JP2019118977A - Gear processor and gear processing method - Google Patents

Gear processor and gear processing method Download PDF

Info

Publication number
JP2019118977A
JP2019118977A JP2017253921A JP2017253921A JP2019118977A JP 2019118977 A JP2019118977 A JP 2019118977A JP 2017253921 A JP2017253921 A JP 2017253921A JP 2017253921 A JP2017253921 A JP 2017253921A JP 2019118977 A JP2019118977 A JP 2019118977A
Authority
JP
Japan
Prior art keywords
workpiece
tool
processing tool
processing
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017253921A
Other languages
Japanese (ja)
Other versions
JP7003656B2 (en
Inventor
琳 張
Lin Zhang
琳 張
俊太朗 高須
Shuntaro Takasu
俊太朗 高須
尚 大谷
Takashi Otani
尚 大谷
中野 浩之
Hiroyuki Nakano
浩之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2017253921A priority Critical patent/JP7003656B2/en
Publication of JP2019118977A publication Critical patent/JP2019118977A/en
Application granted granted Critical
Publication of JP7003656B2 publication Critical patent/JP7003656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear Processing (AREA)

Abstract

To provide a gear processor which can easily and inexpensively phase rotation phase angles of a processing tool and a workpiece when exchanging either of the processing tool of a gear and the workpiece, and a gear processing method.SOLUTION: A control device 100 comprises: a co-rotation control part 102 for bringing either of an exchanged workpiece and an exchanged processing tool when exchanging either of the workpiece and the processing tool to the other workpiece and the other processing tool into a free rotation state, and making the workpiece and the processing tool co-rotate by gearing processed teeth of a gear of the workpiece and a tool blade of the processing tool with each other by controlling the rotation of the other workpiece and the other processing tool which are not exchanged yet; and a processing control part 101 for cutting a non-exchanged workpiece and a non-exchanged processing tool, phasing rotation phase angles of the exchanged workpiece and the exchanged processing tool on the basis of rotation phase angles of the co-rotated workpiece and the co-rotated processing tool, and cutting the exchanged workpiece and the exchanged processing tool.SELECTED DRAWING: Figure 1

Description

本発明は、歯車を加工する歯車加工装置及び歯車加工方法に関する。   The present invention relates to a gear machining device and a gear machining method for machining a gear.

車両に用いられるトランスミッションには、円滑な変速操作を行うためにシンクロメッシュ機構が設けられる。図10に示すように、キー式のシンクロメッシュ機構110は、メーンシャフト111、メーンドライブシャフト112、クラッチハブ113、キー114、スリーブ115、メーンドライブギヤ116、クラッチギヤ117、シンクロナイザーリング118等を備える。なお、メーンドライブギヤ116、クラッチギヤ117、シンクロナイザーリング118は、スリーブ115を挟んで両側に配置される。   A transmission used in a vehicle is provided with a synchromesh mechanism to perform a smooth shift operation. As shown in FIG. 10, the key type synchromesh mechanism 110 includes a main shaft 111, a main drive shaft 112, a clutch hub 113, a key 114, a sleeve 115, a main drive gear 116, a clutch gear 117, a synchronizer ring 118 and the like. Prepare. The main drive gear 116, the clutch gear 117, and the synchronizer ring 118 are disposed on both sides of the sleeve 115.

メーンシャフト111とメーンドライブシャフト112は、同軸配置される。メーンシャフト111には、クラッチハブ113がスプライン嵌合され、メーンシャフト111とクラッチハブ113は共に回転する。クラッチハブ113の外周の3か所には、キー114が図略のスプリングで支持される。スリーブ115の内周には、内歯(スプライン)115aが形成され、スリーブ115はキー114とともにクラッチハブ113の外周に形成される図略のスプラインに沿って回転軸線LL方向に摺動する。   The main shaft 111 and the main drive shaft 112 are coaxially arranged. The clutch hub 113 is spline-fitted to the main shaft 111, and the main shaft 111 and the clutch hub 113 rotate together. At three positions on the outer periphery of the clutch hub 113, keys 114 are supported by springs (not shown). An internal tooth (spline) 115 a is formed on the inner periphery of the sleeve 115, and the sleeve 115 slides along the spline (not shown) formed on the outer periphery of the clutch hub 113 together with the key 114 in the rotational axis LL direction.

メーンドライブシャフト112には、メーンドライブギヤ116が嵌合され、メーンドライブギヤ116のスリーブ115側には、テーパコーン117bが突設されたクラッチギヤ117が一体形成される。スリーブ115とクラッチギヤ117の間には、シンクロナイザーリング118が配置される。クラッチギヤ117の外歯117a及びシンクロナイザーリング118の外歯118aは、スリーブ115の内歯115aと噛み合わせ可能に形成される。シンクロナイザーリング118の内周は、テーパコーン117bの外周と摩擦係合可能なテーパ状に形成される。   A main drive gear 116 is engaged with the main drive shaft 112, and a clutch gear 117 having a tapered cone 117b is integrally formed on the sleeve 115 side of the main drive gear 116. A synchronizer ring 118 is disposed between the sleeve 115 and the clutch gear 117. The external teeth 117 a of the clutch gear 117 and the external teeth 118 a of the synchronizer ring 118 are formed to be able to mesh with the internal teeth 115 a of the sleeve 115. The inner periphery of the synchronizer ring 118 is formed in a tapered shape that can be frictionally engaged with the outer periphery of the tapered cone 117b.

次に、シンクロメッシュ機構110の図10の左方に動作する場合を説明するが、図10の右方に動作する場合も同様である。図11Aに示すように、図略のシフトレバーの操作により、スリーブ115及びキー114が図示矢印の回転軸線LL方向に移動する。キー114は、シンクロナイザーリング118を回転軸線LL方向に押して、シンクロナイザーリング118の内周をテーパコーン117bの外周に押し付ける。これにより、クラッチギヤ117、シンクロナイザーリング118及びスリーブ115は、同期回転を開始する。   Next, the case of operating the synchromesh mechanism 110 to the left in FIG. 10 will be described, but the same applies to the case of operating to the right of FIG. As shown in FIG. 11A, the sleeve 115 and the key 114 move in the direction of the rotation axis LL of the illustrated arrow by the operation of the shift lever (not shown). The key 114 pushes the synchronizer ring 118 in the direction of the rotation axis LL to press the inner periphery of the synchronizer ring 118 against the outer periphery of the taper cone 117 b. Thus, the clutch gear 117, the synchronizer ring 118 and the sleeve 115 start synchronized rotation.

そして、図11Bに示すように、キー114は、スリーブ115に押し下げられてシンクロナイザーリング118を回転軸線LL方向にさらに押し付けるので、シンクロナイザーリング118の内周とテーパコーン117bの外周との密着度は増し、強い摩擦力が発生してクラッチギヤ117、シンクロナイザーリング118及びスリーブ115は同期回転する。クラッチギヤ117の回転数とスリーブ115の回転数が完全に同期すると、シンクロナイザーリング118の内周とテーパコーン117bの外周との摩擦力が消滅する。   Then, as shown in FIG. 11B, the key 114 is pushed down by the sleeve 115 to further press the synchronizer ring 118 in the direction of the rotation axis LL, so the degree of adhesion between the inner periphery of the synchronizer ring 118 and the outer periphery of the taper cone 117b is Further, a strong frictional force is generated, and the clutch gear 117, the synchronizer ring 118 and the sleeve 115 rotate synchronously. When the number of rotations of the clutch gear 117 and the number of rotations of the sleeve 115 are completely synchronized, the frictional force between the inner periphery of the synchronizer ring 118 and the outer periphery of the taper cone 117b disappears.

そして、スリーブ115及びキー114が図示矢印の回転軸線LL方向にさらに移動すると、キー114はシンクロナイザーリング118の溝118bに嵌って止まるが、スリーブ115はキー114の凸部114aを越えて移動し、スリーブ115の内歯115aがシンクロナイザーリング118の外歯118aと噛み合う。そして、図11Cに示すように、スリーブ115は回転軸線LL方向にさらに移動し、スリーブ115の内歯115aがクラッチギヤ117の外歯117aと噛み合う。以上により変速が完了する。   Then, when the sleeve 115 and the key 114 move further in the direction of the rotation axis LL of the arrow shown in the figure, the key 114 fits into the groove 118b of the synchronizer ring 118 and stops but the sleeve 115 moves beyond the projection 114a of the key 114 The inner teeth 115 a of the sleeve 115 mesh with the outer teeth 118 a of the synchronizer ring 118. Then, as shown in FIG. 11C, the sleeve 115 further moves in the direction of the rotation axis LL, and the internal teeth 115a of the sleeve 115 mesh with the external teeth 117a of the clutch gear 117. Thus, the shift is completed.

以上のようなシンクロメッシュ機構110においては、走行中におけるクラッチギヤ117の外歯117aとスリーブ115の内歯115aとのギヤ抜け防止のため、図12A及び図12Bに示すように、スリーブ115の内歯115aにおけるスリーブ115の回転軸線LL方向の一方側(以下、単に、回転軸線一方側Dfという)及び他方側(以下、単に、回転軸線他方側Dbという)には、テーパ状のギヤ抜け防止部120F,120Bが設けられ、各クラッチギヤ117の外歯117a,117aには、ギヤ抜け防止部120F,120Bとテーパ嵌合するテーパ状のギヤ抜け防止部117c,117cが設けられる。   In the synchromesh mechanism 110 as described above, as shown in FIGS. 12A and 12B, the inside of the sleeve 115 is used to prevent the disengagement of the external teeth 117a of the clutch gear 117 and the internal teeth 115a of the sleeve 115 during traveling. On one side (hereinafter simply referred to as rotation axis one side Df) and the other side (hereinafter referred to simply as rotation axis other side Db) of the sleeve 115 in the direction of the rotation axis LL of the teeth 115a The external gear teeth 117a and 117a of the clutch gears 117 are provided with tapered gear slippage preventing portions 117c and 117c, respectively, which are fitted with the gear slippage preventing portions 120F and 120B in a tapered manner.

なお、図12Bでは、クラッチギヤ117の外歯117aは、ギヤ抜け防止部120F側のみを示す。本例のギヤ抜け防止部120F,120Bは、内歯115aの頂面におけるスリーブ115の回転軸線LL方向の中央の仮想点に対し点対称形状で形成される。以下の説明では、スリーブ115の内歯115aの図示左側の側面115Aを左側面115Aといい、スリーブ115の内歯115aの図示右側の側面115Bを右側面115Bという。   In FIG. 12B, the external teeth 117a of the clutch gear 117 are only on the side of the gear slippage prevention portion 120F. The gear slippage prevention portions 120F and 120B of the present example are formed point-symmetrically with respect to a virtual point at the center of the rotational axis LL of the sleeve 115 on the top surface of the internal teeth 115a. In the following description, the side surface 115A on the left side in the drawing of the inner teeth 115a of the sleeve 115 is referred to as the left side surface 115A, and the side surface 115B on the right side in the drawing of the inner teeth 115a of the sleeve 115 is referred to as the right side surface 115B.

そして、スリーブ115の内歯115aの左側面115Aは、左歯面115b及び左歯面115bとねじれ角が異なるように左側面115Aの回転軸線一方側Dfに設けられる歯面121f(以下、一方側左テーパ歯面121fという)、及び左歯面115bとねじれ角が異なるように左側面115Aの回転軸線他方側Dbに設けられる歯面122b(以下、他方側左テーパ歯面122bという)を有する。   The left side surface 115A of the internal teeth 115a of the sleeve 115 is a tooth surface 121f provided on one side Df of the rotation axis of the left side surface 115A so that the twist angle is different from the left tooth surface 115b and the left tooth surface 115b. The left tapered tooth surface 121f) and a tooth surface 122b (hereinafter referred to as the other left tapered tooth surface 122b) provided on the other side Db of the rotation axis of the left surface 115A so as to have a different twist angle from the left tooth surface 115b.

また、スリーブ115の内歯115aの右側面115Bは、右歯面115c及び右歯面115cとねじれ角が異なるように右側面115Bの回転軸線一方側Dfに設けられる歯面122f(以下、一方側右テーパ歯面122fという)、及び右歯面115cとねじれ角が異なるように右側面115Bの回転軸線他方側Dbに設けられる歯面121b(以下、他方側右テーパ歯面121bという)を有する。   Further, the right side surface 115B of the internal teeth 115a of the sleeve 115 is a tooth surface 122f provided on one side Df of the rotation axis of the right side surface 115B so that the twist angle is different from the right tooth surface 115c and the right tooth surface 115c. A right tapered tooth surface 122f) and a tooth surface 121b (hereinafter referred to as the other right tapered tooth surface 121b) provided on the other side Db of the rotation axis of the right side surface 115B so as to have a different twist angle from the right tooth surface 115c.

本例では、左歯面115bのねじれ角は0度、一方側左テーパ歯面121f及び他方側右テーパ歯面121bのねじれ角はθf度である。また、右歯面115cのねじれ角は0度、一方側右テーパ歯面122f及び他方側左テーパ歯面122bのねじれ角はθb度である。そして、一方側左テーパ歯面121f及びこの一方側左テーパ歯面121fと左歯面115bを繋ぐ歯面121af(以下、一方側左サブ歯面121afという)、並びに一方側右テーパ歯面122f及びこの一方側右テーパ歯面122fと右歯面115cを繋ぐ歯面122af(以下、一方側右サブ歯面122afという)が、ギヤ抜け防止部120Fを構成する。   In this example, the twist angle of the left tooth surface 115b is 0 degrees, and the twist angle of the one left tapered tooth surface 121f and the other right tapered tooth surface 121b is θf degrees. Further, the twist angle of the right tooth surface 115c is 0 degree, and the twist angle of the one side right tapered tooth surface 122f and the other side left tapered tooth surface 122b is θb degree. Then, one side left tapered tooth surface 121f and a tooth surface 121af connecting the one side left tapered tooth surface 121f and the left tooth surface 115b (hereinafter referred to as one side left sub tooth surface 121af), and one side right tapered tooth surface 122f and A tooth flank 122af connecting the one side right tapered tooth flank 122f and the right tooth flank 115c (hereinafter referred to as one side right sub tooth flank 122af) constitutes a gear slippage prevention portion 120F.

そして、他方側左テーパ歯面122b及びこの他方側左テーパ歯面122bと左歯面115bを繋ぐ歯面122ab(以下、他方側左サブ歯面122abという)、並びに他方側右テーパ歯面121b及びこの他方側右テーパ歯面121bと右歯面115cを繋ぐ歯面121ab(以下、他方側右サブ歯面121abという)が、ギヤ抜け防止部120Bを構成する。なお、ギヤ抜け防止は、一方側左テーパ歯面121fとギヤ抜け防止部117cとがテーパ嵌合することにより、また、他方側右テーパ歯面121bとギヤ抜け防止部117cとがテーパ嵌合することにより達成される。   The other side left tapered tooth surface 122b and a tooth surface 122ab connecting the other side left tapered tooth surface 122b and the left tooth surface 115b (hereinafter referred to as the other side left sub tooth surface 122ab), and the other side right tapered tooth surface 121b and A tooth flank 121ab connecting the other side right tapered tooth flank 121b and the right tooth flank 115c (hereinafter referred to as the other side right sub tooth flank 121ab) constitutes a gear slippage prevention portion 120B. The gear slippage prevention is performed by taper fitting of the left side taper tooth surface 121f on one side and the gear slippage prevention portion 117c, and the taper fit on the other side of the right taper tooth surface 121b and the gear slippage prevention portion 117c. Is achieved by

このように、スリーブ115の内歯115aの構造は複雑であり、また、スリーブ115は大量生産が必要な部品であるため、一般的に、スリーブ115の内歯115aは、ブローチ加工やギヤシェーパ加工等により形成される。そして、ギヤ抜け防止部120F,120Bは、加工精度を高めるため、切削加工が望ましい。この切削加工方法としては、特許文献1に記載のように、外周に複数の工具刃を有する加工用工具を用いて、加工物の回転軸線と加工用工具の回転軸線とを交差角を持って傾斜させた状態で、加工物と加工用工具とを同期回転させながら、加工用工具を加工物の回転軸線方向に移動操作して加工物を加工する方法がある。   As described above, since the structure of the inner teeth 115a of the sleeve 115 is complicated and the sleeve 115 is a component requiring mass production, generally, the inner teeth 115a of the sleeve 115 are subjected to broaching, gear shaper processing, etc. It is formed by The gear slippage prevention portions 120F and 120B are desirably cut to improve processing accuracy. As this cutting method, as described in Patent Document 1, using a processing tool having a plurality of tool blades on the outer periphery, the rotation axis of the workpiece and the rotation axis of the processing tool have a crossing angle There is a method of processing a workpiece by moving the processing tool in the rotational axis direction of the workpiece while rotating the workpiece and the processing tool in a synchronized state in an inclined state.

加工物であるスリーブ115のギヤ抜け防止部120F,120Bは、スリーブ115の内歯115aの回転軸線一方側Df及び回転軸線他方側Dbに設けられるため、歯車加工装置においては、ギヤ抜け防止部120Fを切削加工するための加工用工具と、ギヤ抜け防止部120Bを切削加工するための加工用工具が必要となる。そして、スリーブ115の内歯115aをブローチ加工等により形成した後、ギヤ抜け防止部120Fの形成用の加工用工具に交換し、加工用工具及びスリーブ115の回転位相角を合わせる作業を行い、ギヤ抜け防止部120Fの切削加工を行う。   The gear slip prevention portions 120F and 120B of the sleeve 115, which is a workpiece, are provided on the rotation axis one side Df and the rotation axis other side Db of the inner teeth 115a of the sleeve 115. And a processing tool for cutting the gear loss prevention portion 120B. Then, after the internal teeth 115a of the sleeve 115 are formed by broaching or the like, the internal teeth 115a are replaced with a processing tool for forming the gear slippage prevention portion 120F, and the rotation phase angle of the processing tool and the sleeve 115 are adjusted. The cutting process of the slip prevention portion 120F is performed.

さらに、ギヤ抜け防止部120Fを形成した後、ギヤ抜け防止部120Bの形成用の加工用工具に交換し、加工用工具及びスリーブ115の回転位相角を合わせる作業を行い、ギヤ抜け防止部120Bの切削加工を行う。特許文献2には、切削加工用の加工用工具の回転位相角と振れ量との関係、及び加工物の回転位相角と振れ量との関係に基づいて、歯車を切削加工する歯車加工装置が記載されている。この歯車加工装置では、高精度な歯車加工を効率的に行うことができる。   Furthermore, after forming the gear slippage prevention portion 120F, it is replaced with a processing tool for forming the gear slippage prevention portion 120B, and the work of adjusting the rotational phase angle of the processing tool and the sleeve 115 is performed. Do cutting. Patent Document 2 discloses a gear processing apparatus for cutting a gear based on the relationship between the rotational phase angle and the amount of deflection of a processing tool for cutting and the relationship between the rotational phase angle and the amount of deflection of a workpiece. Have been described. In this gear machining device, highly accurate gear machining can be efficiently performed.

特開2012−45687号公報JP 2012-45687 A 特許第6064723号公報Patent No. 6064723

しかし、加工用工具の回転位相角の位相合わせ作業は、タッチセンサでスリーブ115の内歯115aの位置及び加工用工具の工具刃の位置を測定する必要があるため、作業時間が掛かって加工効率が低下する傾向にある。また、タッチセンサを備えた位相合わせ装置が必要となるため、歯車加工装置のコストが高くなる傾向にある。   However, since it is necessary to measure the position of the inner teeth 115a of the sleeve 115 and the position of the tool blade of the processing tool with a touch sensor, it takes time to perform phase adjustment work of the rotational phase angle of the processing tool. Tend to decrease. In addition, since a phasing device having a touch sensor is required, the cost of the gear machining device tends to be high.

本発明は、このような事情に鑑みてなされたものであり、歯車の加工用工具及び加工物の一方を交換したとき、加工用工具及び加工物の回転位相角の位相合わせを簡易且つ低コストで行える歯車加工装置及び歯車加工方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and when one of the processing tool for gear and the workpiece is replaced, the phase alignment of the rotational phase angle of the processing tool and the workpiece is simple and inexpensive. It is an object of the present invention to provide a gear machining device and a gear machining method that can be

本発明の歯車加工装置は、加工物の回転軸線に対し傾斜した回転軸線を有し且つ外周に複数の工具刃を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に移動させて歯車の切削加工を制御する制御装置を備える歯車加工装置であって、前記制御装置は、前記加工物及び前記加工用工具の一方を他の前記加工物及び前記加工用工具の一方に交換したとき、交換した前記加工物及び前記加工用工具の一方の回転を自由回転の状態にするとともに交換していない前記加工物及び前記加工用工具の他方の回転を制御して、前記加工物における既加工の前記歯車の歯と前記加工用工具の工具刃とを噛み合わせて前記加工物及び前記加工用工具を連れ回りさせる連れ回り制御部と、前記連れ回り制御部で前記加工物及び前記加工用工具の連れ回りを制御した後、前記加工物及び前記加工用工具の各回転位相角を記憶する記憶部と、交換前の前記加工物及び前記加工用工具の切削加工を行い、前記記憶部に記憶される前記加工物及び前記加工用工具の各回転位相角に基づいて、交換後の前記加工物及び前記加工用工具の回転位相角の位相合わせを行い、交換後の前記加工物及び前記加工用工具の切削加工を行う加工制御部と、を備える。   The gear machining device according to the present invention uses a processing tool having a rotation axis inclined with respect to the rotation axis of the workpiece and having a plurality of tool blades on the outer periphery, while rotating the processing tool in synchronization with the workpiece A gear machining device comprising a control device for controlling cutting of a gear by relatively moving in the direction of the rotation axis of the workpiece, wherein the control device is configured to control one of the workpiece and the processing tool. When replacing one of the workpiece and the processing tool, one of the replaced workpiece and the processing tool is freely rotated and the workpiece and the processing tool are not replaced A rotation control unit that controls the other rotation to mesh the teeth of the already processed gear on the workpiece with the tool blade of the processing tool to rotate the workpiece and the processing tool together; Said companion The storage control unit stores the rotational phase angles of the workpiece and the processing tool after controlling the co-rotation of the workpiece and the processing tool by the friction control unit, the workpiece before replacement, and the processing A cutting process of a tool is performed, and based on the rotational phase angles of the workpiece and the processing tool stored in the storage unit, phase alignment of the rotational phase angles of the workpiece and the processing tool after replacement is performed. And a processing control unit for cutting the workpiece after replacement and the processing tool.

本発明の歯車加工方法は、加工物の回転軸線に対し傾斜した回転軸線を有し且つ外周に複数の工具刃を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に移動させて歯車を切削加工する歯車加工方法であって、前記加工物及び前記加工用工具の一方を他の前記加工物及び前記加工用工具の一方に交換する前の前記加工物及び前記加工用工具の切削加工を行う第一切削工程と、前記加工物及び前記加工用工具の一方を他の前記加工物及び前記加工用工具の一方に交換したとき、交換した前記加工物及び前記加工用工具の一方の回転を自由回転の状態にするとともに交換していない前記加工物及び前記加工用工具の他方の回転を制御して、前記加工物における既加工の前記歯車の歯と前記加工用工具の工具刃とを噛み合わせて前記加工物及び前記加工用工具を連れ回りさせる連れ回り工程と、前記加工物及び前記加工用工具を連れ回りさせた後、前記加工物及び前記加工用工具の各回転位相角を記憶する記憶工程と、記憶した前記加工物及び前記加工用工具の各回転位相角に基づいて、交換した後の前記加工物及び前記加工用工具の一方の回転位相角の位相合わせを行う位相合わせ工程と、交換した後の前記加工物及び前記加工用工具の切削加工を行う第二切削工程と、を備える。   The gear machining method according to the present invention uses a machining tool having a rotational axis inclined with respect to the rotational axis of the workpiece and having a plurality of tool blades on the outer periphery, while rotating the machining tool in synchronization with the workpiece A gear machining method for cutting a gear by relatively moving in the rotation axis direction of the workpiece, wherein one of the workpiece and the machining tool is used as one of the other workpiece and the machining tool. The first cutting process for cutting the workpiece and the processing tool before replacement, and when one of the workpiece and the processing tool is replaced with one of the other workpiece and the processing tool And the rotation of one of the replaced work piece and the processing tool in a free rotation state and controlling the rotation of the other non-replaced work piece and the processing tool, the processed work in the work piece Teeth of the gear A step of meshing the tool and the processing tool with the tool blade of the processing tool, and after the tool and the processing tool are rotated together, the workpiece and the processing Step of storing each rotational phase angle of the tool, and based on the stored rotational phase angles of the workpiece and the processing tool stored, the rotational phase of one of the workpiece and the processing tool after replacement And a second cutting step of cutting the workpiece and the processing tool after replacement.

本発明の歯車加工装置及び歯車加工方法によれば、加工物の回転位相角及び加工用工具の回転位相角の位相合わせは、従来のように位相合わせ装置で加工物の歯の位置及び加工用工具の工具刃の位置を測定する作業が必要無く、自動化が可能であるので位相合わせ時間を短縮して加工効率を向上できる。また、位相合わせ装置が不要となるため、歯車加工装置のコストを低減できる。   According to the gear machining device and the gear machining method of the present invention, the phase alignment of the rotational phase angle of the workpiece and the rotational phase angle of the processing tool is carried out for the position of the teeth of the workpiece and machining by the phasing device as in the prior art. Since there is no need to measure the position of the tool blade of the tool and automation is possible, it is possible to shorten the phasing time and improve the processing efficiency. In addition, since the phasing device is not necessary, the cost of the gear processing device can be reduced.

本発明の実施の形態に係る歯車加工装置の全体構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the gear processing apparatus which concerns on embodiment of this invention. 図1の制御装置による加工制御処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process control processing by the control apparatus of FIG. 図1の制御装置による加工制御処理を説明するための図2Aのフローの続きを示すフローチャートである。It is a flowchart which shows the continuation of the flow of FIG. 2A for demonstrating the processing control processing by the control apparatus of FIG. 図1の制御装置による加工制御処理を説明するための図2Bのフローの続きを示すフローチャートである。It is a flowchart which shows the continuation of the flow of FIG. 2B for demonstrating the processing control processing by the control apparatus of FIG. 加工用工具の概略構成を工具端面側から回転軸線方向に見た図である。It is the figure which looked at schematic structure of the tool for processing from the tool end surface side in the rotation axis direction. 図3Aの加工用工具(一方側左右テーパ歯面の加工用)の概略構成を径方向に見た一部断面図である。It is the fragmentary sectional view which looked at the schematic structure of the processing tool (for processing of one side left and right taper tooth surface) of Drawing 3A in the diameter direction. 図3Aの加工用工具(他方側左右テーパ歯面の加工用)の概略構成を径方向に見た一部断面図である。It is the fragmentary sectional view which looked at the schematic structure of the processing tool (for processing of the other side left and right taper tooth surface) of Drawing 3A in the diameter direction. 図3Aの加工用工具の工具刃の拡大図である。It is an enlarged view of the tool blade of the processing tool of FIG. 3A. 加工用工具(一方側左右テーパ歯面の加工用)を設計する際の加工用工具と加工物との寸法関係を示す第一の図である。It is a 1st figure which shows the dimensional relationship of the processing tool at the time of designing the processing tool (for processing of one side left-right taper tooth surface), and a processed material. 加工用工具(一方側左右テーパ歯面の加工用)を設計する際の加工用工具と加工物との寸法関係を示す第二の図である。It is a 2nd figure which shows the dimensional relationship of the processing tool at the time of designing the processing tool (for processing of one side left-right taper tooth surface), and a processed material. 加工用工具(一方側左右テーパ歯面の加工用)を設計する際及び加工用工具(一方側左右テーパ歯面の加工用)で加工する際の加工用工具と加工物との位置関係を示す第一の図である。Indicates the positional relationship between the processing tool and the workpiece when designing a processing tool (for processing one side left and right tapered tooth surfaces) and when processing with a processing tool (for processing one side left and right tapered tooth surfaces) It is a 1st figure. 加工用工具(一方側左右テーパ歯面の加工用)を設計する際及び加工用工具(一方側左右テーパ歯面の加工用)で加工する際の加工用工具と加工物との位置関係を示す第二の図である。Indicates the positional relationship between the processing tool and the workpiece when designing a processing tool (for processing one side left and right tapered tooth surfaces) and when processing with a processing tool (for processing one side left and right tapered tooth surfaces) It is a 2nd figure. 図3Aの加工用工具の刃先幅及び刃厚を求める際に使用する加工用工具の各部位を示す図である。It is a figure which shows each site | part of the processing tool used when calculating | requiring the blade-tip width | variety and blade thickness of the processing tool of FIG. 3A. 一方側左テーパ歯面を加工する前の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the processing tool before processing the one side left taper tooth surface in the diameter direction. 一方側左テーパ歯面を加工するときの加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the processing tool when processing one side left taper tooth surface in the diameter direction. 一方側左テーパ歯面を加工した後の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the processing tool after processing one side left taper tooth surface in the diameter direction. スリーブの内歯と加工用工具の工具刃を噛み合わせるため、加工用工具をスリーブの一方側に配置した状態をスリーブの径方向に見た図である。It is the figure which looked at the state which arrange | positioned the processing tool on one side of the sleeve in order to mesh the internal tooth of a sleeve and the tool blade of a processing tool to radial direction of a sleeve. スリーブの内歯と加工用工具の工具刃を噛み合わせるため、加工用工具をスリーブの内周に配置した状態をスリーブの径方向に見た図である。It is the figure which looked at the state which arrange | positioned the processing tool on the inner periphery of a sleeve in order to mesh the internal tooth of a sleeve and the tool blade of a processing tool in the radial direction of a sleeve. スリーブの内歯と加工用工具の工具刃を噛み合わせるため、加工用工具を回転自由にしスリーブを低速回転した状態をスリーブの回転軸線方向に見た図である。In order to mesh the internal tooth of a sleeve and the tool blade of a processing tool, it is the figure which looked at the state which made the processing tool free rotation and rotated the sleeve at low speed in the rotation axis direction of a sleeve. スリーブの内歯と加工用工具の工具刃を噛み合わせるため、加工用工具をスリーブの径方向に降下する状態をスリーブの回転軸線方向に見た図である。In order to engage the internal teeth of a sleeve and the tool blade of a processing tool, it is the figure which looked at the state which descend | falls a processing tool to the radial direction of a sleeve in the rotation axial direction of a sleeve. スリーブの内歯と加工用工具の工具刃を噛み合わせるため、加工用工具の工具刃をスリーブの内歯に接触させた状態をスリーブの回転軸線方向に見た拡大図である。It is the enlarged view which looked at the state which made the tool blade of the processing tool contact the inner tooth of a sleeve in order to mesh the internal tooth of a sleeve and the tool blade of a processing tool in the rotation axis direction of a sleeve. 加工用工具の工具刃をスリーブの内歯に噛み合わた状態をスリーブの回転軸線方向に見た拡大図である。It is the enlarged view which looked at the state which engaged the tool blade of the processing tool with the internal tooth of a sleeve in the rotation axial direction of a sleeve. 加工用工具の工具刃をスリーブの内歯に噛み合わてスリーブを回転停止した状態をスリーブの回転軸線方向に見た図である。It is the figure which looked at the state which meshed the tool blade of the processing tool with the internal tooth of a sleeve, and stopped the rotation of the sleeve in the rotation axis direction of a sleeve. 加工用工具(他方側左右テーパ歯面の加工用)で加工する際の加工用工具と加工物との位置関係を示す第一の図である。It is a 1st figure which shows the positional relationship of the processing tool at the time of processing with the processing tool (for processing of the other side left and right taper tooth surface), and a processed material. 加工用工具(他方側左右テーパ歯面の加工用)で加工する際の加工用工具と加工物との位置関係を示す第二の図である。It is a 2nd figure which shows the positional relationship of the processing tool at the time of processing with the processing tool (for processing of the other side left and right taper tooth surface), and a processed material. 他方側左テーパ歯面を加工する前の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the processing tool before processing the other side left taper tooth surface to radial direction. 他方側左テーパ歯面を加工するときの加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the processing tool when processing the other side left taper tooth surface to radial direction. 他方側左テーパ歯面を加工した後の加工用工具の位置を径方向に見た図である。It is the figure which looked at the position of the processing tool after processing the other side left taper tooth surface to radial direction. 加工物であるスリーブを有するシンクロメッシュ機構を示す断面図である。FIG. 5 is a cross-sectional view of a synchromesh mechanism having a sleeve that is a workpiece; 図10のシンクロメッシュ機構の作動開始前の状態を示す断面図である。It is sectional drawing which shows the state before the action | operation start of the synchromesh mechanism of FIG. 図10のシンクロメッシュ機構の作動中の状態を示す断面図である。It is sectional drawing which shows the state in action of the synchromesh mechanism of FIG. 図10のシンクロメッシュ機構の作動完了後の状態を示す断面図である。It is sectional drawing which shows the state after the completion | finish of operation | movement of the synchromesh mechanism of FIG. 加工物であるスリーブのギヤ抜け防止部を示す斜視図である。It is a perspective view which shows the gear omission prevention part of the sleeve which is a workpiece. 図12Aのスリーブのギヤ抜け防止部を径方向から見た図である。It is the figure which looked at the gear loss prevention part of the sleeve of FIG. 12A from radial direction.

(1.歯車加工装置の機械構成)
本実施形態では、歯車加工装置の一例として、5軸マシニングセンタを例に挙げ、図1を参照して説明する。つまり、当該歯車加工装置1は、駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)及び2つの回転軸(X軸線に平行なA軸、A軸線に直角なC軸)を有する装置である。
(1. Machine configuration of gear processing device)
In the present embodiment, a 5-axis machining center will be described as an example of a gear machining device, with reference to FIG. That is, as the drive shaft, the gear machining device 1 includes, as drive axes, three rectilinear axes (X, Y, Z axes) orthogonal to each other and two rotation axes (A axis parallel to the X axis, C axis orthogonal to the A axis). A device having

この歯車加工装置1では、外周に複数の工具刃42af,42abを有する加工用工具42(42F,42B)(図3A−図3D参照)を用いて、スリーブ115の回転軸線Lwと加工用工具42(42F,42B)の回転軸線(工具軸線)Lとを交差角を持って傾斜させた状態で、スリーブ115と加工用工具42(42F,42B)とを同期回転させながら、加工用工具42(42F,42B)をスリーブ115の回転軸線Lw方向に移動操作してスリーブ115を加工する。   In the gear machining device 1, the rotation axis Lw of the sleeve 115 and the machining tool 42 are formed using the machining tool 42 (42F, 42B) (see FIGS. 3A to 3D) having a plurality of tool blades 42af and 42ab on the outer periphery. In a state in which the rotational axis (tool axis) L of (42F, 42B) is inclined at a crossing angle, the processing tool 42 (rotational movement of the sleeve 115 and the processing tool 42 (42F, 42B) is synchronized. 42F, 42B) are moved in the direction of the rotational axis Lw of the sleeve 115 to process the sleeve 115.

図1に示すように、歯車加工装置1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、チルトテーブル60と、ターンテーブル70と、加工物保持具80と、制御装置100等とから構成される。なお、図示省略するが、ベッド10と並んで既知の自動工具交換装置が設けられる。   As shown in FIG. 1, the gear machining device 1 includes a bed 10, a column 20, a saddle 30, a rotating spindle 40, a table 50, a tilt table 60, a turntable 70, and a workpiece holder 80. , And the control device 100 and the like. Although not shown, a known automatic tool changer is provided alongside the bed 10.

ベッド10は、ほぼ矩形状からなり、床上に配置される。このベッド10の上面には、コラム20をX軸線に平行な方向に駆動するための、図略のX軸ボールねじが配置される。そして、ベッド10には、X軸ボールねじを回転駆動するX軸モータ11cが配置される。
コラム20のY軸線に平行な側面(摺動面)20aには、サドル30をY軸線に平行な方向に駆動するための、図略のY軸ボールねじが配置される。そして、コラム20には、Y軸ボールねじを回転駆動するY軸モータ23cが配置される。
The bed 10 has a substantially rectangular shape and is disposed on the floor. An unillustrated X-axis ball screw is disposed on the upper surface of the bed 10 for driving the column 20 in a direction parallel to the X-axis. The bed 10 is provided with an X-axis motor 11 c that rotationally drives an X-axis ball screw.
On a side surface (sliding surface) 20a parallel to the Y-axis of the column 20, a Y-axis ball screw (not shown) for driving the saddle 30 in a direction parallel to the Y-axis is disposed. The column 20 is provided with a Y-axis motor 23c that rotationally drives a Y-axis ball screw.

回転主軸40は、加工用工具42を支持し、サドル30内に回転可能に支持され、サドル30内に収容された主軸モータ41(回転駆動装置)により回転される。加工用工具42は、図略の工具ホルダに保持されて回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、加工用工具42は、コラム20及びサドル30の移動に伴ってベッド10に対してX軸線に平行な方向及びY軸線に平行な方向に移動する。なお、加工用工具42の詳細は後述する。   The rotating spindle 40 supports the processing tool 42, is rotatably supported in the saddle 30, and is rotated by a spindle motor 41 (rotational drive) housed in the saddle 30. The processing tool 42 is held by a tool holder (not shown) and fixed to the tip of the rotating spindle 40, and rotates as the rotating spindle 40 rotates. Further, the processing tool 42 moves in a direction parallel to the X-axis and a direction parallel to the Y-axis with respect to the bed 10 as the column 20 and the saddle 30 move. The details of the processing tool 42 will be described later.

さらに、ベッド10の上面には、テーブル50をZ軸線に平行な方向に駆動するための、図略のZ軸ボールねじが配置される。そして、ベッド10には、Z軸ボールねじを回転駆動するZ軸モータ12cが配置される。
テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部63が設けられる。そして、チルトテーブル支持部63には、チルトテーブル60がA軸線に平行な軸線回りで回転(揺動)可能に設けられる。チルトテーブル60は、テーブル50内に収容されたA軸モータ61により回転(揺動)される。
Further, on the upper surface of the bed 10, a Z-axis ball screw (not shown) is disposed for driving the table 50 in a direction parallel to the Z-axis. Then, in the bed 10, a Z-axis motor 12c that rotationally drives a Z-axis ball screw is disposed.
A tilt table support 63 for supporting the tilt table 60 is provided on the top surface of the table 50. The tilt table 60 is provided on the tilt table support 63 so as to be rotatable (pivotable) around an axis parallel to the A axis. The tilt table 60 is rotated (rocked) by an A-axis motor 61 accommodated in the table 50.

チルトテーブル60には、ターンテーブル70がC軸線に平行な軸線回りで回転可能に設けられる。ターンテーブル70には、加工物としてスリーブ115を保持する加工物保持具80が装着される。ターンテーブル70は、スリーブ115及び加工物保持具80とともにC軸モータ62(回転駆動装置)により回転される。   The tilt table 60 is provided with a turn table 70 rotatably around an axis parallel to the C-axis. A workpiece holder 80 for holding the sleeve 115 as a workpiece is mounted on the turntable 70. The turntable 70 is rotated by the C-axis motor 62 (rotational drive) together with the sleeve 115 and the workpiece holder 80.

(2.加工用工具)
次に、加工用工具42について図を参照して説明する。ここで、背景技術で述べたように、スリーブ115のギヤ抜け防止部120F,120Bは、スリーブ115の内歯115aの回転軸線一方側Df及び回転軸線他方側Dbに設けられるため、歯車加工装置1においては、ギヤ抜け防止部120Fを切削加工するための加工用工具42(以下、「押し工具42F」という)と、ギヤ抜け防止部120Bを切削加工するための加工用工具42(以下、「引き工具42B」という)が必要となる。
(2. Tool for processing)
Next, the processing tool 42 will be described with reference to the drawings. Here, as described in the background art, the gear slippage preventing portions 120F and 120B of the sleeve 115 are provided on the rotation axis one side Df and the rotation axis other side Db of the inner teeth 115a of the sleeve 115, so the gear machining device 1 In the second embodiment, a processing tool 42 for cutting the gear slip prevention portion 120F (hereinafter referred to as a “push tool 42F”) and a processing tool 42 for cutting the gear slip prevention portion 120B (hereinafter Tool "42B" is required.

押し工具42F(引き工具42B)でねじれ角が異なる一方側左テーパ歯面121f(他方側右テーパ歯面121b)及び一方側右テーパ歯面122f(他方側左テーパ歯面122b)を切削加工する場合、押し工具42Fの押し工具刃42af(引き工具42Bの引き工具刃42ab)の左刃面と右刃面のねじれ角が異なる加工用工具42を用いる方法と、押し工具刃42af(引き工具刃42ab)の左刃面と右刃面のねじれ角が同一の加工用工具42を用いる方法が考えられる。本例では、押し工具刃42af(引き工具刃42ab)の左刃面と右刃面のねじれ角が同一の押し工具42F(引き工具42B)を用いて切削加工する場合を説明する。   The left side taper tooth surface 121f (the other side right taper tooth surface 121b) and the one side right taper tooth surface 122f (the other side left taper tooth surface 122b) having different twist angles are cut by the pressing tool 42F (pulling tool 42B) In the case where the twist angle of the left blade surface and the right blade surface of the push tool blade 42af of the push tool 42F (pull tool blade 42ab of the pull tool 42B) is different, the method using the processing tool 42 and the push tool blade 42af (pull tool blade) It is conceivable to use a processing tool 42 in which the twist angle of the left blade surface and the right blade surface of 42ab) is the same. In this example, the case where cutting is performed using a pressing tool 42F (pulling tool 42B) in which the twist angle of the left blade surface and the right blade surface of the pressing tool blade 42af (pulling tool blade 42ab) is the same will be described.

図3Aに示すように、押し工具42F(引き工具42B)を押し工具42F(引き工具42B)の工具端面42M側から工具軸線L方向に見たときの押し工具刃42af(引き工具刃42ab)の形状は、本例ではインボリュート曲線形状と同一形状に形成される。そして、図3B及び図3Cに示すように、押し工具42Fの押し工具刃42af及び引き工具42Bの引き工具刃42abには、工具端面42M側に工具軸線Lと直角な平面に対し、角度γ傾斜したすくい角が設けられ、工具周面42N側に工具軸線Lと平行な直線に対し、角度δ傾斜した前逃げ角が設けられる。   As shown in FIG. 3A, when the pressing tool 42F (pulling tool 42B) is viewed from the tool end surface 42M side of the pressing tool 42F (pulling tool 42B) in the tool axis L direction, the pressing tool blade 42af (pulling tool blade 42ab) The shape is formed in the same manner as the involute curve shape in this example. Then, as shown in FIGS. 3B and 3C, the pushing tool blade 42af of the pushing tool 42F and the pulling tool blade 42ab of the pulling tool 42B are inclined at an angle γ with respect to a plane perpendicular to the tool axis L toward the tool end surface 42M. A rake angle is provided, and a front clearance angle inclined at an angle δ with respect to a straight line parallel to the tool axis L is provided on the tool circumferential surface 42N side.

そして、図3Dに示すように、押し工具刃42af(引き工具刃42ab)には、工具周面42N側の周方向の幅(両側の刃すじ42bf(42bb)の間隔)が工具端面42M側から刃すじ方向に向かって徐々に小さくなるように、角度ε傾斜した側逃げ角が設けられる。そして、押し工具刃42af(引き工具刃42ab)は、両側の刃すじ42bf(42bb)の中央を通る直線Lbを径方向に見たとき、工具軸線Lに対し角度β傾斜したねじれ角を有する。なお、押し工具42Fは、工具端面42Mとは逆側に工具軸42Aを備え、引き工具42Bは、工具端面42M側に工具軸42Aを備える。   Then, as shown in FIG. 3D, in the pressing tool blade 42af (pulling tool blade 42ab), the circumferential width on the tool circumferential surface 42N side (the distance between the blade streaks 42bf (42bb) on both sides) is from the tool end surface 42M side A side clearance angle inclined by an angle ε is provided so as to gradually decrease in the blade direction. The pushing tool blade 42af (pulling tool blade 42ab) has a twist angle inclined with respect to the tool axis L when viewed in the radial direction as a straight line Lb passing through the center of the blade lines 42bf (42bb) on both sides. The pressing tool 42F is provided with a tool shaft 42A on the opposite side to the tool end surface 42M, and the pulling tool 42B is provided with a tool shaft 42A on the tool end surface 42M side.

歯車加工装置1においては、一方側左テーパ歯面121f(他方側右テーパ歯面121b)を切削加工するときの押し工具42F(引き工具42B)の交差角φfと、一方側右テーパ歯面122f(他方側左テーパ歯面122b)を切削加工するときの押し工具42F(引き工具42B)の交差角φbを異ならせる必要がある。以下では、押し工具42Fを設計する場合について説明するが、引き工具42Bを設計する場合も同様であるので、詳細な説明は省略する。   In the gear processing device 1, the intersection angle φf of the pressing tool 42F (pulling tool 42B) when cutting the one side left tapered tooth surface 121f (the other side right tapered tooth surface 121b) and the one side right tapered tooth surface 122f It is necessary to make the crossing angle φb of the pressing tool 42F (pulling tool 42B) different when cutting (the other side left tapered tooth surface 122b). Although the case where the pressing tool 42F is designed will be described below, since the same applies to the case where the pulling tool 42B is designed, detailed description will be omitted.

スリーブ115の一方側左テーパ歯面121f(一方側右テーパ歯面122f)は、既に形成されたスリーブ115の内歯115aに対し、押し工具42Fで切削加工を行うことで形成される。このため、押し工具42Fの押し工具刃42afは、内歯115aを切削加工中に隣り合う内歯115aに干渉せずに、一方側左サブ歯面121afを含む一方側左テーパ歯面121f(一方側右サブ歯面122afを含む一方側右テーパ歯面122f)を確実に切削加工できる形状にすることが必要となる。   The left tapered tooth surface 121f (one right tapered tooth surface 122f) of the sleeve 115 is formed by cutting the inner teeth 115a of the sleeve 115 already formed with the pressing tool 42F. For this reason, the pressing tool blade 42af of the pressing tool 42F does not interfere with the adjacent internal teeth 115a during cutting of the internal teeth 115a, and the one side left tapered tooth surface 121f including the one side left sub-tooth surface 121af (one It is necessary to make the one side right tapered tooth surface 122f including the side right sub tooth surface 122af into a shape that can be reliably cut and processed.

具体的には、図4A(図4Bは、一方側右テーパ歯面122fの場合である)に示すように、押し工具刃42afが、一方側左テーパ歯面121f(一方側右テーパ歯面122f)の歯すじ長ff(fr)分だけ切削したとき、押し工具刃42afの刃先幅Saが、一方側左サブ歯面121af(一方側右サブ歯面122af)の歯すじ長gf(gr)より大きく、且つ押し工具刃42afのピッチ円Cb上の刃厚Ta(図5参照)が、一方側左テーパ歯面121f(一方側右テーパ歯面122f)とこの一方側左テーパ歯面121f(一方側右テーパ歯面122f)に対向する一方側右テーパ歯面122f(一方側左テーパ歯面121f)の開放端部との距離Hf(以下、歯面間隔Hfという)(Hr(以下、歯面間隔Hrという))より小さくなるように押し工具刃42afを設計することが必要となる。このとき、押し工具刃42afの耐久性、例えば欠損等も考慮して押し工具刃42afの刃先幅Sa及び押し工具刃42afのピッチ円Cb上の刃厚Taを設定する。   Specifically, as shown in FIG. 4A (FIG. 4B is the case of the one right tapered tooth surface 122f), the pressing tool blade 42af has one left tapered tooth surface 121f (one right tapered tooth surface 122f). When cutting by the tooth length ff (fr) of), the cutting edge width Sa of the pushing tool blade 42af is from the tooth length gf (gr) of the left side sub tooth flank 121af (one side right tooth sub face 122af) The blade thickness Ta (see FIG. 5) on the pitch circle Cb of the pressing tool blade 42af is large and is one side left tapered tooth surface 121f (one side right tapered tooth surface 122f) and this one side left tapered tooth surface 121f (one side). The distance Hf to the open end of the one side right tapered tooth surface 122f (one side left tapered tooth surface 121f) opposite to the side right tapered tooth surface 122f) (hereinafter referred to as a tooth interval Hf) (Hr (hereinafter referred to as a tooth surface) From the interval Hr))) Tool blade 42af press so that the fence it is necessary to design a. At this time, the cutting edge width Sa of the pushing tool blade 42af and the blade thickness Ta on the pitch circle Cb of the pushing tool blade 42af are set in consideration of the durability of the pushing tool blade 42af, for example, the loss and the like.

この押し工具刃42afの設計には、図4C(図4Dは、一方側右テーパ歯面122fの場合である)に示すように、先ず、一方側左テーパ歯面121f(一方側右テーパ歯面122f)のねじれ角θf(θb)と押し工具刃42afのねじれ角βとの差で表される交差角φf(φb)(以下、押し工具42Fの交差角φf(φb)という)を設定する必要がある。一方側左テーパ歯面121f(一方側右テーパ歯面122f)のねじれ角θf(θb)は、既知の値であり、押し工具42Fの交差角φf(φb)は、歯車加工装置1によって設定可能範囲が設定されているので、作業者は任意の押し工具42Fの交差角φf(φb)を暫定的に設定する。   As shown in FIG. 4C (FIG. 4D is the case of the right taper tooth flank 122f), firstly, the left taper tooth flank 121f (one right taper tooth flank) is used for the design of the pressing tool blade 42af. It is necessary to set the crossing angle φf (φb) (hereinafter referred to as the crossing angle φf (φb) of the pressing tool 42F) represented by the difference between the twist angle θf (θb) of 122f) and the twist angle β of the pressing tool blade 42af There is. The twist angle θf (θb) of the one side left tapered tooth surface 121f (one side right tapered tooth surface 122f) is a known value, and the crossing angle φf (φb) of the pressing tool 42F can be set by the gear processing device 1 Since the range is set, the operator provisionally sets the crossing angle φf (φb) of the arbitrary pressing tool 42F.

次に、既知の一方側左テーパ歯面121f(一方側右テーパ歯面122f)のねじれ角θf(θb)及び設定した押し工具42Fの交差角φf(φb)から押し工具刃42afのねじれ角βを求め、押し工具刃42afの刃先幅Sa及び押し工具刃42afのピッチ円Cb上の刃厚Taを求める。以上の処理を繰り返すことで、一方側左テーパ歯面121f(一方側右テーパ歯面122f)を切削加工するための最適の押し工具刃42afを有する押し工具42Fを設計する。以下に、押し工具刃42afの刃先幅Sa及び押し工具刃42afのピッチ円Cb上の刃厚Taを求めるための演算例を説明する。   Next, from the twist angle θf (θb) of the known one side left tapered tooth surface 121f (one right tapered tooth surface 122f) and the crossing angle φf (φb) of the set pressing tool 42F, the twist angle β of the pressing tool blade 42af The blade width Ta of the pushing tool blade 42af and the blade thickness Ta on the pitch circle Cb of the pushing tool blade 42af are obtained. By repeating the above process, a pressing tool 42F having an optimum pressing tool blade 42af for cutting the one side left tapered tooth surface 121f (one side right tapered tooth surface 122f) is designed. Hereinafter, a calculation example for determining the blade width Ta of the cutting edge width Sa of the pushing tool blade 42af and the pitch circle Cb of the pushing tool blade 42af will be described.

図5に示すように、押し工具刃42afの刃先幅Saは、刃先円直径da及び刃先円刃厚の半角Ψaで表される(式(1)参照)。   As shown in FIG. 5, the cutting edge width Sa of the pressing tool blade 42 af is represented by a half diameter Ψa of a cutting edge circle diameter da and a cutting edge circular blade thickness (see equation (1)).

Figure 2019118977
Figure 2019118977

刃先円直径daは、ピッチ円直径d及び刃末のたけhaで表され(式(2)参照)、さらに、ピッチ円直径dは、押し工具刃42afの刃数Z、押し工具刃42afの刃すじ42bfのねじれ角β及びモジュールmで表され(式(3)参照)、刃末のたけhaは、転位係数λ及びモジュールmで表される(式(4)参照)。   The tip circle diameter da is represented by a pitch circle diameter d and a tip end blade ha (see equation (2)), and the pitch circle diameter d is a number Z of the press tool blade 42af, and a blade of the press tool blade 42af The twist angle β of the stripe 42bf and the module m are represented (see equation (3)), and the end of the blade ha is represented by the dislocation coefficient λ and the module m (see equation (4)).

Figure 2019118977
Figure 2019118977

Figure 2019118977
Figure 2019118977

Figure 2019118977
Figure 2019118977

刃先円刃厚の半角Ψaは、押し工具刃42afの刃数Z、転位係数λ、圧力角α、正面圧力角αt及び刃先圧力角αaで表される(式(5)参照)。なお、正面圧力角αtは、圧力角α及び押し工具刃42afの刃すじ42bfのねじれ角βで表すことができ(式(6)参照)、刃先圧力角αaは、正面圧力角αt、刃先円直径da及びピッチ円直径dで表すことができる(式(7)参照)。   The half-angle Ψa of the blade edge circular thickness is represented by the number of blades Z of the pushing tool blade 42af, the shift coefficient λ, the pressure angle α, the front pressure angle αt, and the blade pressure angle αa (see equation (5)). The front pressure angle αt can be expressed by the pressure angle α and the twist angle β of the blade 42bf of the pressing tool blade 42af (refer to equation (6)), and the blade pressure angle αa is the front pressure angle αt and the blade circle It can be represented by the diameter da and the pitch circle diameter d (see equation (7)).

Figure 2019118977
Figure 2019118977

Figure 2019118977
Figure 2019118977

Figure 2019118977
Figure 2019118977

また、押し工具刃42afの刃厚Taは、ピッチ円直径d及び刃厚Taの半角Ψで表される(式(8)参照)。   Further, the blade thickness Ta of the pushing tool blade 42af is represented by a half-angle Ψ of the pitch circle diameter d and the blade thickness Ta (see equation (8)).

Figure 2019118977
Figure 2019118977

ピッチ円直径dは、押し工具刃42afの刃数Z、押し工具刃42afの刃すじ42bfのねじれ角β及びモジュールmで表される(式(9)参照)。   The pitch circle diameter d is represented by the number of blades Z of the pushing tool blade 42af, the twist angle β of the cutting edge 42bf of the pushing tool blade 42af, and the module m (see equation (9)).

Figure 2019118977
Figure 2019118977

刃厚Taの半角Ψは、押し工具刃42afの刃数Z、転位係数λ及び圧力角αで表される(式(10)参照)。   The half-angle Ψ of the blade thickness Ta is represented by the number of blades Z of the pushing tool blade 42af, the dislocation coefficient λ, and the pressure angle α (see equation (10)).

Figure 2019118977
Figure 2019118977

以上により、図3Bに示すように、押し工具42Fは、工具端面42Mを図示上方に向けて工具軸線Lに直角な方向から見たとき、押し工具刃42afの刃すじ42bfは、右上方から左下方に傾斜するねじれ角βを有するように設計される。また、同様の方法で、図3Cに示すように、引き工具42Bは、工具端面42Mを図示下方に向けて工具軸線Lに直角な方向から見たとき、押し工具刃42afの刃すじ42bfは、右上方から左下方に傾斜するねじれ角βを有するように設計される。なお、押し工具42Fは、交差角を調整することで、スリーブ115の内歯115aを形成することも可能である。   From the above, as shown in FIG. 3B, when the pressing tool 42F is viewed from the direction perpendicular to the tool axis L with the tool end face 42M facing upward in the figure, the blade streak 42bf of the pressing tool blade 42af is from the upper right to the lower left It is designed to have a twist angle .beta. Further, in the same manner, as shown in FIG. 3C, when the pulling tool 42B faces the tool end surface 42M downward as viewed in the direction perpendicular to the tool axis L, the cutting edge 42bf of the pushing tool blade 42af is It is designed to have a twist angle β which inclines from the upper right to the lower left. The pressing tool 42F can also form the inner teeth 115a of the sleeve 115 by adjusting the crossing angle.

(3.制御装置の構成)
次に、制御装置100の構成について説明する。図1に示すように、制御装置100は、加工制御部101と、連れ回り制御部102と、記憶部103等とを備える。ここで、加工制御部101、連れ回り制御部102及び記憶部103は、それぞれ個別のハードウエアにより構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。
(3. Configuration of control device)
Next, the configuration of the control device 100 will be described. As shown in FIG. 1, the control device 100 includes a processing control unit 101, a co-rotation control unit 102, a storage unit 103, and the like. Here, the processing control unit 101, the co-rotation control unit 102, and the storage unit 103 can be configured by individual hardware, or can be configured to be realized by software.

加工制御部101は、主軸モータ41を制御して、押し工具42F又は引き工具42Bを回転させ、また、X軸モータ11c、Z軸モータ12c、Y軸モータ23cを制御して、スリーブ115と押し工具42F又は引き工具42BとをX軸線に平行な方向、Z軸線に平行な方向、Y軸線に平行な方向に相対移動し、また、A軸モータ61、C軸モータ62を制御して、スリーブ115と押し工具42F又は引き工具42BとをA軸線に平行な軸線回り、C軸線に平行な軸線回りに相対回転させることにより、スリーブ115の切削加工を行う。   The processing control unit 101 controls the spindle motor 41 to rotate the pressing tool 42F or the pulling tool 42B, and controls the X-axis motor 11c, the Z-axis motor 12c, and the Y-axis motor 23c to press the sleeve 115 and The tool 42F or pulling tool 42B is relatively moved in the direction parallel to the X axis, in the direction parallel to the Z axis, in the direction parallel to the Y axis, and by controlling the A axis motor 61 and the C axis motor 62 The sleeve 115 is cut by relatively rotating the pressing tool 42F and the pulling tool 42F or the pulling tool 42B around an axis parallel to the A axis and around an axis parallel to the C axis.

連れ回り制御部102は、詳細は後述するが、主軸モータ41、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、A軸モータ61及びC軸モータ62を制御して、諸元が同じであるスリーブ115の内歯115aと引き工具42Bの引き工具刃42abとを噛み合わせてスリーブ115及び引き工具42Bを連れ回りさせる。ここで、連れ回りとは、引き工具42Bの回転を自由回転状態にするとともにスリーブ115の回転を制御して上記噛み合わせを行うことで、引き工具42Bの回転をスリーブ115の回転に追従させることをいう。   The co-rotation control unit 102 controls the spindle motor 41, the X-axis motor 11c, the Z-axis motor 12c, the Y-axis motor 23c, the A-axis motor 61, and the C-axis motor 62, as described in detail later. The internal teeth 115a of the sleeve 115 and the pulling tool blade 42ab of the pulling tool 42B are engaged to rotate the sleeve 115 and the pulling tool 42B. Here, corotation means making the rotation of the pulling tool 42B follow the rotation of the sleeve 115 by setting the rotation of the pulling tool 42B to a free rotation state and controlling the rotation of the sleeve 115 to perform the above engagement. Say

これにより、スリーブ115の回転位相角及び引き工具42Bの回転位相角の位相合わせは、従来のようにタッチセンサでスリーブ115の内歯115aの位置及び引き工具42Bの引き工具刃42abの位置を測定する作業が必要無く、自動化が可能であるので位相合わせ時間を短縮して加工効率を向上できる。また、タッチセンサを備えた位相合わせ装置が不要となるため、歯車加工装置1のコストを低減できる。   Thereby, the phase alignment of the rotational phase angle of the sleeve 115 and the rotational phase angle of the pulling tool 42B is measured by a touch sensor as in the prior art by measuring the position of the inner teeth 115a of the sleeve 115 and the position of the pulling tool blade 42ab of the pulling tool 42B. Since it is possible to automate the process, it is possible to shorten the phase alignment time and improve the processing efficiency. In addition, since the phasing device including the touch sensor is not necessary, the cost of the gear processing device 1 can be reduced.

また、連れ回り制御部102は、C軸モータ62の駆動電流値を入力して電流値変化を監視し、スリーブ115と引き工具42Bとが接触状態にあることを検出する。スリーブ115の内歯115aと引き工具42Bの引き工具刃42abとを噛み合わせる際、引き工具刃42abの先端部が内歯115aの先端部に当接してしまい、引き工具刃42ab及び内歯115aの噛み合わせを開始できない場合がある。そこで、引き工具刃42abの先端角部が内歯115aの先端角部に接触すると、C軸モータ62に負荷が掛かってC軸モータ62の駆動電流値が上昇するので、スリーブ115と引き工具42Bとが接触状態にあることを検出できる。   Further, the co-rotation control unit 102 inputs a drive current value of the C-axis motor 62, monitors a change in the current value, and detects that the sleeve 115 and the pulling tool 42B are in contact with each other. When meshing the inner teeth 115a of the sleeve 115 with the pulling tool blade 42ab of the pulling tool 42B, the tip of the pulling tool blade 42ab abuts on the tip of the inner teeth 115a, and the pulling tool blade 42ab and the inner teeth 115a It may not be possible to start meshing. Therefore, when the front end corner of the pulling tool blade 42ab contacts the front end corner of the internal tooth 115a, a load is applied to the C-axis motor 62 and the drive current value of the C-axis motor 62 rises, so the sleeve 115 and the pulling tool 42B And can be detected as being in contact with each other.

また、連れ回り制御部102は、上記連れ回りを行った後、主軸モータ41に備えられる図略のエンコーダからの信号に基づいて、引き工具42Bの回転位相角を求めて記憶部103に記憶し、また、C軸モータ62に備えられる図略のエンコーダからの信号に基づいて、スリーブ115の回転位相角を求めて記憶部103に記憶する。これにより、スリーブ115の回転位相角及び引き工具42Bの回転位相角を記憶部103から読み出すことで、引き工具42Bを加工開始位置に迅速且つ正確に位置決めできる。   Further, after the co-rotation control unit 102 performs the above-mentioned co-rotation, the rotational phase angle of the pulling tool 42B is obtained based on a signal from an encoder (not shown) provided on the spindle motor 41 and stored in the storage unit 103. The rotational phase angle of the sleeve 115 is obtained based on a signal from an encoder (not shown) provided in the C-axis motor 62 and stored in the storage unit 103. Thus, by reading out the rotational phase angle of the sleeve 115 and the rotational phase angle of the pulling tool 42B from the storage unit 103, the pulling tool 42B can be positioned quickly and accurately at the processing start position.

記憶部103には、スリーブ115の切削加工を行うための加工データ、及び連れ回りを制御するための連れ回り制御データが予め記憶される。また、記憶部103は、連れ回り後の加工用工具42の回転位相角及びスリーブ115の回転位相角を記憶する。   The storage unit 103 stores in advance processing data for cutting the sleeve 115 and co-rotation control data for controlling co-rotation. Further, the storage unit 103 stores the rotational phase angle of the processing tool 42 and the rotational phase angle of the sleeve 115 after the corotation.

(4.制御装置の加工制御部及び連れ回り制御部による処理)
次に、制御装置100の加工制御部101及び連れ回り制御部102による処理(歯車加工方法)について、図2A−図2Cを参照して説明する。ここで、作業者は、押し工具42F及び引き工具42Bを製作し、押し工具42Fを工具ホルダ45に組み付けて歯車加工装置1の回転主軸40の先端に固定し、引き工具42Bを工具ホルダ45に組み付けて歯車加工装置1の自動工具交換装置の工具ストッカに格納しているものとする。また、スリーブ115は、歯車加工装置1の加工物保持具80に装着されているものとする。また、スリーブ115の内歯115aは、押し工具42Fにより形成するものとする。
(4. Processing by the processing control unit of the control device and the coping control unit)
Next, processing (a gear processing method) by the processing control unit 101 and the co-rotation control unit 102 of the control device 100 will be described with reference to FIGS. 2A to 2C. Here, the worker manufactures the pressing tool 42F and the pulling tool 42B, assembles the pressing tool 42F to the tool holder 45, fixes it to the tip of the rotating spindle 40 of the gear processing apparatus 1, and places the pulling tool 42B on the tool holder 45. It is assumed that it is assembled and stored in the tool stocker of the automatic tool changer of the gear processing apparatus 1. Further, it is assumed that the sleeve 115 is attached to the workpiece holder 80 of the gear machining device 1. Further, the internal teeth 115a of the sleeve 115 are formed by the pressing tool 42F.

制御装置100の加工制御部101は、内歯115aを加工するための交差角及び加工開始位置に押し工具42F及びスリーブ115を配置する(図2AのステップS1)。そして、加工制御部101は、押し工具42Fをスリーブ115と同期回転させながら押し工具42Fをスリーブ115に向かってスリーブ115の回転軸線一方側Dfから回転軸線他方側Dbに送り操作(移動操作)し、スリーブ115の内周を切削加工して内歯115aを形成する(図2AのステップS2)。   The processing control unit 101 of the control device 100 arranges the pressing tool 42F and the sleeve 115 at the intersection angle and the processing start position for processing the internal teeth 115a (step S1 in FIG. 2A). Then, the processing control unit 101 performs the feeding operation (moving operation) of the pressing tool 42F toward the sleeve 115 from one rotation axis Df of the sleeve 115 to the other rotation axis Db while rotating the pressing tool 42F in synchronization with the sleeve 115. The inner periphery of the sleeve 115 is cut to form the internal teeth 115a (step S2 in FIG. 2A).

そして、加工制御部101は、内歯115aの切削加工が完了したら(図2AのステップS3)、一方側左テーパ歯面121fを加工するための交差角φf及び加工開始位置に押し工具42F及びスリーブ115を配置する(図2AのステップS4、第一切削工程)。そして、加工制御部101は、押し工具42Fをスリーブ115と同期回転させながら押し工具42Fをスリーブ115に向かってスリーブ115の回転軸線一方側Dfから回転軸線他方側Dbに送り操作し、内歯115aを切削加工して内歯115aに一方側左サブ歯面121afを含む一方側左テーパ歯面121fを形成する(図2AのステップS5、第一切削工程)。   Then, when the cutting of the internal teeth 115a is completed (step S3 in FIG. 2A), the processing control unit 101 sets the pressing tool 42F and the sleeve at the intersection angle φf and the processing start position for processing one left tapered tooth surface 121f. 115 are arranged (Step S4 in FIG. 2A, first cutting step). Then, the processing control unit 101 feeds the pressing tool 42F toward the sleeve 115 from the rotation axis one side Df of the sleeve 115 to the rotation axis other side Db while rotating the pressing tool 42F in synchronization with the sleeve 115. To form the one side left tapered tooth surface 121f including the one side left sub tooth surface 121af in the internal teeth 115a (Step S5 in FIG. 2A, a first cutting step).

すなわち、図6A−図6Cに示すように、押し工具42Fは、スリーブ115の回転軸線Lw方向への1回もしくは複数回の切削動作で、内歯115aに一方側左サブ歯面121afを含む一方側左テーパ歯面121fを形成する。このときの押し工具42Fは、送り動作及び送り動作と反対方向の戻し動作を行う必要があるが、図6Cに示すように、この反転動作は慣性力が働く。このため、押し工具42Fの送り動作は、一方側左サブ歯面121afを含む一方側左テーパ歯面121fを形成できる一方側左テーパ歯面121fの歯すじ長ffより所定長短い点Qにおいて終了し、戻し動作に移行する。この送り終了点Qは、センサなどによって計測して求めることができるが、必要な加工精度に対して、送り量の精度が十分な場合には、計測しなくても送り量で調整することができる。つまり、点Qまで加工できるように送り量などを調整して、切削加工をすることで、精度良く加工できる。   That is, as shown in FIGS. 6A to 6C, the pushing tool 42F includes the one side left sub-tooth surface 121af in the inner teeth 115a in one or more cutting operations in the direction of the rotational axis Lw of the sleeve 115. The side left tapered tooth surface 121f is formed. The pressing tool 42F at this time needs to perform the feeding operation and the returning operation in the opposite direction to the feeding operation, but as shown in FIG. 6C, this reversing operation exerts an inertial force. For this reason, the feeding operation of the pressing tool 42F is completed at a point Q shorter than the tooth line length ff of the one left tapered tooth surface 121f which can form the one left tapered tooth surface 121f including the one left sub tooth flank 121af. And shift to the return operation. This feed end point Q can be measured and determined by a sensor or the like, but if the feed amount has sufficient accuracy with respect to the required machining accuracy, adjustment by the feed amount may be performed without measurement. it can. That is, by adjusting the feed amount and the like so that the processing can be performed up to the point Q and performing the cutting, the processing can be performed with high accuracy.

そして、加工制御部101は、一方側左テーパ歯面121fの切削加工が完了したら(図2AのステップS6)、一方側右テーパ歯面122fを加工するための交差角φb及び加工開始位置に押し工具42F及びスリーブ115を配置する(図2AのステップS7、第一切削工程)。そして、加工制御部101は、押し工具42Fをスリーブ115と同期回転させながら押し工具42Fをスリーブ115に向かってスリーブ115の回転軸線一方側Dfから回転軸線他方側Dbに送り操作し、内歯115aを切削加工して内歯115aに一方側右サブ歯面122afを含む一方側右テーパ歯面122fを形成する(図2AのステップS8、第一切削工程)。   Then, when the machining of the left tapered tooth flank 121f on one side is completed (Step S6 in FIG. 2A), the machining control unit 101 pushes the intersection angle φb for machining the right tapered tooth flank 122f on one side and the machining start position The tool 42F and the sleeve 115 are disposed (step S7 in FIG. 2A, a first cutting step). Then, the processing control unit 101 feeds the pressing tool 42F toward the sleeve 115 from the rotation axis one side Df of the sleeve 115 to the rotation axis other side Db while rotating the pressing tool 42F in synchronization with the sleeve 115. To form the one side right tapered tooth surface 122f including the one side right sub tooth surface 122af in the internal teeth 115a (step S8 in FIG. 2A, a first cutting step).

そして、加工制御部101は、一方側右テーパ歯面122fの切削加工が完了したら(図2AのステップS9)、スリーブ115の他方側のギヤ抜け防止部120Bの加工が完了したか否かを判断する(図2AのステップS10)。そして、加工制御部101は、スリーブ115の他方側のギヤ抜け防止部120Bの加工が完了したと判断したら全ての処理を終了する。一方、加工制御部101は、スリーブ115の他方側のギヤ抜け防止部120Bの加工が完了していないと判断したら、自動工具交換装置で押し工具42Fを引き工具42Bに交換する(図2AのステップS11)。   Then, when the cutting of the right side tapered tooth surface 122f on one side is completed (Step S9 in FIG. 2A), the processing control unit 101 determines whether or not the processing on the other side of the gear loss prevention portion 120B of the sleeve 115 is completed. (Step S10 of FIG. 2A). Then, if it is determined that the processing of the gear loss prevention unit 120B on the other side of the sleeve 115 is completed, the processing control unit 101 ends all the processing. On the other hand, if the machining control unit 101 determines that the machining of the other gear slippage prevention unit 120B of the sleeve 115 is not completed, the machining control unit 101 changes the pushing tool 42F to the pulling tool 42B with the automatic tool changer (step in FIG. 2A) S11).

連れ回り制御部102は、自動工具交換装置による工具交換完了指令を入力したら、図7Aに示すように、例えば引き工具42Bの工具軸線Lとスリーブ115の回転軸線Lwを一致させ、引き工具42Bをスリーブ115の内周に向けて回転軸線一方側Dfから回転軸線他方側Dbに送り操作する(図2BのステップS12、連れ回り工程)。そして、連れ回り制御部102は、図7Bに示すように、引き工具42Bの引き工具刃42abがスリーブ115の内周における回転軸線Lw方向の中央部115ac(内歯115aの部分)の上方に到達したら送り操作を停止する(図2BのステップS13、連れ回り工程)。   When the tool change completion command is input by the automatic tool changer, the cogwheel control unit 102, as shown in FIG. 7A, for example, causes the tool axis L of the pulling tool 42B to coincide with the rotational axis Lw of the sleeve 115, and sets the pulling tool 42B. The feeding operation is performed from the rotation axis one side Df to the rotation axis other side Db toward the inner periphery of the sleeve 115 (Step S12 in FIG. 2B, a co-rotation step). Then, as shown in FIG. 7B, the pulling tool blade 42ab of the pulling tool 42B reaches above the central portion 115ac (portion of the internal teeth 115a) in the direction of the rotation axis Lw on the inner periphery of the sleeve 115. Then, the feeding operation is stopped (Step S13 in FIG. 2B, a co-rotation step).

連れ回り制御部102は、図7Cに示すように、主軸モータ41の駆動電流をオフにして引き工具42B(主軸40)の回転を自由回転の状態にするとともにC軸モータ62を駆動制御してスリーブ115を通常よりも低速で回転させる(図2BのステップS14、連れ回り工程)。そして、連れ回り制御部102は、図7Dに示すように、引き工具42B(主軸40)をY軸線方向と平行な方向に降下させ、図7Eに示すように、引き工具42Bの引き工具刃42abの先端角部42cbをスリーブ115の内歯115aの先端角部115dに接触させ、引き工具刃42ab及び内歯115aの噛み合わせを開始する(図2BのステップS15、連れ回り工程)。これにより、引き工具42Bは、スリーブ115の回転に追従して回転、すなわち連れ回り状態となる。   As shown in FIG. 7C, the co-rotation control unit 102 turns off the drive current of the spindle motor 41 to freely rotate the pulling tool 42B (spindle 40) and control the C-axis motor 62 to drive. The sleeve 115 is rotated at a lower speed than usual (step S14 in FIG. 2B, co-rotation step). Then, the co-rotation control unit 102 lowers the pulling tool 42B (spindle 40) in the direction parallel to the Y-axis direction as shown in FIG. 7D, and as shown in FIG. 7E, the pulling tool blade 42ab of the pulling tool 42B. The tip end corner portion 42cb of the sleeve 115 is brought into contact with the tip end corner portion 115d of the internal tooth 115a of the sleeve 115, and meshing of the pulling tool blade 42ab and the internal tooth 115a is started (Step S15 in FIG. 2B, corotation process). As a result, the pulling tool 42B rotates following the rotation of the sleeve 115, that is, in a co-rotation state.

このとき、引き工具42Bの引き工具刃42abの先端部42dbが、スリーブ115の内歯115aの先端部115eに当接してしまい、引き工具刃42ab及び内歯115aの噛み合わせを開始できない場合がある。そこで、引き工具刃42abの先端角部が内歯115aの先端角部に接触すると、C軸モータ62に負荷が掛かってC軸モータ62の駆動電流値が上昇するので、連れ回り制御部102は、C軸モータ62の駆動電流値を入力して電流値変化を監視し、スリーブ115と加工用工具42とが接触状態にあることを検出する。   At this time, the tip end 42db of the pulling tool blade 42ab of the pulling tool 42B may abut on the tip end 115e of the inner tooth 115a of the sleeve 115, and the engagement between the pulling tool blade 42ab and the inner tooth 115a may not be started. . Therefore, when the front end corner of the pulling tool blade 42ab contacts the front end corner of the internal tooth 115a, a load is applied to the C-axis motor 62 and the drive current value of the C-axis motor 62 is increased. The drive current value of the C-axis motor 62 is input to monitor the change in the current value, and it is detected that the sleeve 115 and the processing tool 42 are in contact with each other.

連れ回り制御部102は、スリーブ115と加工用工具42とが接触状態にあることを検出したら、図7Fに示すように、さらに引き工具42B(主軸40)をY軸線方向と平行な方向に降下させ、引き工具42Bの引き工具刃42abのピッチ円Cbをスリーブ115の内歯115aのピッチ円Csと一致(接触)させる(図2BのステップS16、連れ回り工程)。これにより、引き工具42Bの引き工具刃42abは、スリーブ115の内歯115aと噛み合わせ状態となる。   When the cog-turning control unit 102 detects that the sleeve 115 and the processing tool 42 are in contact with each other, as shown in FIG. 7F, the pulling tool 42B (spindle 40) is further lowered in a direction parallel to the Y axis. The pitch circle Cb of the pulling tool blade 42ab of the pulling tool 42B is made to coincide (contact) with the pitch circle Cs of the inner teeth 115a of the sleeve 115 (step S16 in FIG. 2B, corotation process). As a result, the pulling tool blade 42ab of the pulling tool 42B is engaged with the inner teeth 115a of the sleeve 115.

連れ回り制御部102は、図7Gに示すように、C軸モータ62の駆動制御を停止してスリーブ115を回転停止させる(図2BのステップS17、連れ回り工程)。そして、連れ回り制御部102は、引き工具42Bの回転位相角及びスリーブ115の回転位相角を読み込んで記憶部103に記憶する(図2BのステップS18、記憶工程)。   As shown in FIG. 7G, the co-rotation control unit 102 stops the drive control of the C-axis motor 62 to stop the rotation of the sleeve 115 (step S17 in FIG. 2B, co-rotation process). Then, the co-rotation control unit 102 reads the rotational phase angle of the pulling tool 42B and the rotational phase angle of the sleeve 115 and stores the read value in the storage unit 103 (step S18 in FIG. 2B, storage step).

加工制御部101は、引き工具42BをY軸線方向と平行な方向に上昇させ、例えば引き工具42Bの工具軸線Lとスリーブ115の回転軸線Lwを一致させた後、スリーブ115の回転軸線一方側Dfから回転軸線他方側Dbに送り操作し、スリーブ115の内周を通過させる(図2BのステップS19、第二加工工程)。そして、加工制御部101は、図8Aに示すように、スリーブ115の他方側右テーパ歯面121bを加工するための交差角φf及び加工開始位置に引き工具42B及びスリーブ115を配置する(図2CのステップS20、第二切削工程)。   The processing control unit 101 raises the pulling tool 42B in a direction parallel to the Y-axis direction, for example, after making the tool axis L of the pulling tool 42B coincide with the rotation axis Lw of the sleeve 115, the rotation axis one side Df of the sleeve 115 To the other side Db of the rotation axis and passes the inner circumference of the sleeve 115 (step S19 in FIG. 2B, second processing step). Then, as shown in FIG. 8A, the processing control unit 101 places the pulling tool 42B and the sleeve 115 at the intersection angle φf for processing the other right tapered tooth surface 121b of the sleeve 115 and the processing start position (FIG. 2C). Step S20, second cutting step).

そして、加工制御部101は、引き工具42Bをスリーブ115と同期回転させながら引き工具42Bをスリーブ115に向かってスリーブ115の回転軸線他方側Dbから回転軸線一方側Dfに戻し操作(移動操作)し、内歯115aを切削加工して内歯115aに他方側右サブ歯面121abを含む他方側右テーパ歯面121bを形成する(図2CのステップS21、第二切削工程)。   Then, the processing control unit 101 performs the return operation (move operation) of the pulling tool 42B toward the sleeve 115 from the rotation axis other side Db of the sleeve 115 to the rotation axis one side Df while rotating the pulling tool 42B in synchronization with the sleeve 115. The other side right tapered tooth surface 121b including the other side right sub tooth surface 121ab is formed on the inner tooth 115a by cutting the inner tooth 115a (step S21 in FIG. 2C, second cutting step).

すなわち、図9A−図9Cに示すように、引き工具42Bは、スリーブ115の回転軸線Lw方向への1回もしくは複数回の切削動作で、内歯115aに他方側右サブ歯面121abを含む他方側右テーパ歯面121bを形成する。このときの引き工具42Bは、戻し動作及び送り動作を行う必要があるが、図9Cに示すように、この反転動作は慣性力が働く。このため、引き工具42Bの戻し動作は、他方側右サブ歯面121abを含む他方側右テーパ歯面121bを形成できる他方側右テーパ歯面121bの歯すじ長ffより所定長短い点Rにおいて終了し、送り動作に移行する。この戻し終了点Rは、センサなどによって計測して求めることができるが、必要な加工精度に対して、送り量の精度が十分な場合には、計測しなくても送り量で調整することができる。つまり、点Rまで加工できるように送り量などを調整して、切削加工をすることで、精度良く加工できる。   That is, as shown in FIGS. 9A to 9C, the pulling tool 42B includes the other side right sub-tooth surface 121ab on the inner teeth 115a by one or more cutting operations in the direction of the rotational axis Lw of the sleeve 115. The side right tapered tooth surface 121b is formed. At this time, the pulling tool 42B needs to perform a returning operation and a feeding operation, but as shown in FIG. 9C, this reversing operation exerts an inertial force. Therefore, the return operation of the pulling tool 42B ends at a point R which is shorter by a predetermined length than the tooth line length ff of the other side right tapered tooth surface 121b which can form the other side right tapered tooth surface 121b including the other side right sub tooth surface 121ab. Shift to the feed operation. Although this return end point R can be measured and determined by a sensor or the like, if the accuracy of the feed amount is sufficient for the required processing accuracy, adjustment by the feed amount may be performed without measurement. it can. That is, by adjusting the feed amount and the like so as to be able to process up to the point R and performing the cutting process, it is possible to perform the process with high accuracy.

そして、加工制御部101は、他方側右テーパ歯面121bの切削加工が完了したら(図2CのステップS22)、図8Bに示すように、他方側左テーパ歯面122bを加工するための交差角φb及び加工開始位置に引き工具42B及びスリーブ115を配置する(図2CのステップS23、第二切削工程)。そして、加工制御部101は、引き工具42Bをスリーブ115と同期回転させながら引き工具42Bをスリーブ115に向かってスリーブ115の回転軸線他方側Dbから回転軸線一方側Dfに戻し操作し、内歯115aを切削加工して内歯115aに他方側左サブ歯面122abを含む他方側左テーパ歯面122bを形成する(図2CのステップS24、第二切削工程)。   Then, when cutting of the other side right tapered tooth surface 121b is completed (step S22 in FIG. 2C), the processing control unit 101 intersects the angle for processing the other side left tapered tooth surface 122b as shown in FIG. 8B. The pulling tool 42B and the sleeve 115 are disposed at the φb and the processing start position (step S23 in FIG. 2C, second cutting step). Then, the processing control unit 101 performs an operation to return the pulling tool 42B toward the sleeve 115 from the rotation axis other side Db of the sleeve 115 to the rotation axis one side Df while rotating the pulling tool 42B in synchronization with the sleeve 115. To form the other side left tapered tooth surface 122b including the other side left sub-tooth surface 122ab on the inner teeth 115a (step S24 in FIG. 2C, second cutting step).

そして、加工制御部101は、他方側左テーパ歯面122bの切削加工が完了したら(図2CのステップS25)、スリーブ115の一方側のギヤ抜け防止部120Fの加工が完了したか否かを判断する(図2CのステップS26)。そして、加工制御部101は、スリーブ115の一方側のギヤ抜け防止部120Fの加工が完了していないと判断したら、引き工具42Bをスリーブ115の回転軸線他方側Dbから回転軸線一方側Dfに戻し操作し、スリーブ115の内周を通過させ(図2CのステップS27)、図2AのステップS1に進む。一方、加工制御部101は、スリーブ115の一方側のギヤ抜け防止部120Fの加工が完了したと判断したら、全ての処理を終了する。   Then, when the cutting of the other left tapered tooth surface 122b is completed (step S25 in FIG. 2C), the processing control unit 101 determines whether or not the processing of the gear loss prevention portion 120F on one side of the sleeve 115 is completed. (Step S26 of FIG. 2C). Then, if the processing control unit 101 determines that the processing of the gear disengagement prevention unit 120F on one side of the sleeve 115 is not completed, the pulling tool 42B is returned from the rotation axis other side Db of the sleeve 115 to the rotation axis one side Df. Then, the inner circumference of the sleeve 115 is passed (step S27 in FIG. 2C), and the process proceeds to step S1 in FIG. 2A. On the other hand, when it is determined that the processing of the gear loss prevention unit 120F on one side of the sleeve 115 is completed, the processing control unit 101 ends all the processing.

(5.その他)
上述の実施形態では、加工制御部101は、スリーブ115の内歯115aを押し工具42Fで形成する場合を説明したが、ブローチ加工やギヤシェーパ加工等により形成した後、ブローチ加工用工具やギヤシェーパ加工用工具等を押し工具42Fに工具交換してギヤ抜け防止部120Fを形成するようにしてもよい。連れ回り制御部102は、この工具交換時に連れ回り制御を行う。これにより、加工効率を向上できる。
(5. Other)
In the above embodiment, the processing control unit 101 has described the case where the internal teeth 115a of the sleeve 115 are formed by the pressing tool 42F. A tool or the like may be pressed to change the tool to the tool 42F to form the gear slippage prevention portion 120F. The co-rotation control unit 102 performs co-rotation control at the time of this tool change. This can improve the processing efficiency.

また、連れ回り制御部102は、引き工具42Bの回転を自由回転状態にするとともにスリーブ115の回転を制御する構成とした。しかし、スリーブ115を押し工具42Fで荒切削加工を行った後、スリーブ115を加工物保持具80から取り外して焼入れし、スリーブ115を加工物保持具80に取付けて押し工具42Fで仕上げ切削加工を行う場合、連れ回り制御部102は、スリーブ115の回転を自由回転状態にするとともに押し工具42Fの回転を制御して連れ回り制御を行う構成としてもよい。この場合、連れ回り制御部102は、主軸モータ41の駆動電流値を監視して、スリーブ115と押し工具42Fとが接触状態にあることを検出する。   Further, the co-rotation control unit 102 is configured to freely rotate the pulling tool 42B and control the rotation of the sleeve 115. However, after roughing the sleeve 115 with the pressing tool 42F, the sleeve 115 is removed from the workpiece holder 80 and hardened, and the sleeve 115 is attached to the workpiece holder 80 and finished cutting with the pressing tool 42F In the case where the rotation is performed, the rotation control unit 102 may be configured to perform rotation control by controlling the rotation of the pressing tool 42F while setting the rotation of the sleeve 115 to a free rotation state. In this case, the co-rotation control unit 102 monitors the drive current value of the spindle motor 41 to detect that the sleeve 115 and the pressing tool 42F are in contact with each other.

また、連れ回り制御部102は、スリーブ115の内歯115aに対し連れ回り制御を行う場合を説明したが、外歯に対しても同様に連れ回り制御は可能である。また、加工物としてシンクロメッシュ機構110のスリーブ115を切削加工する際に連れ回り制御を適用したが、円筒形状、円盤形状の加工物でよく、内周(内歯)、外周(外歯)のいずれか一方又は両方に複数の歯面(異なる複数の歯すじ、歯形(歯先、歯元))を同様に切削加工する際に連れ回り制御を適用可能である。また、クラウニング、レリービングなどの連続変化する歯すじ、歯形(歯先、歯元)も同様に切削加工する際に連れ回り制御を適用可能である。   Further, although the case in which the cog-turn control unit 102 performs the cog-rotation control on the internal teeth 115a of the sleeve 115 has been described, the co-rotation control can be similarly performed on the external teeth. In addition, in the case of cutting the sleeve 115 of the synchromesh mechanism 110 as a workpiece, the co-rotation control is applied, but a cylindrical or disk shaped workpiece may be used, and the inner circumference (inner teeth) and the outer circumference (outer teeth) It is possible to apply rotation control when similarly cutting a plurality of tooth surfaces (different tooth lines, tooth shapes (tooth tips, tooth roots)) to one or both of them. In addition, in the case of cutting of continuously changing tooth lines such as crowning and relieving, and tooth forms (tooth tips, tooth roots), rotational control can also be applied.

また、特に、加工用工具42の回転軸線とスリーブ115等の加工物の回転軸線とが垂直でなく、加工用工具42と加工物との回転を同期させながら、高速に回転して加工する方法(ギヤスカイビング加工)は、高効率に加工可能となるが、加工物の歯すじ精度(歯形精度)を高精度に保つためには、加工用工具42の回転方向の位置(刃の位置)と加工物の回転方向の位置(歯の位置)の位相を合わせる必要があり、上記の連れ回り制御によって、位相合わせを行うと加工用工具42の回転方向の位置(刃の位置)と加工物の回転方向の位置(歯の位置)の位相を高精度に合わせることが可能となり、高精度な加工ができる。   Further, in particular, a method of processing by rotating at a high speed while the rotation axis of the processing tool 42 and the rotation axis of the workpiece such as the sleeve 115 are not perpendicular and the rotation of the processing tool 42 and the workpiece is synchronized. (Gear skiving) can be machined with high efficiency, but in order to maintain the tooth accuracy (tooth shape accuracy) of the workpiece with high accuracy, the position of the machining tool 42 in the rotational direction (the position of the blade) It is necessary to match the phase of the position in the rotational direction of the workpiece (the position of the teeth), and when phase alignment is performed by the above-mentioned corotational control, the position of the processing tool 42 in the rotational direction (the position of the blade) and the workpiece It is possible to match the phase of the position in the rotational direction (the position of the tooth) with high accuracy, and high-precision processing can be performed.

また、上述の例では、5軸マシニングセンタである歯車加工装置1は、スリーブ115をA軸旋回可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、加工用工具42をA軸旋回可能とする構成としてもよい。また、本発明をマシニングセンタに適用する場合を説明したが、歯車加工の専用機に対しても同様に適用可能である。   Moreover, in the above-mentioned example, the gear machining device 1 which is a 5-axis machining center is configured such that the sleeve 115 can be pivoted on the A-axis. On the other hand, the 5-axis machining center may be configured to be capable of turning the processing tool 42 along the A axis as a vertical machining center. Moreover, although the case where this invention was applied to a machining center was demonstrated, it is applicable similarly to the exclusive machine of gear processing.

1:歯車加工装置、 42:加工用工具、 42F:押し工具、 42B:引き工具、 42af:押し工具刃、 42ab:引き工具刃、 42bf,42bb:刃すじ、 100:制御装置、 101:加工制御部、 102:連れ回り制御部、 103:記憶部、 115:スリーブ(加工物)、 115a:歯、 115A:左側面、 115B:右側面、 115b:左歯面、 115c:右歯面、 121f:一方側左テーパ歯面、 122f:一方側右テーパ歯面、 121b:他方側右テーパ歯面、 122b:他方側左テーパ歯面、 β:刃すじのねじれ角、 θf,θb:歯面のねじれ角、 φf,φb:交差角、 Cb,Cs:ピッチ円   1: Gear processing device, 42: Processing tool, 42F: Push tool, 42B: Pull tool, 42af: Push tool blade, 42ab: Pull tool blade, 42bf, 42bb: Blade streaks, 100: Control device, 101: Machining control The part 102: co-rotation control part 103: storage part 115: sleeve (workpiece) 115a: tooth 115A: left side 115B: right side 115b: left tooth side 115c: right tooth side 121f: One side left tapered tooth surface, 122f: one side right tapered tooth surface, 121b: the other side right tapered tooth surface, 122b: the other side left tapered tooth surface, β: twist angle of blade line, θf, θb: twist of tooth surface Angle, φf, φb: Crossing angle, Cb, Cs: Pitch circle

Claims (4)

加工物の回転軸線に対し傾斜した回転軸線を有し且つ外周に複数の工具刃を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に移動させて歯車の切削加工を制御する制御装置を備える歯車加工装置であって、
前記制御装置は、
前記加工物及び前記加工用工具の一方を他の前記加工物及び前記加工用工具の一方に交換したとき、交換した前記加工物及び前記加工用工具の一方の回転を自由回転の状態にするとともに交換していない前記加工物及び前記加工用工具の他方の回転を制御して、前記加工物における既加工の前記歯車の歯と前記加工用工具の工具刃とを噛み合わせて前記加工物及び前記加工用工具を連れ回りさせる連れ回り制御部と、
前記連れ回り制御部で前記加工物及び前記加工用工具の連れ回りを制御した後、前記加工物及び前記加工用工具の各回転位相角を記憶する記憶部と、
交換前の前記加工物及び前記加工用工具の切削加工を行い、前記記憶部に記憶される前記加工物及び前記加工用工具の各回転位相角に基づいて、交換後の前記加工物及び前記加工用工具の回転位相角の位相合わせを行い、交換後の前記加工物及び前記加工用工具の切削加工を行う加工制御部と、を備える歯車加工装置。
Using a processing tool having a rotational axis inclined with respect to the rotational axis of the workpiece and having a plurality of tool blades on the outer periphery, the processing tool is rotated in synchronization with the workpiece while rotating in the rotational axis direction of the workpiece A gear machining apparatus comprising a control device that moves the relative movement to control cutting of the gear,
The controller is
When one of the workpiece and the processing tool is replaced with one of the other workpiece and the processing tool, rotation of one of the replaced workpiece and the processing tool is freely rotated. The rotation of the other of the non-replaced workpiece and the processing tool is controlled to mesh the teeth of the already processed gear of the workpiece with the tool blade of the processing tool to control the workpiece and the workpiece. A rotation control unit that rotates a processing tool;
A storage unit that stores rotational phase angles of the work and the processing tool after the co-rotation control unit controls the co-rotation of the workpiece and the processing tool;
The workpiece and the processing tool before replacement are cut, and the workpiece and the processing after replacement are processed based on the rotational phase angles of the workpiece and the processing tool stored in the storage unit. A gear processing apparatus comprising: a processing control unit that performs phase alignment of rotational phase angles of a tool and performs cutting processing of the workpiece after replacement and the processing tool.
前記連れ回り制御部は、前記歯車の歯のピッチ円と前記加工用工具の工具刃のピッチ円とを一致させて噛み合わせ状態にする、請求項1に記載の歯車加工装置。   2. The gear machining device according to claim 1, wherein the co-rotation control unit causes the pitch circle of the teeth of the gear and the pitch circle of the tool blade of the machining tool to coincide with each other to bring them into meshing state. 前記連れ回り制御部は、前記加工物及び前記加工用工具の一方の回転駆動装置の駆動電流値に基づいて、前記歯車の歯と前記加工用工具の工具刃とが噛み合わせ後に接触状態にあることを検出する、請求項1又は2に記載の歯車加工装置。   The co-rotation control unit is in a contact state after the teeth of the gear and the tool blade of the processing tool are engaged based on the drive current value of the rotational drive device of the workpiece and the processing tool. The gear processing apparatus of Claim 1 or 2 which detects that. 加工物の回転軸線に対し傾斜した回転軸線を有し且つ外周に複数の工具刃を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に移動させて歯車を切削加工する歯車加工方法であって、
前記加工物及び前記加工用工具の一方を他の前記加工物及び前記加工用工具の一方に交換する前の前記加工物及び前記加工用工具の切削加工を行う第一切削工程と、
前記加工物及び前記加工用工具の一方を他の前記加工物及び前記加工用工具の一方に交換したとき、交換した前記加工物及び前記加工用工具の一方の回転を自由回転の状態にするとともに交換していない前記加工物及び前記加工用工具の他方の回転を制御して、前記加工物における既加工の前記歯車の歯と前記加工用工具の工具刃とを噛み合わせて前記加工物及び前記加工用工具を連れ回りさせる連れ回り工程と、
前記加工物及び前記加工用工具を連れ回りさせた後、前記加工物及び前記加工用工具の各回転位相角を記憶する記憶工程と、
記憶した前記加工物及び前記加工用工具の各回転位相角に基づいて、交換した後の前記加工物及び前記加工用工具の一方の回転位相角の位相合わせを行う位相合わせ工程と、
交換した後の前記加工物及び前記加工用工具の切削加工を行う第二切削工程と、を備える歯車加工方法。
Using a processing tool having a rotational axis inclined with respect to the rotational axis of the workpiece and having a plurality of tool blades on the outer periphery, the processing tool is rotated in synchronization with the workpiece while rotating in the rotational axis direction of the workpiece A gear machining method of relatively moving to cut a gear, wherein
A first cutting step of cutting the workpiece and the processing tool before replacing one of the workpiece and the processing tool with one of the other workpiece and the processing tool;
When one of the workpiece and the processing tool is replaced with one of the other workpiece and the processing tool, rotation of one of the replaced workpiece and the processing tool is freely rotated. The rotation of the other of the non-replaced workpiece and the processing tool is controlled to mesh the teeth of the already processed gear of the workpiece with the tool blade of the processing tool to control the workpiece and the workpiece. A turning process for bringing a processing tool to a turn;
A storage step of storing rotational phase angles of the workpiece and the processing tool after rotating the workpiece and the processing tool together;
A phase alignment step of performing phase alignment of one of the rotational phase angles of the workpiece and the processing tool after replacement based on the stored rotational phase angles of the workpiece and the processing tool;
And a second cutting step of cutting the workpiece after replacement and the processing tool.
JP2017253921A 2017-12-28 2017-12-28 Gear processing equipment and gear processing method Active JP7003656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253921A JP7003656B2 (en) 2017-12-28 2017-12-28 Gear processing equipment and gear processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253921A JP7003656B2 (en) 2017-12-28 2017-12-28 Gear processing equipment and gear processing method

Publications (2)

Publication Number Publication Date
JP2019118977A true JP2019118977A (en) 2019-07-22
JP7003656B2 JP7003656B2 (en) 2022-01-20

Family

ID=67306766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253921A Active JP7003656B2 (en) 2017-12-28 2017-12-28 Gear processing equipment and gear processing method

Country Status (1)

Country Link
JP (1) JP7003656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413794B2 (en) 2020-01-24 2024-01-16 株式会社ジェイテクト Gear processing equipment and gear processing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603826B1 (en) * 1976-02-02 1977-06-08 Helmut Droeschel Shift sleeve with rectified rear joints
JPS61152321A (en) * 1984-12-25 1986-07-11 Hino Motors Ltd Nc work for tooth flank of gear and device thereof
JPH04193414A (en) * 1990-11-27 1992-07-13 Nissan Motor Co Ltd Finishing method for gear
JPH05301113A (en) * 1992-04-23 1993-11-16 Honda Motor Co Ltd Automatic engagement method and device for gear grinding device
JPH07227716A (en) * 1994-02-18 1995-08-29 Toyo A Tec Kk Grinding wheel stop contoller of gear honing machine
JP2004001206A (en) * 2002-04-19 2004-01-08 Kanzaki Kokyukoki Mfg Co Ltd Gear finishing method by synchronous driving
JP2006341366A (en) * 2005-05-12 2006-12-21 Kanzaki Kokyukoki Mfg Co Ltd Internal shaving attachment
JP2012045687A (en) * 2010-08-30 2012-03-08 Aisin Seiki Co Ltd Method of manufacturing gear
JP2012148352A (en) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd Phase adjustment device and method for gear grinding machine
JP2016155175A (en) * 2015-02-23 2016-09-01 株式会社ジェイテクト Gear processor and gear processing method
JP6064723B2 (en) * 2013-03-22 2017-01-25 株式会社ジェイテクト Gear processing equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603826B1 (en) * 1976-02-02 1977-06-08 Helmut Droeschel Shift sleeve with rectified rear joints
JPS61152321A (en) * 1984-12-25 1986-07-11 Hino Motors Ltd Nc work for tooth flank of gear and device thereof
JPH04193414A (en) * 1990-11-27 1992-07-13 Nissan Motor Co Ltd Finishing method for gear
JP3000668B2 (en) * 1990-11-27 2000-01-17 日産自動車株式会社 Gear finishing method
JPH05301113A (en) * 1992-04-23 1993-11-16 Honda Motor Co Ltd Automatic engagement method and device for gear grinding device
JPH07227716A (en) * 1994-02-18 1995-08-29 Toyo A Tec Kk Grinding wheel stop contoller of gear honing machine
JP2004001206A (en) * 2002-04-19 2004-01-08 Kanzaki Kokyukoki Mfg Co Ltd Gear finishing method by synchronous driving
JP2006341366A (en) * 2005-05-12 2006-12-21 Kanzaki Kokyukoki Mfg Co Ltd Internal shaving attachment
JP2012045687A (en) * 2010-08-30 2012-03-08 Aisin Seiki Co Ltd Method of manufacturing gear
JP2012148352A (en) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd Phase adjustment device and method for gear grinding machine
JP6064723B2 (en) * 2013-03-22 2017-01-25 株式会社ジェイテクト Gear processing equipment
JP2016155175A (en) * 2015-02-23 2016-09-01 株式会社ジェイテクト Gear processor and gear processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413794B2 (en) 2020-01-24 2024-01-16 株式会社ジェイテクト Gear processing equipment and gear processing method

Also Published As

Publication number Publication date
JP7003656B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US9440299B2 (en) Method of manufacturing multiple identical gears using a gear cutting machine
JP5091164B2 (en) Method for machining bevel gears in the index method to complete the correction of the index error
KR101721969B1 (en) Method for the location determination of the involutes in gears
US11033974B2 (en) Gear machining apparatus and gear machining method
JP2017064903A (en) Gear blank deburring method
WO2010055766A1 (en) Method of measuring gear
JP6798992B2 (en) Methods, tool configurations, and gear trimmers for machining teeth
US11077508B2 (en) Gear machining apparatus and gear machining method
US20100221080A1 (en) Device for generation machining a workpiece clamped in a machine tool and a method for manufacturing a workpiece having a gearing
US20190314911A1 (en) Vorrichtung zur anfasbearbeitung eines werkstücks
JP7321665B2 (en) Method for automatic measurement of external dimensions of gear cutting machine tools
JP7052241B2 (en) Gear processing equipment and gear processing method
CN108015361B (en) Gear machining device and gear machining method
JP2003191131A (en) Method for machining essentially cylindrical internal gear or external gear
CN102922045A (en) Gear grinding machine and control method thereof
US20190024729A1 (en) Machining device and machining method
JP2019118977A (en) Gear processor and gear processing method
JP2019018335A (en) Processing device and processing method
JP7052194B2 (en) Gear processing equipment and gear processing method
KR101200171B1 (en) Post Processing Method for Rough Machining of Drum Cam with Rotational Followers using 5-Axis CNC Machine
JP7413666B2 (en) Gear processing method
JP2016155175A (en) Gear processor and gear processing method
JP7413794B2 (en) Gear processing equipment and gear processing method
JP2019123030A (en) Gear processing device and gear processing method
CN105555451A (en) Measuring geometry, measuring device comprising said type of measuring geometry and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7003656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150