JP2013074887A - Carbon dioxide feeder to horticultural facility utilizing carbon dioxide in flue gas - Google Patents

Carbon dioxide feeder to horticultural facility utilizing carbon dioxide in flue gas Download PDF

Info

Publication number
JP2013074887A
JP2013074887A JP2012200204A JP2012200204A JP2013074887A JP 2013074887 A JP2013074887 A JP 2013074887A JP 2012200204 A JP2012200204 A JP 2012200204A JP 2012200204 A JP2012200204 A JP 2012200204A JP 2013074887 A JP2013074887 A JP 2013074887A
Authority
JP
Japan
Prior art keywords
carbon dioxide
concentration
flue gas
adsorption
horticultural facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012200204A
Other languages
Japanese (ja)
Other versions
JP6179915B2 (en
JP2013074887A5 (en
Inventor
Masaya Suzuki
正哉 鈴木
Katsuhiro Tsukimura
勝宏 月村
Keiichi Inukai
恵一 犬飼
Masaki Maeda
雅喜 前田
Toshi Nishimoto
登志 西本
Terufumi Naka
照史 仲
Kenji Hirooka
健司 廣岡
Taro Sano
太郎 佐野
Katsuhiko Inamoto
勝彦 稲本
Masaaki Yoshikawa
正晃 吉川
Akira Kishimoto
章 岸本
Katsuhiro Kitamura
克宏 喜多村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Osaka Gas Co Ltd
National Agriculture and Food Research Organization
Nara Prefecture
Original Assignee
Nippon Light Metal Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Osaka Gas Co Ltd
National Agriculture and Food Research Organization
Nara Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48478904&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013074887(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Light Metal Co Ltd, National Institute of Advanced Industrial Science and Technology AIST, Osaka Gas Co Ltd, National Agriculture and Food Research Organization, Nara Prefecture filed Critical Nippon Light Metal Co Ltd
Priority to JP2012200204A priority Critical patent/JP6179915B2/en
Publication of JP2013074887A publication Critical patent/JP2013074887A/en
Publication of JP2013074887A5 publication Critical patent/JP2013074887A5/ja
Application granted granted Critical
Publication of JP6179915B2 publication Critical patent/JP6179915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Abstract

PROBLEM TO BE SOLVED: To provide a carbon dioxide feeder to a horticultural facility, for supplying carbon dioxide by collecting and storing carbon dioxide from flue gas and discharging the stored carbon dioxide when a carbon dioxide concentration in a greenhouse decreases, using a physical adsorption method requiring no heat source, vacuum pump, or compressor, when collecting the carbon dioxide in the flue gas.SOLUTION: This carbon dioxide feeder to the horticultural facility includes, in this order, a means of bringing the concentration of nitrogen oxides and sulphur oxides in flue gas, generated in a carbon dioxide supply source, to equal to or lower than a concentration affecting no plant growth, and dehumidifying so as not to affect the adsorption performance of carbon dioxide, and a means of collecting and storing the carbon dioxide contained in the flue gas by using a carbon dioxide absorbent for adsorption and desorption by concentration difference of carbon dioxide, and further includes a means of discharging the carbon dioxide stored in the carbon dioxide absorbent to the horticultural facility by sending dehumidified air when needed in the horticultural facility.

Description

本発明は、施設園芸用の温室に燃焼排ガスから回収した二酸化炭素を施用することにより、園芸作物の収率および品質の向上を可能とする、園芸用施設への二酸化炭素供給装置に関するものである。   The present invention relates to an apparatus for supplying carbon dioxide to a horticultural facility that can improve the yield and quality of horticultural crops by applying carbon dioxide recovered from combustion exhaust gas to a greenhouse for horticulture. .

イチゴやバラなどの園芸作物においては、温度管理などの観点から一般に温室等の施設内で栽培されている。また、冬季の栽培においては、夜間温室内の温度が作物の生育に影響を与える温度以下とならないように、加温機を用いて温室内を暖めている。この加温機は、重油や灯油などを燃焼させることにより得られた熱を、温風として送るシステムとなっている。   Horticultural crops such as strawberries and roses are generally cultivated in facilities such as greenhouses from the viewpoint of temperature control. In winter cultivation, the greenhouse is warmed using a warming machine so that the temperature in the greenhouse at night does not fall below the temperature that affects the growth of crops. This warming machine is a system that sends heat obtained by burning heavy oil or kerosene as warm air.

また、昼間には、園芸作物の収率および品質の向上のため、作物の成長に必要な二酸化炭素を施用する技術が開発されており(特許文献1)、温室内の二酸化炭素濃度を高めるための二酸化炭素施用装置が普及している。この場合の二酸化炭素施用装置も、前記加温機の場合と同様に重油や灯油を燃焼させ、燃焼ガス中の二酸化炭素を温室内に供給し、光合成を促進している(特許文献2、3)。   In addition, in the daytime, a technique for applying carbon dioxide necessary for the growth of crops has been developed in order to improve the yield and quality of horticultural crops (Patent Document 1), in order to increase the carbon dioxide concentration in the greenhouse. Carbon dioxide application devices are widely used. The carbon dioxide application apparatus in this case also burns heavy oil and kerosene as in the case of the warmer, supplies carbon dioxide in the combustion gas into the greenhouse, and promotes photosynthesis (Patent Documents 2 and 3). ).

上記のように、冬季の園芸作物の栽培においては、昼間は光合成促進用に夜間は加温用にボイラーにて重油や灯油を燃焼させている。昼間も夜間もボイラーにて燃焼させているが、昼間に必要なのは二酸化炭素であり熱は必要なく、夜間に必要なのは熱であり二酸化炭素は必要ない。それゆえ、夜間に温室を暖める目的で燃焼させた排ガスから二酸化炭素を回収・貯留しておき、それを昼間に温室へ供給することができれば、昼間ボイラーにて燃焼させる必要はなくなり、省エネルギーの促進・地球温暖化抑制という大きな効果が得られる。そのような背景から、夜間加温のために燃焼させた排ガスから二酸化炭素を回収し、回収した二酸化炭素を昼間に施用する技術が開発されている(特許文献4)。   As described above, in the cultivation of horticultural crops in winter, heavy oil and kerosene are burned in a boiler for promoting photosynthesis during the day and for heating during the night. Although it is burned in a boiler during the day and at night, what is needed during the day is carbon dioxide and does not require heat, and what is needed at night is heat and does not require carbon dioxide. Therefore, if carbon dioxide is recovered and stored from the exhaust gas burned for the purpose of warming the greenhouse at night, and it can be supplied to the greenhouse in the daytime, there is no need to burn it in the daytime boiler, thus promoting energy conservation.・ A great effect of suppressing global warming can be obtained. From such a background, a technique has been developed in which carbon dioxide is recovered from exhaust gas combusted for heating at night, and the recovered carbon dioxide is applied in the daytime (Patent Document 4).

特開平7−184478号公報JP-A-7-184478 特開2009−153459号公報JP 2009-153659 A 特開2009−213414号公報JP 2009-213414 A 特開2006−340683号公報JP 2006-340683 A 特開2012−16322号公報JP 2012-16322 A

しかしながら上記特許文献4に記載の方法における燃焼ガスからの二酸化炭素回収においては、二酸化炭素吸着剤としてリチウム複合酸化物(LiSiO)を用いており、吸着した二酸化炭素を放出するにあたっては650℃以上に加熱しなければならず、かなりの電力を必要とするという問題点があった。 However, in the carbon dioxide recovery from the combustion gas in the method described in Patent Document 4, lithium composite oxide (Li 4 SiO 4 ) is used as the carbon dioxide adsorbent, and 650 is used for releasing the adsorbed carbon dioxide. There was a problem that it had to be heated to a temperature higher than 0 ° C. and required a considerable amount of power.

二酸化炭素の吸着剤には、上記の方法のように熱をかけることによって吸着した二酸化炭素を放出させる化学吸収法以外に、圧力を低減させることによって二酸化炭素を放出させる物理吸着法(圧力スイング法)、二酸化炭素を選択的に分離させる膜分離法の3種類が重要な技術として挙げられる。
この中で、膜分離法は、エネルギー的に最も小さいとされるが、少量の分離精製には対応可能であるものの燃焼排ガスを効率的に分離するだけの大きさの膜の開発には至っていない。
In addition to the chemical absorption method of releasing carbon dioxide adsorbed by applying heat to the carbon dioxide adsorbent as in the above method, the physical adsorption method (pressure swing method) of releasing carbon dioxide by reducing the pressure ), And three types of membrane separation methods for selectively separating carbon dioxide are important techniques.
Among these, the membrane separation method is said to be the smallest in terms of energy, but although it can cope with a small amount of separation and purification, it has not yet developed a membrane of a size that can efficiently separate combustion exhaust gas. .

本発明者は、このような事情に鑑み、燃焼排ガス中の二酸化炭素を回収するにあたって、熱源を必要としない圧力スイング(PSA)法を用いて、燃焼ガスから二酸化炭素を回収・濃縮し、濃縮した二酸化炭素を貯留させ、温室内の二酸化炭素濃度が低下した際に迅速に貯留した二酸化炭素を放出することにより、昼間においてはほとんど電力を使用せずに二酸化炭素を供給することのできる、施設園芸用の二酸化炭素供給施用装置を提案している(上記特許文献5参照)。   In view of such circumstances, the present inventor collects and concentrates carbon dioxide from the combustion gas using a pressure swing (PSA) method that does not require a heat source when recovering carbon dioxide in the combustion exhaust gas, and concentrates it. A facility that can store carbon dioxide and supply carbon dioxide in the daytime with almost no electricity by quickly releasing the stored carbon dioxide when the carbon dioxide concentration in the greenhouse drops. A carbon dioxide supply application device for gardening has been proposed (see Patent Document 5).

図2は、上記特許文献5で提案している装置の概念図である。
図中、11は灯油燃焼式加温機、12は熱交換器および硫黄酸化物除去装置、13は強制排気用送風ファン、14は窒素酸化物除去装置、15は二酸化炭素回収・濃縮装置、16は圧縮用コンプレッサー、17は貯留タンク、18は放出用コントロールバルブ、19は二酸化炭素モニター、20は窒素成分再利用システム、をそれぞれ示しており、該図に示すとおり、15の二酸化炭素濃縮・回収装置で、吸着させた二酸化炭素を真空ポンプにて脱着させ、濃縮・回収した二酸化炭素を、次に16の圧縮用コンプレッサーにて加圧させ、17の貯留タンクに送り込むというシステムである。
FIG. 2 is a conceptual diagram of the apparatus proposed in Patent Document 5.
In the figure, 11 is a kerosene combustion heater, 12 is a heat exchanger and sulfur oxide removing device, 13 is a forced exhaust fan, 14 is a nitrogen oxide removing device, 15 is a carbon dioxide recovery / concentration device, 16 Is a compressor for compression, 17 is a storage tank, 18 is a control valve for discharge, 19 is a carbon dioxide monitor, and 20 is a nitrogen component recycling system. As shown in FIG. In this system, the adsorbed carbon dioxide is desorbed by a vacuum pump, and the concentrated and recovered carbon dioxide is then pressurized by 16 compression compressors and sent to 17 storage tanks.

このように、該圧力スイング(PSA)法を用いた場合には、二酸化炭素回収・濃縮にて真空引きにより二酸化炭素を濃縮し、さらに二酸化炭素圧縮・貯留工程にて加圧することにより二酸化炭素を貯留するため、真空ポンプ、コンプレッサーが必要であり、さらに加温機が断続的な運転を行う場合、15と16の間にガスバックを設置することが必要となり、排ガスの発生が連続的でない条件下では圧力スイング法には適さないという問題点があった。
さらに圧力スイング法では、二酸化炭素濃度が10vol%程度のガスを大気圧下にて吸着させ、それを0.10気圧程度まで真空引きすることにより脱着させても、吸着量の半分程度しか回収できないという回収量においての問題があった。
As described above, when the pressure swing (PSA) method is used, carbon dioxide is concentrated by evacuation in carbon dioxide recovery and concentration, and further pressurized in the carbon dioxide compression / storage process. In order to store, a vacuum pump and a compressor are necessary. Further, when the warmer performs intermittent operation, it is necessary to install a gas bag between 15 and 16, and the generation of exhaust gas is not continuous. Below, there was a problem that it was not suitable for the pressure swing method.
Further, in the pressure swing method, even if a gas having a carbon dioxide concentration of about 10 vol% is adsorbed at atmospheric pressure and desorbed by evacuating it to about 0.10 atm, only about half of the adsorption amount can be recovered. There was a problem in the recovery amount.

本発明は、以上のような事情に鑑みてなされたものであって、燃焼排ガス中の二酸化炭素を回収するにあたって、熱源を必要としないばかりでなく、物理吸着法において一般的に用いられる圧力を変動させることなく、燃焼ガスから二酸化炭素を回収・貯留し、温室内の二酸化炭素濃度が低下した際に貯留した二酸化炭素を放出することにより、二酸化炭素を供給することのできる、施設園芸用の二酸化炭素供給施用装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and not only does not require a heat source to recover carbon dioxide in combustion exhaust gas, but also a pressure generally used in a physical adsorption method. For facility horticulture that can supply carbon dioxide by recovering and storing carbon dioxide from combustion gas without changing it, and releasing the stored carbon dioxide when the concentration of carbon dioxide in the greenhouse decreases. It aims at providing the carbon dioxide supply application apparatus.

本発明者等は、上記目的を達成すべく、燃焼排ガスと大気の二酸化炭素濃度の差を利用した物理吸着法により、圧力を変動させることなく、燃焼排ガス中の二酸化炭素を回収・貯留し、温室内の二酸化炭素濃度が低下した際に貯留した二酸化炭素を放出するシステムを用いることを検討した。そして、さらに鋭意検討を重ねた結果、夜間は高活性炭素繊維による触媒機能等を用いて硫黄酸化物および窒素酸化物を取り除くとともに排ガスからの水分も取り除いた後、物理吸着法により燃焼排ガスから二酸化炭素の回収・貯留を行い、昼間は温室内の二酸化炭素濃度が規定値より下回った際に、センサーからの信号により大気を導入し、除湿を施した後二酸化炭素を回収・貯留しているタンクから二酸化炭素を含む空気を供給することができることを見いだし、夜間回収した二酸化炭素を翌朝以降に供給することのできる本発明を完成するに至った。   In order to achieve the above object, the present inventors collect and store carbon dioxide in the combustion exhaust gas without changing the pressure by a physical adsorption method utilizing the difference in carbon dioxide concentration between the combustion exhaust gas and the atmosphere, We examined the use of a system that releases stored carbon dioxide when the concentration of carbon dioxide in the greenhouse decreases. As a result of further intensive studies, at night, sulfur oxides and nitrogen oxides were removed using the catalytic function of highly active carbon fibers and moisture from the exhaust gas was removed. Tanks that collect and store carbon, and when the carbon dioxide concentration in the greenhouse falls below the specified value in the daytime, the air is introduced by a signal from the sensor, dehumidified, and then carbon dioxide is collected and stored From the above, it was found that carbon dioxide-containing air can be supplied, and the present invention has been completed which can supply the carbon dioxide collected at night after the next morning.

すなわち、上記課題を解決するための本発明は、以下のとおりである。
〔1〕二酸化炭素供給源において発生する燃焼排ガス中の窒素酸化物や硫黄酸化物を、植物の成長に影響を及ぼさない濃度以下にし、かつ二酸化炭素を回収・貯留する際に二酸化炭素の吸着性能に影響を与えないように除湿する手段と、二酸化炭素の濃度差によって吸脱着が可能な二酸化炭素吸着剤を用いて、燃焼排ガス中に含有される二酸化炭素を回収・貯留する手段をこの順に備え、さらに園芸用施設内において必要時に上記二酸化炭素吸着剤に貯留された二酸化炭素を、除湿した大気を送り込むことによって園芸用施設内に放出させる手段を備えることを特徴とする園芸用施設への二酸化炭素供給装置。
〔2〕前記二酸化炭素吸着剤が、大気よりも高い二酸化炭素濃度を有するガスから二酸化炭素を吸着し、大気を送り込むだけで二酸化炭素を放出する特性を有することを特徴とする[1]に記載の園芸用施設への二酸化炭素供給装置。
〔3〕前記の窒素酸化物や硫黄酸化物を、植物の成長に影響を及ぼさない濃度以下にする手段が、硫黄酸化物除去装置と窒素酸化物除去装置とからなる[1]又は[2]に記載の園芸用施設への二酸化炭素供給装置。
That is, the present invention for solving the above-described problems is as follows.
[1] Nitrogen oxides and sulfur oxides in the flue gas generated at the carbon dioxide supply source should be below the concentration that does not affect plant growth, and carbon dioxide adsorption performance when collecting and storing carbon dioxide Equipped in this order with a means for dehumidification so as not to affect the gas and a means for recovering and storing carbon dioxide contained in combustion exhaust gas using a carbon dioxide adsorbent that can be adsorbed and desorbed by the difference in carbon dioxide concentration The carbon dioxide stored in the carbon dioxide adsorbent in the horticultural facility is further provided with means for releasing the carbon dioxide stored in the horticultural facility into the horticultural facility by sending the dehumidified air into the horticultural facility. Carbon supply equipment.
[2] The carbon dioxide adsorbent has a characteristic of adsorbing carbon dioxide from a gas having a higher carbon dioxide concentration than the atmosphere and releasing the carbon dioxide only by sending it into the atmosphere. Carbon dioxide supply equipment for horticultural facilities.
[3] The means for reducing the nitrogen oxide or sulfur oxide to a concentration or less that does not affect plant growth comprises a sulfur oxide removing device and a nitrogen oxide removing device [1] or [2] The carbon dioxide supply device to the horticultural facility described in 1.

本発明の園芸用施設への二酸化炭素供給装置によれば、夜間はボイラーから発生した排ガスから二酸化炭素の回収・貯留を行い、翌朝以降温室内の二酸化炭素濃度が規定値より下回った際に、センサーからの信号により二酸化炭素を貯留しているタンクに除湿した大気が導入されることで二酸化炭素を供給することができるため、従来のように物理吸着法を用いた二酸化炭素施用装置のように真空ポンプやコンプレッサーなどを用いずに、二酸化炭素の温室内への供給を容易に行えるという利点を有するものである。   According to the carbon dioxide supply device to the horticultural facility of the present invention, when collecting and storing carbon dioxide from the exhaust gas generated from the boiler at night, when the carbon dioxide concentration in the greenhouse is below the specified value after the next morning, Since carbon dioxide can be supplied by introducing dehumidified air into the tank storing carbon dioxide based on the signal from the sensor, as in the conventional carbon dioxide application device using the physical adsorption method It has an advantage that carbon dioxide can be easily supplied into a greenhouse without using a vacuum pump or a compressor.

本発明の園芸用施設への二酸化炭素供給装置の概念図Conceptual diagram of carbon dioxide supply device to horticultural facility of the present invention 比較例の園芸用施設への二酸化炭素供給装置の概念図Conceptual diagram of the carbon dioxide supply device to the gardening facility of the comparative example 合成ゼオライトを用いた際の二酸化炭素吸着・放出挙動を示す図Diagram showing carbon dioxide adsorption / release behavior when using synthetic zeolite 天然ゼオライトを用いた際の二酸化炭素吸着・放出挙動を示す図Diagram showing carbon dioxide adsorption / release behavior when natural zeolite is used 活性炭を用いた際の二酸化炭素吸着・放出挙動を示す図Diagram showing carbon dioxide adsorption / release behavior when activated carbon is used 活性炭を用いた際の混合ガスに含まれる水蒸気吸着・放出挙動を示す図Diagram showing the adsorption and release behavior of water vapor contained in a mixed gas when using activated carbon デシカント除湿機入口における温度・相対湿度・露点温度を示す図Diagram showing temperature, relative humidity, and dew point temperature at the desiccant dehumidifier inlet デシカント除湿機出口における温度・相対湿度・露点温度を示す図Diagram showing temperature, relative humidity, and dew point temperature at the desiccant dehumidifier outlet デシカント除湿機入口および出口の露点温度を示す図Diagram showing dew point temperature at desiccant dehumidifier inlet and outlet 二酸化炭素貯留タンクを通過した後の二酸化炭素濃度を示す図Diagram showing carbon dioxide concentration after passing through carbon dioxide storage tank ビニールハウス内の二酸化炭素濃度を示す図Diagram showing carbon dioxide concentration in a greenhouse

本発明について更に詳細に説明する。
本発明の装置は、燃焼排ガスと大気の二酸化炭素濃度の差を利用した物理吸着法により、圧力を変動させることなく、燃焼排ガス中の二酸化炭素を回収・貯留し、温室内の二酸化炭素濃度が低下した際に貯留した二酸化炭素を放出することを特徴とするものである。
そして、燃焼排ガスと大気の二酸化炭素濃度の差を利用した物理吸着法により燃焼排ガス中の二酸化炭素を回収するにあたっては、燃焼排ガス中から、植物の成長に影響を及ぼす窒素酸化物や硫黄酸化物を除去した後、二酸化炭素の吸着性能に影響を与えないように、除湿することを必要とするものである。
本発明では、上記のとおり除湿手段を導入するものの、真空ポンプやコンプレッサーを用いないばかりでなく、真空および加圧の操作がないため、電力使用量を低減させることができるシステムである。
The present invention will be described in more detail.
The apparatus of the present invention collects and stores carbon dioxide in the combustion exhaust gas without changing the pressure by a physical adsorption method using the difference in carbon dioxide concentration between the combustion exhaust gas and the atmosphere, and the carbon dioxide concentration in the greenhouse is The carbon dioxide stored when it falls is characterized by releasing.
When recovering carbon dioxide in combustion exhaust gas by the physical adsorption method using the difference in carbon dioxide concentration between the combustion exhaust gas and the atmosphere, nitrogen oxides and sulfur oxides that affect plant growth from the combustion exhaust gas It is necessary to dehumidify the carbon dioxide so as not to affect the carbon dioxide adsorption performance.
In the present invention, although the dehumidifying means is introduced as described above, not only the vacuum pump and the compressor are used, but also the operation of vacuum and pressurization is not performed, so that the power consumption can be reduced.

図1は、本発明の園芸用施設への二酸化炭素供給装置の一例を示す概念図であって、図中、1は燃焼式加温機、2は熱交換器および硫黄酸化物除去装置、3は低濃度硫黄酸化物除去装置、4は除湿装置、5は窒素酸化物除去装置、6は強制排気用送風ファン、7は低露点空気用除湿装置、8は二酸化炭素貯留タンク、9は装置起動コントロール装置、10は二酸化炭素モニター、をそれぞれ示している。
以下、該図を用いて、本発明の硫黄酸化物および窒素酸化物除去手段、二酸化炭素回収・貯留手段、二酸化炭素放出手段について、順に説明する。
FIG. 1 is a conceptual diagram showing an example of a carbon dioxide supply device to a horticultural facility according to the present invention, in which 1 is a combustion type warmer, 2 is a heat exchanger and a sulfur oxide removing device, 3 Is a low-concentration sulfur oxide removing device, 4 is a dehumidifying device, 5 is a nitrogen oxide removing device, 6 is a blower fan for forced exhaust, 7 is a dehumidifying device for low dew point air, 8 is a carbon dioxide storage tank, and 9 is activated. Each of the control devices 10 represents a carbon dioxide monitor.
Hereinafter, the sulfur oxide and nitrogen oxide removing means, the carbon dioxide recovery / storage means, and the carbon dioxide releasing means of the present invention will be described in order with reference to the drawing.

(硫黄酸化物および窒素酸化物除去手段)
植物の生育にあたっては、硫黄酸化物や窒素酸化物が悪影響を及ぼすため、それらを取り除くことが必要である。
図1に図示する装置においては、燃焼式加温機1から排出される燃焼ガスを、強制排気用送風ファン6により、熱交換器および硫黄酸化物除去装置2へ導入させる。強制用送風ファン6あるいは除湿装置4にてデシカント除湿装置を用いた場合には除湿装置4も含め、燃焼式加温機が起動した際に信号を送ることにより、強制用送風ファン6および除湿装置4を装置起動コントロール装置9によって稼動させる。
熱交換器および硫黄酸化物除去装置は、上下方向に配管を巡らすことにより、燃焼式加温機から排出される燃焼ガス温度を下げるとともに、配管の下部に水溜め用トラップを設けることで、ガス温度が下がるとともに生じる結露水に取り込まれた硫黄酸化物を硫酸の形として取り除くことができる。
さらに硫黄酸化物除去装置2を経た後のガスにおいて、低濃度硫黄酸化物除去装置3により硫黄酸化物を取り除く。硫黄酸化物除去の一例として、高活性炭素繊維を用いることができる。
上記の操作を経た後に、窒素酸化物除去装置5へと導入する。窒素酸化物除去の一例として、高活性炭素繊維を用いることができ、この高活性炭素繊維はNOやNOをNO の形態へと触媒作用により変えることにより窒素酸化物を除去することができる。さらに窒素酸化物除去装置5においては、定期的な洗浄が必要となるが、洗浄方法は水洗いによるものである。それゆえ、洗浄後の水にはNO が溶解した状態になっている。このNO が溶解した状態にある硝酸水溶液は、植物にとって必須な成分である窒素を含んでいるため、再度温室に肥料として戻す窒素成分再利用システムとして用いることが可能である。
(Sulfur oxide and nitrogen oxide removal means)
In growing plants, sulfur oxides and nitrogen oxides have an adverse effect, so it is necessary to remove them.
In the apparatus shown in FIG. 1, the combustion gas discharged from the combustion type warmer 1 is introduced into the heat exchanger and the sulfur oxide removing apparatus 2 by the forced exhaust fan 6. When the desiccant dehumidifier is used in the forced blower fan 6 or the dehumidifier 4, including the dehumidifier 4, the forced blower fan 6 and the dehumidifier are sent by sending a signal when the combustion type heater is activated. 4 is operated by the device activation control device 9.
The heat exchanger and the sulfur oxide removing device lower the temperature of the combustion gas discharged from the combustion-type warmer by circulating the pipe in the vertical direction, and provide a water trap in the lower part of the pipe. Sulfur oxides taken into the dew condensation water generated as the temperature decreases can be removed in the form of sulfuric acid.
Further, in the gas after passing through the sulfur oxide removing device 2, the sulfur oxide is removed by the low concentration sulfur oxide removing device 3. As an example of sulfur oxide removal, highly active carbon fibers can be used.
After the above operation, the nitrogen oxide removing device 5 is introduced. As an example of nitrogen oxide removal, highly active carbon fiber can be used, and this highly active carbon fiber can remove nitrogen oxide by catalytically changing NO or NO 2 to the form of NO 3 −. it can. Further, the nitrogen oxide removing device 5 requires periodic cleaning, but the cleaning method is based on water washing. Therefore, NO 3 is dissolved in the washed water. Since the nitric acid aqueous solution in which NO 3 is dissolved contains nitrogen, which is an essential component for plants, it can be used as a nitrogen component recycling system that returns the fertilizer to the greenhouse again.

(除湿手段)
二酸化炭素貯留タンク8において、二酸化炭素を回収・貯留するにあたっては、水蒸気の存在が二酸化炭素の回収量に影響を与えるため、可能な限り水蒸気を取り除くことが望ましい。それゆえ、二酸化炭素貯留タンク8に送り込まれる前に十分な除湿を行うことが望ましい。
除湿の方法としてはデシカントローターを用いる方法、除湿塔に除湿剤を詰めその中に排ガスを流し水蒸気を除去する方法、深冷分離による方法等が挙げられる。−60℃程度の低露点空気を二酸化炭素貯留タンク8に送風する一例として、除湿装置4にてデシカント空調等によりある程度の除湿を行った後、低露点空気用除湿装置7において例えばゼオライト等の除湿剤を除湿塔に詰めてガスを通すことにより得ることができる。
また前段記載の窒素酸化物除去における除去剤の性質によっては、相対湿度が低い方がより効果を発揮する場合があるため、除湿装置4および窒素酸化物除去装置5、さらには低露点空気用除湿装置7についての順序は、各吸着剤の組み合わせによって順序が異なることが生じる。
(Dehumidifying means)
In collecting and storing carbon dioxide in the carbon dioxide storage tank 8, it is desirable to remove water vapor as much as possible because the presence of water vapor affects the amount of carbon dioxide recovered. Therefore, it is desirable to perform sufficient dehumidification before being sent to the carbon dioxide storage tank 8.
Examples of the dehumidifying method include a method using a desiccant rotor, a method in which a dehumidifying tower is filled with a dehumidifying agent, exhaust gas is flowed into the dehumidifying tower, water vapor is removed, and a method by deep cold separation. As an example of blowing low dew point air of about −60 ° C. to the carbon dioxide storage tank 8, after dehumidifying to some extent by desiccant air conditioning or the like in the dehumidifying device 4, dehumidifying such as zeolite in the low dew point air dehumidifying device 7. It can be obtained by packing the agent in a dehumidifying tower and passing gas through it.
Further, depending on the nature of the removal agent for removing nitrogen oxides described in the preceding paragraph, lower relative humidity may be more effective. Therefore, the dehumidifying device 4 and the nitrogen oxide removing device 5, and further, dehumidification for low dew point air The order of the apparatus 7 may vary depending on the combination of the adsorbents.

(二酸化炭素回収・濃縮手段)
窒素酸化物除去装置5および低露点空気用除湿装置7による処理後、排ガスは二酸化炭素貯留タンク8へと送られるが、このときの排ガス中の主な成分は、窒素と二酸化炭素である。
二酸化炭素貯留タンク8にて用いられる二酸化炭素回収・貯留用吸着剤の一例としては、合成ゼオライト、天然ゼオライト、活性炭などが挙げられる。中でも、貯留タンク8にて用いられる吸着剤は、大気圧条件下にて二酸化炭素濃度が0.03vol%と10vol%の吸着量の差が大きいほど性能が高く、タンクのコンパクト化が可能となる。そのような観点からゼオライトであることが望ましいが、排ガス(二酸化炭素の濃度10vol%程度)条件での二酸化炭素の吸着量が多く、大気(二酸化炭素の濃度0.03vol%程度)にて二酸化炭素を放出することができる吸着剤であれば何ら問題はない。
(CO2 recovery / concentration means)
After the treatment by the nitrogen oxide removing device 5 and the low dew point air dehumidifying device 7, the exhaust gas is sent to the carbon dioxide storage tank 8, and the main components in the exhaust gas at this time are nitrogen and carbon dioxide.
Examples of the carbon dioxide recovery / storage adsorbent used in the carbon dioxide storage tank 8 include synthetic zeolite, natural zeolite, and activated carbon. Among them, the adsorbent used in the storage tank 8 has a higher performance as the difference in adsorption amount between 0.03 vol% and 10 vol% under atmospheric pressure conditions, and the tank can be made compact. . From this point of view, it is desirable to use zeolite, but it has a large amount of carbon dioxide adsorbed under exhaust gas conditions (carbon dioxide concentration of about 10 vol%) and carbon dioxide in the atmosphere (carbon dioxide concentration of about 0.03 vol%). There is no problem as long as it is an adsorbent capable of releasing slag.

(二酸化炭素放出手段)
二酸化炭素の放出は、温室内に設置された二酸化炭素モニター10と装置起動コントロール装置9を接続することにより稼動させる。温室内に設置された二酸化炭素モニター10にて、二酸化炭素濃度が設定下限値を下回った場合に、装置起動コントロール装置9が起動し、大気を排ガスの煙突から取り込み、除湿装置4および低露点空気用除湿装置7を経た後、二酸化炭素貯留タンク8に導入されることにより、二酸化炭素が放出される。温室内に設置された二酸化炭素モニター10にて、二酸化炭素濃度が設定上限値を上回った場合に、放出用コントロールバルブ9により排風を停止させる。
(Carbon dioxide release means)
The release of carbon dioxide is activated by connecting a carbon dioxide monitor 10 installed in the greenhouse and the device activation control device 9. In the carbon dioxide monitor 10 installed in the greenhouse, when the carbon dioxide concentration falls below the set lower limit value, the device activation control device 9 is activated, the air is taken in from the flue chimney, and the dehumidifier 4 and the low dew point air After passing through the dehumidifying device 7, the carbon dioxide is released by being introduced into the carbon dioxide storage tank 8. When the carbon dioxide concentration exceeds the set upper limit value in the carbon dioxide monitor 10 installed in the greenhouse, the discharge control valve 9 stops the exhaust air.

[各種吸着剤における二酸化炭素吸着・放出性能]
以下、各種吸着剤における二酸化炭素吸着・放出性能について、記述する。
各種吸着剤を用い、二酸化炭素吸着評価装置により、吸着・放出試験を行った。二酸化炭素吸着評価装置では、吸着塔に吸着剤を詰め、吸着評価では、窒素ガス90vol%、二酸化炭素ガス10vol%の混合ガスに露点温度が−10℃となるように水蒸気を加えたガスを送り込み、吸着塔の出口側の二酸化炭素濃度をモニターし、出口側の二酸化炭素濃度が10vol%となったところで吸着を終了させた。また放出評価では、窒素ガス100vol%の混合ガスに露点温度が−10℃となるように水蒸気を加えたガスを送り込み、吸着塔の出口側の二酸化炭素濃度をモニターし、出口側の二酸化炭素濃度が0.2vol%となったところで放出を終了させた。また吸着塔の前後にて、相対湿度の測定も合わせて行った。
[Carbon dioxide adsorption / release performance in various adsorbents]
The carbon dioxide adsorption / release performance of various adsorbents is described below.
Using various adsorbents, adsorption / release tests were conducted using a carbon dioxide adsorption evaluation apparatus. In the carbon dioxide adsorption evaluation apparatus, an adsorbent is packed in an adsorption tower, and in the adsorption evaluation, a gas in which water vapor is added to a mixed gas of 90 vol% nitrogen gas and 10 vol% carbon dioxide gas so that the dew point temperature is −10 ° C. is sent. The carbon dioxide concentration at the outlet side of the adsorption tower was monitored, and the adsorption was terminated when the carbon dioxide concentration at the outlet side reached 10 vol%. In addition, in the release evaluation, a gas obtained by adding water vapor so that the dew point temperature is −10 ° C. is sent to a mixed gas of 100 vol% nitrogen gas, and the carbon dioxide concentration on the outlet side of the adsorption tower is monitored, and the carbon dioxide concentration on the outlet side The release was terminated when the amount reached 0.2 vol%. The relative humidity was also measured before and after the adsorption tower.

合成ゼオライトを用いた二酸化炭素吸着・放出結果を図3に示す。
図3に示すとおり、吸着過程においては、時間0秒のときには、出口側の二酸化炭素濃度は0vol%であるが、時間が経つにつれ出口側の二酸化炭素濃度は上昇し、時間4100秒にて飽和に達している。放出過程においては、時間4260秒にて出口側で二酸化炭素濃度8.6vol%が観測され、時間が経過するとともに二酸化炭素濃度は減少し、時間9900秒にて出口側の二酸化炭素濃度が0.2vol%となり、吸着された二酸化炭素のほとんどが放出されたことがわかる。
また二酸化炭素吸着時および脱着時における吸着塔の入口と出口の相対湿度を測定したところ、吸着時および脱着時のいずれも入口は温度27.0℃、相対湿度7.2%RHであったのに対し、出口は温度26.7℃、相対湿度0.0%RHであった。
FIG. 3 shows the results of carbon dioxide adsorption / release using synthetic zeolite.
As shown in FIG. 3, in the adsorption process, when the time is 0 second, the carbon dioxide concentration on the outlet side is 0 vol%, but as the time passes, the carbon dioxide concentration on the outlet side increases and is saturated at time 4100 seconds. Has reached. In the release process, a carbon dioxide concentration of 8.6 vol% is observed on the outlet side at a time of 4260 seconds, the carbon dioxide concentration decreases with time, and the carbon dioxide concentration on the outlet side is reduced to 0. It can be seen that most of the adsorbed carbon dioxide was released.
The relative humidity at the inlet and outlet of the adsorption tower during carbon dioxide adsorption and desorption was measured. As a result, the inlet temperature was 27.0 ° C. and the relative humidity was 7.2% RH in both adsorption and desorption. On the other hand, the outlet had a temperature of 26.7 ° C. and a relative humidity of 0.0% RH.

天然ゼオライトを用いた二酸化炭素吸着・放出結果を図4に示す。
図4に示すとり、吸着過程においては、時間0秒のときには、出口側の二酸化炭素濃度は0vol%であるが、時間が経つにつれ出口側の二酸化炭素濃度は上昇し、時間850秒にて飽和に達している。放出過程においては、時間900秒にて出口側で二酸化炭素濃度7.2vol%が観測され、時間が経過するとともに二酸化炭素濃度は減少し、時間2000秒にて出口側の二酸化炭素濃度が0.2vol%となり、吸着された二酸化炭素のほとんどが放出されたことがわかる。
また二酸化炭素吸着時および脱着時における吸着塔の入口と出口の相対湿度を測定したところ、吸着時および脱着時のいずれも入口は温度27.4℃、相対湿度7.1%RHであったのに対し、出口は温度26.9℃、相対湿度0.0%RHであった。
The results of carbon dioxide adsorption / release using natural zeolite are shown in FIG.
As shown in FIG. 4, in the adsorption process, when the time is 0 second, the carbon dioxide concentration on the outlet side is 0 vol%, but as the time passes, the carbon dioxide concentration on the outlet side increases and is saturated at time 850 seconds. Has reached. In the release process, a carbon dioxide concentration of 7.2 vol% is observed on the outlet side at a time of 900 seconds, and the carbon dioxide concentration decreases with the passage of time. It can be seen that most of the adsorbed carbon dioxide was released.
The relative humidity at the inlet and outlet of the adsorption tower during carbon dioxide adsorption and desorption was measured. The inlet was at a temperature of 27.4 ° C. and a relative humidity of 7.1% RH during both adsorption and desorption. On the other hand, the outlet had a temperature of 26.9 ° C. and a relative humidity of 0.0% RH.

活性炭を用いた二酸化炭素吸着・放出結果を図5に示す。
図5に示すとおり、吸着過程においては、時間0秒のときには、出口側の二酸化炭素濃度は0.2vol%であるが、時間が経つにつれ出口側の二酸化炭素濃度は上昇し、時間330秒にて飽和に達している。放出過程においては、時間410秒にて出口側で二酸化炭素濃度10.0vol%が観測され、時間が経過するとともに二酸化炭素濃度は減少し、時間1440秒にて出口側の二酸化炭素濃度が0.2vol%となり、吸着された二酸化炭素のほとんどが放出されたことがわかる。
また二酸化炭素吸着時および脱着時における吸着塔の入口と出口の相対湿度を測定したところ、図6に示すとおり、吸着時の入口の相対湿度は5.0〜5.3%RHであったが、出口の相対湿度は、0〜150秒においては入口側の相対湿度より低いが、150〜330秒においては入口側の相対湿度よりも高く、330秒においては10.0%RH に達していた。また脱着時の入口の相対湿度は4.6〜4.8%RHであったが、出口の相対湿度は、330〜710秒においては入口側の相対湿度より高いが、710〜1240秒においては入口側の相対湿度よりも低く、1100秒においては4.1%RHに達していた。このように活性炭においては、二酸化炭素吸着時には吸着されていた水分が放出され、二酸化炭素脱着時には水蒸気を吸着することから、露点温度−10℃程度の空気では、活性炭の二酸化炭素吸着において水蒸気の影響はなく、図1における低露点空気用除湿装置を設置しなくてもよいという結果が得られた。
The results of carbon dioxide adsorption / release using activated carbon are shown in FIG.
As shown in FIG. 5, in the adsorption process, when the time is 0 second, the carbon dioxide concentration on the outlet side is 0.2 vol%, but as the time passes, the carbon dioxide concentration on the outlet side increases and reaches 330 seconds. Has reached saturation. In the release process, a carbon dioxide concentration of 10.0 vol% is observed on the outlet side at a time of 410 seconds, and the carbon dioxide concentration decreases with the passage of time. It can be seen that most of the adsorbed carbon dioxide was released.
Further, when the relative humidity at the inlet and outlet of the adsorption tower at the time of carbon dioxide adsorption and desorption was measured, the relative humidity at the inlet at the time of adsorption was 5.0 to 5.3% RH as shown in FIG. The relative humidity at the outlet was lower than the relative humidity at the inlet side at 0 to 150 seconds, but higher than the relative humidity at the inlet side at 150 to 330 seconds, and reached 10.0% RH at 330 seconds. . The relative humidity of the inlet at the time of desorption was 4.6 to 4.8% RH, but the relative humidity of the outlet is higher than the relative humidity on the inlet side at 330 to 710 seconds, but at 710 to 1240 seconds. It was lower than the relative humidity on the inlet side and reached 4.1% RH at 1100 seconds. Thus, activated carbon releases moisture adsorbed at the time of carbon dioxide adsorption, and adsorbs water vapor at the time of carbon dioxide desorption. Therefore, in air having a dew point temperature of about −10 ° C., the influence of water vapor on carbon dioxide adsorption of activated carbon. As a result, it was found that the low dew point air dehumidifier in FIG.

(除湿)
図1における除湿装置4としてデシカント除湿機、低露点空気用除湿装置7として合成ゼオライト120kgをドラム缶に入れたものを用いた。
図7にデシカント除湿機入口における温度・相対湿度・露点温度を、図8にデシカント除湿機出口における温度・相対湿度・露点温度を、図9にデシカント除湿機入口および出口の露点温度を比較した結果を示した。
図7に示すように、夜間の19:00から翌朝7:00における燃焼式加温機から排出される燃焼排ガスを取り入れているが、熱交換器により十分外気によって冷やされていることから、デシカント除湿機入口での温度は5〜8℃、相対湿度は58〜72%RHと、露点温度において−3〜2℃と低い露点温度の空気が安定した状態で供給されている。また翌朝7:00から夕方にかけては、外気を取り入れているが、昼から晴れて温度が25〜30℃程度まで上昇しても相対湿度が低いため、露点温度は−6〜1℃であった。
そして図8に示すように、デシカント除湿機を通過した後の出口の温湿度は、出口温度10〜30℃、相対湿度4〜6%RHと、露点温度にして−28〜−13℃と相当な乾燥空気が得られていた。
図9にデシカント除湿機の入口・出口における空気の露点温度を示すが、入口温度が10℃以下では、露点温度として25℃下げることが可能で、また入口温度が20℃以上であっても、露点温度を10℃下げることが可能である。以上のようにデシカント除湿機が効率的に機能していることが示された。
次に除湿装置(デシカント除湿機)4を通り、低露点空気用除湿装置を通った後の温湿度を計測した。その結果温度は10〜30℃において、常に相対湿度0.0%RHを示しており、二酸化炭素貯留タンク8に全く影響を与えない乾燥空気を送ることができることを確認した。
(Dehumidification)
As the dehumidifying device 4 in FIG. 1, a desiccant dehumidifier and a low dew point air dehumidifying device 7 in which 120 kg of synthetic zeolite was put in a drum can were used.
FIG. 7 shows the temperature, relative humidity, and dew point temperature at the desiccant dehumidifier inlet, FIG. 8 shows the temperature, relative humidity, and dew point temperature at the desiccant dehumidifier outlet, and FIG. 9 compares the dew point temperatures at the desiccant dehumidifier inlet and outlet. showed that.
As shown in FIG. 7, the combustion exhaust gas discharged from the combustion type warmer from 19:00 at night to 7:00 the following morning is taken in, but since it is sufficiently cooled by the outside air by the heat exchanger, the desiccant The temperature at the dehumidifier inlet is 5 to 8 ° C., the relative humidity is 58 to 72% RH, and air having a dew point temperature as low as −3 to 2 ° C. at the dew point temperature is stably supplied. Also, outside air was taken in from 7:00 to evening in the next morning, but the dew point temperature was -6 to 1 ° C because the relative humidity was low even when the temperature rose from noon to about 25 to 30 ° C. .
And as shown in FIG. 8, the temperature / humidity of the outlet after passing through the desiccant dehumidifier corresponds to an outlet temperature of 10-30 ° C., a relative humidity of 4-6% RH, and a dew point temperature of −28 to −13 ° C. Dry air was obtained.
FIG. 9 shows the dew point temperature of the air at the inlet / outlet of the desiccant dehumidifier. When the inlet temperature is 10 ° C. or lower, the dew point temperature can be lowered by 25 ° C., and even if the inlet temperature is 20 ° C. or higher, It is possible to reduce the dew point temperature by 10 ° C. As described above, it was shown that the desiccant dehumidifier functions efficiently.
Next, the temperature and humidity after passing through the dehumidifier (desiccant dehumidifier) 4 and the dehumidifier for low dew point air were measured. As a result, it was confirmed that, at a temperature of 10 to 30 ° C., the relative humidity was always 0.0% RH, and it was possible to send dry air that had no influence on the carbon dioxide storage tank 8.

(二酸化炭素貯留および放出)
図1における二酸化炭素貯留タンク8として合成ゼオライト110kgをドラム缶に入れたものを用いた。
図10に二酸化炭素貯留タンクを通過した後の二酸化炭素濃度を示す。夜間の19:00から翌朝7:00における燃焼式加温機から排出される燃焼排ガスを取り入れている貯留時には、二酸化炭素濃度が1.5%から徐々に上昇し最終的に3.3%まで上昇している。また翌朝7:00以降の放出時には3.5%からスタートし徐々に濃度は減少するが夕方でも1.5%程度の濃度で放出されることが確認された。
次にビニールハウス内の二酸化炭素濃度を図11に示す。図11に示すように二酸化炭素を放出することにより、ビニールハウス内の二酸化炭素濃度は700〜950ppmに制御できており、効果的な二酸化炭素の施用が行えていることを確認した。
(Carbon dioxide storage and release)
As the carbon dioxide storage tank 8 in FIG. 1, 110 kg of synthetic zeolite contained in a drum can was used.
FIG. 10 shows the carbon dioxide concentration after passing through the carbon dioxide storage tank. During storage from 19:00 in the night to 7:00 in the next morning, the carbon dioxide concentration gradually rises from 1.5% to finally reach 3.3% It is rising. In addition, it was confirmed that the concentration started from 3.5% at the time of release after 7:00 the next morning and gradually decreased, but it was released at a concentration of about 1.5% in the evening.
Next, the carbon dioxide concentration in the greenhouse is shown in FIG. As shown in FIG. 11, the carbon dioxide concentration in the greenhouse was controlled to 700 to 950 ppm by releasing carbon dioxide, and it was confirmed that effective application of carbon dioxide could be performed.

(二酸化炭素回収効率)
下記の表1に、図12に2月下旬〜4月下旬における日平均夜間暖房稼働時間・日平均夜間二酸化炭素発生量・日平均二酸化炭素施用量・回収効率を示す。回収効率は14〜33%とビニールハウス施用に必要な二酸化炭素の回収が十分に行われていることが確認された。
(CO2 recovery efficiency)
In Table 1 below, FIG. 12 shows the daily average nighttime heating operation time, the daily average nighttime carbon dioxide generation amount, the daily average carbon dioxide application rate, and the recovery efficiency from the end of February to the end of April. The recovery efficiency was 14 to 33%, and it was confirmed that the carbon dioxide required for the greenhouse application was sufficiently recovered.

1:燃焼式加温機
2:熱交換器および硫黄酸化物除去装置
3:低濃度硫黄酸化物除去装置
4:除湿装置
5:窒素酸化物除去装置
6:強制排気用送風ファン
7:低露点空気用除湿装置
8:二酸化炭素貯留タンク
9:装置起動コントロール装置
10:二酸化炭素モニター
11:灯油燃焼式加温機
12:熱交換器および硫黄酸化物除去装置
13:強制排気用送風ファン
14:窒素酸化物除去装置
15:二酸化炭素回収・濃縮装置
16:圧縮用コンプレッサー
17:貯留タンク
18:放出用コントロールバルブ
19:二酸化炭素モニター
20:窒素成分再利用システム
1: Combustion heater 2: Heat exchanger and sulfur oxide removal device 3: Low-concentration sulfur oxide removal device 4: Dehumidification device 5: Nitrogen oxide removal device 6: Blower fan for forced exhaust 7: Low dew point air Dehumidifier 8: Carbon dioxide storage tank 9: Device activation control device 10: Carbon dioxide monitor 11: Kerosene combustion heater 12: Heat exchanger and sulfur oxide removal device 13: Forced exhaust fan 14: Nitrogen oxidation Material removal device 15: Carbon dioxide recovery / concentration device 16: Compressor for compression 17: Storage tank 18: Control valve for discharge 19: Carbon dioxide monitor 20: Nitrogen component recycling system

Claims (3)

二酸化炭素供給源において発生する燃焼排ガス中の硫黄酸化物を植物の成長に影響を及ぼさない濃度以下にする手段、前記燃焼排ガス中の窒素酸化物を植物の成長に影響を及ぼさない濃度以下にする手段、二酸化炭素を回収・貯留する際に二酸化炭素の吸着性能に影響を与えないように前記燃焼排ガスを除湿する手段、及びこれらの手段により処理された燃焼排ガスから、二酸化炭素の濃度差によって吸脱着が可能な二酸化炭素吸着剤を用いて二酸化炭素を回収・貯留する手段を備え、さらに必要時に前記二酸化炭素吸着剤に貯留された二酸化炭素を、除湿した大気を送り込むことによって園芸用施設内に放出させる手段を備えることを特徴とする園芸用施設への二酸化炭素供給装置。   Means for reducing sulfur oxides in combustion exhaust gas generated at a carbon dioxide supply source to a concentration not affecting plant growth, nitrogen oxides in the combustion exhaust gas not exceeding a concentration not affecting plant growth Means for dehumidifying the flue gas so as not to affect the adsorption performance of carbon dioxide when carbon dioxide is collected and stored, and the flue gas treated by these means due to a difference in carbon dioxide concentration. A means for collecting and storing carbon dioxide using a desorbable carbon dioxide adsorbent is provided, and further, when necessary, the carbon dioxide stored in the carbon dioxide adsorbent is fed into the horticultural facility by sending dehumidified air into it. A device for supplying carbon dioxide to a horticultural facility, characterized by comprising means for releasing. 前記二酸化炭素吸着剤が、大気よりも高い二酸化炭素濃度を有するガスから二酸化炭素を吸着し、大気を送り込むだけで二酸化炭素を放出する特性を有することを特徴とする請求項1に記載の園芸用施設への二酸化炭素供給装置。   The horticultural use according to claim 1, wherein the carbon dioxide adsorbent has a characteristic of adsorbing carbon dioxide from a gas having a higher carbon dioxide concentration than the atmosphere and releasing the carbon dioxide only by feeding the atmosphere. Carbon dioxide supply equipment for facilities. 前記の窒素酸化物や硫黄酸化物を、植物の成長に影響を及ぼさない濃度以下にする手段が、硫黄酸化物除去装置と窒素酸化物除去装置とからなる請求項1又は2に記載の園芸用施設への二酸化炭素供給装置。   The horticultural use according to claim 1 or 2, wherein the means for reducing the nitrogen oxides or sulfur oxides to a concentration that does not affect plant growth comprises a sulfur oxide removing device and a nitrogen oxide removing device. Carbon dioxide supply equipment for facilities.
JP2012200204A 2011-09-13 2012-09-12 Carbon dioxide supply equipment for horticultural facilities using carbon dioxide in combustion exhaust gas Active JP6179915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012200204A JP6179915B2 (en) 2011-09-13 2012-09-12 Carbon dioxide supply equipment for horticultural facilities using carbon dioxide in combustion exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011199050 2011-09-13
JP2011199050 2011-09-13
JP2012200204A JP6179915B2 (en) 2011-09-13 2012-09-12 Carbon dioxide supply equipment for horticultural facilities using carbon dioxide in combustion exhaust gas

Publications (3)

Publication Number Publication Date
JP2013074887A true JP2013074887A (en) 2013-04-25
JP2013074887A5 JP2013074887A5 (en) 2015-11-19
JP6179915B2 JP6179915B2 (en) 2017-08-16

Family

ID=48478904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012200204A Active JP6179915B2 (en) 2011-09-13 2012-09-12 Carbon dioxide supply equipment for horticultural facilities using carbon dioxide in combustion exhaust gas

Country Status (1)

Country Link
JP (1) JP6179915B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314694A (en) * 2013-07-01 2013-09-25 中国农业大学 CO2 gas fertilization method and device based on zero concentration difference inside and outside system
WO2015098252A1 (en) * 2013-12-27 2015-07-02 フタバ産業株式会社 Carbon dioxide application device
CN104959031A (en) * 2015-05-19 2015-10-07 南阳东仑生物光碳科技有限公司 Carbon dioxide trapping agent, and applications, preparation method, and application method thereof
JP2015188864A (en) * 2014-03-28 2015-11-02 フタバ産業株式会社 Gas cooling apparatus
KR20170016924A (en) 2014-06-10 2017-02-14 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide application device
RU2641747C2 (en) * 2016-05-29 2018-01-22 Федеральное государственное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Greenhouse with cleaning and integrated waste gases recycling
WO2018037461A1 (en) 2016-08-22 2018-03-01 フタバ産業株式会社 Carbon dioxide supply device
WO2018037459A1 (en) 2016-08-22 2018-03-01 フタバ産業株式会社 Carbon dioxide supply device
CN108529626A (en) * 2018-05-21 2018-09-14 通州宏仁气体有限公司 A kind of carbon dioxide gas manufacturing device
KR101931441B1 (en) 2017-08-07 2018-12-20 윤정한 CO2 generation and temperature control device using methanol
KR20190039983A (en) * 2016-09-16 2019-04-16 후타바 인더스트리얼 컴패니 리미티드 Purifier
JP2019154400A (en) * 2018-03-16 2019-09-19 株式会社Ihi Management system of plant cultivation chamber, and management control method of plant cultivation chamber
JP2019162084A (en) * 2018-03-20 2019-09-26 国立大学法人九州大学 Gas supplying apparatus and plant cultivation system
CN112337287A (en) * 2019-08-08 2021-02-09 双叶产业株式会社 Carbon dioxide application apparatus
RU2748056C1 (en) * 2020-09-21 2021-05-19 Федеральное государственное бюджетное образовательное учреждение высшего образования. "Юго-Западный государственный университет" (ЮЗГУ) Greenhouse with full utilization of waste gases
JP2021074657A (en) * 2019-11-06 2021-05-20 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon generator, carbon circulation system and carbon dioxide recovery method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585848B (en) * 2019-08-16 2021-11-23 江苏生久环境科技有限公司 Method for processing gas after garbage transfer station finishes processing and storage medium
KR20230083381A (en) 2021-12-02 2023-06-12 김엽규 Carbon dioxide supply system of greenhouse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52161753U (en) * 1976-06-02 1977-12-08
JPS58220626A (en) * 1982-06-17 1983-12-22 財団法人産業創造研究所 Atmosphere adjustment in carbon dioxide fertilizing and cultivating house
JPH06253682A (en) * 1993-02-26 1994-09-13 Kanebo Ltd Plant rearing house
JPH10128059A (en) * 1996-10-24 1998-05-19 Korea Energ Res Inst Two-stage adsorbing and separating equipment for recovering carbon dioxide from waste combustion gas and two-stage method for adsorbing and separating carbon dioxide
JP2003181242A (en) * 2001-12-21 2003-07-02 Tokyo Electric Power Co Inc:The Carbon dioxide removing apparatus integrated with desulfurization device and boiler equipment equipped with carbon dioxide removing apparatus
JP2008273821A (en) * 2007-04-06 2008-11-13 Nippon Steel Corp Method of recovering carbon dioxide in gas
JP2009213414A (en) * 2008-03-11 2009-09-24 Osaka Gas Co Ltd Carbon dioxide supplying system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52161753U (en) * 1976-06-02 1977-12-08
JPS58220626A (en) * 1982-06-17 1983-12-22 財団法人産業創造研究所 Atmosphere adjustment in carbon dioxide fertilizing and cultivating house
JPH06253682A (en) * 1993-02-26 1994-09-13 Kanebo Ltd Plant rearing house
JPH10128059A (en) * 1996-10-24 1998-05-19 Korea Energ Res Inst Two-stage adsorbing and separating equipment for recovering carbon dioxide from waste combustion gas and two-stage method for adsorbing and separating carbon dioxide
JP2003181242A (en) * 2001-12-21 2003-07-02 Tokyo Electric Power Co Inc:The Carbon dioxide removing apparatus integrated with desulfurization device and boiler equipment equipped with carbon dioxide removing apparatus
JP2008273821A (en) * 2007-04-06 2008-11-13 Nippon Steel Corp Method of recovering carbon dioxide in gas
JP2009213414A (en) * 2008-03-11 2009-09-24 Osaka Gas Co Ltd Carbon dioxide supplying system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314694B (en) * 2013-07-01 2016-01-13 中国农业大学 A kind of CO based on zero-dose difference inside and outside system 2gas fertilizing method and device thereof
CN103314694A (en) * 2013-07-01 2013-09-25 中国农业大学 CO2 gas fertilization method and device based on zero concentration difference inside and outside system
WO2015098252A1 (en) * 2013-12-27 2015-07-02 フタバ産業株式会社 Carbon dioxide application device
JP2015126708A (en) * 2013-12-27 2015-07-09 フタバ産業株式会社 Carbon dioxide applying apparatus
JP2015188864A (en) * 2014-03-28 2015-11-02 フタバ産業株式会社 Gas cooling apparatus
KR101903297B1 (en) * 2014-06-10 2018-10-01 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide application device
KR20170016924A (en) 2014-06-10 2017-02-14 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide application device
CN106659128A (en) * 2014-06-10 2017-05-10 双叶产业株式会社 Carbon dioxide application device
CN104959031A (en) * 2015-05-19 2015-10-07 南阳东仑生物光碳科技有限公司 Carbon dioxide trapping agent, and applications, preparation method, and application method thereof
RU2641747C2 (en) * 2016-05-29 2018-01-22 Федеральное государственное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Greenhouse with cleaning and integrated waste gases recycling
KR102196641B1 (en) * 2016-08-22 2020-12-30 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide supply
JPWO2018037459A1 (en) * 2016-08-22 2019-06-20 フタバ産業株式会社 Carbon dioxide supply device
WO2018037459A1 (en) 2016-08-22 2018-03-01 フタバ産業株式会社 Carbon dioxide supply device
KR102195037B1 (en) 2016-08-22 2020-12-24 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide supply
KR20190039211A (en) 2016-08-22 2019-04-10 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide feeder
KR20190039210A (en) 2016-08-22 2019-04-10 후타바 인더스트리얼 컴패니 리미티드 Carbon dioxide feeder
CN109640625A (en) * 2016-08-22 2019-04-16 双叶产业株式会社 Appliance for applying carbon dioxide
CN109640624A (en) * 2016-08-22 2019-04-16 双叶产业株式会社 Appliance for applying carbon dioxide
EP3501263A4 (en) * 2016-08-22 2020-04-15 Futaba Industrial Co., Ltd. Carbon dioxide supply device
WO2018037461A1 (en) 2016-08-22 2018-03-01 フタバ産業株式会社 Carbon dioxide supply device
JPWO2018037461A1 (en) * 2016-08-22 2019-06-20 フタバ産業株式会社 Carbon dioxide supply device
CN109640625B (en) * 2016-08-22 2021-10-01 双叶产业株式会社 Carbon dioxide supply device
KR102196642B1 (en) 2016-09-16 2020-12-30 후타바 인더스트리얼 컴패니 리미티드 Purification device
EP3494776A4 (en) * 2016-09-16 2020-03-25 Futaba Industrial Co., Ltd. Purification device
KR20190039983A (en) * 2016-09-16 2019-04-16 후타바 인더스트리얼 컴패니 리미티드 Purifier
KR101931441B1 (en) 2017-08-07 2018-12-20 윤정한 CO2 generation and temperature control device using methanol
JP2019154400A (en) * 2018-03-16 2019-09-19 株式会社Ihi Management system of plant cultivation chamber, and management control method of plant cultivation chamber
WO2019181464A1 (en) * 2018-03-20 2019-09-26 国立大学法人九州大学 Gas feeding device and method for using same, and plant cultivation system
JP2019162084A (en) * 2018-03-20 2019-09-26 国立大学法人九州大学 Gas supplying apparatus and plant cultivation system
JP7112063B2 (en) 2018-03-20 2022-08-03 国立大学法人九州大学 Gas supply device and plant cultivation system
CN108529626A (en) * 2018-05-21 2018-09-14 通州宏仁气体有限公司 A kind of carbon dioxide gas manufacturing device
CN112337287A (en) * 2019-08-08 2021-02-09 双叶产业株式会社 Carbon dioxide application apparatus
JP7092717B2 (en) 2019-08-08 2022-06-28 フタバ産業株式会社 Carbon dioxide application device
JP2021074657A (en) * 2019-11-06 2021-05-20 株式会社豊田中央研究所 Carbon dioxide recovery device, hydrocarbon generator, carbon circulation system and carbon dioxide recovery method
JP7443723B2 (en) 2019-11-06 2024-03-06 株式会社豊田中央研究所 Carbon dioxide capture device, hydrocarbon generation device, carbon circulation system, and carbon dioxide recovery method
RU2748056C1 (en) * 2020-09-21 2021-05-19 Федеральное государственное бюджетное образовательное учреждение высшего образования. "Юго-Западный государственный университет" (ЮЗГУ) Greenhouse with full utilization of waste gases

Also Published As

Publication number Publication date
JP6179915B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6179915B2 (en) Carbon dioxide supply equipment for horticultural facilities using carbon dioxide in combustion exhaust gas
JP5578469B2 (en) Carbon dioxide supply system for horticultural facilities by pressure swing method using carbon dioxide in combustion exhaust gas
AU2010277084B2 (en) Carbon Dioxide Separation Method and Apparatus
JP5877922B1 (en) Absorption type removal and concentration equipment
EP2874727B1 (en) Device for temperature swing process
JP7036414B2 (en) Carbon dioxide concentrator
NO332812B1 (en) Amine emission control
KR101709867B1 (en) Apparatus for capturing of carbon dioxide
KR20140018874A (en) A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
JP6090810B2 (en) Carbon dioxide concentrator and carbon dioxide supply method
JP6766908B2 (en) Supply device and method of carbon dioxide-containing gas and heat to crop production facilities
WO2015190213A1 (en) Carbon dioxide application device
CN105944499B (en) A kind of method that temp.-changing adsorption removes sulfur dioxide in industrial tail gas
CN103492048A (en) System and method for low nox emitting regeneration of desiccants
KR101361152B1 (en) Carbon dioxide generator for cultivation of plants
JP2003001061A (en) Method of concentrating carbon dioxide in combustion gas
JP5317885B2 (en) Gas processing equipment
CN109737432A (en) Utilize the processing system and method for dangerous waste incinerator processing low-concentration organic exhaust gas
KR101874995B1 (en) Extracting and pretreatment system for capture of carbon dioxide in exhaust gas using district heating
CN207769485U (en) The structure of microcomponent in a kind of removing flue gas
JP2002188796A (en) Method and apparatus for adsorbing and storing digestion gas
CN210278703U (en) VOC waste gas comprehensive treatment device
JPWO2018051504A1 (en) Purification device
CN215929583U (en) Waste heat recycling device of catalytic combustion reaction device
CN209917600U (en) Methane gradual cooling and dehumidifying device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20121012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6179915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250