JP2013071104A - Fluidized bed apparatus - Google Patents

Fluidized bed apparatus Download PDF

Info

Publication number
JP2013071104A
JP2013071104A JP2011214468A JP2011214468A JP2013071104A JP 2013071104 A JP2013071104 A JP 2013071104A JP 2011214468 A JP2011214468 A JP 2011214468A JP 2011214468 A JP2011214468 A JP 2011214468A JP 2013071104 A JP2013071104 A JP 2013071104A
Authority
JP
Japan
Prior art keywords
particle
fluidized bed
processing container
gas
translucent window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011214468A
Other languages
Japanese (ja)
Other versions
JP5805482B2 (en
Inventor
Masashi Inetani
正志 稲谷
Maya Fujiwara
麻矢 藤原
Wataru Momose
亘 百瀬
Kazunari Yamashita
計成 山下
Yoshifumi Katagawa
好史 片川
Takuya Nagato
琢也 長門
Naotoshi Kinoshita
直俊 木下
Koji Yamanaka
弘二 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powrex KK
Original Assignee
Powrex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48476036&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013071104(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Powrex KK filed Critical Powrex KK
Priority to JP2011214468A priority Critical patent/JP5805482B2/en
Publication of JP2013071104A publication Critical patent/JP2013071104A/en
Application granted granted Critical
Publication of JP5805482B2 publication Critical patent/JP5805482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Drying Of Solid Materials (AREA)
  • Glanulating (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized bed apparatus capable of measuring a physical property value of powdery particles with high accuracy without needing a complicated apparatus structure or a movable part and of restraining a fall in yield.SOLUTION: The fluidized bed apparatus includes a translucent window provided at a sidewall of a treatment container, and a particle catching part of a predetermined volume facing the inner surface of the translucent window and accumulating a part of powdery particles floating and flowing in the treatment container. The physical property value of still powdery particles accumulated in the particle catching part is measured from the outer surface side of the translucent window using an optical sensor. Highly accurate measurement can thereby be made, and a fall in yield is restrained.

Description

本発明は、造粒、コーティング、乾燥を行う流動層装置に係り、詳しくは処理容器内で流動する粉粒体粒子の物性値測定に関する。   The present invention relates to a fluidized bed apparatus that performs granulation, coating, and drying, and more specifically, to measurement of physical property values of powder particles flowing in a processing container.

流動層装置は、一般に、処理容器の底部から導入した流動化気体によって、処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、乾燥等を行うものであり、食品工業、薬品工業等の分野で広く使用されている。流動層装置には、流動層処理容器の底部に回転体を配設した転動流動層装置や流動層処理容器の内部にドラフトチューブを設置したワースター式流動層装置に代表される複合型流動層装置も含まれる。   A fluidized bed apparatus generally performs granulation, coating, drying, etc. while forming a fluidized bed by floating and flowing powder particles in a processing vessel with a fluidized gas introduced from the bottom of the processing vessel. Yes, it is widely used in fields such as food industry and pharmaceutical industry. The fluidized bed apparatus includes a rolling fluidized bed apparatus in which a rotating body is disposed at the bottom of the fluidized bed processing container and a composite fluidized bed represented by a Wurster fluidized bed apparatus in which a draft tube is installed inside the fluidized bed processing container. A device is also included.

流動層装置を用いて粉粒体粒子の造粒、コーティング、乾燥等の処理を行うにあたり、被処理物の処理条件の制御、処理終点の決定等を目的として、処理プロセスの途中で被処理物(粉粒体粒子)をサンプリングし、粉粒体粒子の粒度、水分量、成分含量等の各種物性値を測定する場合がある。   In the process of granulation, coating, drying, etc. of granular particles using a fluidized bed apparatus, the processed material is processed during the processing process for the purpose of controlling the processing conditions of the processed material, determining the processing end point, etc. (Powder particles) may be sampled, and various physical property values such as particle size, moisture content, and component content may be measured.

処理プロセスの途中で被処理物のサンプリング、物性値の測定を行う技術として、下記の特許文献に示すような技術が開示されている。   As a technique for sampling an object to be processed and measuring a physical property value in the middle of a treatment process, a technique as disclosed in the following patent document is disclosed.

特許文献1には、処理容器内で浮遊流動する粉粒体がレーザ光を横切るように通過することで、散乱したレーザ光をレンズによってセンサ上に集光し、集光したレーザ光を基に該粉粒体の物性値を測定する技術が開示されている。   In Patent Document 1, a granular material floating and flowing in a processing vessel passes through a laser beam so that the scattered laser beam is collected on a sensor by a lens, and the collected laser beam is used as a basis. A technique for measuring the physical property value of the granular material is disclosed.

特許文献2には、処理容器を貫通する粉粒体取出管内に、ガス噴射ノズルから高圧ガスを噴射することで、流動層内を浮遊流動する粉粒体を処理容器の外部に設けられた粒子測定装置に送り込み、該粒子測定装置に設けられた粘着フィルムに付着させ、該粘着フィルムに付着した粉粒体の物性値を測定する技術が開示されている。   Patent Document 2 discloses particles in which powder particles floating and flowing in a fluidized bed are injected outside a processing container by injecting high-pressure gas from a gas injection nozzle into a powder particle extracting tube penetrating the processing container. A technique is disclosed in which a physical property value of a granular material attached to the pressure-sensitive adhesive film is measured by feeding to a measurement device and attaching to a pressure-sensitive adhesive film provided on the particle-measurement device.

特許文献3には、流動層装置の処理容器内で浮遊流動する粉粒体をプローブに設けられた粒子捕捉部に収容し、該プローブを処理容器の外部へと移動させた後、近赤外線センサを用いて該粉粒体の物性値を測定する技術が開示されている。   In Patent Document 3, a granular material that floats and flows in a processing container of a fluidized bed apparatus is accommodated in a particle trap provided in a probe, and after moving the probe to the outside of the processing container, a near infrared sensor A technique for measuring the physical property value of the granular material by using the method is disclosed.

また、非特許文献1には、流動層装置の処理容器内で浮遊流動する造粒末の水分を、処理容器の側壁に設けたNIR測定用窓を介して近赤外線センサにより測定する技術が開示されている。同文献では、測定前にNIR測定用窓の表面にパージエアーを噴射させて、窓付近に付着した造粒末を処理容器内部のものと入れ替え、同時に、NIRセンサーヘッドで造粒末のNIRスペクトルを取得して測定を行っている。これにより、連続的に入れ替わる造粒末サンプルを測定して、流動層内全体の水分値変化を検知している。   Non-Patent Document 1 discloses a technique for measuring moisture in a granulated powder that floats and flows in a processing container of a fluidized bed apparatus using a near-infrared sensor through a NIR measurement window provided on a side wall of the processing container. Has been. In this document, purge air is sprayed onto the surface of the NIR measurement window before measurement, and the granulated powder adhering to the vicinity of the window is replaced with the one inside the processing container. At the same time, the NIR spectrum of the granulated powder is measured with the NIR sensor head. To obtain measurements. Thereby, the granulated powder sample which changes continuously is measured, and the moisture value change of the whole fluidized bed is detected.

特許第3595949号公報Japanese Patent No. 3595949 特許第3827731号公報Japanese Patent No. 3827731 特開2006−136763公報JP 2006-136663 A

「第27回製剤と粒子設計シンポジウム(2010)」要旨集(粉体工学会発行) 第144〜145頁 「生産スケールの流動層造粒工程におけるバッチ全体を反映したリアルタイム水分測定」Summary of “27th Symposium on Formulation and Particle Design (2010)” (published by the Society of Powder Technology) Pages 144-145 “Real-time moisture measurement reflecting the whole batch in fluidized bed granulation process on production scale”

しかしながら、特許文献1に開示された技術では、粉粒体の物性値の測定は、粉粒体をサンプリングすることなく、処理容器内で流動中の粉粒体を対象に行われるため、静止状態の粉粒体の物性値を測定する場合に比べて測定の精度が低く、測定値のばらつきが大きいという問題点があった。   However, in the technique disclosed in Patent Document 1, the measurement of the physical property value of the granular material is performed on the flowing granular material in the processing container without sampling the granular material, so that the stationary state Compared with the case of measuring the physical property value of the granular material, there is a problem that the measurement accuracy is low and the variation of the measured value is large.

また、特許文献2に開示された技術では、流動層からサンプリングし、粘着フィルムに付着させた粉粒体を再び流動層へと戻すことができないため(製品として扱われず廃棄される)、製品の収率低下を招くことに加えて、粘着フィルムを間欠送りにするための機構が必要となることから、装置の製造コストが嵩むという問題があった。   Moreover, in the technique disclosed in Patent Document 2, since the granular material sampled from the fluidized bed and adhered to the adhesive film cannot be returned to the fluidized bed again (not treated as a product and discarded), In addition to incurring a decrease in yield, a mechanism for intermittently feeding the adhesive film is required, which increases the manufacturing cost of the apparatus.

また、特許文献3に開示された技術では、測定装置に可動部分があるために、装置の構造が複雑になると共に、装置の洗浄作業が煩雑になるという問題がある。   In addition, the technique disclosed in Patent Document 3 has a problem that since the measuring device has a movable portion, the structure of the device becomes complicated and the cleaning operation of the device becomes complicated.

また、非特許文献1に開示された技術では、NIR測定用窓で連続的に入れ替わる造粒末サンプルを測定の対象としており、測定対象物である造粒末の状態を一定に保つことができない。そのため、反射光/散乱光の強度を常に所望の強度以上に保てないというデメリットがある。   Moreover, in the technique disclosed in Non-Patent Document 1, a granulated powder sample that is continuously replaced by a window for NIR measurement is the object of measurement, and the state of the granulated powder that is the measurement object cannot be kept constant. . Therefore, there is a demerit that the intensity of the reflected light / scattered light cannot always be kept higher than the desired intensity.

本発明の解決すべき課題は、複雑な装置構造や可動部を必要とせず、処理容器内の粉粒体粒子の物性値を精度良く測定でき、且つ製品の収率低下を抑制できる流動層装置を提供することである。   The problem to be solved by the present invention is that a fluidized bed apparatus that does not require a complicated apparatus structure or movable part, can accurately measure the physical property values of the granular particles in the processing vessel, and can suppress a decrease in product yield. Is to provide.

上記課題を解決するため、本発明は、処理容器内に流動化気体を導入し、該処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う流動層装置において、前記粉粒体粒子の物性値を測定する粒子測定部を備え、前記粒子測定部は、前記処理容器の側壁に設けられた透光窓と、該透光窓の内面に臨み、且つ前記処理容器内で浮遊流動する粉粒体粒子の一部を堆積させて捕捉する粒子捕捉部と、該粒子捕捉部に堆積した粉粒体粒子の物性値を前記透光窓の外面側から測定する光センサを備えている流動層装置を提供する。   In order to solve the above-mentioned problems, the present invention introduces a fluidizing gas into a processing container, and granulates, coats, and dries while forming a fluidized bed by floating and flowing powder particles in the processing container. In the fluidized bed apparatus for performing at least one of the treatments, the fluidized bed device includes a particle measuring unit that measures a physical property value of the granular particles, and the particle measuring unit includes a translucent window provided on a side wall of the processing container, A particle trapping part that faces the inner surface of the transparent window and deposits and captures a part of the granular particles that float and flow in the processing container, and the physical property values of the granular particles deposited on the particle trapping part A fluidized bed apparatus comprising an optical sensor for measuring from the outer surface side of the transparent window is provided.

このような構成によれば、極めて簡易な構造でもって、静止した状態で堆積した粉粒体粒子の物性値測定が行えるため、高精度な測定が可能となる。また、粒子測定部は可動部を必要とせず、装置構造も簡易であるため、装置の製造コストを低減することができる。さらに、粒子測定部は可動部分を有していないため、処理終了後の処理容器内の洗浄が容易であり、コンタミネーションの問題が発生しにくい。しかも、測定を終了した粉粒体粒子を再度流動層へと戻すことが可能なため、製品の収率の低下を抑制することができる。   According to such a configuration, it is possible to measure the physical property values of the granular particles deposited in a stationary state with an extremely simple structure, and thus it is possible to perform highly accurate measurement. Moreover, since the particle measuring unit does not require a movable part and the apparatus structure is simple, the manufacturing cost of the apparatus can be reduced. Furthermore, since the particle measuring unit does not have a movable part, it is easy to clean the inside of the processing container after the processing is completed, and contamination problems are unlikely to occur. In addition, since it is possible to return the granular particles after the measurement to the fluidized bed again, it is possible to suppress a decrease in the yield of the product.

上記の構成において、前記透光窓は枠状部材を介して前記処理容器の側壁に取り付けられ、前記粒子捕捉部は、前記透光窓の内面と前記枠状部材の内周面とで構成される凹状部であることが好ましい。   In the above configuration, the translucent window is attached to a side wall of the processing container via a frame-shaped member, and the particle capturing unit is configured by an inner surface of the translucent window and an inner peripheral surface of the frame-shaped member. It is preferable that it is a concave part.

このようにすれば、枠状部材の厚さによって、粒子捕捉部に堆積する粉粒体粒子(粉粒体層)の堆積厚さを、所望の値に調整することが可能となるため、さらに粉粒体粒子物性値の測定精度を高めることができる。   In this way, it becomes possible to adjust the deposition thickness of the powder particles (powder particle layer) deposited on the particle trapping portion to a desired value depending on the thickness of the frame-shaped member. It is possible to improve the measurement accuracy of the physical properties of the powder particles.

上記の構成において、前記処理容器の下部は、下方に向かって漸次縮径する縮径部を有し、該縮径部の側壁に前記粒子測定部が設けられていることが好ましい。   In the above configuration, it is preferable that the lower portion of the processing container has a reduced diameter portion that gradually decreases in diameter downward, and the particle measuring portion is provided on a side wall of the reduced diameter portion.

このようにすれば、処理容器内で浮遊流動する粉粒体粒子を、より容易に粒子捕捉部に堆積させることが可能である。また、一度堆積した粉粒体粒子が粒子捕捉部より脱落する可能性を低減できるため、堆積する粉粒体粒子の堆積厚さが、より一定に保持されやすくなり、さらなる粉粒体粒子物性値の測定精度の向上が望める。   In this way, it is possible to more easily deposit the granular particles floating and flowing in the processing container on the particle capturing portion. In addition, since the possibility that the granular particles once deposited fall off from the particle trapping portion can be reduced, the accumulated thickness of the accumulated granular particles can be more easily maintained, and further physical properties of the granular particles can be maintained. The measurement accuracy can be improved.

上記の構成において、前記光センサは、可視光センサ、赤外センサ、UVセンサ等であっても良いが、近赤外線センサであることが好ましい。   In the above configuration, the optical sensor may be a visible light sensor, an infrared sensor, a UV sensor, or the like, but is preferably a near infrared sensor.

このようにすれば、粉粒体粒子の粒子径等の形態的性質を表す物性値のみならず、成分含量、水分率等の組成的性質や核粒子に対するコーティング成分の被膜量といった溶出性能等の化学的性質を表す物性値も測定することが可能となる。ここで、物性値には、粉粒体粒子の粒子径、粒子形状、粒度分布、成分含量(成分濃度)、被膜量、水分率等が含まれ、以降の記載においても同様である。   In this way, not only the physical properties indicating the morphological properties such as the particle diameter of the granular particles, but also the composition properties such as the component content, moisture content, and the elution performance such as the coating amount of the coating component on the core particles, etc. It is also possible to measure physical property values representing chemical properties. Here, the physical property values include the particle diameter, particle shape, particle size distribution, component content (component concentration), coating amount, moisture content, and the like of the granular particles, and the same applies to the following description.

上記の構成において、前記粒子捕捉部には、該粒子捕捉部への気体の噴出及びその停止が可能な気体噴出手段が設けられていることが好ましい。   Said structure WHEREIN: It is preferable that the said particle | grain capture | acquisition part is provided with the gas ejection means which can eject the gas to this particle | grain capture | acquisition part, and its stop.

このようにすれば、粒子捕捉部への気体噴出手段による気体の噴出を停止させた状態で、粉粒体粒子を粒子捕捉部に堆積させることができるため、粉粒体粒子の捕捉を容易なものとすることが可能となる。また、粒子捕捉部に捕捉され、物性値の測定を終えた粉粒体粒子に、気体噴出手段より気体の噴出を行うことで、捕捉された粉粒体粒子を円滑に流動層へと復帰させることが可能となる。   In this way, the particulate particles can be deposited on the particle capturing portion in a state where the gas ejection by the gas ejecting means to the particle capturing portion is stopped, so that the particulate particles can be easily captured. It becomes possible. In addition, the captured particulate particles are smoothly returned to the fluidized bed by ejecting gas from the gas ejection means to the particulate particles that have been captured by the particle capturing section and have finished measuring the physical property values. It becomes possible.

また、本発明は、前記の課題を解決するため、処理容器内に流動化気体を導入し、該処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う粉粒体粒子の処理方法において、前記処理容器の側壁に設けられた透光窓と、該透光窓の内面に臨み、且つ前記処理容器内で浮遊流動する粉粒体粒子の一部を堆積させて捕捉する粒子捕捉部と、該粒子捕捉部に堆積した粉粒体粒子の物性値を前記透光窓の外面側から測定する光センサと、該粒子捕捉部への気体の噴出及びその停止が可能な気体噴出手段とを備えた粒子測定装置を用い、前記粉粒体粒子を前記粒子捕捉部に堆積させ、前記光センサにより該粉粒体粒子の物性値を測定した後、前記気体噴出手段により、前記粒子捕捉部に堆積した前記粉粒体粒子を前記流動層へと復帰させる工程を有する粉粒体粒子の処理方法を提供する。   Further, in order to solve the above problems, the present invention introduces a fluidized gas into a processing container, and floats and flows the granular particles in the processing container to form a fluidized bed while granulating and coating In addition, in the method for treating granular particles, wherein at least one treatment of drying is performed, a translucent window provided on a side wall of the processing vessel, an inner surface of the translucent window, and a floating flow in the processing vessel A particle capturing part for depositing and capturing a part of the granular particles to be collected, an optical sensor for measuring the physical property value of the granular particles deposited on the particle capturing part from the outer surface side of the light transmission window, and the particles Using a particle measuring device provided with a gas jetting means capable of jetting gas to the trapping section and stopping the gas, the powder particles are deposited on the particle trapping section, and the photosensor detects the powder particles. After measuring the physical property value, the particle trapping section is formed by the gas ejection means. The deposited the granular particles to provide a processing method of the granule particles having a step of returning to said fluidized bed.

このような方法によっても、前記の装置に係る説明でこれに対応する動作について既に述べた事項と同様の作用効果を享受することが可能である。   Also by such a method, it is possible to receive the same operation and effect as the matters already described in the operation related to the above description of the apparatus.

また、本発明は、処理容器内に流動化気体を導入し、処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う流動層装置の前記処理容器の側壁に取り付けられる透光窓構造体であって、透光窓と、透光窓の外周に装着され、透光窓を処理容器の側壁に取り付けるための枠状部材と、透光窓の内面と枠状部材の内周面とで構成される凹状部とを備え、枠状部材の内面が外周から内周に向かって下り勾配で傾斜した傾斜面で形成されている構成を提供する。本発明の透光窓構造体は、凹状部に向かって気体を噴出させるための気体噴出部を備えていることが好ましい。   In addition, the present invention introduces a fluidized gas into a processing container, floats and flows the powder particles in the processing container to form a fluidized bed, and performs at least one of granulation, coating, and drying. A translucent window structure that is attached to the side wall of the processing vessel of a fluidized bed apparatus to be performed, and is attached to the outer periphery of the translucent window and the translucent window, and is a frame shape for attaching the translucent window to the side wall of the processing vessel A member, and a concave portion constituted by the inner surface of the light-transmitting window and the inner peripheral surface of the frame-shaped member, and the inner surface of the frame-shaped member is formed by an inclined surface inclined downward from the outer periphery toward the inner periphery. To provide a configuration. The translucent window structure of the present invention preferably includes a gas ejection part for ejecting gas toward the concave part.

本発明に係る流動層装置によれば、簡易な構造でもって、静止した状態で堆積した粉粒体粒子の物性値測定が行えるため、高精度な測定が可能となる。また、粒子測定部は可動部を必要とせず、装置構造も簡易であるため、装置の製造コストを低減することができる。さらに、粒子測定部は可動部分を有していないため、処理終了後の処理容器内の洗浄が容易であり、コンタミネーションの問題が発生しにくい。しかも、測定を終了した粉粒体粒子を再度流動層へと戻すことが可能なため、製品の収率低下を抑制することができる。   According to the fluidized-bed apparatus which concerns on this invention, since the physical-property value measurement of the granular material particle | grains deposited with the simple structure can be performed in a stationary state, a highly accurate measurement is attained. Moreover, since the particle measuring unit does not require a movable part and the apparatus structure is simple, the manufacturing cost of the apparatus can be reduced. Furthermore, since the particle measuring unit does not have a movable part, it is easy to clean the inside of the processing container after the processing is completed, and contamination problems are unlikely to occur. In addition, since it is possible to return the granular particles after the measurement to the fluidized bed again, it is possible to suppress a decrease in the yield of the product.

実施形態に係る流動層装置の一構成例を示す図である。It is a figure showing an example of 1 composition of a fluid bed apparatus concerning an embodiment. 図1に示した一構成例の流動層装置における処理容器の縮径部3の拡大図である。It is an enlarged view of the diameter-reduction part 3 of the processing container in the fluidized bed apparatus of the example of 1 structure shown in FIG. 粒子捕捉部Cを処理容器2の内側方向から見た図{図3(a)}、処理容器2の外側方向から見た図{図3(b)}である。FIG. 3 is a diagram {FIG. 3A) of the particle trapping unit C viewed from the inside of the processing container 2, and FIG. 3B is a diagram of FIG. 3B viewed from the outside of the processing container 2. 図3(a)(b)のA−A‘断面図{図4(a)}、図3(a)(b)のB−B’断面図である{図4(b)}。3A and 3B are cross-sectional views taken along the line A-A 'in FIG. 4A and FIG. 3B are cross-sectional views taken along the line B-B in FIGS. 3A and 3B.

以下、本発明の実施形態に係る流動層装置の一構成例を添付の図面に基づいて説明する。   Hereinafter, a configuration example of a fluidized bed apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.

まず、図1に基づいて実施形態に係る流動層装置1の構成を説明する。流動層装置1の下端部には、処理容器2内に熱風等の流動化気体Fを導入するための給気チャンバー5が設けられており、処理容器2内には、流動化気体Fによって形成される流動層に向けてスプレー液を噴射し、且つ上下動可能なスプレーノズル6が設けられている。また、処理容器2の下部には、断面積が漸次縮径する縮径部3が設けられ、該縮径部3の側壁には粉粒体粒子Mの物性値を測定する粒子測定部4が設けられている。   First, based on FIG. 1, the structure of the fluidized bed apparatus 1 which concerns on embodiment is demonstrated. An air supply chamber 5 for introducing a fluidizing gas F such as hot air into the processing container 2 is provided at the lower end of the fluidized bed apparatus 1, and is formed by the fluidizing gas F in the processing container 2. A spray nozzle 6 that sprays a spray liquid toward the fluidized bed and that can move up and down is provided. In addition, a reduced diameter portion 3 whose cross-sectional area is gradually reduced in diameter is provided at the lower portion of the processing container 2, and a particle measuring portion 4 that measures a physical property value of the granular particles M is provided on a side wall of the reduced diameter portion 3. Is provided.

次に、流動層装置1を用いて造粒を行う場合を例に挙げて詳細を説明する。なお、ここでは造粒を行う場合を例に挙げるが、本発明に係る流動層装置はコーティング、乾燥等の造粒以外の処理にも使用することができる。   Next, details will be described by taking as an example a case where granulation is performed using the fluidized bed apparatus 1. In addition, although the case where granulation is performed is mentioned here as an example, the fluidized bed apparatus according to the present invention can be used for processes other than granulation such as coating and drying.

まず、給気チャンバー5より、図示しない気体分散板を介して、流動化気体Fが処理容器2内に導入される。ここで、気体分散板としては、パンチングメタル等の多孔板や金網が使用可能である。   First, the fluidizing gas F is introduced from the supply chamber 5 into the processing container 2 through a gas dispersion plate (not shown). Here, as the gas dispersion plate, a perforated plate such as a punching metal or a wire mesh can be used.

導入された流動化気体Fによって、処理容器2内には粉粒体粒子Mの流動層が形成される。そして、処理容器2内で浮遊流動する粉粒体粒子Mに対して、スプレーノズル6から結合材液等のスプレー液が噴射される。粉粒体粒子Mは、スプレー液の噴射によって、湿潤を受けると共に付着凝集し、乾燥される。この付着凝縮を流動層内で繰り返すことで粉粒体粒子Mは、所定の粒子径を有する粒子へと成長していく。   Due to the fluidized gas F introduced, a fluidized bed of powder particles M is formed in the processing vessel 2. Then, a spray liquid such as a binder liquid is sprayed from the spray nozzle 6 to the granular particles M that float and flow in the processing container 2. The powder particles M are wetted, adhered, agglomerated and dried by spraying the spray liquid. By repeating this adhesion and condensation in the fluidized bed, the granular particles M grow into particles having a predetermined particle diameter.

流動層内で粒径成長する粉粒体粒子Mに対して、例えば処理条件の制御や処理終点の決定等を目的として、粉粒体粒子Mの物性値の測定を粒子測定部4にて行う。尚、粒子測定部4による粉粒体粒子Mの物性値の測定は、処理容器2内での粉粒体粒子Mの浮遊流動状態を維持しながら行う。   For the granular particles M that grow in particle size in the fluidized bed, for example, the physical property value of the granular particles M is measured by the particle measuring unit 4 for the purpose of controlling the processing conditions and determining the processing end point. . In addition, the measurement of the physical property value of the granular particles M by the particle measuring unit 4 is performed while maintaining the floating flow state of the granular particles M in the processing container 2.

つぎに、粉粒体粒子Mの物性値測定を行う粒子測定部4の構成について図2及び図3に基づいて説明する。   Next, the configuration of the particle measuring unit 4 that measures the physical property values of the granular particles M will be described with reference to FIGS. 2 and 3.

図2に示すように、処理容器2の縮径部3に設けられた粒子測定部4は、処理容器2内で浮遊流動する粉粒体粒子Mの一部を堆積させて捕捉する粒子捕捉部Cと、粒子捕捉部Cに捕捉された粉粒体粒子Mの物性値を測定する光センサ20とで構成される。粒子捕捉部Cと光センサ20は、クランプ21により処理容器2の縮径部3に固定される。粒子捕捉部Cは、以下で説明する構成を有し、クランプ21により押さえ込まれた状態で縮径部3の開口部に装着される。   As shown in FIG. 2, the particle measuring unit 4 provided in the reduced diameter portion 3 of the processing container 2 deposits and captures a part of the granular particles M that float and flow in the processing container 2. C and the optical sensor 20 that measures the physical property value of the granular particles M captured by the particle capturing unit C. The particle trapping part C and the optical sensor 20 are fixed to the reduced diameter part 3 of the processing container 2 by a clamp 21. The particle trapping part C has a configuration described below, and is attached to the opening of the reduced diameter part 3 while being pressed by the clamp 21.

図3及び図4は粒子捕捉部Cを示している。図3(a)は粒子捕捉部Cを処理容器2の内側方向から見た図{図4(a)のX方向矢視図}、図3(b)は粒子捕捉部Cを処理容器2の外側方向から見た図{図4(a)のY方向矢視図}である。また、図4(a)は図3(a)(b)のA−A‘断面図、図4(b)は図3(a)(b)のB−B’断面図である。尚、図4は、粒子捕捉部Cを図2の紙面裏側方向から見た状態を示している(図2とは向きが反対になっている)。   3 and 4 show the particle trapping part C. FIG. 3A is a view of the particle trapping unit C as viewed from the inner side of the processing container 2 (an arrow view in the X direction of FIG. 4A), and FIG. It is the figure {Y direction arrow view figure of Fig.4 (a)} seen from the outer side direction. 4A is a cross-sectional view taken along the line A-A 'in FIGS. 3A and 3B, and FIG. 4B is a cross-sectional view taken along the line B-B' in FIGS. 3A and 3B. 4 shows a state in which the particle trapping portion C is viewed from the back side of the paper in FIG. 2 (the direction is opposite to that in FIG. 2).

粒子捕捉部Cは、透明なガラスや樹脂等の透明材料で形成された透光窓10と、透光窓10の外周に装着された枠状部材11とを主要な要素として構成される。図4(a)に示すように、枠状部材11は内周側に突出した鍔部11aを有し、透光窓10は、枠状部材11の内周と鍔部11aの一面(外側の面)とに当接した状態で枠状部材11に取り付けられる。そして、鍔部11aとの間で透光窓10を挟持するように、固定部材32がOリング33、34を介して枠状部材11に取り付けられ、ボルト31で固定される。また、枠状部材11の鍔部11aを含む内面は、外周から内周に向かって下り勾配で傾斜した傾斜面11bに形成されている。このような構成の粒子捕捉部Cにおいて、透光窓10の内面と枠状部材11の内周面(鍔部11aの内周面)とによって所定容積の凹状部C1が形成され、処理容器2内で浮遊流動する粉粒体粒子Mが縮径部3の内壁面又はその近傍に沿って下降する際に凹状部C1に入り、さらに粒子捕捉部Cにおいて所定の厚さで堆積するようになっている。ここで、粒子捕捉部Cの形状は、処理容器2内で浮遊流動する粉粒体粒子Mを誘導して、物性値測定に必要な量(厚さ)の粉粒体粒子Mを捕捉しやすく、また、後述するパージエアーPによって粒子捕捉部Cに捕捉された粉粒体粒子Mを流動層へと復帰させやすく、かつ、処理容器2の内面に凹凸が可及的に生じないような形状にすることが好ましい。そのために、粒子捕捉部Cの仕様を、例えば下記のように設定することができる。   The particle trapping part C is composed mainly of a translucent window 10 made of a transparent material such as transparent glass or resin, and a frame-like member 11 attached to the outer periphery of the translucent window 10. As shown in FIG. 4A, the frame-shaped member 11 has a flange portion 11a protruding to the inner peripheral side, and the translucent window 10 has an inner periphery of the frame-shaped member 11 and one surface of the flange portion 11a (outside The frame-shaped member 11 is attached in a state of being in contact with the surface. And the fixing member 32 is attached to the frame-shaped member 11 via the O-rings 33 and 34 so that the translucent window 10 may be pinched | interposed between the collar parts 11a, and is fixed with the volt | bolt 31. Further, the inner surface including the flange portion 11a of the frame-shaped member 11 is formed on an inclined surface 11b that is inclined downward from the outer periphery toward the inner periphery. In the particle trapping portion C having such a configuration, a concave portion C1 having a predetermined volume is formed by the inner surface of the translucent window 10 and the inner peripheral surface of the frame-shaped member 11 (the inner peripheral surface of the flange portion 11a). The granular particles M floating and flowing inside enter the concave portion C1 when descending along the inner wall surface of the reduced diameter portion 3 or the vicinity thereof, and further accumulate at a predetermined thickness in the particle trapping portion C. ing. Here, the shape of the particle trapping part C is such that the granular particles M floating and flowing in the processing container 2 are induced to easily capture the granular particles M in an amount (thickness) necessary for measuring physical properties. Further, the shape is such that the granular particles M captured by the particle capturing portion C by the purge air P described later can be easily returned to the fluidized bed, and the inner surface of the processing container 2 is not uneven as much as possible. It is preferable to make it. Therefore, the specification of the particle capturing part C can be set as follows, for example.

凹状部C1の深さh1(凹状部C1に堆積する粉粒体粒子Mの厚さに対応)は、例えば0.5mm〜10mmであり、傾斜面11bの最外径部から測った透光窓10の内面の深さh2は、例えば0.5〜50mm、好ましくは3〜50mmである。粒子捕捉部Cを縮径部3に装着した状態で、透光窓10の内面は水平面S(図2も参照)と角度θをなし、この角度θは、例えば縮径部3の内壁面が水平面Sとなす角度(この角度は、一般的な流動層装置における処理容器の縮径部の内壁面と同じ又は同程度の角度である)と同じである。角度θは、例えば45°〜80°、好ましくは60°〜80°である。また、傾斜面11bが透光窓10の内面となす角度βは、好ましくは5〜50°である。ここで傾斜面11bが水平面Sとなす角度αは、上方側と下方側とで異なり、上方側の角度α2が下方側の角度α1よりも大きくなる。傾斜面11bが水平面Sとなす角度αのうち、α1(α1=θ―β)としては、粉粒体粒子Mを粒子補足部Cに停止させやすく、パージエアーによって粉粒体粒子Mを粒子補足部Cから流動層に復帰させやすい角度であればよく、好ましくは20°〜70°である。角度α1の一つの態様として、本発明を使用する際にα1は粉粒体粒子Mの特性、例えば安息角を参考に決めることができる。また角度α2はθよりも大きく、θ+90°よりも小さければよいが、傾斜面11bの傾斜角βが円周上の各部位で等しくなる角度であることが装置製造の簡便さの面で好ましい。さらに、α2は粉粒体粒子Mが粒子補足部Cに入りやすい角度であればよく、好ましくは70〜120°である。   The depth h1 of the concave portion C1 (corresponding to the thickness of the granular particles M deposited on the concave portion C1) is, for example, 0.5 mm to 10 mm, and the translucent window measured from the outermost diameter portion of the inclined surface 11b. The depth h2 of the inner surface of 10 is, for example, 0.5 to 50 mm, preferably 3 to 50 mm. In a state where the particle trapping part C is mounted on the reduced diameter part 3, the inner surface of the light transmission window 10 forms an angle θ with the horizontal plane S (see also FIG. 2), and this angle θ is, for example, the inner wall surface of the reduced diameter part 3 It is the same as the angle formed with the horizontal plane S (this angle is the same or approximately the same as the inner wall surface of the reduced diameter portion of the processing vessel in a general fluidized bed apparatus). The angle θ is, for example, 45 ° to 80 °, preferably 60 ° to 80 °. In addition, the angle β formed by the inclined surface 11b with the inner surface of the transparent window 10 is preferably 5 to 50 °. Here, the angle α formed by the inclined surface 11b with the horizontal plane S is different between the upper side and the lower side, and the upper side angle α2 is larger than the lower side angle α1. Of the angle α formed by the inclined surface 11b and the horizontal plane S, α1 (α1 = θ−β) is easy to stop the granular particles M at the particle capturing portion C, and the granular particles M are captured by purge air. The angle may be any angle as long as it is easy to return from the part C to the fluidized bed, and preferably 20 ° to 70 °. As one embodiment of the angle α1, when using the present invention, α1 can be determined with reference to the characteristics of the granular particles M, for example, the angle of repose. Further, the angle α2 may be larger than θ and smaller than θ + 90 °, but it is preferable in terms of simplicity of manufacturing the device that the inclination angle β of the inclined surface 11b is equal in each part on the circumference. Furthermore, (alpha) 2 should just be an angle which the granular material particle | grains M enter the particle | grain supplement part C easily, Preferably it is 70-120 degrees.

凹状部C1の深さh1を上記の値に設定することにより、物性値測定に必要な量(厚さ)の粉粒体粒子Mを捕捉することができる。また、水平面Sに対する透光窓10の内面の角度θを上記の値に設定し、水平面Sに対する傾斜面11bの角度α(α1、α2)を上記の値に設定することにより、処理容器2内で浮遊流動する粉粒体粒子Mを凹状部C1に円滑に誘導し、また、凹状部C1に堆積した粉粒体粒子Mを後述するパージエアーPによって流動層に円滑に戻すことができる。特に、水平面Sに対する傾斜面11bの角度αは、上方側の角度α2が下方側の角度α1よりも大きいので、処理容器2内で浮遊流動する粉粒体粒子Mをより円滑に凹状部C1に誘導することができる。また、このような粒子捕捉部Cは、処理容器2の内面に凹凸が可及的に生じないような形状であり、粉粒体粒子Mの過剰な堆積がなく、また、洗浄作業も容易である。   By setting the depth h1 of the concave portion C1 to the above value, it is possible to capture the amount (thickness) of the granular particles M necessary for measuring the physical property value. Further, by setting the angle θ of the inner surface of the transparent window 10 with respect to the horizontal plane S to the above value and setting the angle α (α1, α2) of the inclined surface 11b with respect to the horizontal plane S to the above value, The granular particles M floating and flowing can be smoothly guided to the concave portion C1, and the granular particles M deposited in the concave portion C1 can be smoothly returned to the fluidized bed by the purge air P described later. In particular, the angle α of the inclined surface 11b with respect to the horizontal plane S is such that the upper angle α2 is larger than the lower angle α1, so that the granular particles M floating and flowing in the processing container 2 can be more smoothly formed into the concave portion C1. Can be guided. Moreover, such a particle | grain capture | acquisition part C is a shape that an unevenness | corrugation does not arise in the inner surface of the processing container 2 as much as possible, there is no excessive accumulation of the granular material particle | grains M, and washing | cleaning operation | work is also easy. is there.

なお、粉体の安息角の測定が必要な場合、一般的に用いられる方法であればいずれを使用しても構わないが、例えば、ホソカワミクロン株式会社製のパウダテスタPT−Sモデルの標準の測定方法を使用することができる。すなわち、ロート、スペースリング、フルイ、フルイオサエ、オサエバーの順に振動台に部品を取り付け、その下部に安息角測定用テーブルを設置する。前記機材の設置後、フルイ上に粉体原料を投入する。投入後、装置の振動版を徐々に振動させ、振動板の振幅が2mm未満の範囲内でフルイ/ロートを経由して安息角測定用テーブル上に粉体を供給する。安息角測定用テーブル周囲から粉がこぼれ始めると振幅をやや小さくして粉の流出速度を低下させる。テーブル上の安息角の状態が一定に達したら、振動を停止させ、装置内蔵の画像解析システムにより安息角を計測する。以上の操作を3回繰り返し、その平均値を粉体の安息角として用いる。上記の通り測定のための機器構成はPT-Sの標準設定でよいが、原料粉体の粒子径によって機器構成を変更する場合がある。粉体供給に使用するフルイのメッシュサイズは通常は710μm以上のフルイを用いる。原料粉体の粒子径が大きく、710μmのフルイを通過させたとき、フルイ上に20重量%以上残留する粉体の場合は、原料粉体をスコップで直接ロートに流し込む。   In addition, when it is necessary to measure the angle of repose of the powder, any method can be used as long as it is a commonly used method. For example, a standard measurement method for a powder tester PT-S model manufactured by Hosokawa Micron Corporation. Can be used. That is, parts are attached to the vibration table in the order of funnel, space ring, sieve, fluosae, and osabae, and a table for measuring the angle of repose is installed below the parts. After the equipment is installed, the powder raw material is put on the sieve. After the charging, the vibration plate of the apparatus is gradually vibrated, and the powder is supplied onto the angle of repose measurement table via the sieve / funnel within the range where the amplitude of the diaphragm is less than 2 mm. When powder starts to spill from around the angle of repose measurement table, the amplitude is slightly reduced to reduce the powder flow rate. When the angle of repose on the table reaches a certain level, the vibration is stopped and the angle of repose is measured by an image analysis system built in the apparatus. The above operation is repeated three times, and the average value is used as the angle of repose of the powder. As described above, the instrument configuration for measurement may be the standard setting of PT-S, but the instrument configuration may be changed depending on the particle diameter of the raw material powder. A sieve having a mesh size of 710 μm or more is usually used for supplying the powder. When the raw material powder has a large particle diameter and is allowed to pass through a 710 μm sieve, if the powder remains over 20% by weight on the sieve, the raw material powder is poured directly into the funnel with a scoop.

図3(b)及び図4(b)に示すように、透光窓10と枠状部材11の当接部の一部には、物性値の測定を終えた粉粒体粒子Mを、気体の噴出、例えばパージエアーPの噴出によって粒子捕捉部Cから流動層へと戻すための気体噴出部Dが設けられている。気体噴出部Dは、パージエアーPを供給するエアー供給口12と、エアー供給口12と連通するエアーチャンバ13とを備えている。エアー供給口12から供給されたパージエアーPはエアーチャンバ13を通って、凹状部C1の中心方向に向かって噴出する。図3(b)に示すように、この実施形態では、気体噴出部Dを粒子捕捉部Cの下部の2箇所に設けているが、気体噴出部は、本明細書に記載の機能を奏する範囲内で、その構造、形状、配置数及び配置態様等を適宜変更して構成することができる。   As shown in FIGS. 3 (b) and 4 (b), a part of the abutting portion between the light transmission window 10 and the frame-like member 11 contains the granular particles M, whose physical property values have been measured, as gas. For example, a gas ejection part D for returning from the particle trapping part C to the fluidized bed by the ejection of the purge air P is provided. The gas ejection part D includes an air supply port 12 that supplies purge air P and an air chamber 13 that communicates with the air supply port 12. The purge air P supplied from the air supply port 12 passes through the air chamber 13 and is ejected toward the center of the concave portion C1. As shown in FIG. 3B, in this embodiment, the gas ejection part D is provided at two locations below the particle capturing part C, but the gas ejection part has a function described in this specification. The structure, shape, number of arrangement, arrangement mode, and the like can be appropriately changed.

処理容器2内で浮遊流動する粉粒体粒子Mは粒子捕捉部Cによって捕捉され、凹状部C1に所定厚さで堆積する。そして、凹状部C1に所定厚さで堆積した粉粒体粒子Mは、光センサ20によって水分率や成分含量(成分濃度)等の各種物性値が測定される。光センサ20の投光部と受光部は、投光部から投光される測定光の反射光(透光窓10の内面で反射する反射光)が受光部に受光されないような位置関係になっている。例えば、投光部の光軸と受光部の光軸は、3〜30°の範囲の所定角度だけ相互にずらされている。   The granular particles M floating and flowing in the processing container 2 are captured by the particle capturing unit C and accumulated in the concave portion C1 with a predetermined thickness. And the various physical property values, such as a moisture content and a component content (component concentration), are measured by the optical sensor 20 with respect to the granular material particle | grains M deposited with the predetermined thickness in the recessed part C1. The light projecting unit and the light receiving unit of the optical sensor 20 are in a positional relationship such that the reflected light of the measurement light projected from the light projecting unit (the reflected light reflected from the inner surface of the transparent window 10) is not received by the light receiving unit. ing. For example, the optical axis of the light projecting unit and the optical axis of the light receiving unit are shifted from each other by a predetermined angle in the range of 3 to 30 °.

次に、図4に基づいて、粒子測定部4による粉粒体粒子Mの物性値の測定方法について説明する。   Next, based on FIG. 4, the measuring method of the physical property value of the granular material particle | grains M by the particle | grain measuring part 4 is demonstrated.

図4(a)に示すように、粒子捕捉部Cに堆積して捕捉された粉粒体粒子Mは、枠状部材11の厚さによって、所定の堆積厚さをもった状態で粒子捕捉部C(凹状部C1)に捕捉される。これにより、光センサ20による物性値の測定精度が向上し、データのばらつきを低減することが可能となる。ここで、枠状部材11の厚さは、異なる厚さを有する枠状部材への付け替え等によって可変であることが好ましい。   As shown in FIG. 4 (a), the particulate particles M deposited and captured in the particle capturing unit C have a predetermined deposition thickness depending on the thickness of the frame-shaped member 11. C is captured by C (concave portion C1). Thereby, the measurement accuracy of the physical property value by the optical sensor 20 is improved, and the variation in data can be reduced. Here, the thickness of the frame-shaped member 11 is preferably variable by changing to a frame-shaped member having a different thickness.

粒子捕捉部C(凹状部C1)に捕捉された粉粒体粒子Mは、縮径部3の外部に備えられた光センサ20によってデータが測定され、測定されたデータは光ファイバ等の伝送手段を介して図示されていない演算処理装置に伝送され、演算処理装置にて粉粒体粒子Mより反射した反射光のスペクトル解析等が行われる。そして、該スペクトル解析等に基づいて粉粒体粒子Mの物性値が求められる。   The granular particles M captured by the particle capturing part C (concave part C1) are measured by an optical sensor 20 provided outside the reduced diameter part 3, and the measured data is transmitted by a transmission means such as an optical fiber. Is transmitted to an arithmetic processing device (not shown), and spectrum analysis of the reflected light reflected from the granular particles M is performed by the arithmetic processing device. And the physical property value of the granular material particle | grain M is calculated | required based on this spectrum analysis.

ここで、光センサ20は近赤外線センサであることが好ましい。近赤外線センサを用いることで、粉粒体粒子Mの粒子径等の形態的性質を表す物性値のみならず、成分含量、水分率等の組成的性質や核粒子に対するコーティング成分の被膜量といった溶出性能等の化学的性質を表す物性値も測定することが可能となる。   Here, the optical sensor 20 is preferably a near infrared sensor. By using a near-infrared sensor, not only the physical properties indicating the morphological properties such as the particle size of the granular particles M but also the elution such as the compositional properties such as the component content and moisture content and the coating amount of the coating component on the core particles It is also possible to measure physical property values representing chemical properties such as performance.

物性値の測定を終えた粉粒体粒子Mは、図4(b)に示すように、透光窓10と枠状部材11との間の気体噴出部Dから噴出するパージエアーPによって粒子捕捉部C(凹状部C1)から吹き飛ばされて、流動層へと戻される。気体噴出部のパージエアーPは図示しないエアー供給源によって、エアー供給口12より供給される。このように、粒子捕捉部Cに補足した粉粒体粒子Mを測定後に再び流動層へと戻すことによって、製品の収率の低下を抑制することができる。   As shown in FIG. 4 (b), the granular particles M whose physical property values have been measured are trapped by the purge air P ejected from the gas ejection portion D between the translucent window 10 and the frame-shaped member 11. It is blown away from the part C (concave part C1) and returned to the fluidized bed. The purge air P of the gas ejection part is supplied from the air supply port 12 by an air supply source (not shown). Thus, the fall of the yield of a product can be suppressed by returning the granular material particle | grains M supplemented to the particle | grain capture part C to a fluidized bed again after a measurement.

なお、気体噴出部Dは、測定後の粉粒体粒子Mを粒子捕捉部Cから流動層に戻すときに加え、非測定時(粉粒体粒子の捕捉と物性値の測定を行わないとき)にも、パージエアーPを噴出させるように構成するのが好ましい。このようにすれば、非測定時に粉粒体粒子Mが粒子捕捉部Cに堆積することがないため、製品の収率の低下を抑制することができる。換言すれば、気体噴出部Dは、粒子捕捉部Cによって捕捉された粉粒体粒子Mの物性値を測定するとき、物性値の測定に際して所定量(厚さ)の粉粒体粒子Mを粒子捕捉部Cに堆積させるときに、パージエアーPの噴出を停止させるように構成するのが好ましい(粉粒体粒子Mの物性等によっては、粉粒体粒子Mを粒子捕捉部Cに堆積させるときに、パージエアーPの噴出を停止させない場合もある)。なお、図3において粒子捕捉部Cは円形形状であるが、この限りではなく適宜形状の変更を行っても良い。   In addition, the gas ejection part D is added when returning the granular material particles M after measurement from the particle capturing part C to the fluidized bed, and at the time of non-measurement (when capturing of the granular material particles and measurement of physical property values are not performed). In addition, it is preferable that the purge air P is ejected. In this way, since the granular particles M are not deposited on the particle trapping part C at the time of non-measurement, it is possible to suppress a decrease in product yield. In other words, when the gas ejection part D measures the physical property value of the granular particle M captured by the particle capturing part C, a predetermined amount (thickness) of the granular particle M is measured when measuring the physical property value. When depositing on the trapping part C, it is preferable to stop the ejection of the purge air P (depending on the physical properties of the granule particle M or the like, when depositing the granule particle M on the particle trapping part C) In addition, the ejection of the purge air P may not be stopped). In addition, in FIG. 3, although the particle | grain capture | acquisition part C is circular shape, you may change a shape suitably not only this.

本発明は、図1に示す通常の流動層装置のほか、転動流動層装置やワースター式流動層装置に代表される複合型流動層装置にも適用可能である。   The present invention can be applied to a composite fluidized bed apparatus represented by a rolling fluidized bed apparatus and a Wurster fluidized bed apparatus in addition to the normal fluidized bed apparatus shown in FIG.

1 流動層装置
2 処理容器
3 縮径部
4 粒子測定部
5 給気チャンバー
6 スプレーノズル
10 透光窓
11 枠状部材
12 エアー供給口
20 光センサ
31 ボルト
32 固定部材
33 Oリング
34 Oリング
C 粒子捕捉部
C1 凹状部
D 気体噴出部
P パージエアー
M 粉粒体粒子
F 流動化気体
DESCRIPTION OF SYMBOLS 1 Fluidized bed apparatus 2 Processing container 3 Reduced diameter part 4 Particle | grain measuring part 5 Air supply chamber 6 Spray nozzle 10 Translucent window 11 Frame-shaped member 12 Air supply port 20 Optical sensor 31 Bolt 32 Fixing member 33 O-ring 34 O-ring C particle Trapping part C1 Concave part D Gas ejection part P Purge air M Powder particles F Fluidized gas

Claims (8)

処理容器内に流動化気体を導入し、該処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う流動層装置において、
前記粉粒体粒子の物性値を測定する粒子測定部を備え、
前記粒子測定部は、前記処理容器の側壁に設けられた透光窓と、該透光窓の内面に臨み、且つ前記処理容器内で浮遊流動する粉粒体粒子の一部を堆積させて捕捉する粒子捕捉部と、該粒子捕捉部に堆積した粉粒体粒子の物性値を前記透光窓の外面側から測定する光センサとを備えていることを特徴とする流動層装置。
In a fluidized bed apparatus for introducing at least one of granulation, coating, and drying while introducing a fluidized gas into a processing container and floating and flowing powder particles in the processing container to form a fluidized bed ,
A particle measuring unit for measuring physical properties of the powder particles,
The particle measuring unit deposits and captures a transparent window provided on a side wall of the processing container and a part of the granular particles that face the inner surface of the transparent window and float and flow in the processing container. A fluidized bed apparatus comprising: a particle capturing unit that performs measurement, and an optical sensor that measures a physical property value of the granular particles deposited on the particle capturing unit from an outer surface side of the light transmission window.
前記透光窓は枠状部材を介して前記処理容器の側壁に取り付けられており、前記粒子捕捉部は、前記透光窓の内面と前記枠状部材の内周面とで構成される凹状部であることを特徴とする請求項1に記載の流動装置。   The translucent window is attached to the side wall of the processing container via a frame-shaped member, and the particle trapping portion is a concave portion configured by an inner surface of the translucent window and an inner peripheral surface of the frame-shaped member. The fluidizing device according to claim 1, wherein 前記処理容器の下部は、下方に向かって漸次縮径する縮径部を有し、該縮径部の側壁に前記粒子測定部が設けられていることを特徴とする請求項1又は2に記載の流動層装置。   The lower part of the processing container has a reduced diameter part that gradually decreases in diameter downward, and the particle measuring part is provided on a side wall of the reduced diameter part. Fluidized bed equipment. 前記光センサは、近赤外線センサであることを特徴とする請求項1〜3のいずれかに記載の流動層装置。   The fluidized bed apparatus according to claim 1, wherein the optical sensor is a near infrared sensor. 前記粒子捕捉部には、該粒子捕捉部への気体の噴出及びその停止が可能な気体噴出手段が設けられていることを特徴とする請求項1〜4のいずれかに記載の流動層装置。   The fluidized bed apparatus according to any one of claims 1 to 4, wherein the particle trapping unit is provided with gas jetting means capable of jetting gas to the particle trapping unit and stopping the gas trapping unit. 処理容器内に流動化気体を導入し、該処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う粉粒体粒子の処理方法において、
前記処理容器の側壁に設けられた透光窓と、該透光窓の内面に臨み、且つ前記処理容器内で浮遊流動する粉粒体粒子の一部を堆積させて捕捉する粒子捕捉部と、該粒子捕捉部に堆積した粉粒体粒子の物性値を前記透光窓の外面側から測定する光センサと、該粒子捕捉部への気体の噴出及びその停止が可能な気体噴出手段とを備えた粒子測定装置を用い、
前記粉粒体粒子を前記粒子捕捉部に堆積させ、前記光センサにより該粉粒体粒子の物性値を測定した後、前記気体噴出手段により、前記粒子捕捉部に堆積した前記粉粒体粒子を前記流動層へと復帰させる工程を有することを特徴とする粉粒体粒子の処理方法。
Powder particles for introducing at least one of granulation, coating, and drying while introducing a fluidized gas into the processing container and floating and flowing the powder particles in the processing container to form a fluidized bed In the processing method of
A translucent window provided on the side wall of the processing container; a particle capturing unit that deposits and captures part of the granular particles that face the inner surface of the translucent window and float and flow in the processing container; An optical sensor for measuring the physical property value of the granular particles deposited on the particle trapping portion from the outer surface side of the light transmission window, and a gas jetting means capable of jetting and stopping the gas to the particle trapping portion. Using a particle measuring device
After the powder particles are deposited on the particle trapping part and the physical property value of the powder particles is measured by the optical sensor, the powder particles deposited on the particle trapping part by the gas ejection means A method for treating granular particles, comprising a step of returning to the fluidized bed.
処理容器内に流動化気体を導入し、該処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う流動層装置の前記処理容器の側壁に取り付けられる透光窓構造体であって、
透光窓と、該透光窓の外周に装着され、該透光窓を前記処理容器の側壁に取り付けるための枠状部材と、前記透光窓の内面と前記枠状部材の内周面とで構成される凹状部とを備え、前記枠状部材の内面が外周から内周に向かって下り勾配で傾斜した傾斜面で形成されていることを特徴とする透光窓構造体。
A fluidized bed apparatus for introducing at least one of granulation, coating, and drying while introducing a fluidizing gas into a processing vessel and floating and flowing powder particles in the processing vessel to form a fluidized bed. A translucent window structure attached to a side wall of the processing vessel,
A translucent window, a frame-shaped member attached to the outer periphery of the translucent window, for attaching the translucent window to a side wall of the processing container, an inner surface of the translucent window, and an inner peripheral surface of the frame-shaped member; A translucent window structure characterized in that the inner surface of the frame-like member is formed with an inclined surface inclined downward from the outer periphery toward the inner periphery.
前記凹状部に向かって気体を噴出させるための気体噴出部を備えていることを特徴とする請求項7に記載の透光窓構造体。   The translucent window structure according to claim 7, further comprising a gas ejection portion for ejecting gas toward the concave portion.
JP2011214468A 2011-09-29 2011-09-29 Fluidized bed equipment Active JP5805482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011214468A JP5805482B2 (en) 2011-09-29 2011-09-29 Fluidized bed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011214468A JP5805482B2 (en) 2011-09-29 2011-09-29 Fluidized bed equipment

Publications (2)

Publication Number Publication Date
JP2013071104A true JP2013071104A (en) 2013-04-22
JP5805482B2 JP5805482B2 (en) 2015-11-04

Family

ID=48476036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011214468A Active JP5805482B2 (en) 2011-09-29 2011-09-29 Fluidized bed equipment

Country Status (1)

Country Link
JP (1) JP5805482B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002608A1 (en) * 2014-06-30 2016-01-07 フロイント産業株式会社 Fluidized bed device and fluidized bed granulation method
JP2017047397A (en) * 2015-09-04 2017-03-09 株式会社パウレック Fluidized bed apparatus
JP2017056405A (en) * 2015-09-16 2017-03-23 株式会社パウレック Fluidized bed apparatus
JP2020054963A (en) * 2018-10-03 2020-04-09 株式会社パウレック Particle production apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7224166B2 (en) 2018-12-19 2023-02-17 三菱ケミカルエンジニアリング株式会社 Continuous production system and continuous production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979745A (en) * 1995-09-08 1997-03-28 Okawara Mfg Co Ltd Fluidized bed treatment method and apparatus for electrically charging material
JP2004130194A (en) * 2002-10-09 2004-04-30 Pauretsuku:Kk Fluidized bed apparatus
JP2006136763A (en) * 2004-11-10 2006-06-01 Pauretsuku:Kk Apparatus for treating granular substance
JP2009249359A (en) * 2008-04-09 2009-10-29 Lion Corp Method of producing tablet, method of producing granule and equipment of producing granule

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979745A (en) * 1995-09-08 1997-03-28 Okawara Mfg Co Ltd Fluidized bed treatment method and apparatus for electrically charging material
JP2004130194A (en) * 2002-10-09 2004-04-30 Pauretsuku:Kk Fluidized bed apparatus
JP2006136763A (en) * 2004-11-10 2006-06-01 Pauretsuku:Kk Apparatus for treating granular substance
JP2009249359A (en) * 2008-04-09 2009-10-29 Lion Corp Method of producing tablet, method of producing granule and equipment of producing granule

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002608A1 (en) * 2014-06-30 2016-01-07 フロイント産業株式会社 Fluidized bed device and fluidized bed granulation method
JP2017047397A (en) * 2015-09-04 2017-03-09 株式会社パウレック Fluidized bed apparatus
JP2017056405A (en) * 2015-09-16 2017-03-23 株式会社パウレック Fluidized bed apparatus
JP2020054963A (en) * 2018-10-03 2020-04-09 株式会社パウレック Particle production apparatus

Also Published As

Publication number Publication date
JP5805482B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5805482B2 (en) Fluidized bed equipment
JP5726200B2 (en) Equipment for determining particle size
Korasa et al. Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms
Aghbashlo et al. Measurement techniques to monitor and control fluidization quality in fluidized bed dryers: A review
CN105765440A (en) Sample processing improvements for microscopy
Tok et al. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed
Petrak et al. In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT)
CN104718443A (en) Determining the soiling of a workpiece
CN1262829C (en) Sampling apparatus
Pietsch et al. Measurement of granule layer thickness in a spouted bed coating process via optical coherence tomography
Li et al. Measuring particle dynamics in a fluidized bed using digital in-line holography
Da Silva et al. Real-time monitoring of gas–solid fluidized-bed granulation and coating process: evolution of particle size, fluidization regime transitions, and psychometric parameters
WO1997015816A1 (en) Particle measuring device for granule processing apparatus and particle measuring method
JP6472733B2 (en) Fluidized bed equipment
JP4472494B2 (en) Powder processing equipment
O'Mahony et al. Acoustic and optical sensing configurations for bulk solids mass flow measurements
CN113281409B (en) Method and system for detecting solid flow form and concentration in hydraulic conveying process
JP2009525472A (en) Measurement, monitoring and control of directed product flow in fluidized bed or spouted bed equipment and suitable equipment
JP6482992B2 (en) Fluidized bed equipment
JP4830841B2 (en) Particle size distribution measuring device
JPH07333113A (en) Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus
CN105241794B (en) A kind of laser particle analyzer and its measuring method of the measurement of combination image method
Dietrich et al. In-Line Particle Size Characterization of Multiparticulate Systems
CN109211343B (en) Dense-phase particle flow measuring instrument and measuring method under high-temperature strong magnetic field
JP3595949B2 (en) Granulation control method for granular material in fluidized bed processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250