JP6472733B2 - Fluidized bed equipment - Google Patents

Fluidized bed equipment Download PDF

Info

Publication number
JP6472733B2
JP6472733B2 JP2015183194A JP2015183194A JP6472733B2 JP 6472733 B2 JP6472733 B2 JP 6472733B2 JP 2015183194 A JP2015183194 A JP 2015183194A JP 2015183194 A JP2015183194 A JP 2015183194A JP 6472733 B2 JP6472733 B2 JP 6472733B2
Authority
JP
Japan
Prior art keywords
nozzle
gas
nozzle body
fluidized bed
bed apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015183194A
Other languages
Japanese (ja)
Other versions
JP2017056405A (en
Inventor
吉川 潤
潤 吉川
長門 琢也
琢也 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powrex KK
Original Assignee
Powrex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powrex KK filed Critical Powrex KK
Priority to JP2015183194A priority Critical patent/JP6472733B2/en
Publication of JP2017056405A publication Critical patent/JP2017056405A/en
Application granted granted Critical
Publication of JP6472733B2 publication Critical patent/JP6472733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Drying Of Solid Materials (AREA)
  • Glanulating (AREA)

Description

本発明は、処理容器内で流動する粉粒体粒子の造粒、コーティング、乾燥を行う流動層装置に関する。   The present invention relates to a fluidized bed apparatus for granulating, coating, and drying powder particles that flow in a processing vessel.

流動層装置は、一般に、処理容器の底部から導入した流動化気体によって、処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、乾燥等を行うものであり、食品工業、薬品工業等の分野で広く使用されている。流動層装置には、流動層処理容器の底部に回転体を配設した転動流動層装置や流動層処理容器の内部にドラフトチューブを設置したワースタ式流動層装置に代表される複合型流動層装置も含まれる。   A fluidized bed apparatus generally performs granulation, coating, drying, etc. while forming a fluidized bed by floating and flowing powder particles in a processing vessel with a fluidized gas introduced from the bottom of the processing vessel. Yes, it is widely used in fields such as food industry and pharmaceutical industry. In the fluidized bed apparatus, a composite fluidized bed represented by a rolling fluidized bed apparatus in which a rotating body is disposed at the bottom of a fluidized bed processing container or a Wurster fluidized bed apparatus in which a draft tube is installed inside the fluidized bed processing container. A device is also included.

流動層装置を用いて粉粒体粒子の造粒、コーティング、乾燥等の処理を行うにあたり、被処理物の処理条件の制御、処理終点の決定等を目的として、流動層装置に設けたガラス窓等の透光窓を介して、装置内部の被処理物(粉粒体粒子)の物性値を測定、監視等する場合がある。   A glass window provided in the fluidized bed apparatus for the purpose of controlling the processing conditions of the object to be processed, determining the processing end point, etc., when performing processing such as granulation, coating, and drying of the granular particles using the fluidized bed apparatus. In some cases, a physical property value of an object to be processed (powder particles) inside the apparatus is measured, monitored, or the like through a transparent window such as the above.

そして、この様な透光窓に気体を噴出して、透光窓の表面に付着または堆積する粒子を除去する発明が既になされている。   An invention has already been made in which gas is ejected to such a light transmitting window to remove particles adhering or depositing on the surface of the light transmitting window.

例えば特許文献1の流動層装置では、ガラス窓を通してセンサにより装置内部を監視する処理容器が開示されており、容器の内部側に突出して設けられたカバー部材の一部を切り欠いて設けられるスリットから、ガラス窓へエアーを噴出する事により、ガラス窓への粉体の付着を防止する。   For example, in the fluidized bed apparatus of Patent Document 1, a processing container that monitors the inside of the apparatus with a sensor through a glass window is disclosed, and a slit that is provided by cutting out a part of a cover member that protrudes from the inside of the container is provided. From this, the powder is prevented from adhering to the glass window by ejecting air to the glass window.

また特許文献2の流動層装置では、粒子捕捉部に堆積させた粒子を、透光窓を通して光センサにより測定することができ、当該堆積した粒子を、エアーチャンバから粒子捕捉部へ噴出されるエアーによって粒子捕捉部から取り除き、流動層へと復帰させる。   Moreover, in the fluidized bed apparatus of patent document 2, the particle | grains deposited on the particle | grain capture | acquisition part can be measured with an optical sensor through a translucent window, and the deposited particle | grains are injected into the particle | grain capture | acquisition part from an air chamber. Is removed from the particle trapping part and returned to the fluidized bed.

実用新案登録第2582891号公報Utility Model Registration No. 2582891 特開2013−71104号公報JP 2013-71104 A

特許文献1に開示される発明においては、エアー噴出時以外もカバー部材のスリットは容器内部に向けて開口しており、当該スリットに粉体が入り込んでしまう。そして、粉体の入り込みにより、スリットが閉塞されてエアーの噴出が妨げられるといった不具合や、スリットに入り込んだ粉体を除去するための洗浄作業が煩雑化するという課題がある。   In the invention disclosed in Patent Document 1, the slit of the cover member opens toward the inside of the container even when air is not blown out, and powder enters the slit. In addition, there is a problem that the entrance of the powder blocks the slit and prevents the ejection of air, and the problem that the cleaning work for removing the powder that has entered the slit becomes complicated.

特許文献2に開示される発明においても、エアー噴出口は装置の内部側へ常に開口した状態で設けられる事から、エアー噴出口に粉体が入り込みやすく、エアー噴出口の閉塞や洗浄作業の煩雑化の課題が存在する。   In the invention disclosed in Patent Document 2 as well, since the air jet is always opened to the inside of the apparatus, it is easy for powder to enter the air jet, and the air jet is blocked and the cleaning work is complicated. There is a problem of crystallization.

この様な事情から、本発明では、気体噴出口への粒子の侵入を防止できる流動層装置を提供することを課題としている。   Under such circumstances, an object of the present invention is to provide a fluidized bed apparatus that can prevent particles from entering the gas ejection port.

上記の課題を解決するため、本発明は、処理容器内に流動化気体を導入し、該処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う流動層装置であって、前記処理容器内の粉粒体粒子の物性値を測定する粒子測定部を備えた流動層装置において、前記粒子測定部は、透光窓と、該透光窓を前記処理容器の側壁に取り付けるための枠状部材と、前記処理容器内の粉粒体粒子の物性値を前記透光窓を介して該透光窓の外面側から測定する光センサと、前記透光窓の内面側に向けて気体を噴出させる気体噴出口を有する気体噴出ノズルとを備え、 前記気体噴出ノズルは、筒状のノズルハウジングと、該ノズルハウジングの内部に収容され、該ノズルハウジングの軸線方向に進退移動可能なノズル本体と、該ノズル本体を進退移動させる作動機構とを備え、前記ノズルハウジングは、その前端面が前記枠状部材の内面と面一になるように、前記枠状部材に取り付けられ、前記ノズル本体は、気体通路と、該気体通路と連通し、前記ノズル本体の前端部で開口する前記気体噴出口とを備え、前記作動機構は、前記ノズル本体が前記処理容器の内部側に前進移動し、前記気体噴出口が前記ノズルハウジングの前端面よりも前記処理容器の内部側に位置する前進位置と、前記ノズル本体が前記処理容器の外部側に後退移動し、前記気体噴出口が前記ノズルハウジングの内部に収容され、かつ、前記ノズル本体の前端面が前記ノズルハウジングの前端面及び前記枠状部材の内面と面一になる後退位置との間で、前記ノズル本体を移動可能であることを特徴とする。   In order to solve the above-mentioned problems, the present invention introduces a fluidized gas into a processing container, floats and flows powder particles in the processing container to form a fluidized bed, granulation, coating, and A fluidized bed apparatus that performs at least one treatment of drying, and includes a particle measuring unit that measures a physical property value of the powder particles in the processing container. A frame-shaped member for attaching the light-transmitting window to the side wall of the processing container, and measuring physical properties of the powder particles in the processing container from the outer surface side of the light-transmitting window through the light-transmitting window A gas jet nozzle having a gas jet nozzle for jetting gas toward the inner surface side of the translucent window, and the gas jet nozzle includes a cylindrical nozzle housing and an interior of the nozzle housing. Received and advanced in the axial direction of the nozzle housing A movable nozzle body and an operating mechanism for moving the nozzle body forward and backward, and the nozzle housing is attached to the frame-shaped member such that a front end surface thereof is flush with an inner surface of the frame-shaped member. The nozzle body includes a gas passage and the gas jet opening communicating with the gas passage and opening at a front end portion of the nozzle body, and the operating mechanism is configured such that the nozzle body is located on the inner side of the processing container. A forward movement position where the gas jet port is located on the inner side of the processing container with respect to the front end surface of the nozzle housing; and the nozzle body moves backward toward the outer side of the processing container; The nozzle body is accommodated between the retracted position that is accommodated in the nozzle housing and the front end surface of the nozzle body is flush with the front end surface of the nozzle housing and the inner surface of the frame-shaped member. It is possible to move.

本発明の流動層装置では、気体噴出時にはノズル本体を前進位置に移動させ、気体噴出口から透光窓へ向けて気体を噴出する事ができる。また、気体噴出時以外は、ノズル本体を退避位置に移動させて、気体噴出口を含むノズル本体の前端部をノズルハウジングの内部に収容して気体噴出口が容器の内面に開口しない状態とし、気体噴出口への粒子の侵入を防止できる。さらに、退避位置においては、ノズル本体の前端面と前記ノズルハウジングの前端面と前記枠状部材の内面とを面一にすることにより、気体噴出ノズルの前端部と枠状部材との間における粉だまりの発生を防止できる。   In the fluidized bed apparatus of the present invention, when the gas is ejected, the nozzle body can be moved to the forward position, and the gas can be ejected from the gas ejection port toward the light transmission window. Further, except during gas ejection, the nozzle body is moved to the retracted position, the front end portion of the nozzle body including the gas ejection port is accommodated in the nozzle housing, and the gas ejection port does not open on the inner surface of the container. Intrusion of particles into the gas outlet can be prevented. Furthermore, in the retracted position, the front end surface of the nozzle body, the front end surface of the nozzle housing, and the inner surface of the frame-shaped member are flush with each other so that the powder between the front end portion of the gas ejection nozzle and the frame-shaped member is aligned. Occurrence of stagnation can be prevented.

実施形態に係る流動層装置の一構成例を示す図である。It is a figure showing an example of 1 composition of a fluid bed apparatus concerning an embodiment. 図1に示した一構成例の流動層装置における処理容器の縮径部の拡大図である。It is an enlarged view of the diameter reduction part of the processing container in the fluidized bed apparatus of the example of 1 structure shown in FIG. 粒子捕捉部を処理容器の外側方向から見た図である。It is the figure which looked at the particle capture part from the outside direction of a processing container. 図3のA−A’断面図である。FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG. 3. 粒子捕捉部における粒子の巻き上げを説明する概略図である。It is the schematic explaining the winding of the particle | grains in a particle | grain capture part. 規制部材の構成を説明する断面図である。It is sectional drawing explaining the structure of a control member.

以下、本発明に係る実施の形態について、図面を参照して説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

まず、図1に基づいて実施形態に係る流動層装置1の構成を説明する。流動層装置1の下端部には、処理容器2内に熱風等の流動化気体Fを導入するための給気チャンバー5が設けられており、処理容器2内には、流動化気体Fによって形成される流動層に向けてスプレー液を噴射し、且つ上下動可能なスプレーノズル6が設けられている。また、処理容器2の下部には、断面積が漸次縮径する縮径部3が設けられ、該縮径部3の側壁には粉粒体粒子Mの物性値を測定する粒子測定部4が設けられている。   First, based on FIG. 1, the structure of the fluidized bed apparatus 1 which concerns on embodiment is demonstrated. An air supply chamber 5 for introducing a fluidizing gas F such as hot air into the processing container 2 is provided at the lower end of the fluidized bed apparatus 1, and is formed by the fluidizing gas F in the processing container 2. A spray nozzle 6 that sprays a spray liquid toward the fluidized bed and that can move up and down is provided. In addition, a reduced diameter portion 3 whose cross-sectional area is gradually reduced in diameter is provided at the lower portion of the processing container 2, and a particle measuring portion 4 that measures a physical property value of the granular particles M is provided on a side wall of the reduced diameter portion 3. Is provided.

次に、流動層装置1を用いて造粒を行う場合を例に挙げて詳細を説明する。なお、ここでは造粒を行う場合を例に挙げるが、本発明に係る流動層装置はコーティング、乾燥等の造粒以外の処理にも使用することができる。   Next, details will be described by taking as an example a case where granulation is performed using the fluidized bed apparatus 1. In addition, although the case where granulation is performed is mentioned here as an example, the fluidized bed apparatus according to the present invention can be used for processes other than granulation such as coating and drying.

まず、給気チャンバー5より、図示しない気体分散板を介して流動化気体Fが処理容器2内に導入される。ここで、気体分散板としては、パンチングメタル等の多孔板や金網が使用可能である。   First, the fluidizing gas F is introduced from the supply chamber 5 into the processing container 2 through a gas dispersion plate (not shown). Here, as the gas dispersion plate, a perforated plate such as a punching metal or a wire mesh can be used.

導入された流動化気体Fによって、処理容器2内には粉粒体粒子Mの流動層が形成される。そして、処理容器2内で浮遊流動する粉粒体粒子Mに対して、スプレーノズル6から結合剤液等のスプレー液が噴射される。粉粒体粒子Mは、スプレー液の噴射によって、湿潤を受けると共に付着凝集し、乾燥される。この付着凝縮を流動層内で繰り返すことで、粉粒体粒子Mは所定の粒子径を有する粒子へと成長していく。   Due to the fluidized gas F introduced, a fluidized bed of powder particles M is formed in the processing vessel 2. Then, a spray liquid such as a binder liquid is sprayed from the spray nozzle 6 to the granular particles M that float and flow in the processing container 2. The powder particles M are wetted, adhered, agglomerated and dried by spraying the spray liquid. By repeating this adhesion condensation in the fluidized bed, the granular particles M grow into particles having a predetermined particle diameter.

流動層内で粒径成長する粉粒体粒子Mに対して、例えば処理条件の制御や処理終点の決定等を目的として、粉粒体粒子Mの物性値の測定を粒子測定部4にて行う。尚、粒子測定部4による粉粒体粒子Mの物性値の測定は、処理容器2内での粉粒体粒子Mの浮遊流動状態を維持しながら行う。   For the granular particles M that grow in particle size in the fluidized bed, for example, the physical property value of the granular particles M is measured by the particle measuring unit 4 for the purpose of controlling processing conditions and determining the processing end point. . In addition, the measurement of the physical property value of the granular particles M by the particle measuring unit 4 is performed while maintaining the floating flow state of the granular particles M in the processing container 2.

つぎに、粉粒体粒子Mの物性値測定を行う粒子測定部4の構成について図2〜図4に基づいて説明する。   Below, the structure of the particle | grain measuring part 4 which measures the physical-property value of the granular material particle | grains M is demonstrated based on FIGS.

粒子測定部4は、処理容器2の縮径部3に設けられ、透光窓10と、透光窓10を処理容器の縮径部3の側壁3aに取り付けるための枠状部材11と、処理容器2内の粉粒体粒子Mの物性値を透光窓10を介して該透光窓10の外面側から測定する光センサ20と、透光窓10の内面側に向けて気体を噴出させる気体噴出口451を有する気体噴出ノズル13とを備えている。   The particle measuring unit 4 is provided in the reduced diameter portion 3 of the processing container 2, a light transmission window 10, a frame-like member 11 for attaching the light transmission window 10 to the side wall 3 a of the reduced diameter portion 3 of the processing container, and a processing The optical sensor 20 that measures the physical property values of the granular particles M in the container 2 from the outer surface side of the light transmitting window 10 through the light transmitting window 10, and gas is ejected toward the inner surface side of the light transmitting window 10. And a gas ejection nozzle 13 having a gas ejection port 451.

図3及び図4は透光窓10および気体噴出ノズル13等のその周辺の構成を示している。図3は透光窓10および気体噴出ノズル13を処理容器2の外面側方向から見た図{図4のX方向矢視図}である。また、図4は図3のA−A’断面図である。   3 and 4 show the configuration of the periphery of the translucent window 10, the gas ejection nozzle 13, and the like. FIG. 3 is a view {a view in the direction of the arrow X in FIG. 4) of the translucent window 10 and the gas ejection nozzle 13 as viewed from the outer surface side direction of the processing container 2. 4 is a cross-sectional view taken along the line A-A 'of FIG.

図3及び図4に示す様に、透光窓10は、透明なガラスや樹脂材料等の透明材料で形成され、保持部材12を介して枠状部材11に固定される。また、枠状部材11には、透光窓10を挟んで相対向する位置にそれぞれ気体噴出ノズル13が取り付けられている。枠状部材11は、処理容器2の縮径部3の側壁3aに設けられた台座部3a1にボルト等の適宜の手段で取り付けられる。尚、透光窓10は、保持部材12を用いることなく、枠状部材11で直接保持するようにしても良い。   As shown in FIGS. 3 and 4, the translucent window 10 is formed of a transparent material such as transparent glass or a resin material, and is fixed to the frame-shaped member 11 via the holding member 12. In addition, gas ejection nozzles 13 are attached to the frame-shaped member 11 at positions facing each other with the light transmission window 10 in between. The frame-like member 11 is attached to a pedestal portion 3a1 provided on the side wall 3a of the reduced diameter portion 3 of the processing container 2 by an appropriate means such as a bolt. The translucent window 10 may be directly held by the frame-shaped member 11 without using the holding member 12.

保持部材12は、金属材料等によって形成され、透光窓10をその外周側から保持する。保持部材12は、4つのボルト31によって枠状部材11に固定される。また、気体噴出ノズル13は、その両側に設けられた六角穴付きボルト32によって枠状部材11に固定される。また、枠状部材11は、4つのボルト33によって、処理容器2の縮径部3の側壁3a(台座部3a1)に固定される。   The holding member 12 is formed of a metal material or the like, and holds the translucent window 10 from the outer peripheral side. The holding member 12 is fixed to the frame-shaped member 11 by four bolts 31. Further, the gas ejection nozzle 13 is fixed to the frame-shaped member 11 by hexagon socket bolts 32 provided on both sides thereof. Further, the frame-shaped member 11 is fixed to the side wall 3 a (the pedestal portion 3 a 1) of the reduced diameter portion 3 of the processing container 2 by four bolts 33.

図4に示す様に、透光窓10の内面101と保持部材12の内面121は面一に設けられる。そして、枠状部材11の内面111は、透光窓10の内面101と保持部材12の内面121よりも処理容器2の内部側に一段下がった位置に設けられており、これらの内面によって凹状の粒子捕捉部Cが形成される。凹状の粒子捕捉部Cを設ける事により、物性値測定に必要な量(厚さ)の粉粒体粒子Mをこの部分に捕捉する事ができる。尚、枠状部材11の内面111は、処理容器2の縮径部3の側壁3a(台座部3a1)の内面3bと面一に設けられる。   As shown in FIG. 4, the inner surface 101 of the translucent window 10 and the inner surface 121 of the holding member 12 are provided flush with each other. The inner surface 111 of the frame-shaped member 11 is provided at a position one step down from the inner surface 101 of the translucent window 10 and the inner surface 121 of the holding member 12 to the inner side of the processing container 2. A particle trapping part C is formed. By providing the concave particle capturing portion C, it is possible to capture the amount (thickness) of the granular particles M required for the physical property measurement in this portion. The inner surface 111 of the frame member 11 is provided flush with the inner surface 3b of the side wall 3a (pedestal portion 3a1) of the reduced diameter portion 3 of the processing container 2.

次に、気体噴出ノズル13の構成について説明する。   Next, the configuration of the gas ejection nozzle 13 will be described.

気体噴出ノズル13は、筒状のノズルハウジング40と、ノズルハウジング40の内部に収容されたノズル本体41と、ノズルハウジング40とノズル本体41の間に介装された弾性部材としての弾性バネ42と、ノズルハウジング40の上方から装着されるノズルキャップ43と、継手44等を有する。気体噴出ノズル13は、Oリング34等の複数のOリングを介して枠状部材11に取り付けられている。   The gas ejection nozzle 13 includes a cylindrical nozzle housing 40, a nozzle body 41 accommodated in the nozzle housing 40, and an elastic spring 42 as an elastic member interposed between the nozzle housing 40 and the nozzle body 41. The nozzle cap 43 is mounted from above the nozzle housing 40, the joint 44, and the like. The gas ejection nozzle 13 is attached to the frame-shaped member 11 via a plurality of O-rings such as an O-ring 34.

ノズル本体41には、気体通路45と、気体通路45と連通し、ノズル本体41の前端部(ノズル本体41の処理容器2の縮径部3の内部側の部分)で開口する気体噴出口451とが設けられている。気体噴出口451は、気体通路45からノズル本体41の径方向を指向して開口している。また、気体通路45の軸方向の途中には、ノズル本体41の径方向の両側に分岐した分岐通路452が設けられている。気体通路45は、例えば、直径2mm程度の通路である。   The nozzle body 41 communicates with the gas passage 45 and the gas passage 45 and opens at the front end portion of the nozzle body 41 (the portion inside the reduced diameter portion 3 of the processing vessel 2 of the nozzle body 41). And are provided. The gas outlet 451 opens from the gas passage 45 in the radial direction of the nozzle body 41. Further, a branch passage 452 that branches to both sides of the nozzle body 41 in the radial direction is provided in the middle of the gas passage 45 in the axial direction. The gas passage 45 is a passage having a diameter of about 2 mm, for example.

ノズル本体41は、ノズルハウジング40に対して軸線方向(図の上下方向)に進退移動可能に設けられており、処理容器2の縮径部3の内部側に前進移動した前進位置(図4の左側の気体噴出ノズル13の位置)と、処理容器2の縮径部3の外部側に後退移動した後退位置(図4の右側の気体噴出ノズル13の位置)との間を移動可能に設けられる。図4では、便宜上、一つの気体噴出ノズル13が前進位置、他方が後退位置に位置する例を示しているが、本実施形態では、気体を噴出する際には、二つの気体噴出ノズル13が同時に前進位置へ移動する。   The nozzle main body 41 is provided so as to be capable of moving forward and backward in the axial direction (vertical direction in the figure) with respect to the nozzle housing 40, and is moved forward (in FIG. 4) to the inside of the reduced diameter portion 3 of the processing container 2. The position of the gas jet nozzle 13 on the left side) and a retracted position (position of the gas jet nozzle 13 on the right side in FIG. 4) retracted to the outside of the reduced diameter portion 3 of the processing container 2 are provided. . FIG. 4 shows an example in which one gas ejection nozzle 13 is located at the forward position and the other is at the backward position for convenience. In the present embodiment, when gas is ejected, the two gas ejection nozzles 13 are At the same time, it moves to the forward position.

ノズル本体41は、弾性バネ42の弾性力によって図4の上方向へ付勢されている。当該付勢力(弾性力)により、ノズル本体41は、図4の右側の気体噴出ノズル13に示す様に、ノズル本体41の後端面412がノズルキャップ43の当接面432に当接する位置(ノズル本体41の後退位置)まで後退移動し、後退位置で保持されている。   The nozzle body 41 is urged upward in FIG. 4 by the elastic force of the elastic spring 42. Due to the urging force (elastic force), the nozzle body 41 is positioned so that the rear end surface 412 of the nozzle body 41 abuts against the abutment surface 432 of the nozzle cap 43 (nozzle as shown in the gas ejection nozzle 13 on the right side of FIG. The main body 41 is moved backward (retracted position) and held at the retracted position.

ノズル本体41が後退位置に位置する状態では、ノズル本体41はノズルハウジング40の内側に収容され、ノズル本体41の前端面411がノズルハウジング40の前端面401および枠状部材11の内面111と面一になる。   In a state where the nozzle main body 41 is located at the retracted position, the nozzle main body 41 is accommodated inside the nozzle housing 40, and the front end surface 411 of the nozzle main body 41 faces the front end surface 401 of the nozzle housing 40 and the inner surface 111 of the frame-shaped member 11. Become one.

また、ノズルキャップ43には気体供給口431が設けられており、継手44の先に設けられた気体供給手段から、継手44を介して、移動力付与手段としての圧縮空気が供給される。圧縮空気は、例えば0.2MPaの圧力で気体供給口431へ供給される。   Further, the nozzle cap 43 is provided with a gas supply port 431, and compressed air as a moving force applying means is supplied from the gas supply means provided at the tip of the joint 44 through the joint 44. The compressed air is supplied to the gas supply port 431 at a pressure of 0.2 MPa, for example.

気体供給口431へ供給された圧縮空気(気体)は、ノズル本体41の後端面412の側から気体通路45へ流入し、その際にノズル本体41の後端面412を押圧する。そして、当該押圧力が弾性バネ42の付勢力を上回る事により、図4の左側の気体噴出ノズル13に示す様に、ノズル本体41は、弾性バネ42の付勢力に抗して処理容器2の縮径部3の内部側に前進移動し、後退位置から前進位置へ移動することができる。   The compressed air (gas) supplied to the gas supply port 431 flows into the gas passage 45 from the rear end face 412 side of the nozzle body 41 and presses the rear end face 412 of the nozzle body 41 at that time. Then, when the pressing force exceeds the urging force of the elastic spring 42, the nozzle body 41 resists the urging force of the elastic spring 42 as shown in the gas ejection nozzle 13 on the left side of FIG. 4. It can move forward to the inside of the reduced diameter portion 3 and move from the retracted position to the advanced position.

ノズル本体41が前進位置に移動すると、ノズル本体41の前端面411および気体噴出口451がノズルハウジング40の前端面401および枠状部材11の内面111よりも処理容器2の縮径部3の内部側に位置し、気体噴出口451が透光窓10の方向(粒子捕捉部Cの方向)へ開口する。この状態で、気体供給口431から気体通路45へ供給された圧縮空気は、気体通路45を通って、その一部が気体噴出口451から透光窓10の方向である矢印D1の方向へ噴出される。これにより、噴出された気体が、粒子捕捉部Cに堆積、付着する粉粒体粒子Mを吹き飛ばす事ができる。   When the nozzle main body 41 moves to the forward movement position, the front end surface 411 and the gas outlet 451 of the nozzle main body 41 are located inside the reduced diameter portion 3 of the processing container 2 more than the front end surface 401 of the nozzle housing 40 and the inner surface 111 of the frame-shaped member 11. Located on the side, the gas ejection port 451 opens in the direction of the light transmission window 10 (direction of the particle trapping portion C). In this state, the compressed air supplied from the gas supply port 431 to the gas passage 45 passes through the gas passage 45, and a part of the compressed air is ejected from the gas outlet 451 in the direction of the arrow D <b> 1 that is the direction of the transparent window 10. Is done. Thereby, the ejected gas can blow off the granular material particles M deposited and adhered to the particle trapping part C.

ここで、二つの気体噴出ノズル13は、透光窓10を挟んで相対向する位置に配置されており、それぞれの気体噴出口451から噴出された気体は、透光窓10の位置で衝突する。これにより、図5に示す様に、透光窓10の位置で処理容器2の縮径部3の内部側へ吹き上げる方向の乱気流が形成される。当該乱気流により、粒子捕捉部Cに捕捉された粉粒体粒子Mを処理容器2の縮径部3の内部側へ巻き上げて粒子捕捉部Cから取り除き、円滑に流動層へ復帰させる事ができる。この際、透光窓10の内面101や枠状部材11の内面111に沿った方向である矢印D1の方向へ圧縮空気が噴出される事により、粒子捕捉部Cに捕捉された粒子(透光窓10の内面101に付着した粒子を含む)を効率よく巻き込んで粒子捕捉部Cから取り除く事ができる。また、吹き上げられた気体の巻き戻しにより、流動層の側から新たな粉粒体粒子Mを粒子捕捉部Cに取り込む事ができ、光センサ20(図2参照)による新たな粉粒体粒子Mの測定が可能となる。   Here, the two gas ejection nozzles 13 are arranged at positions facing each other across the light transmission window 10, and the gas ejected from each gas ejection port 451 collides at the position of the light transmission window 10. . Thereby, as shown in FIG. 5, the turbulent airflow of the direction blown up inside the reduced diameter part 3 of the processing container 2 in the position of the translucent window 10 is formed. Due to the turbulent air flow, the granular particles M captured by the particle capturing part C can be rolled up to the inside of the reduced diameter part 3 of the processing container 2 and removed from the particle capturing part C, and smoothly returned to the fluidized bed. At this time, compressed air is ejected in the direction of the arrow D1, which is the direction along the inner surface 101 of the translucent window 10 and the inner surface 111 of the frame-shaped member 11, so (Including particles adhering to the inner surface 101 of the window 10) can be efficiently wound and removed from the particle trapping portion C. Further, by rewinding the gas that has been blown up, new powder particles M can be taken into the particle trapping part C from the fluidized bed side, and new powder particles M by the optical sensor 20 (see FIG. 2). Can be measured.

図4に示す様に、気体噴出ノズル13から粒子捕捉部Cへの気体の噴出を終了すると、ノズル本体41は再び後退位置へ移動する。具体的には、気体供給口431からの圧縮空気の供給を停止または供給する圧縮空気の圧力を小さくすると、ノズル本体41が、弾性バネ42の付勢力によって処理容器2の縮径部3の外部側へ自動的に移動し、再び後退位置へ復帰する。この様に、粒子捕捉部Cへ気体を噴出する際にだけ、ノズル本体41を処理容器2の縮径部3の内部側へ前進移動させて気体噴出口451を処理容器2の縮径部3の内部側へ開口させ、それ以外はノズル本体41を後退位置へ移動させてノズルハウジング40の内部に収容する事により、気体噴出口451に粒子が侵入する事を防止できる。また、ノズル本体40が後退位置に位置する状態で、ノズル本体41の前端面411がノズルハウジング40の前端面401および枠状部材11の内面111と面一になることから、気体噴出ノズル13と枠状部材11の間で段差を生じないため、これらの間の段差部分において粉粒体粒子Mが溜まりやすくなるといった事がない。   As shown in FIG. 4, when the gas ejection from the gas ejection nozzle 13 to the particle capturing unit C is completed, the nozzle body 41 again moves to the retracted position. Specifically, when the supply of compressed air from the gas supply port 431 is stopped or the pressure of the compressed air supplied is reduced, the nozzle body 41 is moved outside the reduced diameter portion 3 of the processing container 2 by the urging force of the elastic spring 42. It automatically moves to the side and returns to the retracted position again. In this manner, only when the gas is ejected to the particle trapping part C, the nozzle body 41 is moved forward to the inside of the reduced diameter part 3 of the processing container 2 so that the gas outlet 451 is reduced in the reduced diameter part 3 of the processing container 2. Otherwise, the nozzle main body 41 is moved to the retracted position and accommodated in the nozzle housing 40, whereby particles can be prevented from entering the gas ejection port 451. Further, since the front end surface 411 of the nozzle main body 41 is flush with the front end surface 401 of the nozzle housing 40 and the inner surface 111 of the frame-like member 11 in a state where the nozzle main body 40 is in the retracted position, Since no step is generated between the frame-like members 11, the powder particles M are not easily accumulated at the step portion between them.

以上の様に、ノズル本体41が後退移動する方向へ付勢する弾性バネ42、および、ノズル本体41が前進移動する方向へ押圧力を加える圧縮空気は、ノズル本体41を作動させる作動機構として働く。弾性バネ42の付勢力によって、ノズル本体41は退避移動する方向の力を常に受けており、ノズル本体41が圧縮空気から押圧力を受けない場合あるいはノズル本体41に作用する圧縮空気の押圧力が弾性バネ42の付勢力よりも小さい場合には自動的に退避位置へと移動すると共に、圧縮空気の押圧力によって前進位置へと移動可能である。また、気体噴出口451等から噴出される圧縮空気が、ノズル本体41の作動機構も兼ねており、装置を省エネルギー化することができる。   As described above, the elastic spring 42 that urges the nozzle body 41 in the backward movement direction and the compressed air that applies the pressing force in the direction in which the nozzle body 41 moves forward acts as an operating mechanism that operates the nozzle body 41. . The nozzle body 41 always receives a force in the retreating direction due to the urging force of the elastic spring 42. When the nozzle body 41 does not receive a pressing force from the compressed air, the pressing force of the compressed air acting on the nozzle body 41 is reduced. When it is smaller than the biasing force of the elastic spring 42, it automatically moves to the retracted position and can move to the advanced position by the pressing force of the compressed air. Further, the compressed air ejected from the gas ejection port 451 or the like also serves as the operation mechanism of the nozzle body 41, so that the apparatus can save energy.

ノズル本体41の軸方向の途中には、その一部が切り欠かれた切り欠き部413が設けられる。切り欠き部413には、ノズルハウジング40に固定され、ノズルハウジング40の側から切り欠き部413へ突き出した規制部材46が設けられる。図6に示す様に、規制部材46は、ノズルハウジング40を貫通してノズル本体41の径方向の一部にわたって設けられる。ノズル本体41がノズルハウジング40に対して周方向に回転しようとすると、ノズル本体41が規制部材46に当接し、ノズル本体41のノズルハウジング40に対する周方向の回転が規制される。これにより、ノズル本体41の軸線方向への進退移動の際等にもノズル本体41が周方向に回転する事がなく、気体噴出口451が常に透光窓10の側を向くようにすることができる。また、図4に示す様に、規制部材46が切り欠き部413の上方及び下方に設けられるノズル本体41の壁面に当接することにより、ノズル本体41のノズルハウジング40に対する進退方向の移動範囲を規制する事もできる。   In the middle of the nozzle body 41 in the axial direction, a cutout part 413 in which a part thereof is cut out is provided. The notch 413 is provided with a regulating member 46 that is fixed to the nozzle housing 40 and protrudes from the nozzle housing 40 side to the notch 413. As shown in FIG. 6, the restricting member 46 is provided over a part of the nozzle body 41 in the radial direction through the nozzle housing 40. When the nozzle body 41 tries to rotate in the circumferential direction with respect to the nozzle housing 40, the nozzle body 41 comes into contact with the regulating member 46 and the circumferential rotation of the nozzle body 41 with respect to the nozzle housing 40 is regulated. Thus, the nozzle body 41 does not rotate in the circumferential direction even when the nozzle body 41 moves back and forth in the axial direction, and the gas ejection port 451 is always directed toward the translucent window 10. it can. Further, as shown in FIG. 4, the regulating member 46 abuts against the wall surface of the nozzle body 41 provided above and below the notch 413, thereby regulating the range of movement of the nozzle body 41 in the forward / backward direction with respect to the nozzle housing 40. You can also do it.

図4に示す様に、気体通路45の軸方向の途中に設けられた分岐通路452は、ノズル本体41の径方向に貫通して設けられる。分岐通路452の両端には、第二の気体噴出口453、454がそれぞれ設けられる。一端側の第二の気体噴出口453は、切り欠き部413に開口して設けられる。また、他端側の第二の気体噴出口454は、ノズル本体41とノズルハウジング40の間の移動隙間Eに開口して設けられる(図6参照)。なお図6では、切り欠き部413と規制部材46の隙間および移動隙間Eを、実際よりも誇張して示している。   As shown in FIG. 4, the branch passage 452 provided in the axial direction of the gas passage 45 is provided so as to penetrate in the radial direction of the nozzle body 41. Second gas ejection ports 453 and 454 are provided at both ends of the branch passage 452, respectively. The second gas outlet 453 on one end side is provided to open to the notch 413. Further, the second gas ejection port 454 on the other end side is provided to open in the moving gap E between the nozzle body 41 and the nozzle housing 40 (see FIG. 6). In FIG. 6, the gap between the notch 413 and the regulating member 46 and the movement gap E are exaggerated from the actual one.

ところで、ノズルハウジング40の内周面とノズル本体41の外周面との間の移動隙間Eに処理容器内部を流動する粉粒体粒子Mが侵入する場合があり、移動隙間に粒子が詰まる事により、ノズル本体41のノズルハウジング40に対する円滑な進退移動の妨げとなったり、移動隙間Eに進入した粒子を取り除く作業を要する事から、処理容器2の内部の洗浄作業が煩雑化してしまう。   By the way, there are cases where the granular particles M flowing inside the processing container enter the moving gap E between the inner peripheral surface of the nozzle housing 40 and the outer peripheral surface of the nozzle body 41, and the moving gap is clogged with particles. Further, since the smooth movement of the nozzle body 41 with respect to the nozzle housing 40 is hindered and the operation of removing the particles that have entered the moving gap E is required, the cleaning operation inside the processing container 2 becomes complicated.

しかし、本実施形態では、図4に示す様に、気体通路45に流入する圧縮空気の一部は、分岐通路452へ流れ、第二の気体噴出口453、454からノズルハウジング40の内周面とノズル本体41の外周面との間の移動隙間Eに噴出される。噴出された圧縮空気により、移動隙間Eへの粉粒体粒子Mの侵入を防止する事ができ、ノズル本体41のノズルハウジング40に対する円滑な進退移動を妨げる事がなく、洗浄作業の煩雑化も防止できる。   However, in this embodiment, as shown in FIG. 4, a part of the compressed air flowing into the gas passage 45 flows into the branch passage 452, and the inner peripheral surface of the nozzle housing 40 from the second gas ejection ports 453 and 454. And a movement gap E between the nozzle body 41 and the outer peripheral surface of the nozzle body 41. The jetted compressed air can prevent the granular particles M from entering the moving gap E, and does not hinder the smooth forward and backward movement of the nozzle body 41 with respect to the nozzle housing 40, and also complicates the cleaning operation. Can be prevented.

ノズル本体41が退避位置にある状態においても、気体供給口431へ圧縮空気を供給する構成とすることもできる。当該圧縮空気は、後端面412を押圧する押圧力が前述した弾性バネ42の付勢力よりも小さくなる様な圧力で供給され、ノズル本体41は退避位置の位置で維持される。当該圧縮空気を供給する事により、気体通路45及び分岐通路452を通ってそれぞれの気体噴出口から圧縮空気が噴出され、ノズルハウジング40とノズル本体41の間の移動隙間Eに供給される。これにより、ノズル本体41が退避位置の状態においても、処理容器2の内部の粉粒体粒子Mがノズルハウジング40とノズル本体41の移動隙間Eへ侵入する事を防止し、ノズル本体41のノズルハウジング40に対する円滑な進退移動の確保、および、処理容器2の内部の清掃作業の煩雑化の防止を実現できる。   Even in a state where the nozzle body 41 is in the retracted position, a configuration in which compressed air is supplied to the gas supply port 431 may be adopted. The compressed air is supplied at such a pressure that the pressing force for pressing the rear end face 412 is smaller than the biasing force of the elastic spring 42 described above, and the nozzle body 41 is maintained at the retracted position. By supplying the compressed air, the compressed air is ejected from the respective gas ejection ports through the gas passage 45 and the branch passage 452, and is supplied to the moving gap E between the nozzle housing 40 and the nozzle body 41. Thereby, even when the nozzle body 41 is in the retracted position, the powder particles M inside the processing container 2 are prevented from entering the moving gap E between the nozzle housing 40 and the nozzle body 41, and the nozzles of the nozzle body 41 are prevented. The smooth advance / retreat movement of the housing 40 and the prevention of complication of the cleaning work inside the processing container 2 can be realized.

次に、図2および図4を参照して、粒子測定部4による粉粒体粒子Mの物性値の測定方法について説明する。   Next, with reference to FIG. 2 and FIG. 4, the measuring method of the physical-property value of the granular material particle | grains M by the particle | grain measuring part 4 is demonstrated.

粒子捕捉部Cに堆積して捕捉された粉粒体粒子Mは、枠状部材11の厚さによって、所定の堆積厚さをもった状態で粒子捕捉部Cに捕捉される。これにより、光センサ20による物性値の測定精度が向上し、データのばらつきを低減することが可能となる。ここで、枠状部材11の厚さは、異なる厚さを有する枠状部材への付け替え等によって可変であることが好ましい。   The granular particles M deposited and captured in the particle capturing unit C are captured by the particle capturing unit C in a state having a predetermined deposition thickness depending on the thickness of the frame-shaped member 11. Thereby, the measurement accuracy of the physical property value by the optical sensor 20 is improved, and the variation in data can be reduced. Here, the thickness of the frame-shaped member 11 is preferably variable by changing to a frame-shaped member having a different thickness.

粒子捕捉部Cに捕捉され、所定厚さで堆積した粉粒体粒子Mは、光センサ20によって水分率や成分含量(成分濃度)等の各種物性値が測定される。光センサ20の投光部と受光部は、投光部から投光される測定光の反射光(透光窓10の内面で反射する反射光)が受光部に受光されないような位置関係になっている。例えば、投光部の光軸と受光部の光軸は、3〜30°の範囲の所定角度だけ相互にずらされている。   Various physical property values such as moisture content and component content (component concentration) are measured by the optical sensor 20 for the granular particles M captured by the particle capturing section C and deposited at a predetermined thickness. The light projecting unit and the light receiving unit of the optical sensor 20 are in a positional relationship such that the reflected light of the measurement light projected from the light projecting unit (the reflected light reflected from the inner surface of the transparent window 10) is not received by the light receiving unit. ing. For example, the optical axis of the light projecting unit and the optical axis of the light receiving unit are shifted from each other by a predetermined angle in the range of 3 to 30 °.

測定されたデータ(各種物性値)は光ファイバ等の伝送手段を介して図示されていない演算処理装置に伝送され、演算処理装置にて粉粒体粒子Mより反射した反射光のスペクトル解析等が行われる。そして、該スペクトル解析等に基づいて粉粒体粒子Mの物性値が求められる。   The measured data (various physical property values) is transmitted to an arithmetic processing unit (not shown) via a transmission means such as an optical fiber, and the spectral analysis of the reflected light reflected from the granular particles M by the arithmetic processing unit is performed. Done. And the physical property value of the granular material particle | grain M is calculated | required based on this spectrum analysis.

ここで、光センサ20は近赤外線センサであることが好ましい。近赤外線センサを用いることで、粉粒体粒子Mの粒子径等の形態的性質を表す物性値のみならず、成分含量、水分率等の組成的性質や核粒子に対するコーティング成分の被膜量といった溶出性能等の化学的性質を表す物性値も測定することが可能となる。   Here, the optical sensor 20 is preferably a near infrared sensor. By using a near-infrared sensor, not only the physical properties indicating the morphological properties such as the particle size of the granular particles M but also the elution such as the compositional properties such as the component content and moisture content and the coating amount of the coating component on the core particles It is also possible to measure physical property values representing chemical properties such as performance.

物性値の測定を終えた粉粒体粒子Mは、前述した気体噴出ノズル13から噴出される圧縮空気によって再び流動層へ戻され、新たな粉粒体粒子Mが粒子捕捉部Cに捕捉される。このように、粒子捕捉部Cに捕捉された粉粒体粒子Mを測定後に再び流動層へと戻すことによって、製品の収率の低下を抑制することができる。   After the measurement of the physical property values, the granular particles M are returned to the fluidized bed again by the compressed air ejected from the gas ejection nozzle 13 and the new granular particles M are captured by the particle capturing unit C. . Thus, the fall of the yield of a product can be suppressed by returning the granular material particle | grains M capture | acquired by the particle | grain capture part C to a fluidized bed again after a measurement.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。
以上の説明では、粒子捕捉部に堆積した粒子を、透光窓を介して粒子測定部によって測定を行った後、気体噴出ノズルから噴出される気体によって堆積した粒子を取り除く実施例を示した。しかし、気体の噴出によって粒子捕捉部と処理容器内部の粒子が連続的に入れ替わり、粒子捕捉部を通過する粒子を粒子測定部によって測定する流動層装置であってもよい。また、装置内部を流動する粒子を測定する粒子測定部(凹状の粒子捕捉部を有しない構成)を有する流動層装置において、透光窓表面に付着した粒子を除去するために気体噴出ノズルから気体を噴出する構成とする事もできる。
さらに本発明は、図1に示す通常の流動層装置のほか、転動流動層装置やワースタ式流動層装置に代表される複合型流動層装置にも適用可能である。
The embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
In the above description, the embodiment has been described in which the particles deposited on the particle trapping part are measured by the particle measuring part through the light transmission window, and then the particles deposited by the gas ejected from the gas ejection nozzle are removed. However, a fluidized bed apparatus may be used in which the particle capturing unit and the particles inside the processing container are continuously switched by gas ejection, and particles passing through the particle capturing unit are measured by the particle measuring unit. Further, in a fluidized bed apparatus having a particle measuring section (a configuration not having a concave particle capturing section) for measuring particles flowing inside the apparatus, gas is discharged from a gas ejection nozzle in order to remove particles attached to the surface of the transparent window. It can also be set as the structure which spouts.
Furthermore, the present invention can be applied to a composite fluidized bed apparatus represented by a rolling fluidized bed apparatus and a Wurster fluidized bed apparatus in addition to the normal fluidized bed apparatus shown in FIG.

1 流動層装置
2 処理容器
3 縮径部
4 粒子測定部
10 透光窓
11 枠状部材
13 気体噴出ノズル
20 光センサ
40 ノズルハウジング
41 ノズル本体
42 弾性バネ(弾性部材)
45 気体通路
451 気体噴出口
453、454 第二の気体噴出口
C 粒子捕捉部
DESCRIPTION OF SYMBOLS 1 Fluidized bed apparatus 2 Processing container 3 Reduced diameter part 4 Particle | grain measuring part 10 Light transmission window 11 Frame-shaped member 13 Gas ejection nozzle 20 Optical sensor 40 Nozzle housing 41 Nozzle main body 42 Elastic spring (elastic member)
45 Gas passage 451 Gas outlet 453, 454 Second gas outlet C Particle trapping part

Claims (7)

処理容器内に流動化気体を導入し、該処理容器内で粉粒体粒子を浮遊流動させて流動層を形成しつつ、造粒、コーティング、及び乾燥の少なくとも一の処理を行う流動層装置であって、前記処理容器内の粉粒体粒子の物性値を測定する粒子測定部を備えた流動層装置において、
前記粒子測定部は、透光窓と、該透光窓を前記処理容器の側壁に取り付けるための枠状部材と、前記処理容器内の粉粒体粒子の物性値を前記透光窓を介して該透光窓の外面側から測定する光センサと、前記透光窓の内面側に向けて気体を噴出させる気体噴出口を有する気体噴出ノズルとを備え、
前記気体噴出ノズルは、筒状のノズルハウジングと、該ノズルハウジングの内部に収容され、該ノズルハウジングの軸線方向に進退移動可能なノズル本体と、該ノズル本体を進退移動させる作動機構とを備え、
前記ノズルハウジングは、その前端面が前記枠状部材の内面と面一になるように、前記枠状部材に取り付けられ、
前記ノズル本体は、気体通路と、該気体通路と連通し、前記ノズル本体の前端部で開口する前記気体噴出口とを備え、
前記気体通路は、前記ノズルハウジングの内周面と前記ノズル本体の外周面との間の移動隙間に気体を噴出させる第二の気体噴出口を有し、
前記作動機構は、前記ノズル本体が前記処理容器の内部側に前進移動し、前記気体噴出口が前記ノズルハウジングの前端面よりも前記処理容器の内部側に位置する前進位置と、前記ノズル本体が前記処理容器の外部側に後退移動し、前記気体噴出口が前記ノズルハウジングの内部に収容され、かつ、前記ノズル本体の前端面が前記ノズルハウジングの前端面及び前記枠状部材の内面と面一になる後退位置との間で、前記ノズル本体を移動可能であることを特徴とする流動層装置。
A fluidized bed apparatus for introducing at least one of granulation, coating, and drying while introducing a fluidizing gas into a processing vessel and floating and flowing the powder particles in the processing vessel to form a fluidized bed. In a fluidized bed apparatus provided with a particle measuring unit for measuring physical property values of powder particles in the processing container,
The particle measurement unit includes a light transmission window, a frame-shaped member for attaching the light transmission window to a side wall of the processing container, and physical property values of the powder particles in the processing container through the light transmission window. An optical sensor for measuring from the outer surface side of the light transmission window, and a gas ejection nozzle having a gas ejection port for ejecting gas toward the inner surface side of the light transmission window,
The gas ejection nozzle includes a cylindrical nozzle housing, a nozzle body housed in the nozzle housing and capable of moving forward and backward in the axial direction of the nozzle housing, and an operating mechanism for moving the nozzle body forward and backward.
The nozzle housing is attached to the frame-shaped member such that a front end surface thereof is flush with an inner surface of the frame-shaped member,
The nozzle body includes a gas passage, and the gas jet opening communicating with the gas passage and opening at a front end portion of the nozzle body,
The gas passage has a second gas outlet that ejects gas into a moving gap between the inner peripheral surface of the nozzle housing and the outer peripheral surface of the nozzle body,
The actuating mechanism includes an advance position in which the nozzle body moves forward to the inside of the processing container, and the gas ejection port is located on the inside of the processing container with respect to the front end surface of the nozzle housing; The gas jet port is accommodated inside the nozzle housing, and the front end surface of the nozzle body is flush with the front end surface of the nozzle housing and the inner surface of the frame-shaped member. The fluidized bed apparatus is characterized in that the nozzle main body can be moved between a retreat position and a retreat position.
前記透光窓の内面と前記枠状部材の内周面とで構成される凹状の粒子捕捉部を有する請求項1に記載の流動層装置。   The fluidized-bed apparatus of Claim 1 which has a concave particle | grain capture | acquisition part comprised by the inner surface of the said translucent window, and the internal peripheral surface of the said frame-shaped member. 前記気体噴出ノズルの気体噴出口は、前記透光窓の内面に沿った方向に気体を噴出させる請求項1又は2に記載の流動層装置。   The fluidized bed apparatus according to claim 1 or 2, wherein the gas ejection port of the gas ejection nozzle ejects gas in a direction along the inner surface of the light transmission window. 前記透光窓を挟んで相対向する位置にそれぞれ前記気体噴出ノズルが設けられている請求項1から3のいずれか1項に記載の流動層装置。 The fluidized-bed apparatus of any one of Claim 1 to 3 with which the said gas ejection nozzle is each provided in the position which opposes on both sides of the said translucent window. 前記作動機構は、前記ノズルハウジングと前記ノズル本体との間に介装された弾性部材と、該弾性部材の弾性力に抗して、前記ノズル本体を前記前進位置に前進移動させる移動力付与手段とを備えている請求項1から4のいずれか1項に記載の流動層装置。 The actuating mechanism includes an elastic member interposed between the nozzle housing and the nozzle body, and a moving force applying means for moving the nozzle body forward to the advance position against the elastic force of the elastic member. The fluidized-bed apparatus of any one of Claim 1 to 4 provided with these. 前記移動力付与手段は、前記ノズルハウジングの内部に供給され、前記ノズル本体の気体通路に流入する圧縮空気である請求項に記載の流動層装置。 The fluidized bed apparatus according to claim 5 , wherein the moving force applying means is compressed air supplied into the nozzle housing and flowing into a gas passage of the nozzle body. 前記ノズル本体を退避位置に位置させた状態で、前記移動力付与手段である圧縮空気よりも小さい圧力の圧縮空気を前記ノズル本体の気体通路に供給する請求項6に記載の流動層装置。 The fluidized bed apparatus according to claim 6, wherein compressed air having a pressure smaller than that of compressed air serving as the moving force applying unit is supplied to a gas passage of the nozzle body in a state where the nozzle body is located at the retracted position.
JP2015183194A 2015-09-16 2015-09-16 Fluidized bed equipment Active JP6472733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015183194A JP6472733B2 (en) 2015-09-16 2015-09-16 Fluidized bed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015183194A JP6472733B2 (en) 2015-09-16 2015-09-16 Fluidized bed equipment

Publications (2)

Publication Number Publication Date
JP2017056405A JP2017056405A (en) 2017-03-23
JP6472733B2 true JP6472733B2 (en) 2019-02-20

Family

ID=58388708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015183194A Active JP6472733B2 (en) 2015-09-16 2015-09-16 Fluidized bed equipment

Country Status (1)

Country Link
JP (1) JP6472733B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780683B2 (en) * 2018-09-20 2020-11-04 栗田工業株式会社 Aggregation status monitoring sensor
JP2020054963A (en) * 2018-10-03 2020-04-09 株式会社パウレック Particle production apparatus
DE102022106367A1 (en) * 2022-03-18 2023-09-21 Add Advanced Drug Delivery Technologies Ltd. Coating apparatus unit and method for producing granules functionally coated with a coating agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582891Y2 (en) * 1992-02-05 1998-10-15 株式会社パウレック Powder adhesion prevention device
JPH0984748A (en) * 1995-09-21 1997-03-31 Fuji Photo Optical Co Ltd Air supply and water supply nozzle for endoscope
DE69626293T2 (en) * 1995-10-25 2003-07-24 Shionogi & Co PARTICLE MEASURING DEVICE AND METHOD IN A GRANULAR TREATMENT APPARATUS
JP4472494B2 (en) * 2004-11-10 2010-06-02 株式会社パウレック Powder processing equipment
JP5805482B2 (en) * 2011-09-29 2015-11-04 株式会社パウレック Fluidized bed equipment

Also Published As

Publication number Publication date
JP2017056405A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6472733B2 (en) Fluidized bed equipment
EP3689474B1 (en) Coating device and corresponding coating method
KR100765073B1 (en) Sampling Apparatus
KR20150118539A (en) Device and method for measuring the moisture in die casting molds
US8944343B2 (en) Spraying system with flow sensing and monitoring device
JP5805482B2 (en) Fluidized bed equipment
CN107533011A (en) For monitoring the method and system of the nozzle in spray drying or spray cooling chamber
JP2003053644A (en) Machine tool and lubricant jetting state detecting device for machine tool
EP3115116B1 (en) Cleaning system
CN106457287A (en) Coating system and method for coating objects
JP6482992B2 (en) Fluidized bed equipment
WO2003084672A1 (en) Powder supplying device
US20040089733A1 (en) Method and apparatus for purging a spray nozzle
JP7340257B2 (en) coating equipment
JP4472494B2 (en) Powder processing equipment
JP2022546770A (en) Methods for determining clogging and clogging characteristics of paint equipment, paint equipment, calibration systems and industrial robots
JP2009525472A (en) Measurement, monitoring and control of directed product flow in fluidized bed or spouted bed equipment and suitable equipment
BE1022757B1 (en) Apparatus and method for measuring moisture in die casting molds
KR101485693B1 (en) Anti-blocking apparatus for eliminator of absorption tower
DE202007001286U1 (en) Measuring, monitoring and controlling method for directed product movements of fluidized products, involves injecting microwave radiation without contact into one or more product streams, with microwave sensor devices
KR101429124B1 (en) Fluid injection unit and apparatus for fluid injection using the same of
JP5615959B2 (en) Coating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6472733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250