潜像担持体の表面の潜像に現像剤を供給して現像する現像ローラ42等の現像剤担持体と、現像剤担持体の表面に供給する現像剤を収容するトナー収容部43等の現像剤収容部と、表面移動することにより、現像剤収容部内の現像剤を現像剤担持体に対向する領域に搬送し、現像剤担持体の表面に現像剤を供給する供給ローラ44等の現像剤供給部材と、を有し、現像剤担持体の表面に凸部42a及び凹部42b等の凹凸形状を備え、現像領域を通過した現像剤が、現像剤供給部材によって回収される現像装置4等の現像装置において、供給ニップβ等の、現像剤担持体と現像剤供給部材とが対向する領域では、現像剤担持体の表面移動方向と現像剤供給部材の表面移動方向とが逆方向である。これによれば、上記実施形態について説明したように、現像ローラ42等の現像剤担持体と供給ローラ44等の現像剤供給部材とが、供給ニップβ等の当接部での線速差が大きくなる。これにより、現像剤担持体と現像剤供給部材とが対向する領域での現像剤供給部材による現像剤担持体表面上の現像剤の回収性能の向上を図ることができる。よって、現像剤が現像剤担持体に担持されたままとなることを抑制し、現像剤担持体の表面に現像剤が固着することを抑制できる。このため、現像剤担持体の表面に現像剤が固着することに起因する現像時の濃度ムラの発生を抑制することが出来る。
〔態様B〕
〔態様A〕において、トナーT等の現像剤の加速凝集度が40[%]以下である。これによれば、上記実施形態について説明したように、加速凝集度が40[%]以下の現像剤を用いることで、トナーの凝集を抑制でき、現像剤担持体の表面に現像剤が固着することをさらに抑制できる。
〔態様C〕
〔態様A〕または〔態様B〕において、供給ローラ44等の現像剤供給部材の表面層は、表面に多数の微細孔が分散しているスポンジ層である。これによれば、上記実施形態について説明したように、凹部の底まで現像剤供給部材が届きやすくなるため、現像剤担持体の現像剤のリセット性が向上する。
〔態様D〕
〔態様A〕乃至〔態様C〕の何れか一つの態様において、供給ローラ44等の現像剤供給部材の現像ローラ42等の現像剤担持体に対する食い込み量が、現像剤担持体の凸部の高さよりも大きい。これによれば、上記実施形態について説明したように、凹部の底まで現像剤供給部材が届きやすくなるため、現像剤担持体の現像剤のリセット性が向上する。
〔態様E〕
〔態様A〕乃至〔態様D〕の何れか一つの態様において、現像ローラ42等の現像剤担持体に交番電圧を印加する現像バイアス電源142等の現像バイアス印加手段と、交番電圧に対してトナー等の現像剤の正規帯電極性の逆極性となる直流電圧を供給ローラ44等の現像剤供給部材に印加する供給バイアス電源144等の供給電圧印加手段と、を備える。これによれば、上記実施形態について説明したように、現像剤担持体から現像剤供給部材に現像剤を引き付ける電界を形成することになり、現像剤担持体の現像剤のリセット性が向上する。
〔態様F〕
〔態様A〕乃至〔態様E〕の何れか一つの態様において、現像ローラ42等の現像剤担持体の表面の凸部と凹部とに境目に形成される角の角度が、90[°]以上である。これによれば、上記実施形態について説明したように、供給ローラ44等の現像剤供給部材が現像剤担持体の表面上の現像剤に接触する可能性が増加するため、リセット性が向上する。
〔態様G〕
〔態様A〕乃至〔態様F〕の何れか一つの態様において、凹部は、現像ローラ42等の現像剤担持体の表面移動方向に対する傾斜角度が異なる第一溝L1および第二溝L2等の二種類の螺旋状の溝部であり、二種類の螺旋状の溝部は、互いに交差して格子形状を成し、現像剤担持体は、二種類の螺旋状の溝部に囲まれた菱形が凸部42a等の凸部となり、凸部の頂面が有する二組の平行線が現像剤担持体の表面移動方向に対して平行ではなく、角度を有する。これによれば、上記実施形態について説明したように、ひし形状の頂面が有する二組の平行線が共に現像剤担持体の表面移動方向に対して角度を有するため、凸部における現像剤担持体の表面移動方向下流側の部分でトナーが圧縮され難くなる。
〔態様H〕
〔態様A〕乃至〔態様G〕の何れか一つの態様において、トナーT等の現像剤の重量平均粒径よりも凸部42a等の凸部の高さが大きい。これによれば、上記実施形態について説明したように、平均的な大きさの現像剤が凹部42b等の凹部内に収まるため、粒径の選択が起こりにくくなり、経時でのM/A値(現像ローラ表面上の単位面積当りのトナーの担持量)が安定する。
〔態様I〕
少なくとも感光体2等の潜像担持体と、潜像担持体表面を帯電させるための帯電部材3等の帯電手段と、潜像担持体上に静電潜像を形成するための露光装置6等の潜像形成手段と、静電潜像を現像してトナー像化するための現像手段とを有する複写機500等の画像形成装置において、現像手段として、〔態様A〕乃至〔態様H〕の何れか一つの態様の現像装置を用いる。これよれば、上記実施形態について説明したように、濃度ムラの発生しない均一な画像を作成出来る画像形成装置を提供する事が出来る。
〔態様J〕
態様Iにおいて、潜像を担持する感光体2等の潜像担持体、潜像担持体を一様帯電する体dん部材3等の帯電手段及び潜像担持体の表面の付着物を除去する感光体クリーニング装置5等の潜像担持体クリーニング手段のうちの少なくとも一つと、潜像担持体上の潜像を現像する現像装置4等の現像装置とを1つのユニットとして共通の保持体に保持させて複写機500等の装置本体に対して着脱可能にしたプロセスカートリッジ1等のプロセスカートリッジを有する。これよれば、上記実施形態について説明したように、濃度ムラの発生しない均一な画像を作成出来る現像装置を、プロセスカートリッジを構成する他の部材ともに装置本体から取り外すことができ、濃度ムラの発生しない均一な画像を作成出来る現像装置の交換性の向上を図ることができる。
〔態様A〕
トナーT等の非磁性または磁性の一成分の現像剤を表面上に担持して表面移動し、感光体2等の潜像担持体と対向する現像領域α等の現像領域で潜像担持体の表面の潜像に現像剤を供給して現像する現像ローラ42等の現像剤担持体と、現像剤担持体の表面に供給する現像剤を収容するトナー収容部43等の現像剤収容部と、表面移動することにより、現像剤収容部内の現像剤を現像剤担持体に対向する領域に搬送し、現像剤担持体の表面に現像剤を供給する供給ローラ44等の現像剤供給部材と、を有し、現像剤担持体の表面に凸部42a及び凹部42b等の凹凸形状を備え、現像領域を通過した現像剤が、現像剤供給部材によって回収される現像装置4等の現像装置において、供給ニップβ等の、現像剤担持体と現像剤供給部材とが対向する領域では、現像剤担持体の表面移動方向と現像剤供給部材の表面移動方向とが逆方向である。これによれば、上記実施形態について説明したように、現像ローラ42等の現像剤担持体と供給ローラ44等の現像剤供給部材とが、供給ニップβ等の当接部での線速差が大きくなる。これにより、現像剤担持体と現像剤供給部材とが対向する領域での現像剤供給部材による現像剤担持体表面上の現像剤の回収性能の向上を図ることができる。よって、現像剤が現像剤担持体に担持されたままとなることを抑制し、現像剤担持体の表面に現像剤が固着することを抑制できる。このため、現像剤担持体の表面に現像剤が固着することに起因する現像時の濃度ムラの発生を抑制することが出来る。
〔態様B〕
〔態様A〕において、トナーT等の現像剤の加速凝集度が40[%]以下である。これによれば、上記実施形態について説明したように、加速凝集度が40[%]以下の現像剤を用いることで、トナーの凝集を抑制でき、現像剤担持体の表面に現像剤が固着することをさらに抑制できる。
〔態様C〕
〔態様A〕または〔態様B〕において、供給ローラ44等の現像剤供給部材の表面層は、表面に多数の微細孔が分散しているスポンジ層である。これによれば、上記実施形態について説明したように、凹部の底まで現像剤供給部材が届きやすくなるため、現像剤担持体の現像剤のリセット性が向上する。
〔態様D〕
〔態様A〕乃至〔態様C〕の何れか一つの態様において、供給ローラ44等の現像剤供給部材の現像ローラ42等の現像剤担持体に対する食い込み量が、現像剤担持体の凸部の高さよりも大きい。これによれば、上記実施形態について説明したように、凹部の底まで現像剤供給部材が届きやすくなるため、現像剤担持体の現像剤のリセット性が向上する。
〔態様E〕
〔態様A〕乃至〔態様D〕の何れか一つの態様において、現像ローラ42等の現像剤担持体に交番電圧を印加する現像バイアス電源142等の現像バイアス印加手段と、交番電圧に対してトナー等の現像剤の正規帯電極性の逆極性となる直流電圧を供給ローラ44等の現像剤供給部材に印加する供給バイアス電源144等の供給電圧印加手段と、を備える。これによれば、上記実施形態について説明したように、現像剤担持体から現像剤供給部材に現像剤を引き付ける電界を形成することになり、現像剤担持体の現像剤のリセット性が向上する。
〔態様F〕
〔態様A〕乃至〔態様E〕の何れか一つの態様において、現像ローラ42等の現像剤担持体の表面の凸部と凹部とに境目に形成される角の角度が、90[°]以上である。これによれば、上記実施形態について説明したように、供給ローラ44等の現像剤供給部材が現像剤担持体の表面上の現像剤に接触する可能性が増加するため、リセット性が向上する。
〔態様G〕
〔態様A〕乃至〔態様F〕の何れか一つの態様において、凹部は、現像ローラ42等の現像剤担持体の表面移動方向に対する傾斜角度が異なる第一溝L1および第二溝L2等の二種類の螺旋状の溝部であり、二種類の螺旋状の溝部は、互いに交差して格子形状を成し、現像剤担持体は、二種類の螺旋状の溝部に囲まれた菱形が凸部42a等の凸部となり、凸部の頂面が有する二組の平行線が現像剤担持体の表面移動方向に対して平行ではなく、角度を有する。これによれば、上記実施形態について説明したように、ひし形状の頂面が有する二組の平行線が共に現像剤担持体の表面移動方向に対して角度を有するため、凸部における現像剤担持体の表面移動方向下流側の部分でトナーが圧縮され難くなる。
〔態様H〕
〔態様A〕乃至〔態様G〕の何れか一つの態様において、トナーT等の現像剤の重量平均粒径よりも凸部42a等の凸部の高さが大きい。これによれば、上記実施形態について説明したように、平均的な大きさの現像剤が凹部42b等の凹部内に収まるため、粒径の選択が起こりにくくなり、経時でのM/A値(現像ローラ表面上の単位面積当りのトナーの担持量)が安定する。
〔態様I〕
少なくとも感光体2等の潜像担持体と、潜像担持体表面を帯電させるための帯電部材3等の帯電手段と、潜像担持体上に静電潜像を形成するための露光装置6等の潜像形成手段と、静電潜像を現像してトナー像化するための現像手段とを有する複写機500等の画像形成装置において、現像手段として、〔態様A〕乃至〔態様H〕の何れか一つの態様の現像装置を用いる。これよれば、上記実施形態について説明したように、濃度ムラの発生しない均一な画像を作成出来る画像形成装置を提供する事が出来る。
〔態様J〕
態様Iにおいて、潜像を担持する感光体2等の潜像担持体、潜像担持体を一様帯電する体dん部材3等の帯電手段及び潜像担持体の表面の付着物を除去する感光体クリーニング装置5等の潜像担持体クリーニング手段のうちの少なくとも一つと、潜像担持体上の潜像を現像する現像装置4等の現像装置とを1つのユニットとして共通の保持体に保持させて複写機500等の装置本体に対して着脱可能にしたプロセスカートリッジ1等のプロセスカートリッジを有する。これよれば、上記実施形態について説明したように、濃度ムラの発生しない均一な画像を作成出来る現像装置を、プロセスカートリッジを構成する他の部材ともに装置本体から取り外すことができ、濃度ムラの発生しない均一な画像を作成出来る現像装置の交換性の向上を図ることができる。
1 プロセスカートリッジ
2 感光体
4 現像装置
7 中間転写ベルト
12 定着装置
41 現像ケーシング
42 現像ローラ
42a 凸部
42b 凹部
43 トナー収容部
44 供給ローラ
45 ドクタブレード
46 パドル
47 入口シール
48 供給スクリュ
55 トナー補給口
56 開口部
59 サイドシール
100 プリンタ部
142 現像バイアス電源
144 供給バイアス電源
145 ドクタバイアス電源
200 給紙部
300 スキャナ部
400 トナーボトル
411 上ケース
412 中ケース
412s 側壁部
413 下ケース
420 現像ローラ円筒部
421 現像ローラ軸
440 供給ローラ円筒部
441 供給ローラ軸
450 ブレード部材
460 パドル羽
461 パドル軸
480 供給スクリュ羽部
481 供給スクリュ軸
500 複写機
P 転写紙
T トナー
2 感光体
4 現像装置
7 中間転写ベルト
12 定着装置
41 現像ケーシング
42 現像ローラ
42a 凸部
42b 凹部
43 トナー収容部
44 供給ローラ
45 ドクタブレード
46 パドル
47 入口シール
48 供給スクリュ
55 トナー補給口
56 開口部
59 サイドシール
100 プリンタ部
142 現像バイアス電源
144 供給バイアス電源
145 ドクタバイアス電源
200 給紙部
300 スキャナ部
400 トナーボトル
411 上ケース
412 中ケース
412s 側壁部
413 下ケース
420 現像ローラ円筒部
421 現像ローラ軸
440 供給ローラ円筒部
441 供給ローラ軸
450 ブレード部材
460 パドル羽
461 パドル軸
480 供給スクリュ羽部
481 供給スクリュ軸
500 複写機
P 転写紙
T トナー
Claims (10)
- 非磁性または磁性の一成分の現像剤を表面上に担持して表面移動し、潜像担持体と対向する現像領域で該潜像担持体の表面の潜像に現像剤を供給して現像する現像剤担持体と、
該現像剤担持体の表面に供給する現像剤を収容する現像剤収容部と、
表面移動することにより、該現像剤収容部内の現像剤を該現像剤担持体に対向する領域に搬送し、該現像剤担持体の表面に現像剤を供給する現像剤供給部材と、を有し、
該現像剤担持体の表面に凹凸形状を備え、
該現像領域を通過した現像剤が、該現像剤供給部材によって回収される現像装置において、
上記現像剤担持体と上記現像剤供給部材とが対向する領域では、該現像剤担持体の表面移動方向と該現像剤供給部材の表面移動方向とが逆方向であることを特徴とする現像装置。 - 請求項1の現像装置において、
上記現像剤の加速凝集度が40[%]以下であることを特徴とする画像形成装置。 - 請求項1または2の現像装置において、
上記現像剤供給部材の表面層は、表面に多数の微細孔が分散しているスポンジ層であることを特徴とする画像形成装置。 - 請求項1乃至3のいずれか1項に記載の現像装置において、
上記現像剤供給部材の上記現像剤担持体に対する食い込み量が、上記現像剤担持体の凸部の高さよりも大きいことを特徴とする画像形成装置。 - 請求項1乃至4の何れか一項に記載の現像装置において、
上記現像剤担持体に交番電圧を印加する現像バイアス印加手段と、
該交番電圧に対して現像剤の正規帯電極性の逆極性となる直流電圧を上記現像剤供給部材に印加する供給電圧印加手段と、を備えることを特徴とする画像形成装置。 - 請求項1乃至5の何れか一項に記載の現像装置において、
上記現像剤担持体の表面の凸部と凹部とに境目に形成される角の角度が、90[°]以上であることを特徴とする画像形成装置。 - 請求項1乃至6の何れか一項に記載の現像装置において、
上記凹部は、上記現像剤担持体の表面移動方向に対する傾斜角度が異なる二種類の螺旋状の溝部であり、該二種類の螺旋状の溝部は、互いに交差して格子形状を成し、該現像剤担持体は、該二種類の螺旋状の溝部に囲まれた菱形が上記凸部となり、該凸部の頂面が有する二組の平行線が該現像剤担持体の表面移動方向に対して平行ではなく、角度を有することを特徴とする画像形成装置。 - 請求項1乃至7の何れか一項に記載の現像装置において、
上記現像剤の重量平均粒径よりも上記凸部の高さが大きいことを特徴とする画像形成装置。 - 少なくとも潜像担持体と、
該潜像担持体表面を帯電させるための帯電手段と、
該潜像担持体上に静電潜像を形成するための潜像形成手段と、
該静電潜像を現像してトナー像化するための現像手段とを有する画像形成装置において、
該現像手段として、請求項1乃至8の何れか1項に記載の現像装置を用いることを特徴とする画像形成装置。 - 請求項9の画像形成装置において、
潜像を担持する潜像担持体、該潜像担持体を一様帯電する帯電手段及び該潜像担持体の表面の付着物を除去する潜像担持体クリーニング手段のうちの少なくとも一つと、該潜像担持体上の潜像を現像する上記現像装置とを1つのユニットとして共通の保持体に保持させて装置本体に対して着脱可能にしたプロセスカートリッジを有することを特徴とする画像形成装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012162004A JP2013076977A (ja) | 2011-09-16 | 2012-07-20 | 現像装置及び画像形成装置 |
US13/608,240 US9158228B2 (en) | 2011-09-16 | 2012-09-10 | Development device and image forming apparatus incorporating same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011203745 | 2011-09-16 | ||
JP2011203745 | 2011-09-16 | ||
JP2012162004A JP2013076977A (ja) | 2011-09-16 | 2012-07-20 | 現像装置及び画像形成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013076977A true JP2013076977A (ja) | 2013-04-25 |
Family
ID=48480457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012162004A Pending JP2013076977A (ja) | 2011-09-16 | 2012-07-20 | 現像装置及び画像形成装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013076977A (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08202146A (ja) * | 1995-01-30 | 1996-08-09 | Canon Inc | 画像形成装置 |
JP2005227730A (ja) * | 2004-02-16 | 2005-08-25 | Canon Inc | 画像形成装置 |
JP2008209781A (ja) * | 2007-02-27 | 2008-09-11 | Seiko Epson Corp | 現像ローラ、現像装置、および画像形成装置 |
JP2010243886A (ja) * | 2009-04-08 | 2010-10-28 | Seiko Epson Corp | 現像装置及び画像形成装置 |
-
2012
- 2012-07-20 JP JP2012162004A patent/JP2013076977A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08202146A (ja) * | 1995-01-30 | 1996-08-09 | Canon Inc | 画像形成装置 |
JP2005227730A (ja) * | 2004-02-16 | 2005-08-25 | Canon Inc | 画像形成装置 |
JP2008209781A (ja) * | 2007-02-27 | 2008-09-11 | Seiko Epson Corp | 現像ローラ、現像装置、および画像形成装置 |
JP2010243886A (ja) * | 2009-04-08 | 2010-10-28 | Seiko Epson Corp | 現像装置及び画像形成装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013076978A (ja) | 現像装置及び画像形成装置 | |
JP6120129B2 (ja) | 現像装置及び画像形成装置 | |
JP2013171121A (ja) | 現像装置、および画像形成装置 | |
JP2013171137A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP6098927B2 (ja) | 画像形成装置 | |
JP2013200551A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2015049390A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2015049371A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2015043055A (ja) | 現像装置及び画像形成装置 | |
JP2013195451A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2013137500A (ja) | 現像装置及び画像形成装置 | |
JP2015055698A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP5920656B2 (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2014126568A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2015132692A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2013195557A (ja) | トナー担持体、現像装置、画像形成装置及びプロセスユニット | |
JP2013076977A (ja) | 現像装置及び画像形成装置 | |
JP2014056052A (ja) | 現像剤担持体、現像装置、プロセスカートリッジ及び画像形成装置 | |
JP2014137457A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2014074842A (ja) | 現像剤担持体、現像装置及び画像形成装置 | |
JP2015165289A (ja) | 現像装置及び画像形成装置 | |
JP2014021396A (ja) | 現像装置、画像形成装置及びプロセスカートリッジ | |
JP2014074833A (ja) | 現像剤担持体、現像装置、プロセスカートリッジ及び画像形成装置 | |
JP2014074844A (ja) | 現像装置及び画像形成装置 | |
JP2014074765A (ja) | 現像装置および画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160506 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161111 |