JP2013062354A - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP2013062354A
JP2013062354A JP2011199533A JP2011199533A JP2013062354A JP 2013062354 A JP2013062354 A JP 2013062354A JP 2011199533 A JP2011199533 A JP 2011199533A JP 2011199533 A JP2011199533 A JP 2011199533A JP 2013062354 A JP2013062354 A JP 2013062354A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
composition ratio
semiconductor layer
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011199533A
Other languages
English (en)
Inventor
Kosuke Torii
康介 鳥井
Hideyuki Naito
秀幸 内藤
Akira Higuchi
彰 樋口
Masahiro Miyamoto
昌浩 宮本
Hirobumi Miyajima
博文 宮島
Junya Maeda
純也 前田
Harumasa Yoshida
治正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2011199533A priority Critical patent/JP2013062354A/ja
Publication of JP2013062354A publication Critical patent/JP2013062354A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】第2ミラー層の電気抵抗の低減と反射率の向上とを両立する。
【解決手段】半導体発光素子は、n型の下部DBR層と、電流の供給によって光を発する共振部と、p型の上部DBR層とが半導体基板上に順に積層された半導体発光素子であって、上部DBR層には、第1屈折率を有する第1半導体層141と、第1屈折率よりも大きい第2屈折率を有する第2半導体層142とが、中間層143を介在して積層方向に交互に配置され、中間層143および第1半導体層141はAlを含み、中間層143のAl組成比は、第2半導体層142側の面から第1半導体層141側の面に向かって増加し、第1半導体層141のAl組成比は、一方の中間層143B側の面および中間層143A側の面から厚み方向の中心に向かって増加する。
【選択図】図2

Description

本発明は、半導体発光素子に関する。
半導体レーザ素子や発光ダイオード等の半導体発光素子は、光通信システムをはじめとする様々な分野において広く利用されている。このような半導体発光素子の一例として、垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)がある。この面発光レーザは、活性層を挟むように半導体ミラー層が設けられることにより、半導体基板に対して垂直方向に共振器が構成された発光素子であって、半導体ミラー層として半導体分布ブラッグ反射器(DBR:Distributed Bragg Reflector)が用いられたものがある(例えば、下記特許文献1および2参照)。
特開2002−359433号公報 特許第4608040号公報
上述したような面発光レーザ素子は、高出力化が求められているが、動作電力が高いため発熱が大きくなることが高出力化の障害となっている。また、一般にn型DBR(以下、「第1ミラー層」という。)の電気抵抗値よりもp型DBR(以下、「第2ミラー層」という。)の電気抵抗値が高いことが知られている。そこで、上記特許文献1に記載の面発光レーザ素子では、AlAs層とGaAs層との間に、厚さ方向に応じてAl組成量を変化させたヘテロスパイク緩衝層を有する第2ミラー層を備えることにより、第2ミラー層の電気抵抗値を低減し、動作電圧の低減を可能としている。また、上記特許文献2に記載の面発光レーザ素子では、Al含有量が少ない低Al層とAl含有量が多い高Al層との間に中間のAl含有量のインターフェイス層を有する第2ミラー層を備えることにより、第2ミラー層の電気抵抗値を低減し、動作電圧の低減を可能としている。
しかしながら、上記特許文献1および2に記載された面発光レーザ素子では、第2ミラー層において、Al含有量が多い上側層およびAl含有量が少ない下側層のAl組成比を一定として、上側層および下側層の間に設けられた中間層のAl組成比を変化させることで動作電圧の低減を図っている。このように、上側層のAl組成比と下側層のAl組成比との中間のAl組成比を有する中間層が第2ミラー層に設けられると、第2ミラー層の反射率が低下する。このため、従来の面発光レーザ素子と同等の反射率を有する第2ミラー層を得るためには、層数を多くする必要があり、素子全体としての電気抵抗の抑制効果が不十分となる可能性がある。
そこで、本発明は、このような事情に鑑みてなされたものであり、第2ミラー層の電気抵抗の低減と反射率の向上とを両立できる構造を有する半導体発光素子を提供することを目的とする。
上記課題を解決するため、本発明に係る半導体発光素子は、第1導電型を有する第1ミラー層と、電流の供給によって光を発する発光層と、第2導電型を有する第2ミラー層とが半導体基板上に順に積層された半導体発光素子であって、第2ミラー層には、第1屈折率を有する第1半導体層と、第1屈折率よりも大きい第2屈折率を有する第2半導体層とが、中間層を介在して積層方向に交互に配置され、中間層および第1半導体層はAlを含み、中間層のAl組成比は、第2半導体層側の面から第1半導体層側の面に向かって増加し、第1半導体層のAl組成比は、一方の中間層側の面および他方の中間層側の面から厚み方向の中心に向かって増加することを特徴とする。
この半導体発光素子においては、第2ミラー層には、第1屈折率の第1半導体層と、第1屈折率よりも大きい第2屈折率の第2半導体層とが中間層を介在して交互に配置されている。そして、中間層のAl組成比は、第2半導体層側の面から第1半導体層側の面に向かって増加し、第1半導体層のAl組成比は、一方の中間層側の面および他方の中間層側の面から厚み方向の中心に向かって増加する。このため、第1半導体層のAl組成比を一定とした場合と比較して、中間層と第1半導体層との境界において、積層方向に沿ったAl組成比の変化率の不連続な変化が緩和される。この積層方向に沿ったAl組成比の変化率の不連続な変化は、ポテンシャルの突起の原因となり、電気抵抗の主要因となる。したがって、この半導体発光素子では、第1半導体層のAl組成比を一定とした場合と比較して、第2ミラー層の電気抵抗を抑制できる。また、第1半導体層のAl組成比は、一方の中間層側の面および他方の中間層側の面から厚み方向の中心に向かって増加するため、第1半導体層のAl組成比を一定とした場合と比較して、第1半導体層の平均屈折率が減少し、反射率が増加する。このため、従来の面発光レーザ素子と同等の反射率を有する第2ミラー層を得るために必要な層数を減らすことができる。以上のように、この半導体発光素子では、第2ミラー層の電気抵抗を抑制しつつ、層数を減らすことができるので、面発光レーザの動作電圧を低減することが可能となる。
また、中間層のAl組成比は、第2半導体層側の面から第1半導体層側の面に向かって第1変化率で一様に増加することが好ましい。この場合、中間層において積層方向に沿ったAl組成比の変化率が一定であるため、中間層における電気抵抗を抑えることができる。
また、第1半導体層のAl組成比は、一方の中間層側の面から中心に向かって第2変化率で増加するとともに、他方の中間層側の面から中心に向かって第3変化率で増加し、第1変化率と第2変化率との差および第1変化率と第3変化率との差はいずれも、第1変化率よりも小さいことが好ましい。この場合、第1半導体層のAl組成比を一定(変化率が0)とした場合と比較して、中間層と第1半導体層との境界において、積層方向に沿ったAl組成比の変化率の変化量が小さくなる。このため、中間層と第1半導体層との境界において、積層方向に沿ったAl組成比の変化率の不連続な変化が緩和される。その結果、第1半導体層のAl組成比を一定とした場合と比較して、第2ミラー層の電気抵抗を低減できる。また、第1半導体層のAl組成比は、一方の中間層側の面から中心に向かって第2変化率で増加するとともに、他方の中間層側の面から中心に向かって第3変化率で増加するため、第1半導体層のAl組成比を一定とした場合と比較して、第1半導体層の平均屈折率が減少し、反射率が増加する。
また、第2変化率と第3変化率との和は、第1変化率よりも小さいことが好ましい。第1半導体層のAl組成比は、第1半導体層の一方の中間層側の面および他方の中間層側の面から中心に向かって増加するため、第1半導体層内においても積層方向に沿ったAl組成比の変化率が変化する。第1半導体層では、積層方向に沿ったAl組成比の変化率は、一方の中間層側から他方の中間層側に向かって見た場合、第2変化率での増加から第3変化率での減少に変化する。したがって、この変化率の変化量は、第2変化率と第3変化率との和である。そして、第2変化率と第3変化率との和が第1変化率よりも小さいことから、第1半導体層のAl組成比を一定(変化率が0)とした場合における中間層と第1半導体層との境界における積層方向に沿ったAl組成比の変化率の変化量と比較して、第1半導体層での積層方向に沿ったAl組成比の変化率の変化量が小さくなる。
また、第1半導体層のAl組成比は、厚み方向に沿って変化率の変化点を複数有し、変化点の各々において、変化前の変化率と変化後の変化率との差が第1変化率よりも小さいことが好ましい。この場合、第1半導体層のAl組成比の積層方向に沿った変化率は、複数箇所において変化する。そして、各変化点において変化前の変化率と変化後の変化率との差が第1変化率よりも小さいことから、第1半導体層のAl組成比を一定(変化率が0)とした場合における中間層と第1半導体層との境界でのAl組成比の積層方向に沿った変化率の変化量と比較して、第1半導体層でのAl組成比の積層方向に沿った変化率の変化量が小さくなる。
また、第2半導体層はAlを含み、第2半導体層のAl組成比は、一方の中間層側の面および他方の中間層側の面から第2半導体層の厚み方向の中心に向かって減少することが好ましい。この場合、第2半導体層のAl組成比は、一方の中間層側の面および他方の中間層側の面から第2半導体層の厚み方向の中心に向かって減少する。このため、第2半導体層のAl組成比を一定とした場合と比較して、中間層と第2半導体層との境界において、積層方向に沿ったAl組成比の変化率の不連続な変化が緩和される。したがって、この半導体発光素子では、第2半導体層のAl組成比を一定とした場合と比較して、第2ミラー層の電気抵抗を低減できる。
本発明によれば、第2ミラー層の電気抵抗の低減と反射率の向上とを両立できる。
本実施形態に係る半導体発光素子の積層方向に沿った概略断面図である。 図1の上部DBR層に含まれる半導体層の層厚とAl組成比との関係の一例を示す図である。 比較例の上部DBR層に含まれる半導体層の層厚とAl組成比との関係を示す図である。 第1半導体層の層厚方向の中心におけるAl組成比と電流密度および最大反射率との関係を示す図である。 図1の上部DBR層に含まれる半導体層の層厚とAl組成比との関係の他の例を示す図である。
以下、図面を参照して、本発明に係る半導体発光素子の実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。
図1は、本発明の一実施形態に係る半導体発光素子の積層方向に沿った概略断面図である。なお、図1においては、各部を明確に示すためハッチングを省略している。図1に示されるように、半導体発光素子1は、半導体基板11、下部DBR層12、共振部13、上部DBR層14、および、コンタクト層15を含む半導体積層10と、電流狭窄部16と、アノード電極17と、反射防止膜層18と、カソード電極19と、を含んで構成されている。半導体発光素子1は、半導体基板11の主面11aと略垂直な方向NV(所定の方向)(以下、単に「垂直方向NV」という。)に沿った垂直共振器内で光を共振させることにより、垂直方向NVに沿って光を出射させる垂直共振器型面発光レーザ素子である。
半導体基板11は、主面11aと、主面11aと反対側の裏面11bとを有し、例えば、導電型がn型のGaAsからなる。下部DBR層12は、半導体基板11の主面11a上に設けられ、導電型がn型(第1導電型)の第1ミラー層である。具体的には、下部DBR層12は、組成が異なる化合物半導体層を垂直方向NVに沿って交互に積層して構成された半導体多層ミラー層であり、例えばAl組成比が異なるAlGaAs層(低Al組成比層および高Al組成比層)が交互に積層された半導体多層構造を有する。低Al組成比層のAl組成比は、例えば0〜0.1の範囲であり、0.07程度が好ましい。また、高Al組成比層のAl組成比は、例えば0.9〜1.0の範囲であり、0.94程度が好ましい。また、低Al組成比層および高Al組成比層は、レーザ発振波長の1/4波長分の厚さを有する。
共振部13は、下部DBR層12上に設けられ、電流が供給されることによって所定の発光スペクトルの光を発する発光層である。この共振部13は、例えばInGaAs活性層、AlGaAs障壁層およびAlGaAs位相調整層からなり、レーザ発振波長の1波長分の厚さを有する。上部DBR層14は、共振部13上に設けられ、導電型がp型(第2導電型)の第2ミラー層である。この上部DBR層14は、下部DBR層12と同様に、例えばAl組成比が異なるAlGaAs層が垂直方向NVに沿って周期的に積層された半導体多層構造を有する。上部DBR層14の詳細については後述する。
コンタクト層15は、上部DBR層14上に設けられ、例えば、導電型がp型のGaAsからなる。電流狭窄部16は、上部DBR層14の周縁部に設けられ、共振部13に供給される電流を狭窄する部分である。この電流狭窄部16は、電流注入領域を限定するために設けられ、垂直方向NVを軸として軸周りに沿って上部DBR層14の周縁部に設けられる。また、電流狭窄部16は、上部DBR層14にプロトンが注入されることによって形成され、電気的絶縁性を有する。
アノード電極17は、コンタクト層15上に設けられ、コンタクト層15に電気的に接続されたp側電極である。このアノード電極17は、例えば、Cr/Auからなる。反射防止膜層18は、半導体基板11の下面11bのレーザ出射口に対応する領域上に設けられる。この反射防止膜層18は、例えば、SiNからなり、レーザ発振波長の1/4波長分の厚さを有する。このため、反射防止膜層18は、半導体基板11からの反射戻り光を低減させ、レーザ発振動作を安定化させる。カソード電極19は、半導体基板11の下面11bに設けられ、半導体基板11に電気的に接続されたn側電極である。このカソード電極19は、例えば、Au/AuGe/Auからなり、レーザ出射口に対応する領域に開口を有し、反射防止膜層18を囲むように設けられている。
このように構成された半導体発光素子1では、共振部13の一方の側に設けられた下部DBR層12と、共振部13の他方の側に設けられた上部DBR層14とによって、半導体発光素子1における垂直共振器が構成される。この垂直共振器により、共振部13から発せられた光が垂直方向NVに沿って共振される。そして、共振された光が垂直方向NVに沿って半導体基板11側の素子下面から外部(一方の側)へ出射される。なお、図示されていないが、共振部13と下部DBR層12との間には、導電型がn型のクラッド層およびノンドープ層が設けられている。また、共振部13と上部DBR層14との間には、導電型がp型のクラッド層が設けられている。これらの各層は、個々の発光素子の構造において、必要に応じて設けられる。
次に、上部DBR層14の構造について詳細に説明する。図1に示されるように、上部DBR層14は、複数の第1半導体層141の各々と、複数の第2半導体層142の各々とを、中間層143(143A,143B)を介在して垂直方向NVに沿って交互に含んで構成されている。すなわち、上部DBR層14は、第1半導体層141、中間層143A、第2半導体層142、中間層143Bの順に垂直方向NVに沿って配置された単位積層140を複数単位有している。したがって、共振部13上に第1半導体層141が設けられ、第2半導体層142上にコンタクト層15が設けられる。また、上部DBR層14は、Al組成比が層厚方向(厚み方向)に沿って連続的に変化するように構成されている。なお、上部DBR層14の層厚方向(以下、単に「層厚方向」という。)は、上部DBR層14に含まれる各半導体層の層厚方向と同方向であり、垂直方向NVとも同方向である。
第1半導体層141は、第1屈折率を有する半導体層であって、例えば、AlGaAsからなる。また、第1半導体層141は、層厚方向に直交する主面141a(他方の中間層側の面)と主面141aの反対側の裏面141b(一方の中間層側の面)とを有する。第2半導体層142は、第1屈折率よりも大きい屈折率の第2屈折率を有する半導体層であって、例えば、AlGaAsからなる。また、第2半導体層142は、層厚方向に直交する主面142a(他方の中間層側の面)と主面142aの反対側の裏面142b(一方の中間層側の面)とを有する。第1半導体層141と、第2半導体層142とは、平均Al組成比が異なり、第1半導体層141の平均Al組成比の方が高い。第1半導体層141の平均Al組成比は、例えば90%以上であり、第2半導体層142の平均Al組成比は、例えば10%以下である。また、第1半導体層141は、その層厚方向に沿ってAl組成比が連続的に変化するように構成される。具体的に説明すると、第1半導体層141は、例えば層厚方向の中心においてAl組成比が最大となり、主面141aおよび裏面141bのそれぞれから中心に向かってAl組成比が増加するように構成されている。一方、第2半導体層142は、層厚方向に沿ってAl組成比が略一定に構成される。
中間層143は、第1半導体層141と第2半導体層142との間に設けられた半導体層であって、例えば、AlGaAsからなる。中間層143は、中間層143Aおよび中間層143Bを含む。中間層143Aは、第1半導体層141の主面141aと第2半導体層142の裏面142bとの間に設けられる。中間層143Bは、第2半導体層142の主面142aと第1半導体層141の裏面141bとの間に設けられる。この中間層143は、第1半導体層141のAl組成比と第2半導体層142のAl組成比との間のAl組成比を有し、層厚方向に沿ってAl組成比が連続的に変化する。具体的には、中間層143は、層厚方向に沿ったAl組成比が、第1半導体層141の層厚方向に沿った中間層143側の面におけるAl組成比から第2半導体層142の層厚方向に沿った中間層143側の面におけるAl組成比まで連続的に変化するように構成される。
また、中間層143では、層厚方向に沿ったAl組成比が一定の割合(第1変化率)で一様に増加するように構成されてもよい。また、第1半導体層141では、層厚方向に沿ったAl組成比が裏面141bから層厚方向の中心まで第2変化率で増加し、主面141aから層厚方向の中心まで第3変化率で増加するように構成されてもよい。言い換えると、層厚方向の共振部13側からコンタクト層15側に向かう方向において、中間層143Bでは、Al組成比が第1変化率で増加し、第1半導体層141では、Al組成比が裏面141bから層厚方向の中心まで第2変化率で増加して、層厚方向の中心から主面141aまで第3変化率で減少し、中間層143Aでは、Al組成比が第1変化率で減少するように構成されてもよい。
この場合、中間層143Bと第1半導体層141との間では、Al組成比の変化率が第1変化率の増加から第2変化率の増加に変化する。また、第1半導体層141と中間層143Aとの間では、Al組成比の変化率が第3変化率の減少から第1変化率の減少に変化する。さらに、第1半導体層141の層厚方向の中心において、Al組成比の変化率が第2変化率の増加から第3変化率の減少に変化する。これら層厚方向に沿ったAl組成比の変化率の不連続な変化は、ポテンシャルの突起の原因となり電気抵抗の主要因となる。したがって、これらの不連続な変化の変化量ができる限り小さくなるように上部DBR層14に含まれる各層の層厚、Al組成比、およびAl組成比の変化率が調整される。
図2は、上部DBR層14に含まれる半導体層の層厚とAl組成比との関係の一例を示す図である。この例では、第1半導体層141の層厚は50.5nm、第2半導体層142の層厚は40.6nm、中間層143(143A,143B)の層厚は30nmである。また、第1半導体層141の組成比は、主面141aおよび裏面141bにおいて90%であり、主面141aおよび裏面141bのそれぞれから層厚方向の中心に向かってそれぞれ第2変化率、第3変化率(0.20〜0.36%/nm)で増加し、中心で95〜99%となる。一方、第2半導体層142のAl組成比は、層厚方向に沿って一定(10%)である。中間層143のAl組成比は、第1半導体層141側の面で90%、第2半導体層142側の面で10%であり、第2半導体層142側の面から第1半導体層141側の面に向かって第1変化率(2.67%/nm)で増加する。
次に、半導体発光素子1の製造方法の一例について説明する。まず、半導体基板11の主面11aに、例えば有機金属気相成長法により下部DBR層12、共振部13、上部DBR層14、コンタクト層15の順に垂直方向NVに沿ってエピタキシャル成長する。具体的には、半導体基板11の主面11aに、n型の低Al組成比層(例えばAlGaAs層)とn型の高Al組成比層(例えばAlGaAs層)とを交互に繰り返し積層し、下部DBR層12を形成する。このとき、低Al組成比層の厚さおよび高Al組成比層の厚さがレーザ発振波長の1/4波長分の光学長となるように低Al組成比層および高Al組成比層を成長する。この低Al組成比層および高Al組成比層は、所望の反射率を得るのに必要な層数まで繰り返し積層される。
そして、下部DBR層12(高Al組成比層)上にInGaAs活性層、AlGaAs障壁層およびAlGaAs位相調整層からなる共振部13を形成する。続いて、共振部13上に、第1半導体層141と、第2半導体層142とを交互に繰り返し積層し、上部DBR層14を形成する。このとき、第1半導体層141と第2半導体層142との間に中間層143を形成する。すなわち、第1半導体層141、中間層143A、第2半導体層142、中間層143Bの順に積層された単位積層140を、所望の反射率を得るのに必要な単位数分繰り返し積層する。なお、反射スペクトルが発振波長に合うように、第1半導体層141、第2半導体層142、中間層143Aおよび中間層143Bの各層の層厚を調整する。
そして、上部DBR層14(第2半導体層142)上にコンタクト層15を形成する。このコンタクト層15は、素子形成時にオーミック接触が得られるように十分にドーピング濃度を高くして形成される。以上のようにして、半導体積層10を形成する。
次に、半導体積層10の表面にフォトリソグラフィによって、上部DBR層14の周縁部に、垂直方向NVを軸として軸周りに開口を有するレジストパターンを形成する。その後、レジストパターンが形成された半導体積層10に対して、イオン注入装置によってプロトン(陽子)を照射する。これによって、半導体積層10のレジストに覆われている領域では、レジストによってプロトンが吸収される。一方、半導体積層10のレジストに覆われていない領域、すなわち、レジストの開口が形成された領域にはプロトンが注入され、電流狭窄部16が形成される。
続いて、コンタクト層15上に例えばCr/Auを蒸着し、アノード電極17を形成する。そして、半導体発光素子1の電気抵抗および光吸収損失を低減するために、半導体基板11の下面11bを研磨して、半導体基板11を薄膜化する。また、下面11bは、出射表面における散乱損失を抑制するため、鏡面仕上げにされる。その後、薄膜化した半導体基板11の下面11b上に、反射防止膜層18を積層する。続いて、フォトリソグラフィによって、レーザ出射口に対応する領域を覆うレジストを反射防止膜層18上に形成する。
そして、反射防止膜層18上に形成されたレジストをマスクとして、例えば反応性イオンエッチングによって反射防止膜層18のうちレーザ出射口に対応する領域以外を除去する。さらに、反射防止膜層18上に形成されたレジストを用いて、例えばリフトオフ法によって半導体基板11の下面11b上にAu/AuGe/Auを蒸着し、カソード電極19を形成する。その後、接触抵抗を低減させるために、窒素雰囲気中でのアニールによって半導体および金属界面を合金化させる。以上のようにして、半導体発光素子1を作製する。
次に、図2〜図4を参照して、半導体発光素子1の作用効果を説明する。図3は、比較例の上部DBR層に含まれる半導体層の層厚とAl組成比との関係を示す図である。図4は、第1半導体層141の層厚方向の中心におけるAl組成比と電流密度および最大反射率との関係の計算結果を示す図である。
図3に示されるように、比較例では、上部DBR層は、第1半導体層241、中間層243A、第2半導体層242、中間層243Bの順に積層された単位積層240を複数単位有している。この第1半導体層241の層厚は50.5nm、第2半導体層242の層厚は40.6nm、中間層243Aおよび中間層243Bの層厚は30nmである。また、第1半導体層241のAl組成比は90%であって、層厚方向に沿って一定である。また、第2半導体層242のAl組成比は10%であって、層厚方向に沿って一定である。さらに、中間層243AのAl組成比は、層厚方向に沿って90%から10%まで一定の割合(2.67%/nm)で減少し、中間層243BのAl組成比は、層厚方向に沿って10%から90%まで一定の割合(2.67%/nm)で増加している。
この比較例では、中間層243Bと第1半導体層241との間で、層厚方向に沿ったAl組成比の変化率は、2.67%/nmでの増加から0.00%/nmに変化する。また、第1半導体層241と中間層243Aとの間で、層厚方向に沿ったAl組成比の変化率は、0.00%/nmから2.67%/nmでの減少に変化する。したがって、第1半導体層241と中間層243との境界において、層厚方向に沿ったAl組成比の変化率の変化量は、2.67%/nmである。この層厚方向に沿ったAl組成比の変化率の不連続な変化は、ポテンシャルの突起の原因となり電気抵抗の主要因となる。
一方、図2に示される半導体発光素子1の一例では、中間層143Bと第1半導体層141との間で、層厚方向に沿ったAl組成比の変化率は、2.67%/nm(第1変化率)での増加から0.20〜0.36%/nm(第2変化率)での増加に変化する。また、第1半導体層141と中間層143Aとの間で、層厚方向に沿ったAl組成比の変化率は、0.20〜0.36%/nm(第3変化率)での減少から2.67%/nm(第1変化率)での減少に変化する。したがって、第1半導体層141と中間層143との境界における層厚方向に沿ったAl組成比の変化率の変化量は、第1変化率と第2変化率との差、又は、第1変化率と第3変化率との差によって算出され、2.31〜2.47%/nmである。この値は、比較例の第1半導体層241と中間層243との境界における層厚方向に沿ったAl組成比の変化率の変化量よりも小さい。
なお、この例では、中間層143の層厚方向に沿ったAl組成比の変化率は、比較例の中間層243の層厚方向に沿ったAl組成比の変化率と同じである。このため、主面141aおよび裏面141bのそれぞれから中心に向かってAl組成比が増加するように第1半導体層141が構成された場合、第1半導体層141と中間層143との境界における層厚方向に沿ったAl組成比の変化率の変化量は、比較例の第1半導体層241と中間層243との境界における層厚方向に沿ったAl組成比の変化率の変化量よりも小さくなる。
また、第1半導体層141内の層厚方向に沿ったAl組成比の変化率は、0.20〜0.36%/nm(第2変化率)での増加から0.20〜0.36%/nm(第3変化率)での減少に変化する。したがって、第1半導体層141における層厚方向に沿ったAl組成比の変化率の変化量は、第2変化率と第3変化率との和によって算出され、0.40〜0.72%/nmである。この値は、比較例の第1半導体層241と中間層243との境界における層厚方向に沿ったAl組成比の変化率の変化量よりも小さい。
このように、第1半導体層141は、層厚方向に沿ったAl組成比が主面141aおよび裏面141bのそれぞれから層厚方向の中心に向かって増加するように構成されていることにより、比較例に比べて、第1半導体層141と中間層143との境界における層厚方向に沿ったAl組成比の変化率の変化量が小さくなる。このため、半導体発光素子1では、比較例よりも第1半導体層141の1層当たりの電気抵抗が低減される。
図2に示された半導体発光素子1の第1半導体層141の一例では、Al組成比は層厚方向の中心に向かって90%から増加している。このため、第1半導体層141は、Al組成比が90%で一定である第1半導体層241と比較して、平均Al組成比が高いため平均屈折率が小さくなる。したがって、第1半導体層141は、第1半導体層241と比較して、反射率が向上する。その結果、所望の反射率を得るために必要な上部DBR層14の層数を減らすことができる。
そして、第1半導体層141の1層当たりの電気抵抗の低減および上部DBR層14の層数の低減によって、半導体発光素子1の動作電圧を下げることが可能となる。また、半導体発光素子1の動作電圧が下がることによって、半導体発光素子1の発熱量を抑えることができる。このため、上部DBR層14における熱抵抗が小さくなり、放熱性が向上し、最大出力および電気光変換効率を向上することが可能となる。
図4に示されるように、第1半導体層141の層厚方向の中心におけるAl組成比が90%である場合、すなわち、比較例と同等の構成である場合、単位積層140当たり0.04Vの電圧を印加したときの電流密度は、1.13×10A/mであった。また、第1半導体層141の層厚方向の中心におけるAl組成比が95%である場合、単位積層140当たり0.04Vの電圧を印加したときの電流密度は、1.19×10A/mであった。また、第1半導体層141の層厚方向の中心におけるAl組成比が99%である場合、単位積層140当たり0.04Vの電圧を印加したときの電流密度は、1.25×10A/mであった。以上のことから、第1半導体層141の層厚方向の中心におけるAl組成比が高いほど、単位積層140当たり0.04Vの電圧を印加したときの電流密度は高くなることが分かる。すなわち、第1半導体層141の層厚方向の中心におけるAl組成比が高いほど、単位積層140当たりの電気抵抗が低くなる。
また、単位積層140を10単位分をGaAsと真空とで挟んだときの最大反射率は、第1半導体層141の層厚方向の中心におけるAl組成比を90%、95%、99%とした場合、それぞれ91.6%、92.2%、92.6%であった。以上のことから、第1半導体層141の層厚方向の中心におけるAl組成比が高いほど、単位積層140の最大反射率は高くなることが分かる。
以上のように、図4に示される計算結果からも、第1半導体層141の層厚方向の中心のAl組成比が大きいほど、単位積層140の電気抵抗が低減し、最大反射率が増加することが分かる。
なお、半導体発光素子の動作電圧の低減に対しては、様々なアプローチがあるが、アレイ化することを前提とした場合、できるだけ簡単な構造で、かつ再現性が得られる方法が望まれる。これに対し、半導体発光素子1は、プロセスによる作り込みではなく結晶構造による改良であるため、半導体発光素子1をアレイ化した場合でも、歩留まりの低下および工数の増大を抑制できる。
図5は、上部DBR層14の他の例を示す図である。この例では、第1半導体層141の層厚は40.2nm、第2半導体層142の層厚は49.0nm、中間層143Aおよび中間層143Bの層厚は30nmである。また、第1半導体層141のAl組成比は、層厚方向の中心で99%、主面141aおよび裏面141bで80%であり、主面141aおよび裏面141bのそれぞれから中心に向けて層厚方向に沿って一定の割合で増加している。また、第2半導体層142のAl組成比は0%であり、中間層143AのAl組成比は層厚方向に沿って80%から0%まで一定の割合で減少し、中間層143BのAl組成比は層厚方向に沿って0%から80%まで一定の割合で増加している。
なお、中間層143Aの層厚および中間層143Bの層厚は、20nm以下であると抵抗値が上がり、大きすぎると反射率が下がることから、30nmとしている。また、第1半導体層141のAl組成比は90%、第2半導体層142のAl組成比が10%であり中間層143を有しない975nm用DBRの反射スペクトルと極力近くなるように、第1半導体層141の層厚、第2半導体層142の層厚および各層のAl組成比が調整されている。
この例の上部DBR層14では、0.04V印加時の電流密度が1.51×10A/m、最大反射率が93.3%という結果が得られた。
なお、本発明に係る半導体発光素子は本実施形態に記載したものに限定されない。例えば、第1半導体層141のAl組成比は、主面141aおよび裏面141bのそれぞれから層厚方向の中心に向かって増加しているが、層厚方向の中心においてAl組成比を最大にする必要はない。この場合、第1半導体層141と中間層143との境界における層厚方向に沿ったAl組成比の変化率の変化量は、主面141aおよび裏面141bのいずれかにおいて大きくなる。そして、上部DBR層14全体としての電気抵抗値は、層厚方向の中心においてAl組成比が最大となる場合よりも大きくなる傾向がある。
また、第1半導体層141の層厚方向に沿ったAl組成比の変化率は、層厚方向の中心の1箇所においてのみ変更されているが、複数の変化点を有してもよい。この場合、各変化点における層厚方向に沿ったAl組成比の変化率の変化量(すなわち、変化前の変化率と変化後の変化率との差分)が、第1半導体層141のAl組成比を一定とした場合の第1半導体層141と中間層143との境界におけるAl組成比の変化率の変化量(すなわち、中間層143におけるAl組成比の変化率)よりも小さくする必要がある。これにより、第1半導体層141の層厚方向に沿ったAl組成比の変化率の変化量がさらに低減される。このため、ポテンシャルの突起をさらに抑えることができ、上部DBR層14の電気抵抗をさらに低減できる。
また、第1半導体層141の層厚方向に沿ったAl組成比の変化率は、主面141aおよび裏面141bのそれぞれから中心に向けて一定である必要はなく、連続的に変化させてもよい。また、第1半導体層141と中間層143との境界において、Al組成比の変化率は、連続的に変化させてもよい。この場合、第1半導体層141の層厚方向に沿ったAl組成比の変化率の変化量が、さらに低減される。このため、ポテンシャルの突起をさらに抑えることができ、上部DBR層14の電気抵抗をさらに低減できる。
また、第2半導体層142と中間層143との境界における層厚方向に沿ったAl組成比の変化率の不連続な変化は、ポテンシャルの窪みの原因となり、電気抵抗の要因となり得る。したがって、第2半導体層142のAl組成比は、層厚方向に沿って第2半導体層142の主面142aおよび裏面142bのそれぞれから層厚方向の中心に向かって減少するようにしてもよい。この場合、第2半導体層142の層厚方向に沿ったAl組成比が一定の場合と比較して、第2半導体層142と中間層143との境界において層厚方向に沿ったAl組成比の変化率の変化量が小さくなる。このため、第2半導体層142のAl組成比が一定の場合と比較して、上部DBR層14の電気抵抗を低減できる。
1…半導体発光素子、11…半導体基板、12…下部DBR層(第1ミラー層)、13…共振部(発光層)、14…上部DBR層(第2ミラー層)、141…第1半導体層、141a…主面(他方の中間層側の面)、141b…裏面(一方の中間層側の面)、142…第2半導体層、142a…主面(他方の中間層側の面)、142b…裏面(一方の中間層側の面)、143,143A,143B…中間層、NV…垂直方向(積層方向)。

Claims (6)

  1. 第1導電型を有する第1ミラー層と、電流の供給によって光を発する発光層と、第2導電型を有する第2ミラー層とが半導体基板上に順に積層された半導体発光素子であって、
    前記第2ミラー層には、第1屈折率を有する第1半導体層と、前記第1屈折率よりも大きい第2屈折率を有する第2半導体層とが、中間層を介在して積層方向に交互に配置され、
    前記中間層および前記第1半導体層はAlを含み、
    前記中間層のAl組成比は、前記第2半導体層側の面から前記第1半導体層側の面に向かって増加し、
    前記第1半導体層のAl組成比は、一方の中間層側の面および他方の中間層側の面から厚み方向の中心に向かって増加することを特徴とする半導体発光素子。
  2. 前記中間層のAl組成比は、前記第2半導体層側の面から前記第1半導体層側の面に向かって第1変化率で一様に増加することを特徴とする請求項1に記載の半導体発光素子。
  3. 前記第1半導体層のAl組成比は、前記一方の中間層側の面から前記中心に向かって第2変化率で増加するとともに、前記他方の中間層側の面から前記中心に向かって第3変化率で増加し、
    前記第1変化率と前記第2変化率との差および前記第1変化率と前記第3変化率との差はいずれも、前記第1変化率よりも小さいことを特徴とする請求項2に記載の半導体発光素子。
  4. 前記第2変化率と前記第3変化率との和は、前記第1変化率よりも小さいことを特徴とする請求項3に記載の半導体発光素子。
  5. 前記第1半導体層のAl組成比は、前記厚み方向に沿って変化率の変化点を複数有し、
    前記変化点の各々において、変化前の変化率と変化後の変化率との差が前記第1変化率よりも小さいことを特徴とする請求項2に記載の半導体発光素子。
  6. 前記第2半導体層はAlを含み、
    前記第2半導体層のAl組成比は、一方の中間層側の面および他方の中間層側の面から前記第2半導体層の厚み方向の中心に向かって減少することを特徴とする請求項1〜請求項5のいずれか一項に記載の半導体発光素子。
JP2011199533A 2011-09-13 2011-09-13 半導体発光素子 Pending JP2013062354A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011199533A JP2013062354A (ja) 2011-09-13 2011-09-13 半導体発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011199533A JP2013062354A (ja) 2011-09-13 2011-09-13 半導体発光素子

Publications (1)

Publication Number Publication Date
JP2013062354A true JP2013062354A (ja) 2013-04-04

Family

ID=48186783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011199533A Pending JP2013062354A (ja) 2011-09-13 2011-09-13 半導体発光素子

Country Status (1)

Country Link
JP (1) JP2013062354A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190043445A (ko) * 2017-10-18 2019-04-26 루멘텀 오퍼레이션즈 엘엘씨 수직 공동 면 발광 레이저 박형 웨이퍼 휨 제어
KR20190116299A (ko) * 2017-02-08 2019-10-14 콘세호 수페리오르 데 인베스티가시오네스 시엔티피카스 양자 광원 장치 및 이의 양자 광학 회로

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537090A (ja) * 1991-07-29 1993-02-12 Nippon Telegr & Teleph Corp <Ntt> 半導体光反射層
JPH05206588A (ja) * 1991-10-11 1993-08-13 American Teleph & Telegr Co <Att> 光学デバイス及び直列抵抗低減方法
JP2009206480A (ja) * 2008-01-28 2009-09-10 Ricoh Co Ltd 面発光レーザ、面発光レーザアレイ、光走査装置、画像形成装置、光伝送モジュール及び光伝送システム
JP2010212332A (ja) * 2009-03-09 2010-09-24 Sony Corp 半導体レーザおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537090A (ja) * 1991-07-29 1993-02-12 Nippon Telegr & Teleph Corp <Ntt> 半導体光反射層
JPH05206588A (ja) * 1991-10-11 1993-08-13 American Teleph & Telegr Co <Att> 光学デバイス及び直列抵抗低減方法
JP2009206480A (ja) * 2008-01-28 2009-09-10 Ricoh Co Ltd 面発光レーザ、面発光レーザアレイ、光走査装置、画像形成装置、光伝送モジュール及び光伝送システム
JP2010212332A (ja) * 2009-03-09 2010-09-24 Sony Corp 半導体レーザおよびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116299A (ko) * 2017-02-08 2019-10-14 콘세호 수페리오르 데 인베스티가시오네스 시엔티피카스 양자 광원 장치 및 이의 양자 광학 회로
JP2020506556A (ja) * 2017-02-08 2020-02-27 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス(シーエスアイシー)Consejo Superior De Investigaciones Cientificas 量子光光源素子およびその量子光学回路
KR102461670B1 (ko) 2017-02-08 2022-10-31 콘세호 수페리오르 데 인베스티가시오네스 시엔티피카스 양자 광원 장치 및 이의 양자 광학 회로
JP7212621B2 (ja) 2017-02-08 2023-01-25 コンセホ・スペリオル・デ・インベスティガシオネス・シエンティフィカス(セエセイセ) 量子光光源素子およびその量子光学回路
KR20190043445A (ko) * 2017-10-18 2019-04-26 루멘텀 오퍼레이션즈 엘엘씨 수직 공동 면 발광 레이저 박형 웨이퍼 휨 제어
JP2019075529A (ja) * 2017-10-18 2019-05-16 ルーメンタム オペレーションズ エルエルシーLumentum Operations LLC 垂直共振器面発光レーザ薄型ウエハの反り制御
KR102248153B1 (ko) 2017-10-18 2021-05-04 루멘텀 오퍼레이션즈 엘엘씨 수직 공동 면 발광 레이저 웨이퍼, 수직 공동 면 발광 레이저 및 면 발광 레이저의 박형화된 웨이퍼

Similar Documents

Publication Publication Date Title
US6771680B2 (en) Electrically-pumped, multiple active region vertical-cavity surface-emitting laser (VCSEL)
US8385381B2 (en) Vertical cavity surface emitting laser
US9160138B2 (en) Light-emitting element array
EP2639900B1 (en) Semiconductor stack and vertical cavity surface emitting laser
JP5593700B2 (ja) 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US10153616B2 (en) Electron beam pumped vertical cavity surface emitting laser
US20060140235A1 (en) External cavity surface emitting laser device having a plurality of quantum wells
JP7453489B2 (ja) 波長変換装置及び発光装置
JP5029254B2 (ja) 面発光レーザ
WO2018168430A1 (ja) 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
JP4497859B2 (ja) 面発光半導体レーザ装置および光伝送モジュールおよび光伝送システム
US20110293331A1 (en) Surface-emitting laser and image forming apparatus using the same
CN114946092A (zh) 垂直谐振器型发光元件
JP4224981B2 (ja) 面発光半導体レーザ素子およびその製造方法
EP2822115A1 (en) Vertical-cavity surface-emitting laser
JP2013062354A (ja) 半導体発光素子
JP3785683B2 (ja) 面発光素子
JP2007087994A (ja) 面発光半導体レーザ素子
WO2023042675A1 (ja) 垂直共振器型発光素子
JP2005251860A (ja) 面発光レーザ装置
JP7312113B2 (ja) 面発光半導体レーザ
US20080285612A1 (en) Surface emitting semiconductor laser
WO2023243298A1 (ja) 垂直共振器型面発光レーザ素子及び垂直共振器型面発光レーザ素子アレイ
WO2021157431A1 (ja) 発光デバイス
US20240079853A1 (en) Electrical contact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630