JP6871675B2 - Gear processing equipment and gear processing method - Google Patents

Gear processing equipment and gear processing method Download PDF

Info

Publication number
JP6871675B2
JP6871675B2 JP2015205565A JP2015205565A JP6871675B2 JP 6871675 B2 JP6871675 B2 JP 6871675B2 JP 2015205565 A JP2015205565 A JP 2015205565A JP 2015205565 A JP2015205565 A JP 2015205565A JP 6871675 B2 JP6871675 B2 JP 6871675B2
Authority
JP
Japan
Prior art keywords
tool
machining
polishing
blade
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015205565A
Other languages
Japanese (ja)
Other versions
JP2016093881A (en
Inventor
琳 張
琳 張
尚 大谷
尚 大谷
吉次 竹下
吉次 竹下
中野 浩之
浩之 中野
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014226843 priority Critical
Priority to JP2014226843 priority
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority claimed from US14/919,946 external-priority patent/US9623502B2/en
Publication of JP2016093881A publication Critical patent/JP2016093881A/en
Application granted granted Critical
Publication of JP6871675B2 publication Critical patent/JP6871675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加工用工具及び加工物を同期回転させて切削加工により歯車を加工する歯車加工装置及び歯車加工方法に関する。 The present invention relates to a gear processing apparatus and a gear processing method for processing a gear by cutting by rotating a processing tool and a workpiece synchronously.
切削加工により内歯及び外歯を加工する有効な装置としては、例えば、特許文献1に記載の加工装置がある。この加工装置は、回転軸線回りに回転可能な加工物と、加工物の回転軸線に対して所定の角度で傾斜した回転軸線回り、すなわち交差角を有する回転軸線回りに回転可能な加工用工具、例えば複数枚の工具刃を有するカッタとを高速で同期回転させ、加工用工具を加工物の回転軸線方向に送って切削加工することにより歯を創成する加工装置である。そして、特許文献2には、内歯車加工において、加工用工具の位置や回転を決定して交差角を設定することが記載されている。 As an effective device for processing internal teeth and external teeth by cutting, for example, there is a processing device described in Patent Document 1. This processing device includes a workpiece that can rotate around the rotation axis and a machining tool that can rotate around the rotation axis that is inclined at a predetermined angle with respect to the rotation axis of the workpiece, that is, around the rotation axis that has an intersection angle. For example, it is a processing device that creates teeth by synchronously rotating a cutter having a plurality of tool blades at high speed and sending a processing tool in the direction of the rotation axis of the workpiece to perform cutting. Further, Patent Document 2 describes that in internal gear machining, the position and rotation of the machining tool are determined to set the crossing angle.
特開平1−159126号公報Japanese Unexamined Patent Publication No. 1-159126 特許第4468632号公報Japanese Patent No. 4468632
上述の加工用工具の工具刃は、工具端面において加工される歯車と噛み合う歯の形状と同一形状に形成される。そして、加工用工具の工具刃の刃先が摩耗した場合は、摩耗した刃先を研磨して再利用する。しかし、当該研磨量が、所定量以上に及ぶと、加工用工具の工具刃の刃先形状が崩れ、加工精度が低下する問題がある。 The tool blade of the above-mentioned machining tool is formed to have the same shape as the tooth that meshes with the gear to be machined on the tool end face. Then, when the cutting edge of the tool blade of the machining tool is worn, the worn cutting edge is polished and reused. However, if the amount of polishing exceeds a predetermined amount, there is a problem that the shape of the cutting edge of the tool blade of the machining tool is deformed and the machining accuracy is lowered.
本発明は、このような事情に鑑みてなされたものであり、工具刃を工具端面に形成した加工用工具を用いて切削加工により歯車を加工する際の加工精度を長期に亘って維持できる歯車加工装置及び歯車加工方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a gear capable of maintaining machining accuracy for a long period of time when machining a gear by cutting using a machining tool having a tool blade formed on a tool end face. It is an object of the present invention to provide a processing apparatus and a gear processing method.
本発明の歯車加工装置は、加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車を切削加工する歯車加工装置である。
前記加工用工具の工具刃の工具軸線方向の端面は、すくい面であり、前記工具刃の外周面は、前逃げ面であり、前記工具刃において前記端面のみの研磨を行うことにより、前記工具刃の前記端面の研磨前における前記工具刃の端面形状と研磨後における前記工具刃の端面形状は、異なる形状であり、且つ、前記工具刃の前記端面の研磨前後における前記工具刃のねじれ角は同一である。
前記歯車加工装置は、前記加工用工具の工具刃の研磨前における前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態、及び、前記加工用工具の工具刃の研磨後における前記加工用工具の工具状態を記憶する工具状態記憶部と、前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、前記加工用工具の工具刃の研磨前は、前記工具状態記憶部に記憶された前記研磨前における前記加工用工具の工具状態で前記加工物の加工を行い、前記加工用工具の工具刃の研磨後は、前記工具状態記憶部に記憶された前記研磨後における前記加工用工具の工具状態で前記加工物の加工を行う加工制御部とを備える。
前記工具状態記憶部は、前記工具状態として、前記加工物の回転軸線に対する前記加工用工具の傾斜を表す交差角、及び、前記加工用工具の工具端面と工具軸線との交点が前記加工物の回転軸線からずれているオフセット量を記憶する。前記研磨前における前記工具状態としての前記交差角と前記研磨後における前記工具状態としての前記交差角とは、異なる角度であり、且つ、前記研磨前における前記工具状態としての前記オフセット量と前記研磨後における前記工具状態としての前記オフセット量とは、異なる。前記加工用工具の工具刃の研磨前と研磨後で前記加工物の加工を行う。
The gear processing apparatus of the present invention uses a machining tool having a rotation axis inclined with respect to the rotation axis of the workpiece, and while rotating the machining tool synchronously with the workpiece, it is relative to the rotation axis direction of the workpiece. It is a gear processing device that cuts gears by feed operation.
The end face of the tool blade of the machining tool in the tool axis direction is a rake face, and the outer peripheral surface of the tool blade is a front flank surface. By polishing only the end face of the tool blade, the tool The end face shape of the tool blade before polishing the end face of the blade and the end face shape of the tool blade after polishing are different shapes, and the twist angle of the tool blade before and after polishing the end face of the tool blade is It is the same.
The gear processing device is a tool state which is a relative position or posture of the processing tool with respect to the workpiece before polishing the tool blade of the processing tool, and after polishing the tool blade of the processing tool. The tool state storage unit that stores the tool state of the machining tool and the machining tool and the work piece are synchronously rotated in the same direction according to the ratio of the number of teeth to rotate the axis of rotation of the work piece and the work piece. Machining is performed by gradually shortening the distance between the axes of the rotation axis of the tool, and before polishing the tool blade of the machining tool, the tool state of the machining tool before polishing is stored in the tool state storage unit. Machining control in which the workpiece is machined and after the tool blade of the machining tool is polished, the workpiece is machined in the tool state of the machining tool after the polishing stored in the tool state storage unit. It has a part.
In the tool state storage unit, as the tool state, the intersection angle representing the inclination of the machining tool with respect to the rotation axis of the workpiece and the intersection of the tool end face of the machining tool and the tool axis are the workpieces. The amount of offset deviated from the rotation axis is stored. The crossing angle as the tool state before polishing and the crossing angle as the tool state after polishing are different angles, and the offset amount as the tool state before polishing and the polishing. It is different from the offset amount as the tool state later. The workpiece is machined before and after polishing the tool blade of the machining tool.
これにより、研磨前後のそれぞれにおける最適な加工用工具の工具状態を求めることができ、研磨回数が増加しても加工精度を維持できる。よって、加工用工具の長寿命化を図ることができ、高精度且つ低コストな歯車を得ることができる。 As a result, the optimum tool state of the machining tool before and after polishing can be obtained, and the machining accuracy can be maintained even if the number of polishings increases. Therefore, the life of the machining tool can be extended, and high-precision and low-cost gears can be obtained.
本発明の歯車加工方法は、加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車を切削加工する歯車加工方法である。
前記加工用工具の工具刃の工具軸線方向の端面は、すくい面であり、前記工具刃の外周面は、前逃げ面であり、前記工具刃において前記端面のみの研磨を行うことにより、前記工具刃の前記端面の研磨前における前記工具刃の端面形状と研磨後における前記工具刃の端面形状は、異なる形状であり、且つ、前記工具刃の前記端面の研磨前後における前記工具刃のねじれ角は同一である。
前記歯車加工方法は、前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、前記加工用工具の工具刃の研磨前は、工具状態記憶部に記憶された前記研磨前における前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態で前記加工物の加工を行い、前記加工用工具の工具刃の研磨後は、前記工具状態記憶部に記憶された前記研磨後における前記加工用工具の工具状態で前記加工物の加工を行い、
前記加工用工具の工具刃の研磨前と研磨後で前記加工物の切削加工を行う。
前記工具状態は、前記加工物の回転軸線に対する前記加工用工具の傾斜を表す交差角、及び、前記加工用工具の工具端面と工具軸線との交点が前記加工物の回転軸線からずれているオフセット量である。前記研磨前における前記工具状態としての前記交差角と前記研磨後における前記工具状態としての前記交差角とは、異なる角度であり、且つ、前記研磨前における前記工具状態としての前記オフセット量と前記研磨後における前記工具状態としての前記オフセット量とは、異なる。
The gear machining method of the present invention uses a machining tool having a rotation axis inclined with respect to the rotation axis of the workpiece, and while rotating the machining tool synchronously with the workpiece, it is relative to the rotation axis direction of the workpiece. This is a gear processing method that cuts gears by feeding them to.
The end face of the tool blade of the machining tool in the tool axis direction is a rake face, and the outer peripheral surface of the tool blade is a front flank surface. By polishing only the end face of the tool blade, the tool The end face shape of the tool blade before polishing the end face of the blade and the end face shape of the tool blade after polishing are different shapes, and the twist angle of the tool blade before and after polishing the end face of the tool blade is It is the same.
In the gear machining method, the machining tool and the machining tool are rotated synchronously in the same direction according to the ratio of the number of teeth, and the distance between the rotation axis of the machining tool and the rotation axis of the machining tool is gradually increased. Before polishing the tool blade of the machining tool, the tool state is the relative position or orientation of the machining tool with respect to the workpiece before polishing, which is stored in the tool state storage unit. After polishing the tool blade of the machining tool, the workpiece is machined in the tool state of the machining tool after the polishing stored in the tool state storage unit.
The workpiece is cut before and after polishing the tool blade of the machining tool.
The tool state includes an intersection angle representing the inclination of the machining tool with respect to the rotation axis of the workpiece, and an offset in which the intersection of the tool end face and the tool axis of the machining tool deviates from the rotation axis of the workpiece. The amount. The crossing angle as the tool state before polishing and the crossing angle as the tool state after polishing are different angles, and the offset amount as the tool state before polishing and the polishing. It is different from the offset amount as the tool state later.
本発明の実施の形態に係る歯車加工装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the gear processing apparatus which concerns on embodiment of this invention. 図1Aの歯車加工装置の概略構成及び制御装置を示す図である。It is a figure which shows the schematic structure and the control device of the gear processing apparatus of FIG. 1A. 図1Bの制御装置の処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process of the control apparatus of FIG. 1B. 加工用工具の概略構成を工具端面側から回転軸線方向に見た図である。It is the figure which looked at the schematic structure of the machining tool from the tool end face side in the direction of the rotation axis. 図3Aの加工用工具の概略構成を径方向に見た一部断面図である。FIG. 3 is a partial cross-sectional view of the schematic configuration of the machining tool of FIG. 3A as viewed in the radial direction. 図3Bの加工用工具の工具刃の拡大図である。FIG. 3B is an enlarged view of a tool blade of the machining tool of FIG. 3B. 図3Cの工具刃のA−A線矢視図及びB−B線矢視断面図である。3C is a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the tool blade of FIG. 3C. 加工用工具の回転軸線の方向の工具位置を変更するときの加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship between a machining tool and a work piece when the tool position in the direction of the rotation axis of a machining tool is changed. 軸線方向位置を変更したときの加工状態を示す第一の図である。It is the first figure which shows the processing state when the position in the axial direction is changed. 軸線方向位置を変更したときの加工状態を示す第二の図である。It is a second figure which shows the processing state when the position in the axial direction is changed. 軸線方向位置を変更したときの加工状態を示す第三の図である。It is a third figure which shows the processing state when the position in the axial direction is changed. 加工物の回転軸線に対する加工用工具の回転軸線の傾斜を表す交差角を変更するときの加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship between a machining tool and a workpiece when changing the crossing angle which represents the inclination of the rotation axis of the machining tool with respect to the rotation axis of a workpiece. 交差角を変更したときの加工状態を示す第一の図である。It is the first figure which shows the processing state when the intersection angle is changed. 交差角を変更したときの加工状態を示す第二の図である。It is a second figure which shows the processing state when the intersection angle is changed. 交差角を変更したときの加工状態を示す第三の図である。It is a third figure which shows the processing state when the intersection angle is changed. 加工用工具の回転軸線方向位置及び交差角を変更するときの加工用工具と加工物との位置関係を示す図である。It is a figure which shows the positional relationship between a machining tool and a work piece at the time of changing the position in the direction of the rotation axis of the machining tool and the crossing angle. 軸線方向位置及び交差角を変更したときの加工状態を示す第一の図である。It is the first figure which shows the processing state when the position in the axial direction and the crossing angle are changed. 軸線方向位置及び交差角を変更したときの加工状態を示す第二の図である。It is a second figure which shows the processing state when the position in the axial direction and the crossing angle are changed. 従来の加工用工具の研磨毎の加工状態を示す図である。It is a figure which shows the machining state for each polishing of the conventional machining tool. 本実施形態の加工用工具の研磨毎の加工状態を示す図である。It is a figure which shows the machining state for each polishing of the machining tool of this embodiment.
(歯車加工装置の機械構成)
本実施形態では、歯車加工装置1の一例として、5軸マシニングセンタを例に挙げ、図1A及び図1Bを参照して説明する。つまり、当該歯車加工装置1は、駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)及び2つの回転軸(A軸、C軸)を有する装置である。
(Mechanical configuration of gear processing equipment)
In the present embodiment, a 5-axis machining center will be taken as an example of the gear processing apparatus 1, and will be described with reference to FIGS. 1A and 1B. That is, the gear processing device 1 is a device having three linear axes (X, Y, Z axes) and two rotation axes (A axis, C axis) orthogonal to each other as drive axes.
図1A及び図1Bに示すように、歯車加工装置1は、ベッド10と、コラム20と、サドル30と、回転主軸40と、テーブル50と、チルトテーブル60と、ターンテーブル70と、加工物保持具80と、制御装置100等とから構成される。なお、図示省略するが、ベッド10と並んで既知の自動工具交換装置が設けられる。 As shown in FIGS. 1A and 1B, the gear processing apparatus 1 includes a bed 10, a column 20, a saddle 30, a rotary spindle 40, a table 50, a tilt table 60, a turntable 70, and a workpiece holding. It is composed of a tool 80, a control device 100, and the like. Although not shown, a known automatic tool changer is provided alongside the bed 10.
ベッド10は、ほぼ矩形状からなり、床上に配置される。ただし、ベッド10の形状は矩形状に限定されるものではない。このベッド10の上面には、コラム20が摺動可能な一対のX軸ガイドレール11a,11bが、X軸線方向(水平方向)に延びるように、且つ、相互に平行に形成される。さらに、ベッド10には、一対のX軸ガイドレール11a,11bの間に、コラム20をX軸線方向に駆動するための、図略のX軸ボールねじが配置され、このX軸ボールねじを回転駆動するX軸モータ11cが配置される。 The bed 10 has a substantially rectangular shape and is arranged on the floor. However, the shape of the bed 10 is not limited to a rectangular shape. On the upper surface of the bed 10, a pair of X-axis guide rails 11a and 11b on which the column 20 can slide are formed so as to extend in the X-axis direction (horizontal direction) and parallel to each other. Further, on the bed 10, an X-axis ball screw (not shown) for driving the column 20 in the X-axis direction is arranged between the pair of X-axis guide rails 11a and 11b, and the X-axis ball screw is rotated. A driving X-axis motor 11c is arranged.
コラム20の底面には、一対のX軸ガイド溝21a,21bがX軸線方向に延びるように、且つ、相互に平行に形成される。コラム20がベッド10に対してX軸線方向に移動可能となるように、一対のX軸ガイド溝21a,21bが一対のX軸ガイドレール11a,11b上にボールガイド22a,22bを介して嵌め込まれ、コラム20の底面がベッド10の上面に密接される。 A pair of X-axis guide grooves 21a and 21b are formed on the bottom surface of the column 20 so as to extend in the X-axis direction and parallel to each other. A pair of X-axis guide grooves 21a and 21b are fitted onto the pair of X-axis guide rails 11a and 11b via ball guides 22a and 22b so that the column 20 can move in the X-axis direction with respect to the bed 10. , The bottom surface of the column 20 is brought into close contact with the top surface of the bed 10.
さらに、コラム20のX軸に平行な側面(摺動面)20aには、サドル30が摺動可能な一対のY軸ガイドレール23a,23bがY軸線方向(鉛直方向)に延びるように、且つ、相互に平行に形成される。さらに、コラム20には、一対のY軸ガイドレール23a,23bの間に、サドル30をY軸線方向に駆動するための、図略のY軸ボールねじが配置され、このY軸ボールねじを回転駆動するY軸モータ23cが配置される。 Further, on the side surface (sliding surface) 20a parallel to the X axis of the column 20, a pair of Y-axis guide rails 23a and 23b on which the saddle 30 can slide extend in the Y-axis direction (vertical direction), and , Formed parallel to each other. Further, in the column 20, a Y-axis ball screw (not shown) for driving the saddle 30 in the Y-axis direction is arranged between the pair of Y-axis guide rails 23a and 23b, and the Y-axis ball screw is rotated. A driving Y-axis motor 23c is arranged.
コラム20の摺動面20aに対向するサドル30の側面30aには、一対のY軸ガイド溝31a,31bがY軸線方向に延びるように、且つ、相互に平行に形成される。サドル30がコラム20に対してY軸線方向に移動可能となるように、一対のY軸ガイド溝31a,31bが一対のY軸ガイドレール23a,23bに嵌め込まれ、サドル30の側面30aがコラム20の摺動面20aに密接される。 A pair of Y-axis guide grooves 31a and 31b are formed on the side surface 30a of the saddle 30 facing the sliding surface 20a of the column 20 so as to extend in the Y-axis direction and parallel to each other. A pair of Y-axis guide grooves 31a, 31b are fitted into the pair of Y-axis guide rails 23a, 23b so that the saddle 30 can move in the Y-axis direction with respect to the column 20, and the side surface 30a of the saddle 30 is the column 20. It is brought into close contact with the sliding surface 20a of the.
回転主軸40は、サドル30内に収容された主軸モータ41により回転可能に設けられ、加工用工具42を支持する。加工用工具42は、工具ホルダ43に保持されて回転主軸40の先端に固定され、回転主軸40の回転に伴って回転する。また、加工用工具42は、コラム20及びサドル30の移動に伴ってベッド10に対してX軸線方向及びY軸線方向に移動する。なお、加工用工具42の詳細は後述する。 The rotary spindle 40 is rotatably provided by a spindle motor 41 housed in the saddle 30 and supports a machining tool 42. The machining tool 42 is held by the tool holder 43, fixed to the tip of the rotary spindle 40, and rotates as the rotary spindle 40 rotates. Further, the machining tool 42 moves in the X-axis direction and the Y-axis direction with respect to the bed 10 as the column 20 and the saddle 30 move. The details of the machining tool 42 will be described later.
さらに、ベッド10の上面には、テーブル50が摺動可能な一対のZ軸ガイドレール12a,12bがX軸線方向と直交するZ軸線方向(水平方向)に延びるように、且つ、相互に平行に形成される。さらに、ベッド10には、一対のZ軸ガイドレール12a,12bの間に、テーブル50をZ軸線方向に駆動するための、図略のZ軸ボールねじが配置され、このZ軸ボールねじを回転駆動するZ軸モータ12cが配置される。 Further, on the upper surface of the bed 10, a pair of Z-axis guide rails 12a and 12b on which the table 50 can slide extend in the Z-axis direction (horizontal direction) orthogonal to the X-axis direction and are parallel to each other. It is formed. Further, on the bed 10, a Z-axis ball screw (not shown) for driving the table 50 in the Z-axis direction is arranged between the pair of Z-axis guide rails 12a and 12b, and the Z-axis ball screw is rotated. A driving Z-axis motor 12c is arranged.
テーブル50は、ベッド10に対してZ軸線方向に移動可能なように、一対のZ軸ガイドレール12a,12b上に設けられる。テーブル50の上面には、チルトテーブル60を支持するチルトテーブル支持部63が設けられる。そして、チルトテーブル支持部63には、チルトテーブル60が水平方向のA軸回りで回転(揺動)可能に設けられる。チルトテーブル60は、テーブル50内に収容されたA軸モータ61により回転(揺動)される。 The table 50 is provided on a pair of Z-axis guide rails 12a and 12b so as to be movable in the Z-axis direction with respect to the bed 10. A tilt table support portion 63 that supports the tilt table 60 is provided on the upper surface of the table 50. The tilt table support portion 63 is provided with a tilt table 60 that can rotate (swing) around the A axis in the horizontal direction. The tilt table 60 is rotated (swinged) by an A-axis motor 61 housed in the table 50.
チルトテーブル60には、ターンテーブル70がA軸に直角なC軸回りで回転可能に設けられる。ターンテーブル70には、加工物Wを保持する加工物保持具80が装着される。ターンテーブル70は、加工物W及び加工物保持具80とともにC軸モータ62により回転される。 The tilt table 60 is provided with a turntable 70 rotatably around the C axis perpendicular to the A axis. A work piece holder 80 for holding the work piece W is attached to the turntable 70. The turntable 70 is rotated by a C-axis motor 62 together with the workpiece W and the workpiece holder 80.
制御装置100は、工具状態演算部101と、工具状態記憶部103と、加工制御部102等とを備える。ここで、工具状態演算部101及び加工制御部102は、それぞれ個別のハードウエアにより構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。 The control device 100 includes a tool state calculation unit 101, a tool state storage unit 103, a machining control unit 102, and the like. Here, the tool state calculation unit 101 and the machining control unit 102 can be configured by individual hardware or can be realized by software.
工具状態演算部101は、詳細は後述するが、摩耗した加工用工具42の工具刃42a(図3A等参照)の研磨状態に基づいて、加工物Wに対する加工用工具42の相対的な位置又は姿勢である工具状態を演算する。すなわち、工具状態演算部101は、工具刃42aの研磨前の工具状態、研磨の都度に研磨後の工具状態をそれぞれ演算する。
工具状態記憶部103は、工具状態演算部101により演算された工具状態を記憶する。すなわち、工具状態記憶部103は、工具状態演算部101により演算された、研磨前の加工用工具42の工具状態、及び、研磨の都度に研磨後の加工用工具42の工具状態をそれぞれ記憶する。
The tool state calculation unit 101, which will be described in detail later, is based on the polishing state of the tool blade 42a (see FIG. 3A, etc.) of the worn machining tool 42, and the relative position of the machining tool 42 with respect to the workpiece W or Calculate the tool state, which is the posture. That is, the tool state calculation unit 101 calculates the tool state before polishing the tool blade 42a and the tool state after polishing each time polishing is performed.
The tool state storage unit 103 stores the tool state calculated by the tool state calculation unit 101. That is, the tool state storage unit 103 stores the tool state of the machining tool 42 before polishing and the tool state of the machining tool 42 after polishing, which are calculated by the tool state calculation unit 101, respectively. ..
加工制御部102は、主軸モータ41を制御して、加工用工具42を回転させ、X軸モータ11c、Z軸モータ12c、Y軸モータ23c、A軸モータ61及びC軸モータ62を制御して、加工物Wと加工用工具42とをX軸線方向、Z軸線方向、Y軸線方向、A軸回り及びC軸回りに相対移動することにより、加工物Wの切削加工を行う。すなわち、加工制御部102は、円筒状の加工物Wの外周面にはすば歯車を加工する場合、工具状態記憶部103に記憶された加工用工具42の工具状態を保ったまま、加工用工具42と加工物Wとを歯数比に応じて同一方向に同期回転させる。そして、加工用工具42を加工物Wの回転軸線C(図4A等に示すLw)方向に送りつつ、当該回転軸線C方向の送りにつれてはすば歯車のねじれ角に応じて回転させつつ、加工物Wの回転軸線Lw及び加工用工具42の工具端面42Aの回転軸線L(図4A等参照、以下、工具軸線Lという)の軸間距離を徐々に縮めて加工物Wの加工をそれぞれ行う。この加工物Wの切削加工は、加工用工具42の工具刃42aの研磨前は、工具状態記憶部103に記憶された研磨前における加工物Wに対する加工用工具42の工具状態で行い、加工用工具42の工具刃42aの研磨後は、工具状態記憶部103に記憶された研磨後における加工用工具42の工具状態で行う。なお、円筒状の加工物Wの内周面にはすば歯車を加工する場合も同様である。 The machining control unit 102 controls the spindle motor 41 to rotate the machining tool 42, and controls the X-axis motor 11c, the Z-axis motor 12c, the Y-axis motor 23c, the A-axis motor 61, and the C-axis motor 62. The work piece W is cut by moving the work piece W and the work tool 42 relative to each other in the X-axis direction, the Z-axis direction, the Y-axis direction, the A-axis direction, and the C-axis direction. That is, when machining a helical gear on the outer peripheral surface of the cylindrical workpiece W, the machining control unit 102 is for machining while maintaining the tool state of the machining tool 42 stored in the tool state storage unit 103. The tool 42 and the workpiece W are synchronously rotated in the same direction according to the gear ratio. Then, while feeding the machining tool 42 in the rotation axis C (Lw shown in FIG. 4A or the like) direction of the workpiece W, the machining tool 42 is rotated according to the torsional angle of the helical gear as it is fed in the rotation axis C direction. The workpiece W is machined by gradually shortening the inter-axis distance between the rotary axis Lw of the object W and the rotary axis L of the tool end surface 42A of the machining tool 42 (see FIG. 4A and the like, hereinafter referred to as the tool axis L). Before polishing the tool blade 42a of the machining tool 42, the cutting of the workpiece W is performed in the tool state of the machining tool 42 with respect to the workpiece W before polishing stored in the tool state storage unit 103 for machining. After polishing the tool blade 42a of the tool 42, the tool state of the machining tool 42 after polishing stored in the tool state storage unit 103 is used. The same applies to the case where a helical gear is machined on the inner peripheral surface of the cylindrical workpiece W.
(加工用工具)
上述の歯車加工装置1では、加工用工具42と加工物Wとを高速で同期回転させ、加工用工具42を加工物Wの回転軸線方向に送って切削加工することにより歯を創成する。図3Aに示すように、加工用工具42を工具端面42A側から工具軸線L方向に見たときの工具刃42aの形状は、加工される歯車と噛み合う歯の形状、本例ではインボリュート曲線形状と同一形状に形成される。そして、図3Bに示すように、加工用工具42の工具刃42aには、工具端面42A側に工具軸線Lと直角な平面に対し角度α傾斜したすくい角が設けられ、工具周面42B側に工具軸線Lと平行な直線に対し角度β傾斜した前逃げ角が設けられる。さらに、図3Cに示すように、工具刃42aの側面側に工具軸線Lと平行な直線に対し角度γ傾斜した側逃げ角が設けられる。つまり、工具刃42aの歯幅は、加工用工具42の基端側ほど小さい。
(Machining tool)
In the gear machining apparatus 1 described above, the machining tool 42 and the workpiece W are synchronously rotated at high speed, and the machining tool 42 is sent in the direction of the rotation axis of the workpiece W to perform cutting to create teeth. As shown in FIG. 3A, the shape of the tool blade 42a when the machining tool 42 is viewed from the tool end surface 42A side in the tool axis L direction is the shape of the teeth that mesh with the gear to be machined, and in this example, the shape of the involute curve. It is formed in the same shape. Then, as shown in FIG. 3B, the tool blade 42a of the machining tool 42 is provided with a rake angle inclined by an angle α with respect to a plane perpendicular to the tool axis L on the tool end surface 42A side, and is provided on the tool peripheral surface 42B side. A front clearance angle inclined by β with respect to a straight line parallel to the tool axis L is provided. Further, as shown in FIG. 3C, a side clearance angle inclined by an angle γ with respect to a straight line parallel to the tool axis L is provided on the side surface side of the tool blade 42a. That is, the tooth width of the tool blade 42a is smaller toward the proximal end side of the machining tool 42.
すなわち、図3Dに示すように、加工用工具42の工具刃42aを工具端面42A側から工具軸線L方向に見た図示実線で示す工具端面形状(図3CのA−A線矢視形状)は、加工用工具42の工具刃42aを例えば工具端面42Aから工具軸線L方向にhの位置での工具軸線L方向に直角な方向の図示一点鎖線で示す断面形状(図3CのB−B線矢視形状)と比較すると、インボリュート曲線形状及び歯丈Hは一定となるように形成され、刃先幅Wea,Web及び刃底幅Wba,Wbbは変化するように形成される。 That is, as shown in FIG. 3D, the tool end face shape (the shape seen along the line AA in FIG. 3C) shown by the solid line shown when the tool blade 42a of the machining tool 42 is viewed from the tool end face 42A side in the tool axis L direction is , The cross-sectional shape of the tool blade 42a of the machining tool 42 shown by the illustrated one-point chain line in the direction perpendicular to the tool axis L direction at the position h from the tool end surface 42A in the tool axis L direction (line arrow BB in FIG. 3C). Compared with the visual shape), the involut curve shape and the tooth length H are formed to be constant, and the blade edge widths Wea and Web and the blade bottom widths Wba and Wbb are formed to change.
このような加工用工具42の設計は、以下の手順で行われる。先ず、加工される歯車の歯の捩れ角と、加工する加工用工具42の工具刃42aの捩れ角との差で表される交差角、すなわち加工物Wの回転軸線Lwに対する加工用工具42の工具軸線Lの傾斜を表す交差角(以下、加工用工具42の交差角という)を決定する。そして、工具刃42aの刃数及び加工用工具42の直径を決定する。最後に、工具刃42aの前逃げ角β及び側逃げ角γを決定する。 The design of such a machining tool 42 is performed by the following procedure. First, the crossing angle represented by the difference between the twist angle of the gear teeth to be machined and the twist angle of the tool blade 42a of the machining tool 42 to be machined, that is, the machining tool 42 with respect to the rotation axis Lw of the workpiece W. An intersection angle representing the inclination of the tool axis L (hereinafter, referred to as an intersection angle of the machining tool 42) is determined. Then, the number of blades of the tool blade 42a and the diameter of the machining tool 42 are determined. Finally, the front clearance angle β and the side clearance angle γ of the tool blade 42a are determined.
このような加工用工具42の工具刃42aの刃先が摩耗した場合は、摩耗した刃先42aを研磨して再利用する。しかし、加工用工具42は前逃げ角βを有することにより、研磨前における加工用工具42の工具刃42aの端面形状は、研磨後における加工用工具42の工具刃42aの端面形状と異なる形状となる。すなわち、加工用工具42の工具刃42aは、図3Dに示すように、加工用工具42の工具刃42aの研磨量が所定量hに達すると、加工用工具42の工具刃42aの刃先幅Webが研磨前の刃先幅Weaと比べて大きくなるため、加工物Wの加工精度が低下する。 When the cutting edge of the tool blade 42a of such a machining tool 42 is worn, the worn cutting edge 42a is polished and reused. However, since the machining tool 42 has a front clearance β, the end face shape of the tool blade 42a of the machining tool 42 before polishing is different from the end face shape of the tool blade 42a of the machining tool 42 after polishing. Become. That is, as shown in FIG. 3D, the tool blade 42a of the machining tool 42 has a cutting edge width Web of the tool blade 42a of the machining tool 42 when the polishing amount of the tool blade 42a of the machining tool 42 reaches a predetermined amount h. Is larger than the blade edge width Wea before polishing, so that the machining accuracy of the workpiece W is lowered.
そこで、制御装置100は、加工用工具42の工具刃42aの研磨状態に応じた加工用工具42の工具状態で加工物Wの加工を行う。具体的な工具状態の変更方法としては、加工用工具42の回転軸線Lの方向の工具位置(以下、加工用工具42の軸線方向位置という)の変更、加工用工具42の工具軸線L回りの方向の工具位置(以下、加工用工具42の軸線回り方向位置という)の変更、加工用工具42の交差角の変更、もしくはこれらの組み合わせがある。これにより、加工物Wは、高精度に加工される。 Therefore, the control device 100 processes the workpiece W in the tool state of the machining tool 42 according to the polishing state of the tool blade 42a of the machining tool 42. Specific methods for changing the tool state include changing the tool position in the direction of the rotation axis L of the machining tool 42 (hereinafter referred to as the axial position of the machining tool 42) and around the tool axis L of the machining tool 42. There is a change in the tool position in the direction (hereinafter, referred to as a position in the axial direction of the machining tool 42), a change in the intersection angle of the machining tool 42, or a combination thereof. As a result, the workpiece W is processed with high accuracy.
加工用工具42の軸線方向位置の変更として、例えば、図4Aに示すように、加工用工具42の工具端面42Aと工具軸線Lとの交点Pが、加工物Wの回転軸線Lw上に位置する場合(オフセット量0)、加工用工具42の工具軸線L方向に距離+dだけオフセットした場合(オフセット量+d)、及び加工用工具42の工具軸線L方向に距離−dだけオフセットした場合(オフセット量−d)で加工物Wを加工した。その結果、加工物Wの加工状態は、図4B、図4C、図4Dに示すようになった。なお、図中、太い実線Eは、設計上の歯車の歯gのインボリュート曲線を直線に変換して表したもので、ドット部分Dは、加工物Wの切削除去部分を表す。 As a change in the axial position of the machining tool 42, for example, as shown in FIG. 4A, the intersection P of the tool end surface 42A of the machining tool 42 and the tool axis L is located on the rotation axis Lw of the workpiece W. (Offset amount 0), when the machining tool 42 is offset by a distance + d in the tool axis L direction (offset amount + d), and when the machining tool 42 is offset by a distance −d in the tool axis L direction (offset amount). The work piece W was processed in −d). As a result, the processing states of the workpiece W are shown in FIGS. 4B, 4C, and 4D. In the figure, the thick solid line E represents the involute curve of the design gear tooth g converted into a straight line, and the dot portion D represents the cutting-removed portion of the workpiece W.
図4Bに示すように、オフセット量0では、加工された歯車の歯は、設計上のインボリュート曲線に近い形状で加工される。一方、図4Cに示すように、オフセット量+dでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、図示右方向(点線矢印方向)、すなわち時計回りのピッチ円方向にずれた形状で加工され、図4Dに示すように、オフセット量−dでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、図示左方向(点線矢印方向)、すなわち反時計回りのピッチ円方向にずれた形状で加工される。よって、歯車の歯の形状は、加工用工具42の工具軸線L方向位置を変更することにより、ピッチ円方向にずらすことができる。 As shown in FIG. 4B, when the offset amount is 0, the processed gear teeth are processed into a shape close to the design involute curve. On the other hand, as shown in FIG. 4C, at the offset amount + d, the processed gear teeth are deviated from the design involut curve in the right direction (dotted arrow direction), that is, in the clockwise pitch circle direction. As shown in FIG. 4D, at the offset amount −d, the gear teeth processed in the above-mentioned left direction (dotted arrow direction), that is, the counterclockwise pitch circular direction with respect to the design involut curve. It is processed in a shape that deviates from the shape. Therefore, the shape of the gear teeth can be shifted in the pitch circular direction by changing the position of the machining tool 42 in the tool axis L direction.
また、加工用工具42の交差角の変更として、例えば、図5Aに示すように、角度θa、θb、θcで加工物Wを加工した。なお、各角度の大小関係は、θa>θb>θcである。その結果、加工物Wの加工状態は、図5B、図5C、図5Dに示すようになった。 Further, as a change of the crossing angle of the machining tool 42, for example, as shown in FIG. 5A, the workpiece W was machined at angles θa, θb, and θc. The magnitude relationship of each angle is θa> θb> θc. As a result, the processing states of the workpiece W are shown in FIGS. 5B, 5C, and 5D.
図5Bに示すように、交差角θaでは、加工された歯車の歯は、設計上のインボリュート曲線に近い形状で加工される。一方、図5Cに示すように、交差角θbでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、歯先の幅がピッチ円方向(実線矢印方向)に狭まり、歯元の幅がピッチ円方向(実線矢印方向)に拡がった形状で加工され、図5Dに示すように、交差角θcでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、歯先の幅がピッチ円方向(実線矢印方向)にさらに狭まり、歯元の幅がピッチ円方向(実線矢印方向)にさらに拡がった形状で加工される。よって、歯車の歯の形状は、加工用工具42の交差角を変更することにより、歯先のピッチ円方向の幅及び歯元のピッチ円方向の幅を変更できる。 As shown in FIG. 5B, at the intersection angle θa, the processed gear teeth are processed into a shape close to the design involute curve. On the other hand, as shown in FIG. 5C, at the intersection angle θb, the width of the tooth tip of the machined gear tooth is narrowed in the pitch circular direction (solid arrow direction) with respect to the design involut curve, and the width of the tooth root is wide. Is machined in a shape that expands in the pitch circular direction (solid arrow direction), and as shown in FIG. 5D, at the intersection angle θc, the gear teeth that have been machined have a width of the tip of the gear with respect to the design involut curve. It is processed into a shape that is further narrowed in the pitch circle direction (solid line arrow direction) and the width of the tooth base is further widened in the pitch circle direction (solid line arrow direction). Therefore, the shape of the tooth of the gear can change the width of the tooth tip in the pitch circular direction and the width of the tooth root in the pitch circular direction by changing the crossing angle of the machining tool 42.
また、加工用工具42の軸線方向位置、及び加工用工具42の交差角の変更として、例えば、図6Aに示すように、加工用工具42の工具端面42Aと工具軸線Lとの交点Pが、加工物Wの回転軸線Lw上に位置し(オフセット量0)、且つ交差角θaの場合、及び加工用工具42の工具軸線L方向に距離+dだけオフセットし(オフセット量+d)、且つ交差角θbの場合で加工物Wを加工した。その結果、加工物Wの加工状態は、図6B、図6Cに示すようになった。 Further, as a change of the axial position of the machining tool 42 and the intersection angle of the machining tool 42, for example, as shown in FIG. 6A, the intersection P of the tool end surface 42A of the machining tool 42 and the tool axis L is set. It is located on the rotation axis Lw of the work piece W (offset amount 0) and has an intersection angle θa, and is offset by a distance + d in the tool axis L direction of the machining tool 42 (offset amount + d) and has an intersection angle θb. In the case of, the work piece W was processed. As a result, the processed state of the workpiece W is shown in FIGS. 6B and 6C.
図6Bに示すように、オフセット量0且つ交差角θaでは、加工された歯車の歯は、設計上のインボリュート曲線に近い形状で加工される。一方、図6Cに示すように、オフセット量+d且つ交差角θbでは、加工された歯車の歯は、設計上のインボリュート曲線に対し、図示右方向(点線矢印方向)、すなわち時計回りのピッチ円方向にずれ、且つ歯先の幅がピッチ円方向(実線矢印方向)に狭まり、歯元の幅がピッチ円方向(実線矢印方向)に拡がった形状で加工される。よって、歯車の歯の形状は、加工用工具42の軸線方向位置、及び加工用工具42の交差角を変更することにより、ピッチ円方向にずらし、歯先の周方向の幅及び歯元のピッチ円方向の幅を変更できる。 As shown in FIG. 6B, when the offset amount is 0 and the intersection angle θa is set, the processed gear teeth are processed into a shape close to the design involute curve. On the other hand, as shown in FIG. 6C, when the offset amount + d and the intersection angle θb, the processed gear teeth are in the right direction (dotted arrow direction) shown in the drawing, that is, in the clockwise pitch circle direction with respect to the design involute curve. It is processed in a shape in which the width of the tooth tip is narrowed in the pitch circle direction (solid line arrow direction) and the width of the tooth base is widened in the pitch circle direction (solid line arrow direction). Therefore, the shape of the tooth of the gear is shifted in the pitch circular direction by changing the axial position of the machining tool 42 and the intersection angle of the machining tool 42, and the width of the tooth tip in the circumferential direction and the pitch of the tooth root. The width in the circular direction can be changed.
(制御装置の工具状態演算部による処理)
次に、工具刃42aを研磨したとき、最適な加工用工具42の工具状態として交差角を求めるときの制御装置100のシミュレーション処理について、図2を参照して説明する。このシミュレーションは、公知の歯車の創成理論に基づいて、工具刃42aの軌跡を演算している。すなわち、このシミュレーションは、加工物Wの回転軸線Lwに対し傾斜した工具軸線Lを有する加工用工具42を用い、加工用工具42を加工物Wと同期回転させながら加工物Wの回転軸線Lw方向に相対的に送り操作して歯車の歯を加工する動作に相当する。
(Processing by the tool state calculation unit of the control device)
Next, a simulation process of the control device 100 when the cross angle is obtained as the optimum tool state of the machining tool 42 when the tool blade 42a is polished will be described with reference to FIG. This simulation calculates the locus of the tool blade 42a based on a known gear creation theory. That is, in this simulation, a machining tool 42 having a tool axis L inclined with respect to the rotation axis Lw of the workpiece W is used, and the machining tool 42 is rotated synchronously with the workpiece W in the direction of the rotation axis Lw of the workpiece W. It corresponds to the operation of machining the teeth of the gear by the feed operation relative to.
制御装置100の工具状態演算部101は、研磨後であるか否かを判断する(図2のステップS1)。研磨後でなければ、工具状態演算部101は、予め設計して記憶している研磨前の加工用工具42の形状を読み出す(図2のステップS2)。一方、研磨後であれば、工具状態演算部101は、研磨後の加工用工具42の形状を研磨設定量に合わせて算出する(図2のステップS3)。 The tool state calculation unit 101 of the control device 100 determines whether or not it has been polished (step S1 in FIG. 2). If it is not after polishing, the tool state calculation unit 101 reads out the shape of the machining tool 42 before polishing, which is designed and stored in advance (step S2 in FIG. 2). On the other hand, after polishing, the tool state calculation unit 101 calculates the shape of the machining tool 42 after polishing according to the set amount of polishing (step S3 in FIG. 2).
そして、工具状態演算部101は、研磨状態に応じて、加工用工具42の交差角を含む工具状態を読み出す(図2のステップS4)。ここで読み出される工具状態は、研磨前においては、予め記憶している交差角を含む工具状態とし、研磨後においては、例えば、当該研磨直前に選択されていた交差角を含む工具状態とする。そして、工具状態演算部101は、シミュレーション回数nとして1回目であることを記憶し(図2のステップS5)、読み出された加工用工具42の工具状態を加工用工具42の初期の工具状態として設定する(図2のステップS6)。 Then, the tool state calculation unit 101 reads out the tool state including the crossing angle of the machining tool 42 according to the polishing state (step S4 in FIG. 2). The tool state read out here is a tool state including the crossing angle stored in advance before polishing, and is set to a tool state including the crossing angle selected immediately before the polishing after polishing, for example. Then, the tool state calculation unit 101 remembers that it is the first time as the number of simulations n (step S5 in FIG. 2), and sets the read tool state of the machining tool 42 to the initial tool state of the machining tool 42. (Step S6 in FIG. 2).
そして、工具状態演算部101は、研磨前又は研磨後の加工用工具42の形状に基づいて、加工物Wを加工するときの工具軌跡を算出し(図2のステップS7)、加工後の歯車の歯の形状を算出する(図2のステップS8)。そして、工具状態演算部101は、算出した加工後の歯車の歯の形状と、設計上の歯車の歯の形状とを比較し、形状誤差を算出して記憶し(図2のステップS9)、シミュレーション回数nに1を加算する(図2のステップS10)。 Then, the tool state calculation unit 101 calculates the tool locus when machining the workpiece W based on the shape of the machining tool 42 before or after polishing (step S7 in FIG. 2), and the gear after machining. The shape of the tooth is calculated (step S8 in FIG. 2). Then, the tool state calculation unit 101 compares the calculated shape of the gear tooth after machining with the shape of the design gear tooth, calculates and stores the shape error (step S9 in FIG. 2), and stores the shape error. 1 is added to the number of simulations n (step S10 in FIG. 2).
そして、工具状態演算部101は、シミュレーション回数nが予め設定した回数nnに達したか否かを判断し(図2のステップS11)、シミュレーション回数nが設定回数nnに達していないときは、加工用工具42の交差角を変更し(図2のステップS12)、ステップS7に戻って上述の処理を繰り返す。一方、工具状態演算部101は、シミュレーション回数nが設定回数nnに達したときは、記憶した形状誤差のうち最小の誤差となる交差角を選択する(図2のステップS13)。以上の処理により、工具刃42aを研磨前又は研磨後のそれぞれの最適な加工用工具42の交差角を含む工具状態を求めることができる。そして、工具状態演算部101は、加工用工具42の工具状態を工具状態記憶部103に記憶する。 Then, the tool state calculation unit 101 determines whether or not the number of simulations n has reached the preset number of times nn (step S11 in FIG. 2), and when the number of simulations n has not reached the set number of times nn, machining The intersection angle of the tool 42 is changed (step S12 in FIG. 2), the process returns to step S7, and the above process is repeated. On the other hand, when the number of simulations n reaches the set number of times nn, the tool state calculation unit 101 selects an intersection angle that is the smallest error among the stored shape errors (step S13 in FIG. 2). By the above processing, it is possible to determine the tool state including the optimum crossing angle of the respective optimum machining tools 42 before or after polishing the tool blade 42a. Then, the tool state calculation unit 101 stores the tool state of the machining tool 42 in the tool state storage unit 103.
なお、ステップS12においては、加工用工具42の交差角を変更する代わりに、加工用工具42の軸線方向位置を変更し、もしくは加工用工具42の軸線回り方向位置を変更し、又は、交差角、軸線方向位置、軸線回り方向位置の任意の組み合わせを変更するようにしてもよい。また、上述の処理では、複数回のシミュレーションを行って最小の誤差となる交差角を選択するようにしたが、予め許容形状誤差を設定しておき、ステップS9において算出した形状誤差が許容形状誤差以下となったときの交差角を選択してもよい。 In step S12, instead of changing the crossing angle of the machining tool 42, the axial position of the machining tool 42 is changed, or the axial position of the machining tool 42 is changed, or the crossing angle is changed. , Arbitrary combination of axial position and axial position may be changed. Further, in the above processing, the crossing angle that is the minimum error is selected by performing a plurality of simulations, but the allowable shape error is set in advance, and the shape error calculated in step S9 is the allowable shape error. You may select the intersection angle when the following.
(シミュレーション処理による効果)
上述のシミュレーション処理は、工具刃42aを研磨する度に行う。これにより、研磨毎の最適な加工用工具42の工具状態を求めることができ、研磨回数が増加しても加工精度を維持できる。例えば、図7A、図7Bは、図5と同様に、図中の太い実線Eは、設計上の歯車の歯gのインボリュート曲線を直線に変換して表したもので、ドット部分Dは、加工物Wの切削除去部分を表す。図7Aに示すように、従来は、研磨回数が4回までは、加工後の歯車の歯gの形状は、設計上の歯車の歯の形状に対し形状誤差は許容範囲内であるため、加工用工具42の使用は可能である。そして、研磨回数が5回以上になると、加工後の歯車gの歯の形状は、設計上の歯車の歯の形状に対し形状誤差が許容範囲を超えるので、加工用工具42の使用は不可となる。しかし、図7Bに示すように、本実施形態では、研磨回数が6回になっても、加工後の歯車gの歯の形状は、設計上の歯車の歯の形状に対し形状誤差は許容範囲内であるため、加工用工具42の使用は可能であり、加工用工具42の長寿命化を図ることができる。よって、高精度且つ低コストな歯車を得ることができる。
(Effect of simulation processing)
The above-mentioned simulation process is performed every time the tool blade 42a is polished. As a result, the optimum tool state of the machining tool 42 for each polishing can be obtained, and the machining accuracy can be maintained even if the number of polishings increases. For example, in FIGS. 7A and 7B, similarly to FIG. 5, the thick solid line E in the figure represents the involute curve of the design gear tooth g converted into a straight line, and the dot portion D is processed. Represents the cutting-removed portion of the object W. As shown in FIG. 7A, conventionally, up to 4 times of polishing, the shape of the gear tooth g after processing is processed because the shape error is within the allowable range with respect to the design gear tooth shape. The tool 42 can be used. When the number of polishings is 5 or more, the shape error of the tooth shape of the gear g after machining exceeds the permissible range with respect to the design gear tooth shape, so that the machining tool 42 cannot be used. Become. However, as shown in FIG. 7B, in the present embodiment, even if the number of times of polishing is 6, the shape of the tooth shape of the gear g after processing has a shape error within an allowable range with respect to the shape of the gear tooth in design. Since it is inside, the machining tool 42 can be used, and the life of the machining tool 42 can be extended. Therefore, a gear with high accuracy and low cost can be obtained.
また、工具状態演算部101は、工具状態として、加工用工具42の回転軸線L方向位置、加工用工具42の回転軸線L回り方向位置、及び加工用工具42の交差角の少なくとも一つ、又はこれらの組み合わせを演算するので、高精度な歯車を得ることができる。また、工具状態演算部101は、工具状態をシミュレーションによって演算するので、実加工は不要であり、低コストな歯車を得ることができる。 Further, the tool state calculation unit 101 sets the tool state as at least one of the position in the rotation axis L direction of the machining tool 42, the position in the rotation axis L rotation direction of the machining tool 42, and the intersection angle of the machining tool 42, or Since these combinations are calculated, a highly accurate gear can be obtained. Further, since the tool state calculation unit 101 calculates the tool state by simulation, actual machining is not required, and a low-cost gear can be obtained.
(その他)
上述した実施形態では、加工用工具42として、捩れ角の無い工具を例に説明したが、捩れ角を有する工具であっても同様に適用可能である。また、5軸マシニングセンタである歯車加工装置1は、加工物WをA軸旋回可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、加工用工具42をA軸旋回可能とする構成としてもよい。また、本発明をマシニングセンタに適用する場合を説明したが、歯車加工の専用機に対しても同様に適用可能である。
(Other)
In the above-described embodiment, as the machining tool 42, a tool having no twist angle has been described as an example, but a tool having a twist angle can be similarly applied. Further, the gear processing device 1 which is a 5-axis machining center enables the workpiece W to be swiveled around the A axis. On the other hand, the 5-axis machining center may be configured as a vertical machining center so that the machining tool 42 can turn around the A-axis. Further, although the case where the present invention is applied to a machining center has been described, it can be similarly applied to a dedicated machine for gear machining.
1:歯車加工装置、 42:加工用工具、 42a:工具刃、 100:制御装置、 101:工具状態演算部、 102:加工制御部、 103:工具状態記憶部、 W:加工物 1: Gear processing device, 42: Tool for processing, 42a: Tool blade, 100: Control device, 101: Tool state calculation unit, 102: Processing control unit, 103: Tool state storage unit, W: Work piece

Claims (5)

  1. 加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車を切削加工する歯車加工装置であって、
    前記加工用工具の工具刃の工具軸線方向の端面は、すくい面であり、前記工具刃の外周面は、前逃げ面であり、
    前記工具刃において前記端面のみの研磨を行うことにより、前記工具刃の前記端面の研磨前における前記工具刃の端面形状と研磨後における前記工具刃の端面形状は、異なる形状であり、且つ、前記工具刃の前記端面の研磨前後における前記工具刃のねじれ角は同一であり、
    前記歯車加工装置は、
    前記加工用工具の工具刃の研磨前における前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態、及び、前記加工用工具の工具刃の研磨後における前記加工用工具の工具状態を記憶する工具状態記憶部と、
    前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、前記加工用工具の工具刃の研磨前は、前記工具状態記憶部に記憶された前記研磨前における前記加工用工具の工具状態で前記加工物の加工を行い、前記加工用工具の工具刃の研磨後は、前記工具状態記憶部に記憶された前記研磨後における前記加工用工具の工具状態で前記加工物の加工を行う加工制御部と、
    を備え、
    前記工具状態記憶部は、前記工具状態として、前記加工物の回転軸線に対する前記加工用工具の傾斜を表す交差角、及び、前記加工用工具の工具端面と工具軸線との交点が前記加工物の回転軸線からずれているオフセット量を記憶し、
    前記研磨前における前記工具状態としての前記交差角と前記研磨後における前記工具状態としての前記交差角とは、異なる角度であり、且つ、前記研磨前における前記工具状態としての前記オフセット量と前記研磨後における前記工具状態としての前記オフセット量とは、異なり、
    前記加工用工具の工具刃の研磨前と研磨後で前記加工物の加工を行う、歯車加工装置。
    Using a machining tool having a rotation axis that is inclined with respect to the rotation axis of the workpiece, the gear is cut by feeding the machining tool relative to the rotation axis direction of the workpiece while rotating the machining tool in synchronization with the workpiece. It is a gear processing device to process
    The end surface of the tool blade of the machining tool in the tool axis direction is a rake surface, and the outer peripheral surface of the tool blade is a front flank surface.
    By polishing only the end face of the tool blade, the shape of the end face of the tool blade before polishing the end face of the tool blade and the shape of the end face of the tool blade after polishing are different, and the shape is the same . The twist angle of the tool blade before and after polishing the end face of the tool blade is the same.
    The gear processing device is
    The tool state, which is the relative position or orientation of the machining tool with respect to the workpiece before polishing the tool blade of the machining tool, and the tool of the machining tool after polishing the tool blade of the machining tool. Tool state storage unit that stores the state, and
    By synchronously rotating in the same direction according to the ratio of the number of teeth of the machining tool and the workpiece, the distance between the axis of rotation of the workpiece and the axis of rotation of the machining tool is gradually reduced for machining. Before polishing the tool blade of the machining tool, the workpiece is machined in the tool state of the machining tool before polishing stored in the tool state storage unit, and the tool blade of the machining tool After polishing, a machining control unit that processes the workpiece in the tool state of the machining tool after polishing, which is stored in the tool state storage unit,
    With
    In the tool state storage unit, as the tool state, the intersection angle representing the inclination of the machining tool with respect to the rotation axis of the workpiece and the intersection of the tool end face of the machining tool and the tool axis are the workpieces. Memorize the amount of offset that deviates from the rotation axis,
    The crossing angle as the tool state before polishing and the crossing angle as the tool state after polishing are different angles, and the offset amount as the tool state before polishing and the polishing. Unlike the offset amount as the tool state later,
    A gear processing device that processes the workpiece before and after polishing the tool blade of the processing tool.
  2. 前記工具状態記憶部は、前記工具状態をシミュレーションによって演算した結果に基づいて得られる前記工具状態を記憶する、請求項1に記載の歯車加工装置。 The gear processing device according to claim 1, wherein the tool state storage unit stores the tool state obtained based on a result of calculating the tool state by simulation.
  3. 前記工具刃の前記前逃げ面は、前記工具軸線と平行な直線に対し所定角度傾斜した前逃げ角を有し、
    前記工具刃が前記前逃げ角を有することにより、研磨前後における前記工具刃の端面形状は、異なる形状となる、請求項1または2に記載の歯車加工装置。
    The front flank surface of the tool blade has a front flank angle inclined by a predetermined angle with respect to a straight line parallel to the tool axis.
    The gear processing apparatus according to claim 1 or 2, wherein the tool blade has the front clearance angle, so that the end face shape of the tool blade before and after polishing is different.
  4. 前記加工用工具の工具刃は、インボリュート歯形を有する、請求項3に記載の歯車加工装置。 The gear processing apparatus according to claim 3, wherein the tool blade of the processing tool has an involute tooth profile.
  5. 加工物の回転軸線に対し傾斜した回転軸線を有する加工用工具を用い、前記加工用工具を前記加工物と同期回転させながら前記加工物の回転軸線方向に相対的に送り操作して歯車を切削加工する歯車加工方法であって、
    前記加工用工具の工具刃の工具軸線方向の端面は、すくい面であり、前記工具刃の外周面は、前逃げ面であり、
    前記工具刃において前記端面のみの研磨を行うことにより、前記工具刃の前記端面の研磨前における前記工具刃の端面形状と研磨後における前記工具刃の端面形状は、異なる形状であり、且つ、前記工具刃の前記端面の研磨前後における前記工具刃のねじれ角は同一であり、
    前記歯車加工方法は、
    前記加工用工具と前記加工物との歯数比に応じて同一方向に同期回転させて、前記加工物の回転軸線及び前記加工用工具の回転軸線の軸間距離を徐々に縮めて加工を行い、
    前記加工用工具の工具刃の研磨前は、工具状態記憶部に記憶された前記研磨前における前記加工物に対する前記加工用工具の相対的な位置又は姿勢である工具状態で前記加工物の加工を行い、
    前記加工用工具の工具刃の研磨後は、前記工具状態記憶部に記憶された前記研磨後における前記加工用工具の工具状態で前記加工物の加工を行い、
    前記加工用工具の工具刃の研磨前と研磨後で前記加工物の切削加工を行い、
    前記工具状態は、前記加工物の回転軸線に対する前記加工用工具の傾斜を表す交差角、及び、前記加工用工具の工具端面と工具軸線との交点が前記加工物の回転軸線からずれているオフセット量であり、
    前記研磨前における前記工具状態としての前記交差角と前記研磨後における前記工具状態としての前記交差角とは、異なる角度であり、且つ、前記研磨前における前記工具状態としての前記オフセット量と前記研磨後における前記工具状態としての前記オフセット量とは、異なる、歯車加工方法。
    Using a machining tool having a rotation axis that is inclined with respect to the rotation axis of the workpiece, the gear is cut by feeding the machining tool relative to the rotation axis direction of the workpiece while rotating the machining tool in synchronization with the workpiece. It is a gear processing method to process
    The end surface of the tool blade of the machining tool in the tool axis direction is a rake surface, and the outer peripheral surface of the tool blade is a front flank surface.
    By polishing only the end face of the tool blade, the shape of the end face of the tool blade before polishing the end face of the tool blade and the shape of the end face of the tool blade after polishing are different, and the shape is the same . The twist angle of the tool blade before and after polishing the end face of the tool blade is the same.
    The gear processing method is
    By synchronously rotating in the same direction according to the gear ratio between the machining tool and the workpiece, the distance between the rotation axis of the workpiece and the rotation axis of the machining tool is gradually reduced for machining. ,
    Before polishing the tool blade of the machining tool, the machining of the workpiece is performed in the tool state which is the relative position or orientation of the machining tool with respect to the workpiece before polishing stored in the tool state storage unit. Do,
    After polishing the tool blade of the machining tool, the workpiece is machined in the tool state of the machining tool after the polishing stored in the tool state storage unit.
    There line cutting of the workpiece after grinding and before polishing the tool blades of the machining tool,
    The tool state includes an intersection angle representing the inclination of the machining tool with respect to the rotation axis of the workpiece, and an offset in which the intersection of the tool end face and the tool axis of the machining tool deviates from the rotation axis of the workpiece. Is the quantity
    The crossing angle as the tool state before polishing and the crossing angle as the tool state after polishing are different angles, and the offset amount as the tool state before polishing and the polishing. A gear machining method different from the offset amount as the tool state later.
JP2015205565A 2014-11-07 2015-10-19 Gear processing equipment and gear processing method Active JP6871675B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014226843 2014-11-07
JP2014226843 2014-11-07

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/919,946 US9623502B2 (en) 2014-11-07 2015-10-22 Gear machining device and gear machining method
DE102015119000.1A DE102015119000A1 (en) 2014-11-07 2015-11-05 Gear processing device and gear processing method
CN201510750616.5A CN105583472B (en) 2014-11-07 2015-11-06 Gear machining equipment and gear working method

Publications (2)

Publication Number Publication Date
JP2016093881A JP2016093881A (en) 2016-05-26
JP6871675B2 true JP6871675B2 (en) 2021-05-12

Family

ID=56070895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205565A Active JP6871675B2 (en) 2014-11-07 2015-10-19 Gear processing equipment and gear processing method

Country Status (1)

Country Link
JP (1) JP6871675B2 (en)

Also Published As

Publication number Publication date
JP2016093881A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
EP2839914B1 (en) Gear machining apparatus
KR101544449B1 (en) Tool grinding machine
JP4511268B2 (en) Method and machine for cutting spiral bevel gears
US9782847B2 (en) Gear machining device
JP2019206071A (en) Chamfering device of workpiece
JP6128640B2 (en) Gear cutting method and apparatus for bevel gear
JP2019206071A5 (en)
DE102015119000A1 (en) Gear processing device and gear processing method
WO2014002228A1 (en) Control device for machine tool and machine tool
JP5957872B2 (en) Processing method and processing apparatus
JP2018202565A (en) Gear processing method and gear processing device
JP6871675B2 (en) Gear processing equipment and gear processing method
JP6606967B2 (en) Gear processing apparatus and gear processing method
JP6469209B2 (en) Tool path generation method and tool path generation apparatus
JP2019089153A (en) Gear-cutting tool and gear processing device
JP6500486B2 (en) Gear processing apparatus and gear processing method
JP6565399B2 (en) Gear processing equipment
CN107530802B (en) Gear cutting machine and method
JP5561024B2 (en) Cutting method and NC data creation device
JP6819099B2 (en) Gear processing method
JP2020114616A (en) Gear processor and gear processing method
JP2021133485A (en) Gear processing equipment and gear processing method
JP2021024060A (en) Gear processing device and gear processing method
JP2019119016A (en) Gear processor and gear processing method
JP6232781B2 (en) Processing method and processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200720

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200807

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200818

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201201

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20201216

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210209

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210330

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6871675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416