JP6064723B2 - Gear processing equipment - Google Patents

Gear processing equipment Download PDF

Info

Publication number
JP6064723B2
JP6064723B2 JP2013059861A JP2013059861A JP6064723B2 JP 6064723 B2 JP6064723 B2 JP 6064723B2 JP 2013059861 A JP2013059861 A JP 2013059861A JP 2013059861 A JP2013059861 A JP 2013059861A JP 6064723 B2 JP6064723 B2 JP 6064723B2
Authority
JP
Japan
Prior art keywords
workpiece
tool
machining
amount
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013059861A
Other languages
Japanese (ja)
Other versions
JP2014184505A (en
Inventor
尚 大谷
尚 大谷
中野 浩之
浩之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2013059861A priority Critical patent/JP6064723B2/en
Publication of JP2014184505A publication Critical patent/JP2014184505A/en
Application granted granted Critical
Publication of JP6064723B2 publication Critical patent/JP6064723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加工用工具および工作物を高速で同期回転させて切削加工により歯車を加工する歯車加工装置に関する。   The present invention relates to a gear processing apparatus that processes a gear by cutting by rotating a processing tool and a workpiece synchronously at high speed.

マシニングセンタ等の工作機械を用いて切削加工により歯車を加工する場合、内歯および外歯を加工する有効な手法として、例えば、特許文献1に記載の加工方法がある。この加工方法は、回転軸線回りに回転可能な加工用工具、例えば複数の工具刃を有するホブと、加工用工具の回転軸線に対して所定の角度で傾斜した回転軸線回りに回転可能な工作物とを高速で同期回転させ、加工用工具を工作物の回転軸線方向に送って切削することにより歯を創成する加工方法である。   When processing a gear by cutting using a machine tool such as a machining center, for example, there is a processing method described in Patent Document 1 as an effective method for processing internal teeth and external teeth. This machining method includes a machining tool that can rotate around a rotation axis, such as a hob having a plurality of tool blades, and a workpiece that can rotate around a rotation axis inclined at a predetermined angle with respect to the rotation axis of the machining tool. Are synchronously rotated at a high speed, and a cutting tool is created by feeding a cutting tool in the direction of the axis of rotation of the workpiece and cutting it.

特開2012−45687号公報JP 2012-45687 A

上述の加工方法では、加工用工具および工作物を高速で同期回転させて切削加工を行うため、加工用工具の形状誤差や加工用工具および工作物の回転時の振れ等により、歯車の歯形形状の精度が悪化するという問題がある。   In the above-described machining method, the machining tool and workpiece are rotated synchronously at high speed for cutting, and therefore the tooth profile of the gear is caused by the shape error of the machining tool and the run-out of the machining tool and workpiece. There is a problem that the accuracy of.

本発明は、このような事情に鑑みてなされたものであり、加工用工具および工作物を高速で同期回転させて切削加工により高精度な歯車を加工することができる歯車加工装置を提供することを目的とする。   This invention is made in view of such a situation, and provides the gear processing apparatus which can process a highly accurate gear by cutting by rotating a working tool and a workpiece synchronously at high speed. With the goal.

(請求項1)本発明の歯車加工装置は、工作物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記工作物と同期回転させながら前記工作物の回転軸線方向に送り操作して歯車を加工する歯車加工装置であって、前記加工用工具の回転時の回転軸線と直角な方向の変位量を検出する工具用変位センサと、前記工作物の回転時の回転軸線と直角な方向の変位量を検出する工作物用変位センサと、前記工具用変位センサからの検出信号に基づいて前記加工用工具の回転時の振れ量を求める工具振れ量演算手段と、前記工作物用変位センサからの検出信号に基づいて前記工作物の回転時の振れ量を求める工作物振れ量演算手段と、前記加工用工具の回転位相角を求める工具位相角演算手段と、前記工作物の回転位相角を求める工作物位相角演算手段と、前記加工用工具の回転位相角と回転時の振れ量との関係を求める工具振れ演算手段と、前記工作物の回転位相角と回転時の振れ量との関係を求める工作物振れ演算手段と、前記加工用工具の回転位相角と振れ量との関係および前記工作物の回転位相角と振れ量との関係に基づいて、前記工作物の加工面に転写される振れ量を求め、転写振れ量が所定の閾値以下であるか否かを判断する転写振れ量演算手段と、前記転写振れ量が前記閾値以下であるとき、前記工作物の加工を行う加工制御手段と、を備える。   (Claim 1) A gear machining apparatus according to the present invention uses a machining tool having a rotation axis inclined with respect to the rotation axis of the workpiece, and rotates the workpiece while rotating the machining tool synchronously with the workpiece. A gear machining apparatus for machining a gear by feeding operation in an axial direction, a tool displacement sensor for detecting a displacement amount in a direction perpendicular to a rotation axis when the machining tool is rotated, and when the workpiece is rotated A workpiece displacement sensor for detecting a displacement amount in a direction perpendicular to the rotation axis of the tool, and a tool deflection amount calculating means for obtaining a deflection amount during rotation of the machining tool based on a detection signal from the tool displacement sensor; A workpiece deflection amount calculating means for obtaining a deflection amount during rotation of the workpiece based on a detection signal from the workpiece displacement sensor, a tool phase angle calculating means for obtaining a rotation phase angle of the machining tool, Rotation phase of the workpiece A workpiece phase angle calculation means for obtaining a relationship, a tool shake calculation means for obtaining a relationship between a rotation phase angle of the machining tool and a deflection amount during rotation, and a rotation phase angle of the workpiece and a deflection amount during rotation. Based on the relationship between the workpiece deflection calculation means for obtaining the relationship, the rotational phase angle and the deflection amount of the machining tool, and the relationship between the rotational phase angle and the deflection amount of the workpiece, transfer to the machining surface of the workpiece A transfer shake amount calculating means for obtaining a shake amount to be performed and determining whether or not the transfer shake amount is equal to or less than a predetermined threshold; and processing for processing the workpiece when the transfer shake amount is equal to or less than the threshold. Control means.

(請求項2)また、前記歯車加工装置は、前記転写振れ量が前記閾値より大きいとき、前記工作物の位相割出しを行って前記転写振れ量を低減させる補正を行う工作物位相割出手段、を備えるとよい。
(請求項3)また、前記歯車加工装置は、前記補正した転写振れ量が前記閾値より大きいとき、前記工作物の前記加工用工具による加工を中止する加工中止手段、を備えるとよい。
(Claim 2) Further, the gear machining apparatus, when the transfer deflection amount is larger than the threshold value, performs phase correction of the workpiece to correct the phase deviation of the workpiece to reduce the transfer deflection amount. It is good to provide.
(Claim 3) The gear processing device may further include a processing stop unit that stops the processing of the workpiece by the processing tool when the corrected transfer deflection amount is larger than the threshold value.

(請求項4)また、前記歯車加工装置は、前記加工用工具を加振する工具用加振装置と、前記工作物を加振する工作物用加振装置と、前記加工用工具および前記工作物の少なくとも一方に回転時の振れ量の変化が見られない場合、前記工具用加振装置および前記工作物用加振装置の少なくとも一方を駆動する加振手段と、を備えるとよい。
(請求項5)また、前記加工用工具の工具刃数は、加工対象の歯車の歯数の整数分の一又は整数倍であるとよい。
(Claim 4) Further, the gear machining device includes a tool vibration device for vibrating the machining tool, a workpiece vibration device for vibrating the workpiece, the machining tool, and the work. When at least one of the workpieces does not show a change in the amount of deflection during rotation, it is preferable to include a vibration means that drives at least one of the tool vibration device and the workpiece vibration device.
(Claim 5) Further, the number of tool blades of the machining tool may be an integer or an integral multiple of the number of teeth of the gear to be machined.

(請求項1)本発明によると、加工用工具の回転位相角に対する振れ量および工作物の回転位相角に対する振れ量を求めているので、これらの振れ量から工作物の加工面に転写される振れ量を求めることができる。よって、転写振れ量が所定の閾値以下のときはそのまま加工用工具および工作物を高速で同期回転させて切削加工を開始することができるので、高精度な歯車の加工効率を向上させることができる。   (Claim 1) According to the present invention, since the amount of deflection with respect to the rotational phase angle of the machining tool and the amount of deflection with respect to the rotational phase angle of the workpiece are obtained, the amount of deflection is transferred to the machining surface of the workpiece. The amount of shake can be obtained. Therefore, when the transfer deflection amount is equal to or less than the predetermined threshold value, the machining tool and the workpiece can be directly rotated at high speed to start cutting, so that the machining efficiency of the highly accurate gear can be improved. .

(請求項2)転写振れ量が所定の閾値より大きいときは、転写振れ量を補正するようにしているので、高精度な歯車の加工効率をさらに向上させることができる。
(請求項3)補正した転写振れ量が所定の閾値より大きいときは、加工中止するようにしているので、歯車の加工不良率を低減することができる。
(Claim 2) Since the transfer shake amount is corrected when the transfer shake amount is larger than a predetermined threshold value, the processing efficiency of the highly accurate gear can be further improved.
(Claim 3) When the corrected transfer shake amount is larger than a predetermined threshold value, the processing is stopped, so that the processing defect rate of the gear can be reduced.

(請求項4)加工用工具および工作物の少なくとも一方に回転時の振れ量の変化が見られない場合、工作物の回転時の振れ量の変化を回転位相角方向にずらしても、工作物の加工面に転写される振れ量を補正することができない。しかし、加振手段が、工具用加振装置および工作物用加振装置の少なくとも一方を駆動し、加工用工具および工作物の少なくとも一方を加振することにより、回転時の振れ量の変化を生じさせることができるので、この状態で工作物の回転時の振れ量の変化を回転位相角方向にずらすことにより、工作物の加工面に転写される振れ量を補正することができる。   (Claim 4) When at least one of the machining tool and the workpiece does not show a change in the amount of deflection during rotation, the workpiece can be shifted even if the change in the amount of deflection during rotation of the workpiece is shifted in the rotational phase angle direction. The shake amount transferred to the processed surface cannot be corrected. However, the vibration means drives at least one of the tool vibration device and the workpiece vibration device, and vibrates at least one of the machining tool and the workpiece, thereby changing the amount of vibration during rotation. In this state, the amount of shake transferred to the machining surface of the workpiece can be corrected by shifting the change in the amount of shake during rotation of the workpiece in the rotational phase angle direction.

(請求項5)加工用工具の工具刃数が、加工対象の歯車の歯数の整数倍であれば、加工される歯車の一つの歯は、同一の複数の工具刃により切削されることになる。よって、特定の複数の工具刃の形状誤差を一つの歯に転写することになるので、当該歯の歯すじ誤差を良好にすることができる。また、加工用工具の工具刃数が、加工対象の歯車の歯数の整数分の一であれば、加工される歯車の一つの歯は、同一の一つの工具刃により切削されることになる。よって、同一の一つの工具刃の形状誤差のみを一つの歯に転写することになるので、当該歯の歯すじ誤差をさらに良好にすることができる。   (Claim 5) If the number of tool blades of the machining tool is an integer multiple of the number of teeth of the gear to be machined, one tooth of the gear to be machined is cut by the same plurality of tool blades. Become. Therefore, since the shape error of the specific plurality of tool blades is transferred to one tooth, the tooth streak error of the tooth can be improved. Further, if the number of tool blades of the machining tool is an integral number of the number of teeth of the gear to be machined, one tooth of the gear to be machined is cut by the same tool blade. . Therefore, since only the shape error of the same tool blade is transferred to one tooth, the tooth streak error of the tooth can be further improved.

本発明の実施の形態に係る歯車加工装置の全体構成を示す斜視図である。1 is a perspective view showing an overall configuration of a gear machining apparatus according to an embodiment of the present invention. 図1の歯車加工装置の概略構成および制御装置を示す図である。It is a figure which shows schematic structure and the control apparatus of the gear processing apparatus of FIG. 図2の制御装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the control apparatus of FIG. 歯車の歯形形状の誤差である歯すじ誤差を説明するための図である。It is a figure for demonstrating the tooth trace error which is an error of the tooth profile shape of a gearwheel. 従来の加工による歯車の各歯に対する歯すじ誤差を示すグラフである。It is a graph which shows the tooth trace error with respect to each tooth | gear of the gear by the conventional process. 本実施形態の加工による歯車の各歯に対する歯すじ誤差を示すグラフである。It is a graph which shows the tooth trace error with respect to each tooth | gear of the gear by the process of this embodiment. 歯車の歯形形状の誤差である歯みぞ振れ誤差を説明するための図である。It is a figure for demonstrating the tooth | gear runout error which is an error of the tooth profile shape of a gearwheel. 工具ホルダを示す軸方向に平行な断面図である。It is sectional drawing parallel to the axial direction which shows a tool holder. 図7Aの工具ホルダのA−A線断面図である。It is the sectional view on the AA line of the tool holder of FIG. 7A. 図7の工具ホルダの調心前の加工による歯車の各歯に対する歯みぞ振れ誤差を示すグラフである。It is a graph which shows the tooth runout error with respect to each tooth | gear of the gearwheel by the process before alignment of the tool holder of FIG. 図7の工具ホルダの調心後の加工による歯車の各歯に対する歯みぞ振れ誤差を示すグラフである。It is a graph which shows the tooth runout error with respect to each tooth | gear of the gearwheel by the process after alignment of the tool holder of FIG. 加工用工具および工作物の回転位相角に対する回転時の振れ量の変化、並びに各振れ量を合成したときの変化を示すグラフである。It is a graph which shows the change when the deflection | deviation amount at the time of rotation with respect to the rotation phase angle of a working tool and a workpiece | work, and each deflection amount are synthesize | combined. 図9の工作物の振れ量を回転位相割出したときの変化を示すグラフである。10 is a graph showing a change when the amount of deflection of the workpiece in FIG. 9 is calculated as a rotational phase. 別形態の歯車加工装置の概略構成および制御装置を示す図である。It is a figure which shows schematic structure and the control apparatus of the gear processing apparatus of another form.

(1.歯車加工装置の機械構成)
歯車加工装置1の一例として、5軸マシニングセンタを例に挙げ、図1および図2を参照して説明する。つまり、当該歯車加工装置1は駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)および2つの回転軸(A軸、C軸)を有する装置である。
(1. Machine configuration of gear processing device)
As an example of the gear machining apparatus 1, a five-axis machining center will be described as an example and described with reference to FIGS. That is, the gear machining apparatus 1 is an apparatus having three linear axes (X, Y, Z axes) and two rotation axes (A axis, C axis) orthogonal to each other as drive axes.

図1および図2に示すように、歯車加工装置1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、チルトテーブル60と、ターンテーブル70と、工具用変位センサ80Tと、工作物用変位センサ80Wと、制御装置100等とから構成される。なお、図示省略するが、ベッド10と並んで既知の自動工具交換装置が設けられている。   As shown in FIGS. 1 and 2, the gear machining apparatus 1 includes a bed 10, a column 20, a saddle 30, a rotary spindle 40, a table 50, a tilt table 60, a turn table 70, and a tool displacement. A sensor 80T, a workpiece displacement sensor 80W, a control device 100, and the like are included. Although not shown, a known automatic tool changer is provided along with the bed 10.

ベッド10は、ほぼ矩形状からなり、床上に配置される。ただし、ベッド10の形状は矩形状に限定されるものではない。このベッド10の上面には、コラム20が摺動可能な一対のX軸ガイドレール11a,11bが、X軸方向(水平方向)に延びるように、且つ、相互に平行に形成されている。さらに、ベッド10には、一対のX軸ガイドレール11a,11bの間に、コラム20をX軸方向に駆動するための、図略のX軸ボールねじが配置され、このX軸ボールねじを回転駆動するX軸モータ11cが配置されている。   The bed 10 has a substantially rectangular shape and is disposed on the floor. However, the shape of the bed 10 is not limited to a rectangular shape. On the upper surface of the bed 10, a pair of X-axis guide rails 11 a and 11 b on which the column 20 can slide is formed in parallel to each other so as to extend in the X-axis direction (horizontal direction). Further, the bed 10 is provided with an unillustrated X-axis ball screw for driving the column 20 in the X-axis direction between the pair of X-axis guide rails 11a and 11b. The X-axis ball screw is rotated. A driving X-axis motor 11c is disposed.

コラム20の底面には、一対のX軸ガイド溝21a,21bがX軸方向に延びるように、且つ、相互に平行に形成されている。コラム20は、ベッド10に対してX軸方向に移動可能なように、一対のX軸ガイド溝21a,21bが一対のX軸ガイドレール11a,11b上にボールガイド22a,22bを介して嵌め込まれ、コラム20の底面がベッド10の上面に密接されている。   A pair of X-axis guide grooves 21a and 21b are formed on the bottom surface of the column 20 so as to extend in the X-axis direction and in parallel to each other. In the column 20, a pair of X-axis guide grooves 21a and 21b are fitted on the pair of X-axis guide rails 11a and 11b via ball guides 22a and 22b so that the column 20 can move in the X-axis direction with respect to the bed 10. The bottom surface of the column 20 is in close contact with the top surface of the bed 10.

さらに、コラム20のX軸に平行な側面(摺動面)20aには、サドル30が摺動可能な一対のY軸ガイドレール23a,23bがY軸方向(鉛直方向)に延びるように、且つ、相互に平行に形成されている。さらに、コラム20には、一対のY軸ガイドレール23a,23bの間に、サドル30をY軸方向に駆動するための、図略のY軸ボールねじが配置され、このY軸ボールねじを回転駆動するY軸モータ23cが配置されている。   Further, on a side surface (sliding surface) 20a parallel to the X axis of the column 20, a pair of Y axis guide rails 23a and 23b on which the saddle 30 can slide extends in the Y axis direction (vertical direction), and Are formed parallel to each other. Further, the column 20 is provided with a Y-axis ball screw (not shown) for driving the saddle 30 in the Y-axis direction between the pair of Y-axis guide rails 23a and 23b. The Y-axis ball screw is rotated. A Y-axis motor 23c to be driven is disposed.

コラム20の摺動面20aに対向するサドル30の側面30aには、一対のY軸ガイド溝31a,31bがY軸方向に延びるように、且つ、相互に平行に形成されている。サドル30は、コラム20に対してY軸方向に移動可能なように、一対のY軸ガイド溝31a,31bが一対のY軸ガイドレール23a,23bに嵌め込まれ、サドル30の側面30aがコラム20の摺動面20aに密接されている。   A pair of Y-axis guide grooves 31a and 31b are formed on the side surface 30a of the saddle 30 facing the sliding surface 20a of the column 20 so as to extend in the Y-axis direction and in parallel with each other. A pair of Y-axis guide grooves 31 a and 31 b are fitted into the pair of Y-axis guide rails 23 a and 23 b so that the saddle 30 can move in the Y-axis direction with respect to the column 20, and the side surface 30 a of the saddle 30 is formed by Are closely in contact with the sliding surface 20a.

回転主軸40は、サドル30内に収容された主軸モータ41により回転可能に設けられ、加工用工具42を支持している。加工用工具42は、工具ホルダ43に保持されて回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、加工用工具42は、コラム20およびサドル30の移動に伴ってベッド10に対してX軸方向およびY軸方向に移動する。なお、加工用工具42としては、本実施形態では複数の工具刃を有するホブであるが、その他として例えば、エンドミル、ドリル、タップ等がある。   The rotating spindle 40 is rotatably provided by a spindle motor 41 accommodated in the saddle 30 and supports a machining tool 42. The machining tool 42 is held by the tool holder 43 and fixed to the tip of the rotation main shaft 40, and rotates with the rotation of the rotation main shaft 40. Further, the machining tool 42 moves in the X-axis direction and the Y-axis direction with respect to the bed 10 as the column 20 and the saddle 30 move. The processing tool 42 is a hob having a plurality of tool blades in this embodiment, but other examples include an end mill, a drill, and a tap.

さらに、ベッド10の上面には、テーブル50が摺動可能な一対のZ軸ガイドレール12a,12bがX軸方向と直交するZ軸方向(水平方向)に延びるように、且つ、相互に平行に形成されている。さらに、ベッド10には、一対のZ軸ガイドレール12a,12bの間に、テーブル50をZ軸方向に駆動するための、図略のZ軸ボールねじが配置され、このZ軸ボールねじを回転駆動するZ軸モータ12cが配置されている。   Further, on the upper surface of the bed 10, a pair of Z-axis guide rails 12 a and 12 b on which the table 50 can slide extend in the Z-axis direction (horizontal direction) orthogonal to the X-axis direction and are parallel to each other. Is formed. Further, the bed 10 is provided with an unillustrated Z-axis ball screw for driving the table 50 in the Z-axis direction between the pair of Z-axis guide rails 12a and 12b. The Z-axis ball screw is rotated. A Z-axis motor 12c to be driven is disposed.

テーブル50は、ベッド10に対してZ軸方向に移動可能なように、一対のZ軸ガイドレール12a,12b上に設けられている。テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部63が設けられている。そして、チルトテーブル支持部63には、チルトテーブル60が水平方向のA軸回りで回転(揺動)可能に設けられている。チルトテーブル60は、テーブル50内に収容されたA軸モータ61により回転(揺動)される。   The table 50 is provided on the pair of Z-axis guide rails 12 a and 12 b so as to be movable in the Z-axis direction with respect to the bed 10. A tilt table support portion 63 that supports the tilt table 60 is provided on the upper surface of the table 50. The tilt table support portion 63 is provided with a tilt table 60 that can rotate (swing) about the A axis in the horizontal direction. The tilt table 60 is rotated (swinged) by an A-axis motor 61 housed in the table 50.

チルトテーブル60には、ターンテーブル70がA軸に直角なC軸回りで回転可能に設けられている。ターンテーブル70には、工作物Wがチャッキングされる。ターンテーブル70は、工作物WとともにC軸モータ62により回転される。   The tilt table 60 is provided with a turntable 70 so as to be rotatable around a C axis perpendicular to the A axis. A workpiece W is chucked on the turntable 70. The turntable 70 is rotated by the C-axis motor 62 together with the workpiece W.

工具用変位センサ80Tは、加工用工具42の回転時の回転軸線と直角な方向の変位量を検出するセンサであり、サドル30の前面に回転主軸40の主軸方向に突設されたアーム81Tの先端に設けられている。工具用変位センサ80Tとしては、例えば光や磁気を用いたセンサがあり、検出信号を制御装置100に出力するようになっている。   The tool displacement sensor 80T is a sensor that detects the amount of displacement in a direction perpendicular to the rotation axis when the machining tool 42 is rotated. The tool displacement sensor 80T includes an arm 81T projecting from the front surface of the saddle 30 in the main shaft direction of the rotary main shaft 40. It is provided at the tip. As the tool displacement sensor 80T, for example, there is a sensor using light or magnetism, and a detection signal is output to the control device 100.

工作物用変位センサ80Wは、工作物Wの回転時の回転軸線と直角な方向の変位量を検出するセンサであり、チルトテーブル60の上面にC軸方向に突設されたアーム82Tの先端に設けられている。工作物用変位センサ80Wとしては、例えば光や磁気を用いたセンサがあり、検出信号を制御装置100に出力するようになっている。   The workpiece displacement sensor 80 </ b> W is a sensor that detects a displacement amount in a direction perpendicular to the rotation axis of the workpiece W during rotation. Is provided. As the workpiece displacement sensor 80 </ b> W, for example, there is a sensor using light or magnetism, and a detection signal is output to the control device 100.

制御装置100は、主軸モータ41を制御して、工具42を回転させ、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、A軸モータ61およびC軸モータ62を制御して、工作物Wと加工用工具42とをX軸方向、Z軸方向、Y軸方向、A軸回りおよびC軸回りに相対移動することにより、工作物Wの切削加工を行う。   The control device 100 controls the spindle motor 41 to rotate the tool 42, and controls the X-axis motor 11c, the Z-axis motor 12c, the Y-axis motor 23c, the A-axis motor 61, and the C-axis motor 62, and the workpiece. The workpiece W is cut by moving the W and the machining tool 42 relative to each other in the X-axis direction, the Z-axis direction, the Y-axis direction, the A-axis and the C-axis.

(2.制御装置の構成)
図2に示すように、制御装置100は、X軸駆動制御部101と、Y軸駆動制御部102と、Z軸駆動制御部103と、A軸駆動制御部104と、C軸駆動制御部105と、主軸駆動制御部106と、工具振れ量演算部107と、工作物振れ量演算部108と、工具位相角演算部109と、工作物位相角演算部110と、工具振れ演算部111と、工作物振れ演算部112と、転写振れ量演算部113と、工作物位相割出部114と、加工中止部115と、加工制御部116と、記憶部117とを備えて構成される。ここで、各部101〜117は、それぞれ個別のハードウエアによる構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。
(2. Configuration of control device)
As shown in FIG. 2, the control device 100 includes an X-axis drive control unit 101, a Y-axis drive control unit 102, a Z-axis drive control unit 103, an A-axis drive control unit 104, and a C-axis drive control unit 105. A spindle drive control unit 106, a tool runout amount computing unit 107, a workpiece runout amount computing unit 108, a tool phase angle computing unit 109, a workpiece phase angle computing unit 110, a tool runout computing unit 111, The workpiece shake calculation unit 112, the transfer shake amount calculation unit 113, the workpiece phase indexing unit 114, the machining stop unit 115, the machining control unit 116, and the storage unit 117 are configured. Here, each of the units 101 to 117 can be configured by individual hardware, or can be configured by software.

X軸駆動制御部101は、X軸モータ11cと接続され、コラム20をサドル30と共にX軸方向に駆動制御する。
Y軸駆動制御部102は、Y軸モータ23cと接続され、サドル30を回転主軸40と共にY軸方向に駆動制御する。
Z軸駆動制御部103は、Z軸モータ12cと接続され、テーブル50をZ軸方向に駆動制御する。
The X-axis drive control unit 101 is connected to the X-axis motor 11c, and drives and controls the column 20 together with the saddle 30 in the X-axis direction.
The Y-axis drive control unit 102 is connected to the Y-axis motor 23c, and drives and controls the saddle 30 together with the rotary main shaft 40 in the Y-axis direction.
The Z-axis drive control unit 103 is connected to the Z-axis motor 12c and drives and controls the table 50 in the Z-axis direction.

A軸駆動制御部104は、A軸モータ61と接続され、チルトテーブル60をA軸回りで回転(揺動)させる。
C軸駆動制御部105は、C軸モータ62と接続され、ターンテーブル70をC軸回りで回転させる。
主軸駆動制御部106は、主軸モータ41と接続され、回転主軸40を回転させる。
The A-axis drive control unit 104 is connected to the A-axis motor 61 and rotates (swings) the tilt table 60 about the A axis.
The C-axis drive control unit 105 is connected to the C-axis motor 62 and rotates the turntable 70 around the C-axis.
The spindle drive control unit 106 is connected to the spindle motor 41 and rotates the rotary spindle 40.

工具振れ量演算部107は、工具用変位センサ80Wからの検出信号に基づいて、加工用工具42の回転時の回転軸線に直角な方向の振れ量を求める。
工作物振れ量演算部108は、工作物用変位センサ80Tからの検出信号に基づいて、工作物Wの回転時の回転軸線に直角な方向の振れ量を求める。
工具位相角演算部109は、主軸モータ41のエンコーダからの検出信号に基づいて、加工用工具42の回転位相角を求める。
工作物位相角演算部110は、C軸モータ62のエンコーダからの検出信号に基づいて、工作物Wの回転位相角を求める。
Based on the detection signal from the tool displacement sensor 80W, the tool runout amount calculation unit 107 calculates a runout amount in a direction perpendicular to the rotation axis when the machining tool 42 is rotated.
The workpiece shake amount calculation unit 108 obtains a shake amount in a direction perpendicular to the rotation axis when the workpiece W is rotated, based on a detection signal from the workpiece displacement sensor 80T.
The tool phase angle calculation unit 109 obtains the rotational phase angle of the machining tool 42 based on the detection signal from the encoder of the spindle motor 41.
The workpiece phase angle calculation unit 110 obtains the rotational phase angle of the workpiece W based on the detection signal from the encoder of the C-axis motor 62.

工具振れ演算部111は、工具位相角演算部109からの加工用工具42の回転位相角と工具振れ量演算部107からの加工用工具42の回転時の振れ量との関係を求めて記憶部117に記憶する。
工作物振れ演算部112は、工作物位相角演算部110からの工作物Wの回転位相角と工作物振れ量演算部108からの工作物Wの回転時の振れ量との関係を求めて記憶部117に記憶する。
The tool run-out calculation unit 111 obtains a relationship between the rotational phase angle of the machining tool 42 from the tool phase angle calculation unit 109 and the run-out amount during rotation of the machining tool 42 from the tool run-out calculation unit 107 to obtain a storage unit. 117 is stored.
The workpiece deflection calculation unit 112 obtains and stores the relationship between the rotational phase angle of the workpiece W from the workpiece phase angle calculation unit 110 and the deflection amount during rotation of the workpiece W from the workpiece deflection amount calculation unit 108. Store in the unit 117.

転写振れ量演算部113は、記憶部117から読み出した加工用工具42の回転位相角と振れ量との関係および工作物Wの回転位相角と振れ量との関係に基づいて、工作物Wの加工面に転写される振れ量を求め、転写振れ量が所定の閾値以下であるか否かを判断する。
工作物位相割出部114は、転写振れ量演算部113で求めた転写振れ量が閾値より大きいとき、工作物の位相割出しを行って転写振れ量を低減させる補正を行う。
Based on the relationship between the rotational phase angle and the deflection amount of the machining tool 42 read from the storage unit 117 and the relationship between the rotational phase angle and the deflection amount of the workpiece W, the transfer deflection amount calculation unit 113 reads the workpiece W from the storage unit 117. A shake amount transferred to the processing surface is obtained, and it is determined whether or not the transfer shake amount is equal to or less than a predetermined threshold value.
The workpiece phase indexing unit 114 performs phase correction of the workpiece to reduce the transfer shake amount when the transfer shake amount obtained by the transfer shake amount calculation unit 113 is larger than the threshold value.

加工中止部115は、工作物位相割出部114で補正した転写振れ量が閾値より大きいとき、工作物Wの加工用工具42による加工を中止する。
加工制御部116は、工作物Wと加工用工具42とを高速で同期回転させ、加工用工具42を工作物Wの回転軸線方向に送って切削することにより歯を創成するために、X軸駆動制御部101、Y軸駆動制御部102、Z軸駆動制御部103、A軸駆動制御部104、C軸駆動制御部105および主軸制御部106を制御する。
The machining stop unit 115 stops the machining of the workpiece W by the machining tool 42 when the transfer shake amount corrected by the workpiece phase indexing unit 114 is larger than the threshold value.
The machining control unit 116 rotates the workpiece W and the machining tool 42 synchronously at high speed, sends the machining tool 42 in the direction of the rotation axis of the workpiece W, and creates a tooth by creating an X axis. The drive control unit 101, the Y-axis drive control unit 102, the Z-axis drive control unit 103, the A-axis drive control unit 104, the C-axis drive control unit 105, and the spindle control unit 106 are controlled.

(3.歯車の歯形形状の精度)
上述の歯車加工装置1では、加工用工具42(例えばホブ)と工作物Wとを高速で同期回転させ、加工用工具42を工作物Wの回転軸線方向に送って切削することにより歯を創成する。このように、加工用工具42と工作物Wとを同期回転させるため、創成される歯車の一つの歯をホブの異なる複数の工具刃で切削すると、各工具刃の異なる形状誤差が一つの歯に転写されてしまうことになる。この結果、歯形形状の精度、すなわち図4に示すように、歯車Gの歯gの周方向d1の側面sにおける軸線方向d2の表面粗さの平均値(歯すじ誤差)を悪化させる要因となる。
(3. Accuracy of gear tooth profile)
In the gear machining apparatus 1 described above, the machining tool 42 (for example, hob) and the workpiece W are synchronously rotated at a high speed, and the machining tool 42 is sent in the direction of the rotation axis of the workpiece W to cut the teeth. To do. Thus, in order to rotate the machining tool 42 and the workpiece W synchronously, if one tooth of the gear to be created is cut with a plurality of tool blades having different hobbings, different shape errors of each tool blade result in one tooth. It will be transferred to. As a result, the accuracy of the tooth profile, that is, as shown in FIG. 4, is a factor that deteriorates the average value (tooth trace error) of the surface roughness in the axial direction d2 on the side surface s in the circumferential direction d1 of the tooth g of the gear G. .

そこで、加工用工具42における同一の一つの工具刃もしくは同一の複数の工具刃の形状誤差のみを、創成される歯車の一つの歯に転写して歯すじ誤差を良好にするため、加工用工具42の工具刃数は、創成される歯車の歯数の整数分の一又は整数倍となるようにする。
例えば、加工用工具42の工具刃数を創成される歯車の歯数より一つ多くした場合、図5Aに示すように、歯車の各歯g1〜gn(nは歯数)に対する歯すじ誤差eは、複雑なジグザグ状となって悪化する。これに対し、加工用工具42の工具刃数と創成される歯車の歯数の比を一対一とした場合、図5Bに示すように、歯車の各歯g1〜gn(nは歯数)に対する歯すじ誤差eは、同一の一つの工具刃の形状誤差のみが一つの歯に転写されるので一定(ee)になって良好となる。
Therefore, only the shape error of the same tool blade or the plurality of the same tool blades in the processing tool 42 is transferred to one tooth of the gear to be created, so that the tooth streak error is improved. The number of tool teeth of 42 is set to be an integer or an integral multiple of the number of gear teeth to be created.
For example, when the number of tool blades of the machining tool 42 is increased by one from the number of teeth of the gear to be created, as shown in FIG. 5A, the tooth line error e for each tooth g1 to gn (n is the number of teeth) of the gear Deteriorates in a complicated zigzag shape. On the other hand, when the ratio of the number of tool blades of the machining tool 42 and the number of teeth of the gear to be created is 1: 1, as shown in FIG. 5B, the gear teeth g1 to gn (n is the number of teeth). The tooth trace error e becomes constant (ee) and becomes good because only the shape error of the same tool blade is transferred to one tooth.

このように、加工用工具42の工具刃数を創成される歯車の歯数の整数分の一又は整数倍とすることにより、同一の一つの工具刃もしくは同一の複数の工具刃の形状誤差のみが、創成される歯車の一つの歯に転写されるので図5Bに示す状態に近くなり、歯すじ誤差を良好なものとすることができる。しかし、加工用工具42と工作物Wとの同期回転が高速であるため、加工用工具42および工作物Wに振れが生じる場合がある。また、加工用工具42および工具ホルダ43の取り付けや工具ホルダ43および回転主軸40の取り付けに誤差があると、加工用工具42に振れが生じることになる。この結果、歯形形状の精度、すなわち図6に示すように、歯車Gの歯gの周方向d1の側面sにおける任意の点の加工位置Paと設計位置Pbとの誤差(歯みぞ振れ誤差f)を悪化させる要因となる。   In this way, only the shape error of the same tool blade or the same plurality of tool blades is obtained by setting the number of tool blades of the machining tool 42 to be an integer or an integral multiple of the number of teeth of the gear to be created. Is transferred to one tooth of the gear to be created, and thus the state shown in FIG. 5B is approximated, and the tooth trace error can be improved. However, since the synchronous rotation of the machining tool 42 and the workpiece W is high speed, the machining tool 42 and the workpiece W may be shaken. Further, if there is an error in the attachment of the machining tool 42 and the tool holder 43 or the attachment of the tool holder 43 and the rotary spindle 40, the machining tool 42 will be shaken. As a result, the accuracy of the tooth profile, that is, as shown in FIG. 6, the error between the machining position Pa and the design position Pb at any point on the side surface s in the circumferential direction d1 of the tooth g of the gear G (tooth deviation error f). It becomes a factor to worsen.

そこで、工具用変位センサ80Tおよび工作物用変位センサ80Wで加工用工具42および工作物Wに振れ量を検出し、検出した加工用工具42および工作物Wに振れ量に基づいて、工作物Wの加工面に転写される振れ量を低減して歯みぞ振れ誤差を良好なものとする。なお、工作物Wの加工面に転写される振れ量の低減は、制御装置100により制御可能であり、詳述は後述する。   Therefore, the tool displacement sensor 80T and the workpiece displacement sensor 80W detect the amount of deflection of the machining tool 42 and the workpiece W, and the workpiece W is detected based on the detected amount of deflection of the machining tool 42 and workpiece W. The amount of runout transferred to the processed surface is reduced, and the tooth runout error is improved. Note that the reduction in the amount of vibration transferred to the processing surface of the workpiece W can be controlled by the control device 100, which will be described in detail later.

また、この制御装置100による制御では工作物Wの加工面に転写される振れ量を低減することが困難である場合は、図7A,Bに示すように、加工用工具42の回転軸線Lの調心が可能な工具ホルダ43を使用するようにしてもよい。この工具ホルダ43には、加工用工具42の後部が挿入保持されるテーパ穴431の挿入口近傍であって、テーパ穴431の円周方向に120°間隔で、テーパ穴431の軸線(回転軸線L)と直角方向に貫通する三つのネジ穴432が設けられている。そして、三つのネジ穴432には、三つの調整ネジ433が螺合されている。これらの調整ネジ433を回転調整することにより、挿入保持されている加工用工具42の回転軸線Lを傾斜させて回転軸線L1とし、もしくは平行移動させて回転軸線L2とすることにより加工用工具42の振れ量を低減することができる。   Further, when it is difficult to reduce the amount of deflection transferred to the machining surface of the workpiece W by the control by the control device 100, as shown in FIGS. 7A and 7B, the rotation axis L of the machining tool 42 is adjusted. A tool holder 43 that can be aligned may be used. The tool holder 43 has an axis (rotational axis) of the taper hole 431 in the vicinity of the insertion hole of the taper hole 431 into which the rear portion of the machining tool 42 is inserted and held, and at 120 ° intervals in the circumferential direction of the taper hole 431. Three screw holes 432 penetrating in a direction perpendicular to L) are provided. Three adjustment screws 433 are screwed into the three screw holes 432. By rotating and adjusting these adjusting screws 433, the rotation axis L of the machining tool 42 inserted and held is tilted to the rotation axis L1, or translated to the rotation axis L2 to obtain the machining tool 42. Can be reduced.

例えば、加工用工具42の回転軸線Lの調心前には、図8Aに示すように、歯車の各歯g1〜gn(nは歯数)に対する歯みぞ振れ誤差fは、略サインカーブとなって悪化する。これに対し、加工用工具42の回転軸線Lの調心後には、図8Bに示すように、歯車の各歯g1〜gn(nは歯数)に対する歯みぞ振れ誤差fは、加工用工具42の振れ量が低減されるので一定(ff)になって良好となる。   For example, before the rotation axis L of the machining tool 42 is aligned, as shown in FIG. 8A, the tooth runout error f with respect to each tooth g1 to gn (n is the number of teeth) of the gear becomes a substantially sine curve. Get worse. On the other hand, after alignment of the rotation axis L of the machining tool 42, as shown in FIG. 8B, the tooth runout error f with respect to each tooth g1 to gn (n is the number of teeth) of the gear is the machining tool 42. Since the amount of vibration is reduced, it becomes constant (ff) and becomes good.

(4.制御装置による工作物の加工面に転写される振れ量の低減制御動作)
次に、加工用工具42であるホブにより工作物Wに対し歯車加工を行う場合の制御装置100による工作物Wの加工面に転写される振れ量の低減制御動作について、図3のフローチャートを参照して説明する。
(4. Control operation to reduce the amount of deflection transferred to the workpiece surface by the control device)
Next, refer to the flowchart of FIG. 3 for the control operation for reducing the amount of deflection transferred to the machining surface of the workpiece W by the control device 100 when gear processing is performed on the workpiece W by the hob that is the machining tool 42. To explain.

図3に示すように、自動工具交換装置で工具ホルダ43に保持された加工用工具42を回転主軸40に取り付けるとともに、作業者が工作物Wをターンテーブル70に取り付けたら(ステップS1)、主軸モータ41およびC軸モータ62を駆動して回転主軸40およびターンテーブル70を高速回転させる(ステップS2)。このとき、回転主軸40(加工用工具42)の回転位相角0°は、ターンテーブル70(工作物W)の回転位相角0°に位相合わせされる。   As shown in FIG. 3, the machining tool 42 held by the tool holder 43 by the automatic tool changer is attached to the rotary spindle 40, and when the operator attaches the workpiece W to the turntable 70 (step S1), the spindle The motor 41 and the C-axis motor 62 are driven to rotate the rotary main shaft 40 and the turntable 70 at high speed (step S2). At this time, the rotational phase angle 0 ° of the rotary spindle 40 (machining tool 42) is aligned with the rotational phase angle 0 ° of the turntable 70 (workpiece W).

そして、主軸モータ41のエンコーダで回転主軸40(加工用工具42)の回転位相角の検出を開始するとともに、工具用変位センサ80Tで加工用工具42の回転時の回転軸線と直角な方向の変位量の検出を開始する。また、C軸モータ62のエンコーダでターンテーブル70(工作物W)の回転位相角の検出を開始するとともに、工作物用変位センサ80Wで工作物Wの回転時の回転軸線と直角な方向の変位量の検出を開始する。(ステップS3)。   Then, the encoder of the spindle motor 41 starts detecting the rotational phase angle of the rotary spindle 40 (machining tool 42), and the tool displacement sensor 80T displaces in a direction perpendicular to the rotational axis when the machining tool 42 is rotated. Start quantity detection. The encoder of the C-axis motor 62 starts detecting the rotational phase angle of the turntable 70 (workpiece W), and the displacement in the direction perpendicular to the rotational axis when the workpiece W is rotated is detected by the workpiece displacement sensor 80W. Start quantity detection. (Step S3).

具体的には、工具位相角演算部109は、主軸モータ41のエンコーダからの検出信号により加工用工具42の回転位相角を求め、工具振れ量演算部107は、工具位相角演算部109で求めた加工用工具42の回転位相角に合わせて工具用変位センサ80Tからの検出信号により加工用工具42の振れ量を求める。工作物位相角演算部110は、C軸モータ62のエンコーダからの検出信号により工作物Wの回転位相角を求め、工作物振れ量演算部108は、工作物位相角演算部110で求めた工作物Wの回転位相角に合わせて工作物用変位センサ80Wからの検出信号により工作物Wの振れ量を求める。   Specifically, the tool phase angle calculation unit 109 obtains the rotational phase angle of the machining tool 42 from the detection signal from the encoder of the spindle motor 41, and the tool runout amount calculation unit 107 obtains the tool phase angle calculation unit 109. The amount of deflection of the machining tool 42 is obtained from the detection signal from the tool displacement sensor 80T in accordance with the rotational phase angle of the machining tool 42. The workpiece phase angle calculation unit 110 obtains the rotational phase angle of the workpiece W from the detection signal from the encoder of the C-axis motor 62, and the workpiece deflection amount calculation unit 108 obtains the workpiece phase angle calculation unit 110. The amount of deflection of the workpiece W is obtained from a detection signal from the workpiece displacement sensor 80W in accordance with the rotational phase angle of the workpiece W.

次に、図3に示すように、検出した加工用工具42の変位量と加工用工具42の回転位相角との関係を求めるとともに、検出した工作物Wの変位量と工作物Wの回転位相角との関係を求める(ステップS4)。
具体的には、工具振れ演算部111は、工具位相角演算部109および工具振れ量演算部107で求めた加工用工具42の回転位相角に対する回転時の振れ量の変化を求めて記憶部117に記憶し、工作物振れ演算部112は、工作物位相角演算部110および工作物振れ量演算部108で求めた工作物Wの回転位相角に対する回転時の振れ量の変化を求めて記憶部117に記憶する。
Next, as shown in FIG. 3, the relationship between the detected displacement amount of the machining tool 42 and the rotational phase angle of the machining tool 42 is obtained, and the detected displacement amount of the workpiece W and the rotational phase of the workpiece W are determined. The relationship with the corner is obtained (step S4).
Specifically, the tool runout calculation unit 111 obtains a change in runout amount during rotation with respect to the rotation phase angle of the machining tool 42 obtained by the tool phase angle computation unit 109 and the tool runout amount computation unit 107 and stores the storage unit 117. The workpiece shake calculation unit 112 obtains a change in the shake amount during rotation with respect to the rotation phase angle of the workpiece W obtained by the workpiece phase angle calculation unit 110 and the workpiece shake amount calculation unit 108, and stores the change amount in the storage unit. 117 is stored.

例えば、図9の実線で示すように、加工用工具42の回転時の振れ量dは、加工用工具42および工作物Wの回転位相角(以下、単に「回転位相角」)θが0°から360°の間では、±dtの間を1周期のサイン波で変化している。すなわち、回転位相角θが0°および360°のとき、加工用工具42の回転時の振れ量dは最大の+dtとなり、回転位相角θが180°のとき、加工用工具42の回転時の振れ量dは最小の−dtとなるように変化している。   For example, as shown by the solid line in FIG. 9, the deflection d during rotation of the machining tool 42 has a rotation phase angle (hereinafter simply referred to as “rotation phase angle”) θ of the machining tool 42 and the workpiece W of 0 °. Between 360 ° and 360 °, the sine wave of one cycle changes between ± dt. That is, when the rotation phase angle θ is 0 ° and 360 °, the deflection d during rotation of the machining tool 42 is the maximum + dt, and when the rotation phase angle θ is 180 °, The shake amount d changes so as to be the minimum −dt.

また、図9の破線で示すように、工作物Wの回転時の振れ量dは、回転位相角θが0°から360°の間では、±dwの間を3周期のサイン波で変化している。すなわち、回転位相角θが0°、120°、240°および360°のとき、工作物Wの回転時の振れ量dは最大の+dwとなり、回転位相角θが60°、180°および300°のとき、工作物Wの回転時の振れ量dは最小の−dwとなるように変化している。   Further, as shown by the broken line in FIG. 9, the shake amount d when the workpiece W rotates is changed by a sine wave of three periods between ± dw when the rotation phase angle θ is between 0 ° and 360 °. ing. That is, when the rotational phase angle θ is 0 °, 120 °, 240 °, and 360 °, the deflection d during rotation of the workpiece W is the maximum + dw, and the rotational phase angle θ is 60 °, 180 °, and 300 °. At this time, the shake amount d during rotation of the workpiece W changes so as to be the minimum -dw.

次に、図3に示すように、求めた加工用工具42の回転位相角に対する回転時の振れ量の変化および工作物Wの回転位相角に対する回転時の振れ量の変化に基づいて、工作物Wの加工面に転写される振れ量を求める(ステップS5)。
具体的には、転写振れ量演算部113は、記憶部117から読み出した加工用工具42の回転位相角に対する回転時の振れ量の変化および工作物Wの回転位相角に対する回転時の振れ量の変化を重ね合わせ、加工用工具42の回転位相角に対する加工用工具42および工作物Wの振れ量を合成し、合成振れ量の最大値と最小値との差を工作物Wの加工面に転写される振れ量として求めて記憶部117に記憶する。
Next, as shown in FIG. 3, based on the change in the amount of deflection during rotation with respect to the rotation phase angle of the machining tool 42 and the change in the amount of deflection during rotation with respect to the rotation phase angle of the workpiece W, The amount of deflection transferred to the W processed surface is obtained (step S5).
Specifically, the transfer shake amount calculation unit 113 changes the change in the shake amount during rotation with respect to the rotation phase angle of the machining tool 42 read from the storage unit 117 and the amount of shake during rotation with respect to the rotation phase angle of the workpiece W. Overlapping the changes, the amount of deflection of the machining tool 42 and the workpiece W with respect to the rotational phase angle of the machining tool 42 is synthesized, and the difference between the maximum value and the minimum value of the combined deflection amount is transferred to the machining surface of the workpiece W Is calculated and stored in the storage unit 117.

上述の例であると、図9の一点鎖線で示すように、加工用工具42および工作物Wの合成振れ量dは、回転位相角θが0°から360°の間では、(dt+dw)〜(−dt−dw)の間を3周期の波で変化している。すなわち、加工用工具42の回転位相角θが0°および360°のとき、加工用工具42および工作物Wの合成振れ量dは最大の(dt+dw)となり、加工用工具42の回転位相角θが180°のとき、加工用工具42および工作物Wの合成振れ量dは最小の(−dt−dw)となるように変化している。よって、合成振れ量dの最大値(dt+dw)と最小値(−dt−dw)との差(2dt+2dw)を工作物Wの加工面に転写される振れ量として求める。   In the above example, as shown by the one-dot chain line in FIG. 9, the combined deflection amount d of the machining tool 42 and the workpiece W is (dt + dw) ˜when the rotational phase angle θ is between 0 ° and 360 °. Between (-dt-dw), it changes with a wave of three periods. That is, when the rotational phase angle θ of the machining tool 42 is 0 ° and 360 °, the combined deflection d of the machining tool 42 and the workpiece W is the maximum (dt + dw), and the rotational phase angle θ of the machining tool 42 is Is 180 °, the combined deflection d of the machining tool 42 and the workpiece W changes so as to be the minimum (−dt−dw). Therefore, the difference (2dt + 2dw) between the maximum value (dt + dw) and the minimum value (−dt−dw) of the combined shake amount d is obtained as the shake amount transferred to the machining surface of the workpiece W.

次に、図3に示すように、求めた工作物Wの加工面に転写される振れ量が、予め設定されている閾値より大きいか否かを判断する(ステップS6)。工作物Wの加工面に転写される振れ量が、予め設定されている閾値以下のときは(ステップS6:No)、加工用工具42で工作物Wに対し歯車加工を行い(ステップS7)、全ての処理を終了する。
具体的には、転写振れ量演算部113は、記憶部117に記憶されている工作物Wの加工面に転写される振れ量およびその閾値を読み出し、読み出した工作物Wの加工面に転写される振れ量と閾値との大きさを比較する。そして、工作物Wの加工面に転写される振れ量が閾値以下のときは、加工制御部116は、工作物Wと加工用工具42とを高速で同期回転させ、加工用工具42を工作物Wの回転軸線方向に送って切削することにより歯を創成する。
Next, as shown in FIG. 3, it is determined whether or not the obtained amount of deflection transferred to the machining surface of the workpiece W is larger than a preset threshold value (step S6). When the amount of deflection transferred to the machining surface of the workpiece W is equal to or less than a preset threshold value (step S6: No), gear machining is performed on the workpiece W with the machining tool 42 (step S7). End all processing.
Specifically, the transfer shake amount calculation unit 113 reads the shake amount transferred to the machining surface of the workpiece W stored in the storage unit 117 and its threshold value, and is transferred to the machining surface of the read workpiece W. The amount of shake and the threshold value are compared. When the amount of deflection transferred to the machining surface of the workpiece W is equal to or less than the threshold value, the machining control unit 116 rotates the workpiece W and the machining tool 42 synchronously at high speed, thereby causing the machining tool 42 to rotate. Teeth are created by cutting in the direction of the rotation axis of W.

一方、図3に示すように、工作物Wの加工面に転写される振れ量が、予め設定されている閾値より大きいときは(ステップS6:Yes)、加工用工具42又は工作物Wの回転位相割出しを行って工作物Wの加工面に転写される振れ量を低減させる補正を行う(ステップS8)。
具体的には、工作物位相割出部114は、加工用工具42又は工作物Wの回転時の振れ量の変化を回転位相角方向にずらしつつ、回転位相角に対する加工用工具42および工作物Wの振れ量を合成し、合成振れ量の最大値と最小値との差、すなわち工作物Wの加工面に転写される振れ量が最小となる工作物Wの回転位相角を割り出して工作物Wの加工面に転写される振れ量を低減させる補正を行う。
On the other hand, as shown in FIG. 3, when the deflection amount transferred to the machining surface of the workpiece W is larger than a preset threshold value (step S6: Yes), the machining tool 42 or the workpiece W is rotated. Correction is performed to reduce the shake amount transferred to the machining surface of the workpiece W by performing phase indexing (step S8).
Specifically, the workpiece phase indexing unit 114 shifts the change in the amount of deflection during rotation of the machining tool 42 or the workpiece W in the rotational phase angle direction, and the machining tool 42 and the workpiece with respect to the rotational phase angle. The workpiece is obtained by synthesizing the deflection amount of W and calculating the difference between the maximum value and the minimum value of the synthesized deflection amount, that is, the rotational phase angle of the workpiece W that minimizes the deflection amount transferred to the machining surface of the workpiece W. Correction is performed to reduce the shake amount transferred to the W processed surface.

上述の例であると、図9に示すように、工作物Wの加工面に転写される振れ量(2dt+2dw)は、閾値drより大きいので、図9の破線で示す工作物Wの回転時の振れ量の変化d(θ)を回転位相角θ方向にずらしていく。この場合は、図10の破線で示すように、工作物Wの回転時の振れ量の変化を回転位相角方向に60°ずらすことにより、工作物Wの加工面に転写される振れ量が最小の振れ量2dm(<(2dt+2dw))となり、工作物Wの回転位相割出しによる振れ量の低減補正が完了する。   In the above example, as shown in FIG. 9, the deflection amount (2dt + 2dw) transferred to the machining surface of the workpiece W is larger than the threshold dr, and therefore, when the workpiece W is rotated as indicated by the broken line in FIG. 9. The change d (θ) of the shake amount is shifted in the direction of the rotational phase angle θ. In this case, as shown by the broken line in FIG. 10, the amount of shake transferred to the machining surface of the workpiece W is minimized by shifting the change in the amount of shake during rotation of the workpiece W by 60 ° in the rotational phase angle direction. The amount of shake is 2 dm (<(2 dt + 2 dw)), and the shake amount reduction correction by the rotational phase indexing of the workpiece W is completed.

次に、図3に示すように、補正した工作物Wの加工面に転写される振れ量が、閾値より大きいか否かを判断する(ステップS9)。補正した工作物Wの加工面に転写される振れ量が閾値以下のときは(ステップS9:No)、加工用工具42で工作物Wに対し歯車加工を行い(ステップS7)、全ての処理を終了する。
上述の例であると、図10の破線で示すように、工作物Wの加工面に転写される振れ量は閾値dr以下となる。
Next, as shown in FIG. 3, it is determined whether or not the shake amount transferred to the machined surface of the corrected workpiece W is larger than a threshold value (step S9). When the shake amount transferred to the machined surface of the corrected workpiece W is equal to or less than the threshold value (step S9: No), gear machining is performed on the workpiece W with the machining tool 42 (step S7), and all processing is performed. finish.
In the above example, as shown by the broken line in FIG. 10, the shake amount transferred to the machining surface of the workpiece W is equal to or less than the threshold dr.

一方、図3に示すように、工作物Wの加工面に転写される振れ量が、予め設定されている閾値より大きいときは(ステップS9:Yes)、異常警告を発生して歯車加工を中止し(ステップS10)、全ての処理を終了する。
具体的には、加工中止部115は、工作物Wの加工面に転写される振れ量が閾値より大きいと判断したとき、異常が発生した旨の警告を表示装置に表示し、警告音を図略のスピーカから発して歯車加工を中止する。
On the other hand, as shown in FIG. 3, when the deflection amount transferred to the machining surface of the workpiece W is larger than a preset threshold value (step S9: Yes), an abnormality warning is generated and the gear machining is stopped. (Step S10), and all the processes are terminated.
Specifically, when the processing stop unit 115 determines that the amount of vibration transferred to the processing surface of the workpiece W is larger than the threshold value, the processing stopping unit 115 displays a warning that an abnormality has occurred on the display device, and displays a warning sound. The gear processing is stopped by emitting from an abbreviated speaker.

(5.低減制御による効果)
加工用工具42の回転位相角に対する振れ量および工作物Wの回転位相角に対する振れ量を求めているので、これらの振れ量から工作物Wの加工面に転写される振れ量を求めることができる。よって、転写振れ量が所定の閾値以下のときはそのまま加工用工具および工作物を高速で同期回転させて切削加工を開始することができるので、高精度な歯車の加工効率を向上させることができる。また、転写振れ量が所定の閾値より大きいときは、転写振れ量を補正するようにしているので、高精度な歯車の加工効率をさらに向上させることができる。また、補正した転写振れ量が所定の閾値より大きいときは、加工中止するようにしているので、歯車の加工不良率を低減することができる。
(5. Effect of reduction control)
Since the amount of vibration with respect to the rotational phase angle of the machining tool 42 and the amount of vibration with respect to the rotational phase angle of the workpiece W are obtained, the amount of vibration transferred to the machining surface of the workpiece W can be obtained from these amounts of vibration. . Therefore, when the transfer deflection amount is equal to or less than the predetermined threshold value, the machining tool and the workpiece can be directly rotated at high speed to start cutting, so that the machining efficiency of the highly accurate gear can be improved. . Further, when the transfer shake amount is larger than the predetermined threshold value, the transfer shake amount is corrected, so that the machining efficiency of the highly accurate gear can be further improved. Further, when the corrected transfer shake amount is larger than a predetermined threshold value, the processing is stopped, so that the processing defect rate of the gear can be reduced.

(6.別形態)
上述の実施形態では、工具用変位センサ80Tおよび工作物用変位センサ80Wで加工用工具42および工作物Wに振れ量を検出し、検出した加工用工具42および工作物Wに振れ量に基づいて、工作物Wの加工面に転写される振れ量を補正し、または工具ホルダ43の調整ネジ433を回転調整して工作物Wの加工面に転写される振れ量を補正するようにしたが、加工用工具42および工作物Wの少なくとも一方に回転時の振れ量の変化が見られない場合は対応することができない。このような場合、以下の装置を備えることにより、工作物Wの加工面に転写される振れ量を補正することが可能となる。
(6. Different forms)
In the above-described embodiment, the tool displacement sensor 80T and the workpiece displacement sensor 80W detect the deflection amount of the machining tool 42 and the workpiece W, and the detected machining tool 42 and workpiece W are detected based on the deflection amount. The amount of vibration transferred to the work surface of the workpiece W is corrected, or the adjustment screw 433 of the tool holder 43 is adjusted to rotate to correct the amount of vibration transferred to the work surface of the workpiece W. It is not possible to cope with the case where no change in the amount of deflection during rotation is observed in at least one of the machining tool 42 and the workpiece W. In such a case, by providing the following apparatus, it is possible to correct the shake amount transferred to the processed surface of the workpiece W.

すなわち、図11に示すように、歯車加工装置2には、図1に示す歯車加工装置1の構成に、回転主軸40に内蔵され加工用工具42を加振する工具用加振装置90Tと、ターンテーブル70に内蔵され工作物Wを加振する工作物用加振装置90Wとを増設する。そして、制御装置200には、図2に示す制御装置100の構成に、工具用加振装置90Tおよび工作物用加振装置90Wをそれぞれ駆動する加振部118を増設する。   That is, as shown in FIG. 11, the gear machining device 2 includes a tool vibration device 90 </ b> T that vibrates the machining tool 42 built in the rotary spindle 40 in the configuration of the gear machining device 1 shown in FIG. 1, A workpiece vibration device 90W that vibrates the workpiece W built in the turntable 70 is added. The control device 200 is further provided with a vibration exciter 118 that drives the tool vibration device 90T and the workpiece vibration device 90W, respectively, in the configuration of the control device 100 shown in FIG.

上述したように加工用工具42および工作物Wの少なくとも一方に回転時の振れ量の変化が見られない場合、工作物Wの回転時の振れ量の変化を回転位相角方向にずらしても、工作物Wの加工面に転写される振れ量を補正することができない。しかし、加振部118が、工具用加振装置90Tおよび工作物用加振装置90Wの少なくとも一方を駆動し、加工用工具42および工作物Wの少なくとも一方を加振することにより、回転時の振れ量の変化を生じさせることができるので、この状態で工作物Wの回転時の振れ量の変化を回転位相角方向にずらすことにより、工作物Wの加工面に転写される振れ量を補正することができる。   As described above, when at least one of the machining tool 42 and the workpiece W does not change in runout during rotation, even if the change in runout during rotation of the workpiece W is shifted in the rotational phase angle direction, The amount of deflection transferred to the processed surface of the workpiece W cannot be corrected. However, the vibration exciter 118 drives at least one of the tool vibration device 90T and the workpiece vibration device 90W, and vibrates at least one of the machining tool 42 and the workpiece W, thereby rotating the tool during rotation. Since the amount of deflection can be changed, the amount of deflection transferred to the machining surface of the workpiece W is corrected by shifting the variation of the amount of deflection during rotation of the workpiece W in the rotational phase angle direction in this state. can do.

なお、上述した実施形態では、5軸マシニングセンタである歯車加工装置1は、工作物WをA軸旋回可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、工具42をA軸旋回可能とする構成としてもよい。また、本発明をマシニングセンタに適用する場合を説明したが、歯車加工の専用機に対しても同様に適用可能である。また、外歯歯車の加工について説明したが、内歯歯車の加工に対しても同様に適用可能である。   In the above-described embodiment, the gear machining apparatus 1 that is a 5-axis machining center is configured to allow the workpiece W to turn on the A axis. On the other hand, the 5-axis machining center may be configured as a vertical machining center that allows the tool 42 to turn on the A axis. Further, although the case where the present invention is applied to a machining center has been described, the present invention can be similarly applied to a dedicated gear machining machine. Further, although the processing of the external gear has been described, the present invention can be similarly applied to the processing of the internal gear.

1:歯車加工装置、 80T:工具用変位センサ、 80W:工作物用変位センサ、 90T:工具用加振装置、 90W:工作物用加振装置
100:制御装置、 107:工具振れ量演算部、 108:工作物振れ量演算部、 109:工具位相角演算部、 110:工作物位相角演算部、 111:工具振れ演算部、 112:工作物振れ演算部、 113:転写振れ量演算部、 114:工作物位相割出部、 115:加工中止部、 116:加工制御部、 117:記憶部、 118:加振部、 W:工作物
1: gear processing device, 80T: tool displacement sensor, 80W: workpiece displacement sensor, 90T: tool vibration device, 90W: workpiece vibration device 100: control device, 107: tool deflection amount calculation unit, 108: Workpiece deflection amount calculation unit 109: Tool phase angle calculation unit 110: Workpiece phase angle calculation unit 111: Tool deflection calculation unit 112: Workpiece deflection calculation unit 113: Transfer deflection amount calculation unit 114 : Workpiece phase indexing unit, 115: Machining stop unit, 116: Machining control unit, 117: Storage unit, 118: Excitation unit, W: Workpiece

Claims (5)

工作物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記工作物と同期回転させながら前記工作物の回転軸線方向に送り操作して歯車を加工する歯車加工装置であって、
前記加工用工具の回転時の回転軸線と直角な方向の変位量を検出する工具用変位センサと、
前記工作物の回転時の回転軸線と直角な方向の変位量を検出する工作物用変位センサと、
前記工具用変位センサからの検出信号に基づいて前記加工用工具の回転時の振れ量を求める工具振れ量演算手段と、
前記工作物用変位センサからの検出信号に基づいて前記工作物の回転時の振れ量を求める工作物振れ量演算手段と、
前記加工用工具の回転位相角を求める工具位相角演算手段と、
前記工作物の回転位相角を求める工作物位相角演算手段と、
前記加工用工具の回転位相角と回転時の振れ量との関係を求める工具振れ演算手段と、
前記工作物の回転位相角と回転時の振れ量との関係を求める工作物振れ演算手段と、
前記加工用工具の回転位相角と振れ量との関係および前記工作物の回転位相角と振れ量との関係に基づいて、前記工作物の加工面に転写される振れ量を求め、転写振れ量が所定の閾値以下であるか否かを判断する転写振れ量演算手段と、
前記転写振れ量が前記閾値以下であるとき、前記工作物の加工を行う加工制御手段と、を備える歯車加工装置。
Gear machining that uses a machining tool having a rotation axis inclined with respect to the rotation axis of the workpiece and feeds the machining tool in the direction of the rotation axis of the workpiece while rotating the machining tool synchronously with the workpiece to process the gear. A device,
A displacement sensor for a tool for detecting a displacement amount in a direction perpendicular to a rotation axis during rotation of the machining tool;
A displacement sensor for a workpiece for detecting a displacement amount in a direction perpendicular to the rotation axis during rotation of the workpiece;
A tool runout amount calculating means for obtaining a runout amount during rotation of the machining tool based on a detection signal from the tool displacement sensor;
A workpiece deflection amount calculating means for obtaining a deflection amount during rotation of the workpiece based on a detection signal from the workpiece displacement sensor;
Tool phase angle calculation means for obtaining a rotation phase angle of the machining tool;
A workpiece phase angle calculating means for obtaining a rotational phase angle of the workpiece;
Tool runout calculating means for obtaining a relationship between the rotational phase angle of the machining tool and the runout amount during rotation;
A workpiece shake calculation means for obtaining a relationship between a rotational phase angle of the workpiece and a shake amount during rotation;
Based on the relationship between the rotational phase angle and the amount of deflection of the machining tool and the relationship between the rotational phase angle of the workpiece and the amount of deflection, the amount of deflection transferred to the work surface of the workpiece is obtained, and the amount of transfer deflection Transfer shake amount calculating means for determining whether or not is equal to or less than a predetermined threshold;
A gear processing apparatus comprising: a processing control unit configured to process the workpiece when the transfer deflection amount is equal to or less than the threshold value.
前記歯車加工装置は、
前記転写振れ量が前記閾値より大きいとき、前記工作物の位相割出しを行って前記転写振れ量を低減させる補正を行う工作物位相割出手段、を備える請求項1の歯車加工装置。
The gear machining device includes:
The gear machining apparatus according to claim 1, further comprising: a workpiece phase indexing unit that performs phase indexing of the workpiece to correct the transfer deflection amount when the transfer deflection amount is larger than the threshold value.
前記歯車加工装置は、
前記補正した転写振れ量が前記閾値より大きいとき、前記工作物の前記加工用工具による加工を中止する加工中止手段、を備える請求項2の歯車加工装置。
The gear machining device includes:
The gear machining apparatus according to claim 2, further comprising a machining stop unit that stops the machining of the workpiece by the machining tool when the corrected transfer deflection amount is larger than the threshold value.
前記歯車加工装置は、
前記加工用工具を加振する工具用加振装置と、
前記工作物を加振する工作物用加振装置と、
前記加工用工具および前記工作物の少なくとも一方に回転時の振れ量の変化が見られない場合、前記工具用加振装置および前記工作物用加振装置の少なくとも一方を駆動する加振手段と、を備える請求項2又は3の歯車加工装置。
The gear machining device includes:
A tool vibration device for vibrating the machining tool;
A vibration exciter for a workpiece for vibrating the workpiece;
When at least one of the machining tool and the workpiece does not show a change in runout amount during rotation, an excitation unit that drives at least one of the tool excitation device and the workpiece excitation device; A gear machining apparatus according to claim 2 or 3, comprising:
前記加工用工具の工具刃数は、加工対象の歯車の歯数の整数分の一又は整数倍である、請求項1〜4の何れか一項の歯車加工装置。   The gear machining apparatus according to any one of claims 1 to 4, wherein the number of tool blades of the machining tool is one or an integral multiple of an integer number of teeth of a gear to be machined.
JP2013059861A 2013-03-22 2013-03-22 Gear processing equipment Active JP6064723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059861A JP6064723B2 (en) 2013-03-22 2013-03-22 Gear processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059861A JP6064723B2 (en) 2013-03-22 2013-03-22 Gear processing equipment

Publications (2)

Publication Number Publication Date
JP2014184505A JP2014184505A (en) 2014-10-02
JP6064723B2 true JP6064723B2 (en) 2017-01-25

Family

ID=51832578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059861A Active JP6064723B2 (en) 2013-03-22 2013-03-22 Gear processing equipment

Country Status (1)

Country Link
JP (1) JP6064723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118977A (en) * 2017-12-28 2019-07-22 株式会社ジェイテクト Gear processor and gear processing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015104310A1 (en) * 2015-03-23 2016-09-29 Profilator Gmbh & Co. Kg Method and device for toothing a work wheel with reduced flank line error
JP6803192B2 (en) * 2016-10-17 2020-12-23 オークマ株式会社 Machine Tools
JP6921511B2 (en) * 2016-12-02 2021-08-18 株式会社東京精密 Machine tools with automatic tool changer and automatic measurement method
JP6866213B2 (en) * 2017-04-17 2021-04-28 オークマ株式会社 Control method of feed shaft in machine tool and machine tool
JP7298131B2 (en) * 2018-10-10 2023-06-27 株式会社ジェイテクト Machine Tools
KR102521884B1 (en) * 2020-07-03 2023-04-17 서울대학교 산학협력단 Method of monitoring workpiece processing using strain sensor and system for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951876C2 (en) * 1979-12-21 1985-04-04 BHS-Dr.-Ing. Höfler Maschinenbau GmbH, 7505 Ettlingen Method and gear cutting machine for producing the gear teeth of straight or helical gear wheels
DE3533064A1 (en) * 1985-09-17 1987-03-26 Pfauter Hermann Gmbh Co METHOD FOR MACHINING THE FLANGES OF GEARS THROUGH ROLLING SHELLS AND DEVICE FOR IMPLEMENTING SUCH A METHOD
JPS6299019A (en) * 1985-10-22 1987-05-08 Mitsubishi Heavy Ind Ltd Gear cutting method
JPH07164243A (en) * 1993-12-10 1995-06-27 Nissan Motor Co Ltd Gear cutting machine and cutting method thereof
JP2010158748A (en) * 2009-01-09 2010-07-22 Mitsubishi Heavy Ind Ltd Method of making gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118977A (en) * 2017-12-28 2019-07-22 株式会社ジェイテクト Gear processor and gear processing method
JP7003656B2 (en) 2017-12-28 2022-01-20 株式会社ジェイテクト Gear processing equipment and gear processing method

Also Published As

Publication number Publication date
JP2014184505A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6064723B2 (en) Gear processing equipment
US10268176B2 (en) Control device for machine tool and machine tool including the control device
JP6340764B2 (en) Gear processing equipment
JP5615369B2 (en) Scroll processing method and processing apparatus
WO2012057280A1 (en) Method for measuring tool dimension, measurement device, and machine tool
JP2006227886A (en) Servo-control device and method for adjusting servo system
TWI781353B (en) Machine tools and controls
TW201634176A (en) Machine tool and control device for machine tool
JP2015217484A (en) Gear processing device
JP5957872B2 (en) Processing method and processing apparatus
JP6606967B2 (en) Gear processing apparatus and gear processing method
JP5496029B2 (en) EDM machine
JP2011141247A (en) Rotation angle positioning apparatus
JP5862111B2 (en) Machining data correction method
JP6500486B2 (en) Gear processing apparatus and gear processing method
JP6865413B2 (en) NC lathe and cutting method using it
JP2014184504A (en) Gear machining apparatus
JP2020013433A (en) Numerical control device, numerical control method, and numerical control program
JP2008225780A (en) Backlash correction method for pivoting shaft in machine tool
JP2016022558A (en) Z-axis backlash amount detection method and device of machining center
US8090468B2 (en) Multi-spindle phase controlled machining
JP6615285B1 (en) Tool runout adjustment method and machine tool
JP2021060809A (en) Machine tool
JP2007179364A (en) Apparatus for correcting amount of displacement of main shaft
JP2003271214A (en) Numerical control device and pitch error correction method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6064723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150