JP2013063491A - Nc data correcting device - Google Patents

Nc data correcting device Download PDF

Info

Publication number
JP2013063491A
JP2013063491A JP2011203929A JP2011203929A JP2013063491A JP 2013063491 A JP2013063491 A JP 2013063491A JP 2011203929 A JP2011203929 A JP 2011203929A JP 2011203929 A JP2011203929 A JP 2011203929A JP 2013063491 A JP2013063491 A JP 2013063491A
Authority
JP
Japan
Prior art keywords
tool
data
contact angle
tool contact
limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011203929A
Other languages
Japanese (ja)
Other versions
JP5929065B2 (en
Inventor
Shigeru Matsunaga
茂 松永
Toshiyuki Okita
俊之 沖田
Ryota Tanase
良太 棚瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011203929A priority Critical patent/JP5929065B2/en
Publication of JP2013063491A publication Critical patent/JP2013063491A/en
Application granted granted Critical
Publication of JP5929065B2 publication Critical patent/JP5929065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a NC data correcting device capable of producing NC data that provides high machining efficiency and suppresses chatter vibration by correcting a radial notch depth in a contour line machining which keeps an axial notch depth constant.SOLUTION: The device calculates a limit tool contact angle that is a tool contact angle at the limit of the generation of chatter vibration with respect to a spindle rotation speed in the prescribed axial notch depth and determines whether or not the tool contact angle is larger than the limit tool contact angle in each data section of the NC data. When there is an unstable NC data section where the tool contact angle is determined to be large, the tool contact angle is made smaller by making the radial notch depth of a tool edge route in the unstable NC data section smaller so that the NC data suppressing the chatter vibration are prepared.

Description

本発明は、主軸により回転される工具を用いて工作物を加工するNC工作機械における、加工中のびびり振動の発生を防止するものであり、びびり振動が発生しないようにNCデータを補正するNCデータ補正装置に関するものである。   The present invention prevents occurrence of chatter vibration during machining in an NC machine tool that processes a workpiece using a tool rotated by a spindle, and corrects NC data so that chatter vibration does not occur. The present invention relates to a data correction apparatus.

回転する工具を用いた加工においてびびり振動を防止するために、びびり振動安定限界線図を用いて、工具回転軸方向の工作物に対する工具の切込み深さである軸切込み深さと主軸回転速度を変更して、びびり振動の発生しない加工条件を設定することが行われている。びびり振動安定限界線図は工具の回転半径方向の工作物に対する切込み深さである半径切込み深さを所望の一定値としたときの主軸回転速度に対するびびり振動発生限界の軸切込み深さを示す図であり、びびり振動安定限界線図のびびり振動の発生しない領域である安定領域に含まれる軸切込み深さと主軸回転速度の組合せを選定することで容易に適切な加工条件を設定できる。びびり振動安定限界線図は、工具を含む主軸系の質量、減衰係数、剛性と比切削抵抗をパラメータとする計算式で求められる。(たとえば非特許文献1)   In order to prevent chatter vibration during machining using a rotating tool, the shaft cut depth and spindle rotation speed, which is the tool cut depth for the workpiece in the tool rotation axis direction, are changed using the chatter vibration stability limit diagram. Thus, it is performed to set machining conditions in which chatter vibration does not occur. The chatter vibration stability limit diagram shows the shaft cut depth at the chatter vibration generation limit with respect to the spindle rotational speed when the radius cut depth, which is the depth of cut in the workpiece in the radial direction of the tool rotation, is set to a desired constant value. By selecting the combination of the shaft cutting depth and the spindle rotation speed included in the stable region, which is the region where chatter vibration does not occur, in the chatter vibration stability limit diagram, appropriate machining conditions can be easily set. The chatter vibration stability limit diagram can be obtained by a calculation formula using the mass, damping coefficient, rigidity and specific cutting resistance of the spindle system including the tool as parameters. (For example, Non-Patent Document 1)

「神戸製鋼技報 2001年Vol.51 No.3」、p.20〜p.22“Kobe Steel Engineering Reports 2001 Vol.51 No.3”, p. 20-p. 22

金型などの加工では、軸切込み深さを一定として工具回転軸に直交する平面内で工具を移動させて工作物を加工する等高線加工が賞用されている。この場合に、従来のびびり振動安定限界線図を用いて加工条件を設定すると、全ての工具経路の中でびびり振動の発生し易い部分の軸切込み深さ(一番小さな軸切込み深さ)により全体の軸切込み深さが決められることになる。このため、びびり振動の発生に対して切削能率に余裕のある加工部位では工具の回転半径方向の工作物に対する切込み深さである半径切込み深さを大きくすることで加工能率を大きくしている。この場合、半径切込み深さの設定値は作業者の経験や実加工の試行に基づき設定されているため、半径切込み深さの設定に時間を要し、びびり振動の発生に対して余裕のある設定をするため工作機械の能力を充分に発揮できない恐れがある。
本発明は上記事情に鑑みてなされたものであり、軸切込み深さを一定とする等高線加工において、半径切込み深さを補正して、加工能率が大きくてびびり振動の発生しないNCデータを作成できるNCデータ補正装置を提供することを目的とする。
In machining a die or the like, contour line machining for machining a workpiece by moving a tool in a plane orthogonal to a tool rotation axis with a constant shaft cutting depth is used. In this case, if the machining conditions are set using the conventional chatter vibration stability limit diagram, it depends on the shaft cut depth (smallest shaft cut depth) of the portion where vibration is likely to occur in all tool paths. The overall shaft cut depth will be determined. For this reason, the machining efficiency is increased by increasing the radius cutting depth, which is the depth of cutting with respect to the workpiece in the rotational radius direction of the tool, at the machining site where the cutting efficiency is sufficient for chatter vibration. In this case, since the setting value of the radius cutting depth is set based on the experience of the operator and the trial of actual machining, it takes time to set the radius cutting depth, and there is room for chatter vibration. There is a risk that the machine tool's ability cannot be fully demonstrated because of the setting.
The present invention has been made in view of the above circumstances, and in contour machining with a constant shaft cut depth, the radius cut depth can be corrected to create NC data with high machining efficiency and no chatter vibration. An object is to provide an NC data correction apparatus.

上記の課題を解決するための請求項1に係る発明の特徴は、主軸に装着した回転する工具により工作物を切削する工作機械のNCデータを補正するNCデータ補正装置であって、
前記NCデータと工作物の加工前形状データを用いて、前記NCデータに示された工具経路の形状の曲率半径が同一である区分毎に区切られた前記NCデータの一部であるデータ区分における、前記工具の同一の刃先が前記工作物に連続的に加工作用をする前記工具の回転角度である工具接触角度を演算する工具接触角度演算手段と、
工具回転軸方向の前記工具の前記工作物への切込み深さである所定の軸切込み深さと所定の主軸回転速度におけるびびり振動発生限界の前記工具接触角度である限界工具接触角度を演算する限界工具接触角度演算手段と、
前記所定の軸切込み深さと前記所定の主軸回転速度を備えるNCデータにおける前記工具接触角度演算手段により演算された工具接触角度が、前記限界工具接触角度より大きいか否かを判定する判定手段と、
前記判定手段で工具接触角度が前記限界工具接触角度より大きいと判定されたデータ区分である不安定NCデータ区分がある場合は、前記不安定NCデータ区分のNCデータにおける前記工具の回転半径方向の切込み深さである半径切込み深さを減じて、前記工具接触角度が前記限界工具接触角度より小さくなる補正半径切込み深さを備えた複数の補正NCデータに分割する工具経路補正手段と、を備えることである。
A feature of the invention according to claim 1 for solving the above problem is an NC data correction device for correcting NC data of a machine tool for cutting a workpiece with a rotating tool attached to a spindle,
In the data section that is a part of the NC data divided for each section in which the curvature radius of the shape of the tool path indicated in the NC data is the same using the NC data and the shape data before machining the workpiece. Tool contact angle calculation means for calculating a tool contact angle that is a rotation angle of the tool in which the same cutting edge of the tool continuously works on the workpiece;
A limit tool that calculates a limit tool contact angle that is a tool contact angle that is a limit of chatter vibration generation at a predetermined shaft cut depth that is the depth of cut of the tool into the workpiece in the tool rotation axis direction and a predetermined spindle rotation speed. Contact angle calculation means;
Determining means for determining whether or not a tool contact angle calculated by the tool contact angle calculating means in NC data having the predetermined axis cutting depth and the predetermined spindle rotation speed is larger than the limit tool contact angle;
When there is an unstable NC data section that is a data section in which the tool contact angle is determined to be larger than the limit tool contact angle by the determination means, the rotational radius direction of the tool in the NC data of the unstable NC data section A tool path correcting means for reducing a radius cutting depth, which is a cutting depth, and dividing the tool contact angle into a plurality of corrected NC data having a corrected radius cutting depth in which the tool contact angle is smaller than the limit tool contact angle. That is.

請求項2に係る発明の特徴は、請求項1に係る発明において、所定不安定NCデータ区分の補正NCデータの前記補正半径切込み深さが、前記所定不安定NCデータ区分のNCデータにおける半径切込み深さを2以上の整数で除した値であることである。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the correction radius cutting depth of the correction NC data of the predetermined unstable NC data section is a radius cutting in the NC data of the predetermined unstable NC data section. The depth is a value obtained by dividing the depth by an integer of 2 or more.

請求項1に係る発明によれば、等高線加工において、NCデータ区分毎に工具接触角度が、限界工具接触角度より大きいか否かを判定することで、びびり振動発生が予測される不安定NCデータ区分を特定し、工具経路補正手段により不安定NCデータ区分の半径切込み深さを小さくしてびびり振動の発生しないNCデータを作成することができる。このため、大きな半径切込み深さを設定した高能率のNCデータを補正して、びびり振動が発生しない最大の加工能率を備えたNCデータを設定することが可能で、加工時間が短縮できる。   According to the invention of claim 1, in contour machining, unstable NC data in which chatter vibration is predicted to occur by determining whether the tool contact angle is larger than the limit tool contact angle for each NC data section. The section can be specified, and the radius cutting depth of the unstable NC data section can be reduced by the tool path correcting means to generate NC data free from chatter vibration. For this reason, it is possible to correct NC data having a high radius cutting depth and set NC data having the maximum machining efficiency at which chatter vibration does not occur, and the machining time can be shortened.

請求項2に係る発明によれば、不安定NCデータ区分のNCデータをびびり振動の発生しない最少数の補正NCデータに分割することができる。このため、不安定NCデータ区分を最短時間で加工できる。   According to the second aspect of the present invention, the NC data of the unstable NC data section can be divided into the minimum number of corrected NC data that does not cause chatter vibration. For this reason, unstable NC data sections can be processed in the shortest time.

本実施形態の工作機械の概要を示す図である。It is a figure which shows the outline | summary of the machine tool of this embodiment. 本実施形態の工具接触角度を示す図である。It is a figure which shows the tool contact angle of this embodiment. NCデータを修正する工程を示す工程図である。It is process drawing which shows the process of correcting NC data. 主軸系のコンプライアンスの周波数応答を示す図である。It is a figure which shows the frequency response of the compliance of a spindle system. 工具経路を示す図である。It is a figure which shows a tool path | route. 補正工具経路を示す図である。It is a figure which shows a correction | amendment tool path | route. 変形態様の補正工具経路を示す図である。It is a figure which shows the correction | amendment tool path | route of a deformation | transformation aspect. びびり振動安定限界角度線図を示す図である。It is a figure which shows a chatter vibration stability limit angle diagram.

以下、本発明のNCデータ補正装置を工作機械に組み込んだ実施形態について説明する。
図1において、工作機械1は、ベッド2上にZ軸方向へ前後進するコラム3と、コラム3によりY軸方向へ上下可動に支持された主軸6と、Z軸とY軸に直角な方向であるX軸方向(紙面に垂直な方向)に移動可能なテーブル4を備え、テーブル4上には工作物Wが固定されている。主軸6は回転自在に保持されモータ8により回転駆動されるスピンドル7を備え、スピンドル7の先端には工具5が装着されている。工具5と工作物Wは、図示しない送り装置によりX軸方向、Y軸方向、Z軸方向の相対運動が可能で、この相対運動により加工が行われる。
Hereinafter, an embodiment in which the NC data correction apparatus of the present invention is incorporated in a machine tool will be described.
In FIG. 1, a machine tool 1 includes a column 3 that moves back and forth in the Z-axis direction on a bed 2, a main shaft 6 that is supported by the column 3 so as to be vertically movable in the Y-axis direction, and a direction that is perpendicular to the Z-axis and the Y-axis. The table 4 is movable in the X-axis direction (direction perpendicular to the paper surface), and a workpiece W is fixed on the table 4. The main shaft 6 includes a spindle 7 that is rotatably held and is driven to rotate by a motor 8, and a tool 5 is attached to the tip of the spindle 7. The tool 5 and the workpiece W can be moved relative to each other in the X-axis direction, the Y-axis direction, and the Z-axis direction by a feeding device (not shown), and machining is performed by this relative movement.

NC制御装置9は、NCデータ補正装置91、図示されない入力装置により入力されたNCデータやNC制御プログラム、比切削抵抗K、主軸系の質量m、減衰係数c、剛性kの値などを記録しておくデータ記録部92、X軸・Y軸・Z軸の送りを制御する駆動軸制御装置93等を備えている。NCデータ補正装置91は限界工具接触角度演算手段911、工具経路形状と半径切込み深さから工具接触角度を演算する工具接触角度演算手段912、工具接触角度がびびり振動を発生させる限界工具接触角度より大きいか否かを判定する判定手段913、びびり振動が発生する工具経路の部分の半径切込み深さを減少させる工具経路補正手段914を備えている。
ここで、図2において、工具接触角度とはΘであり、加工中に工具5の1つの刃先5aが工作物に連続的に加工作用をする工具5の回転角度である。また、工具経路とは工具の回転中心の移動する経路のことでありNCデータにはこの経路が記述されている。工具刃先経路とは工作物の加工表面における工具刃先の包絡線のことで工具経路に工具の回転半径の値rをオフセットして一義的に得られる。以下の説明では、工具経路番号と工具刃先経路番号は同一であるとして説明する。
The NC control device 9 records the NC data correction device 91, NC data input by an input device (not shown), NC control program, specific cutting resistance K f , spindle mass m, damping coefficient c, stiffness k, and the like. A data recording unit 92, a drive axis control device 93 for controlling the feed of the X axis, the Y axis, and the Z axis are provided. The NC data correction device 91 includes a limit tool contact angle calculation unit 911, a tool contact angle calculation unit 912 that calculates a tool contact angle from the tool path shape and the radius cutting depth, and a tool contact angle that generates chatter vibration. Judgment means 913 for judging whether or not the tool path is large is provided, and tool path correction means 914 for reducing the radius cutting depth of the part of the tool path where chatter vibration occurs.
Here, in FIG. 2, the tool contact angle is Θ, and is the rotation angle of the tool 5 in which one cutting edge 5 a of the tool 5 continuously works on the workpiece during machining. The tool path is a path along which the rotation center of the tool moves, and this path is described in the NC data. The tool edge path is an envelope of the tool edge on the machining surface of the workpiece, and is uniquely obtained by offsetting the value r of the rotation radius of the tool to the tool path. In the following description, the tool path number and the tool edge path number are assumed to be the same.

以下に、図3の工程図に基づき実施形態のNCデータ補正装置91がNCデータを補正する手順を説明する。
はじめに、補正対象となるNCデータ、加工前工作物形状および、あらかじめ測定した、所定の工具を用いて工作部Wを切削したときの比切削抵抗Kと、所定の工具を主軸に装着した主軸系の質量m、減衰係数c、剛性kの値をデータ記録部92へ記録する。これらの測定は公知の測定方法で測定可能である。たとえば、主軸系の質量m、減衰係数c、剛性kについては、図4に示すように、加振テストにより測定したコンプライアンスの周波数応答の最大ピークに対して、最適フィッティングする伝達関数φ(s)=1/(ms+cs+k)の質量m、減衰係数c、剛性kから求めることができる(S1)。NCデータの工具経路と加工前工作物形状から決まる軸切込み深さとNCデータに指示された主軸回転速度における限界工具接触角度Θを、比切削抵抗Kと、主軸系の質量m、減衰係数c、剛性kの値と、たとえば2010年3月4日、日本機械学会No.10−24講習会−生産加工基礎講座−実習で学ぼう「切削加工、びびり振動の基礎知識」、講習会テキスト、pp、1−12に示されるようなびびり安定限界の求め方を用いて演算する(S2)。NCデータのデータ区分の総数Nを記録するとともに、NCデータ区分番号のカウンターC0を1とする。ここで、NCデータ区分番号とは、NCデータにより定まる工具経路の直線部または一定の曲率半径を備えた曲線部毎に区切られたNCデータ区分毎に1から最終のNまで順番に付与された番号である(S3)。NCデータ区分番号C0の工具経路KC0による工具刃先経路PC0おける工具接触角度ΘC0を以下の式で演算する。図5において、工具の回転半径をr、点mから点nまでの工具刃先経路PC0の曲率半径をRC0、加工前工作物形状の表面fからの半径切込み深さをtとすると、幾何学的な関係から工具接触角度ΘC0はΘC0=cos−1(t-2・RC0・t−2・r+2・RC0・r)/(2(RC0−r)r)となる(S4)。工具接触角度ΘC0が限界工具接触角度Θより大きいか否かを判定する。ΘC0>ΘであればステップS6へ移動し、そうでないならステップS12へ移動する(S5)。
The procedure for correcting the NC data by the NC data correction device 91 of the embodiment will be described below based on the process diagram of FIG.
First, NC data to be corrected, unprocessed workpiece shape and was measured in advance, spindle mounted and specific cutting force K f when cutting the work unit W with a predetermined tool, the predetermined tool to the spindle The system mass m, damping coefficient c, and stiffness k values are recorded in the data recording unit 92. These measurements can be performed by a known measurement method. For example, with respect to the mass m, the damping coefficient c, and the stiffness k of the spindle system, as shown in FIG. 4, the transfer function φ (s) for optimal fitting with respect to the maximum peak of the compliance frequency response measured by the vibration test. = 1 / (ms 2 + cs + k) The mass m, the damping coefficient c, and the stiffness k can be obtained (S1). The axis cutting depth determined from the NC data tool path and the workpiece shape before machining, and the limit tool contact angle Θ G at the spindle rotation speed indicated by the NC data, the specific cutting resistance K f , the spindle mass m, and the damping coefficient c, the value of rigidity k, for example, March 4, 2010, Japan Society of Mechanical Engineers No. 10-24 Lecture-Production Processing Basic Lecture-Learning with “Basic Knowledge of Cutting, Chatter Vibration”, Lecture Text, pp, Calculation using the chatter stability limit as shown in 1-12 (S2). The total number N of NC data divisions is recorded, and the NC data division number counter C0 is set to 1. Here, the NC data section number is assigned in order from 1 to the final N for each NC data section divided into straight sections of a tool path determined by NC data or curved sections having a constant radius of curvature. It is a number (S3). The tool contact angle Θ C0 in the tool cutting edge path P C0 by the tool path K C0 of the NC data classification number C0 is calculated by the following formula. In FIG. 5, assuming that the radius of rotation of the tool is r, the radius of curvature of the tool cutting edge path P C0 from the point m to the point n is R C0 , and the radius cutting depth from the surface f of the workpiece shape before processing is t. The tool contact angle Θ C0 is Θ C0 = cos −1 (t 2 −2 · R C0 · t−2 · r 2 + 2 · R C0 · r) / (2 (R C0 −r) r) (S4). It is determined whether or not the tool contact angle Θ C0 is larger than the limit tool contact angle Θ G. If Θ C0 > Θ G , the process moves to step S6, and if not, the process moves to step S12 (S5).

補正NCデータの補正回数のカウンターC1を2とする(S6)。工具刃先経路PC0おける半径切込み深さtを1/C1にした補正NCデータを作成する。図6にC1=2の例を示す、工具刃先経路PC0の曲率半径RC0に対してt/2小さな曲率半径RC01を備えた点oから点qまでの工具刃先経路PC01をなす補正工具経路KC01を作成し工具経路補正手段914に記録する(S7)。補正工具刃先経路PC01における工具接触角度Θを演算する。図6において、工具の回転半径をr、補正工具刃先経路PC01の曲率半径をRC01、半径切込み深さをt/2とすると、幾何学的な関係から工具接触角度Θは式Θ=cos−1(t/4-RC01・t−2・r+2・RC01・r)/(2(RC01−r)r)を用いて演算できる(S8)。工具接触角度Θが限界工具接触角度Θより大きいか否かを判定する。Θ>ΘであればステップS10へ移動し、そうでないならステップS11へ移動する(S9)。補正回数のカウンターC1に1を加算した後にステップS7へ移動する(S10)。NCデータ区分番号C0における半径切込み深さtを1/C1にしたC1個の補正工具経路からなる補正NCデータを、新たなNCデータ区分番号C0のNCデータとしてデータ記録部に記録する(S11)。データ区分番号のカウンターC0に1を加算する(S12)。全てのデータ区分の判定は終了したか確認する。具体的には、データ区分番号のカウンターC0の値が最終のN以上であればすべてのNCデータ区分の判定が終了したので終了し、そうでないならステップS4へ移動する(S13)。 A correction C1 counter C1 of correction NC data is set to 2 (S6). Compensation NC data in which the radius cutting depth t in the tool edge path PC0 is 1 / C1 is created. An example of a C1 = 2 in FIG. 6, the correction constituting the tool edge path P C01 from the radius of curvature R C0 point with a t / 2 small radius of curvature R C01 respect o the tool edge path P C0 to the point q A tool path K C01 is created and recorded in the tool path correcting means 914 (S7). Calculating a tool contact angle theta H in the corrected tool edge path P C01. In FIG. 6, assuming that the radius of rotation of the tool is r, the radius of curvature of the correction tool cutting edge path P C01 is R C01 , and the radius cutting depth is t / 2, the tool contact angle Θ H is expressed by the equation Θ H from the geometrical relationship. = Cos −1 (t 2 / 4−R C01 · t−2 · r 2 + 2 · R C01 · r) / (2 (R C01 −r) r) (S8). Tool contact angle theta H is equal to or greater than maximum tool contact angle theta G. If Θ H > Θ G , the process moves to step S10, and if not, the process moves to step S11 (S9). After adding 1 to the counter C1 of the number of corrections, the process proceeds to step S7 (S10). The corrected NC data consisting of C1 correction tool paths with the radius cutting depth t in NC data section number C0 being 1 / C1 is recorded in the data recording section as NC data of a new NC data section number C0 (S11). . 1 is added to the counter C0 of the data division number (S12). Check if all data classifications are complete. Specifically, if the value of the counter C0 of the data section number is equal to or greater than the final N, the determination is finished because all NC data sections have been determined. If not, the process proceeds to step S4 (S13).

以上のように、本発明のNCデータ補正装置91を用いて、大きな半径切込み深さを設定した高能率の等高線加工用NCデータの、NCデータ区分毎に工具接触角度が限界工具接触角度を超えてか否かを判定し、びびり振動発生が予測される不安定NCデータ区分の半径切込み深さを1/C1に小さくしたびびり振動の発生しない補正NCデータを自動で作成することがでる。このため、びびり振動が発生しない最大の加工能率を設定することが可能で、加工時間が短縮できる。   As described above, using the NC data correction device 91 of the present invention, the tool contact angle exceeds the limit tool contact angle for each NC data section of the NC data for high-efficiency contour machining with a large radius cutting depth set. It is possible to reduce the radius cutting depth of the unstable NC data section in which chatter vibration is predicted to be 1 / C1 and automatically generate corrected NC data that does not generate chatter vibration. For this reason, it is possible to set the maximum machining efficiency at which chatter vibration does not occur, and the machining time can be shortened.

上記の説明では、不安定NCデータ部のみの工具刃先経路PC0を補正したが、不安定NCデータ部の直前のNCデータ部の工具刃先経路PC0−1を含めて補正してもよい。これは、図5に示すように、工具刃先経路PC0−1の終了端部mにおいては、工具接触角度ΘC0が限界工具接触角度Θより大きくなるため、びびり振動が時間経過につれて成長して悪影響を及ぼす恐れがあるためである。具体的には、図7に示すように工具刃先経路PC0−1の終了点を工具接触角度ΘC0−1が限界工具接触角度Θと等しい点である点uに変更し、工具刃先経路PC0の開始点を点uに変更する。補正工具刃先経路PC0の最初の工具刃先経路を点uから点0を経由して点qまでとし、最後の工具刃先経路を点uから点mを経由して点nまでとする。
また、主軸回転速度はあらかじめ設定された所定の主軸回転速度を用いてNCデータ補正工程内で限界工具接触角度Θを演算したが、図8に示すびびり振動安定限界角度線図をあらかじめ作成してデータ記録部へ記録しておき、安定限界がピークとなる位置の主軸回転速度を選択するようにしてもよい。このびびり振動安定限界角度線図は横軸に主軸回転速度、縦軸に工具接触角度を表し、主軸回転速度に対応したびびり振動が発生する限界の限界工具接触角度Θの点群をプロットしたものである。
In the above description, the tool cutting edge path P C0 of only the unstable NC data part is corrected. However, the tool cutting edge path P C0-1 of the NC data part immediately before the unstable NC data part may be corrected. As shown in FIG. 5, since the tool contact angle Θ C0 is larger than the limit tool contact angle Θ G at the end end m of the tool cutting edge path P C0-1 , chatter vibration grows with time. This is because there is a risk of adverse effects. Specifically, as shown in FIG. 7, the end point of the tool cutting edge path P C0-1 is changed to a point u where the tool contact angle Θ C0-1 is equal to the limit tool contact angle Θ G, and the tool cutting edge path The starting point of PC 0 is changed to point u. The first tool edge path of the corrected tool edge path PC0 is set from point u to point q via point 0, and the last tool edge path is set from point u to point n via point m.
The spindle rotation speed was calculated using the predetermined spindle rotation speed set in advance in the NC data correction process to calculate the limit tool contact angle Θ G. The chatter vibration stability limit angle diagram shown in FIG. Then, the data may be recorded in the data recording unit, and the spindle rotational speed at the position where the stability limit becomes a peak may be selected. This chatter vibration stability limit angle diagram shows the spindle rotation speed on the horizontal axis and the tool contact angle on the vertical axis, and the point cloud of the limit tool contact angle Θ G at the limit where chatter vibration occurs corresponding to the spindle rotation speed is plotted. Is.

5:工具 W:工作物 6:主軸 9:NC制御装置 91:NCデータ補正装置 911:限界工具接触角度演算手段 912:工具接触角度演算手段 913:判定手段 914:工具経路補正手段 5: Tool W: Work piece 6: Spindle 9: NC control device 91: NC data correction device 911: Limit tool contact angle calculation means 912: Tool contact angle calculation means 913: Determination means 914: Tool path correction means

Claims (2)

主軸に装着した回転する工具により工作物を切削する工作機械のNCデータを補正するNCデータ補正装置であって、
前記NCデータと工作物の加工前形状データを用いて、前記NCデータに示された工具経路の形状の曲率半径が同一である区分毎に区切られた前記NCデータの一部であるデータ区分における、前記工具の同一の刃先が前記工作物に連続的に加工作用をする前記工具の回転角度である工具接触角度を演算する工具接触角度演算手段と、
工具回転軸方向の前記工具の前記工作物への切込み深さである所定の軸切込み深さと所定の主軸回転速度におけるびびり振動発生限界の前記工具接触角度である限界工具接触角度を演算する限界工具接触角度演算手段と、
前記所定の軸切込み深さと前記所定の主軸回転速度を備えるNCデータにおける前記工具接触角度演算手段により演算された工具接触角度が、前記限界工具接触角度より大きいか否かを判定する判定手段と、
前記判定手段で工具接触角度が前記限界工具接触角度より大きいと判定されたデータ区分である不安定NCデータ区分がある場合は、前記不安定NCデータ区分のNCデータにおける前記工具の回転半径方向の切込み深さである半径切込み深さを減じて、前記工具接触角度が前記限界工具接触角度より小さくなる補正半径切込み深さを備えた複数の補正NCデータに分割する工具経路補正手段と、を備えるNCデータ補正装置。
An NC data correction device that corrects NC data of a machine tool that cuts a workpiece with a rotating tool mounted on a spindle,
In the data section that is a part of the NC data divided for each section in which the curvature radius of the shape of the tool path indicated in the NC data is the same using the NC data and the shape data before machining the workpiece. Tool contact angle calculation means for calculating a tool contact angle that is a rotation angle of the tool in which the same cutting edge of the tool continuously works on the workpiece;
A limit tool that calculates a limit tool contact angle that is a tool contact angle that is a limit of chatter vibration generation at a predetermined shaft cut depth that is the depth of cut of the tool into the workpiece in the tool rotation axis direction and a predetermined spindle rotation speed. Contact angle calculation means;
Determining means for determining whether or not a tool contact angle calculated by the tool contact angle calculating means in NC data having the predetermined axis cutting depth and the predetermined spindle rotation speed is larger than the limit tool contact angle;
When there is an unstable NC data section that is a data section in which the tool contact angle is determined to be larger than the limit tool contact angle by the determination means, the rotational radius direction of the tool in the NC data of the unstable NC data section A tool path correcting means for reducing a radius cutting depth, which is a cutting depth, and dividing the tool contact angle into a plurality of corrected NC data having a corrected radius cutting depth in which the tool contact angle is smaller than the limit tool contact angle. NC data correction device.
所定不安定NCデータ区分の補正NCデータの前記補正半径切込み深さが、前記所定不安定NCデータ区分のNCデータにおける半径切込み深さを2以上の整数で除した値である、請求項1に記載のNCデータ補正装置。   The correction radius cutting depth of the corrected NC data of the predetermined unstable NC data section is a value obtained by dividing the radius cutting depth in the NC data of the predetermined unstable NC data section by an integer of 2 or more. The NC data correction device described.
JP2011203929A 2011-09-19 2011-09-19 NC data correction device Expired - Fee Related JP5929065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203929A JP5929065B2 (en) 2011-09-19 2011-09-19 NC data correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203929A JP5929065B2 (en) 2011-09-19 2011-09-19 NC data correction device

Publications (2)

Publication Number Publication Date
JP2013063491A true JP2013063491A (en) 2013-04-11
JP5929065B2 JP5929065B2 (en) 2016-06-01

Family

ID=48187495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203929A Expired - Fee Related JP5929065B2 (en) 2011-09-19 2011-09-19 NC data correction device

Country Status (1)

Country Link
JP (1) JP5929065B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163918A (en) * 2015-03-06 2016-09-08 国立大学法人 東京大学 Machine tool and processing method of workpiece
JP6316997B1 (en) * 2017-02-06 2018-04-25 広島県 Chatter vibration avoidance device, chatter vibration avoidance program, and chatter vibration avoidance device control method
CN108319222A (en) * 2018-03-14 2018-07-24 四川九零科技有限公司 The numerically-controlled machine tool that cutter path is automatically corrected
JPWO2017154671A1 (en) * 2016-03-11 2018-11-22 国立大学法人名古屋大学 End mill processing device, CAM device, NC program, and processing method
JP7214060B1 (en) * 2022-05-18 2023-01-27 三菱電機株式会社 Control parameter adjuster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044852A (en) * 2005-08-12 2007-02-22 Univ Nagoya Machining device, revolution arithmetic unit of machining device, chattering vibration evaluation device of machining device and chattering vibration evaluation method of machining device
JP2010260120A (en) * 2009-04-30 2010-11-18 Nagoya Univ Ball end mill machining system, ball end mill machining device, cam device, and ball end mill machining method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044852A (en) * 2005-08-12 2007-02-22 Univ Nagoya Machining device, revolution arithmetic unit of machining device, chattering vibration evaluation device of machining device and chattering vibration evaluation method of machining device
JP2010260120A (en) * 2009-04-30 2010-11-18 Nagoya Univ Ball end mill machining system, ball end mill machining device, cam device, and ball end mill machining method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163918A (en) * 2015-03-06 2016-09-08 国立大学法人 東京大学 Machine tool and processing method of workpiece
JPWO2017154671A1 (en) * 2016-03-11 2018-11-22 国立大学法人名古屋大学 End mill processing device, CAM device, NC program, and processing method
EP3427878A4 (en) * 2016-03-11 2020-03-25 National University Corporation Nagoya University End mill machining device, cam device, nc program, and machining method
JP6316997B1 (en) * 2017-02-06 2018-04-25 広島県 Chatter vibration avoidance device, chatter vibration avoidance program, and chatter vibration avoidance device control method
JP2018126812A (en) * 2017-02-06 2018-08-16 広島県 Chattering vibration avoidance device, chattering vibration avoidance program, and control method of chattering vibration avoidance device
CN108319222A (en) * 2018-03-14 2018-07-24 四川九零科技有限公司 The numerically-controlled machine tool that cutter path is automatically corrected
JP7214060B1 (en) * 2022-05-18 2023-01-27 三菱電機株式会社 Control parameter adjuster
WO2023223470A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Control parameter adjustment device, numerical value control device, and control parameter adjustment method

Also Published As

Publication number Publication date
JP5929065B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5929065B2 (en) NC data correction device
JP6340323B2 (en) Crankshaft machining system and crankshaft machining method
JP6340764B2 (en) Gear processing equipment
EP2407273B1 (en) Method for controlling rotation of main spindle and controller of machine tool
TW201600220A (en) Control device for machine tool, and machine tool provided with said control device
JP2012213830A (en) Machine tool and machining control device of the same
JP6133995B2 (en) Tool path evaluation method, tool path generation method, and tool path generation device
CN102804088B (en) Machine tool
JP6064723B2 (en) Gear processing equipment
JP2020066119A (en) Machine tool and control device
JP5862111B2 (en) Machining data correction method
JP6606967B2 (en) Gear processing apparatus and gear processing method
US9952582B2 (en) Method of controlling feed axes in machine tool, and machine tool performing machining by using the method of controlling feed axes
JP5413913B2 (en) Non-circular machining method by turning
JP6038331B2 (en) Tool path generation method and tool path generation apparatus
JP6500486B2 (en) Gear processing apparatus and gear processing method
JP6735266B2 (en) Machine tools, machining methods, and machining programs
JP6735309B2 (en) Machine tools, cutting methods, and cutting programs
JP2020078831A (en) Gear machining method and gear machining apparatus
JP2016038674A (en) Correction value computing method and correction value computing program for machine tool
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
JP2021111026A (en) Machine tool machining control method
JP5786436B2 (en) Numerical control apparatus and processing method
JP6871675B2 (en) Gear processing equipment and gear processing method
JP2020196057A (en) Gear processing device and gear processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees