JP2013062203A - Conductive film and manufacturing method thereof, and silver alloy sputtering target for forming conductive film and manufacturing method thereof - Google Patents

Conductive film and manufacturing method thereof, and silver alloy sputtering target for forming conductive film and manufacturing method thereof Download PDF

Info

Publication number
JP2013062203A
JP2013062203A JP2011201331A JP2011201331A JP2013062203A JP 2013062203 A JP2013062203 A JP 2013062203A JP 2011201331 A JP2011201331 A JP 2011201331A JP 2011201331 A JP2011201331 A JP 2011201331A JP 2013062203 A JP2013062203 A JP 2013062203A
Authority
JP
Japan
Prior art keywords
atomic
conductive film
film
silver alloy
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011201331A
Other languages
Japanese (ja)
Other versions
JP5742615B2 (en
Inventor
Sohei Nonaka
荘平 野中
Shozo Komiyama
昌三 小見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011201331A priority Critical patent/JP5742615B2/en
Publication of JP2013062203A publication Critical patent/JP2013062203A/en
Application granted granted Critical
Publication of JP5742615B2 publication Critical patent/JP5742615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a conductive film which has characteristics of low resistance and high reflectance and small surface roughness and also has high sulfur resistance and chlorine resistance, and a manufacturing method thereof.SOLUTION: A conductive film contains Cu of 0.1 to 2.5 atom%, Sb of 0.1 to 1.5 atom%, and Ga of 0.5 to 3 atom%, and is constituted of a silver alloy having a component composition composed of the balance being Ag and unavoidable impurities. The conductive film is formed by laminating a transparent conductive film of an organic EL element on the surface thereof, and is suitable as a reflection electrode film for the organic EL element obtained by further laminating an electroluminescent layer containing an organic EL layer thereon.

Description

本発明は、有機エレクトロルミネッセンス(EL)素子の反射電極膜やタッチパネルの配線膜などに好適な導電性膜及びその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法に関する。   The present invention relates to a conductive film suitable for a reflective electrode film of an organic electroluminescence (EL) element, a wiring film of a touch panel, a manufacturing method thereof, a silver alloy sputtering target for forming a conductive film, and a manufacturing method thereof.

一般に、有機EL表示装置では、スイッチング素子であるTFT(薄膜トランジスタ)が配置されたTFTアクティブマトリックス基板上に、有機EL層を含む電界発光層の両側にアノード(陽極)とカソード(陰極)とを配した有機EL素子が、各画素領域に形成された構造とされている。   In general, in an organic EL display device, an anode (anode) and a cathode (cathode) are arranged on both sides of an electroluminescent layer including an organic EL layer on a TFT active matrix substrate on which TFTs (thin film transistors) as switching elements are arranged. The organic EL element thus formed is formed in each pixel region.

有機EL素子の光の取り出し方式には、透明基板側から光を取り出すボトムエミッション方式と、基板とは反対側に光を取り出すトップエミッション方式とがあり、開口率の高いトップエミッション方式が、高輝度化に有利である。従来、トップエミッション方式の有機EL素子では、アノードの金属膜としてAlまたはAl合金やAgまたはAg合金の反射電極膜が用いられており、この反射電極膜と電界発光層との間には、ITO(Indium Tin Oxide:酸化インジウムスズ)やAZO(Aluminum doped Zinc Oxide:アルミニウム添加酸化亜鉛)等の透明導電膜が設けられている(特許文献1参照)。この透明導電膜は、仕事関数が高いという特性から正孔を有機EL層に注入するために設けられている。   There are two types of light extraction methods for organic EL elements: a bottom emission method that extracts light from the transparent substrate side, and a top emission method that extracts light from the opposite side of the substrate. A top emission method with a high aperture ratio provides high brightness. It is advantageous to make. Conventionally, in a top emission type organic EL element, a reflective electrode film of Al or Al alloy or Ag or Ag alloy is used as an anode metal film, and an ITO film is interposed between the reflective electrode film and the electroluminescent layer. A transparent conductive film such as (Indium Tin Oxide) or AZO (Aluminum doped Zinc Oxide) is provided (see Patent Document 1). This transparent conductive film is provided for injecting holes into the organic EL layer because of its high work function.

ここで、反射電極膜は、有機EL層で発光した光を効率よく反射するために、高反射率であることが望ましい。また、電極として低抵抗であることも望ましい。そのような材料として、Ag合金およびAl合金が知られているが、より高輝度の有機EL素子を得るためには、可視光反射率が高いことからAg合金が優れている。
ここで、有機EL素子への反射電極膜の形成には、スパッタリング法が採用されており、銀合金スパッタリングターゲットが用いられている(特許文献2参照)。
Here, the reflective electrode film desirably has a high reflectance in order to efficiently reflect the light emitted from the organic EL layer. It is also desirable that the electrode has a low resistance. As such a material, an Ag alloy and an Al alloy are known. However, in order to obtain an organic EL element with higher luminance, the Ag alloy is excellent because of its high visible light reflectance.
Here, a sputtering method is employed for forming the reflective electrode film on the organic EL element, and a silver alloy sputtering target is used (see Patent Document 2).

また、有機EL素子用反射電極膜の他に、タッチパネルの引き出し配線などの導電性膜にも、Ag合金膜が検討されている。このような配線膜として、例えば純Agを用いるとマイグレーションが生じて短絡不良が発生しやすくなるため、Ag合金膜の採用が検討されている。   In addition to the reflective electrode film for organic EL elements, an Ag alloy film has been studied for conductive films such as lead wires for touch panels. As such a wiring film, for example, when pure Ag is used, migration occurs and a short circuit failure is likely to occur. Therefore, adoption of an Ag alloy film has been studied.

特開2006−236839号公報JP 2006-236839 A 国際公開第2002/077317号International Publication No. 2002/077317

しかしながら、上記従来の技術においても、以下の課題が残されている。
有機EL素子のアノードとされるAg合金膜については、反射電極として低抵抗および高反射率の特性が求められると共に、上層に形成される透明導電膜の健全性を確保するために、表面粗さが小さいことが求められる。すなわち、Ag合金膜の表面粗さが大きいとAg合金膜の凹凸により上層の透明導電膜、さらには後の工程で形成される有機EL層を含む電界発光層に欠陥を生じる。これにより有機ELパネルの生産歩留まりが低下することとなる。また、工程雰囲気中に含まれる硫黄分がAg合金膜を硫化し、硫化された領域が欠陥となり、これも歩留まり低下を生じる原因となる。
このように従来では、十分な低抵抗と高反射率とを備え、さらに小さい表面粗さおよび高い耐硫化性を有するAg合金膜を得ることができなかった。
また、有機ELパネルはスマートフォンなどタッチパネルと併用してモバイルのディスプレイとして使用されることが多く、環境からの塩素成分に加え、人体からの汗など、塩素成分の影響を受ける可能性が高い。このため、塩素に対する耐性が求められており、これは有機ELパネルの構成要素であるAg合金を使用した反射電極膜についても同様である。
さらに、タッチパネルの引き出し配線としてAg合金が使用される場合にも低抵抗、平滑性及び耐環境性(耐硫化性、耐塩化性)が求められるが、上述の通り、タッチパネルは人体に近い部分で使用されるため、特に耐塩化性が重要となる。
However, the following problems remain in the above-described conventional technology.
The Ag alloy film used as the anode of the organic EL element is required to have low resistance and high reflectance characteristics as a reflective electrode, and in order to ensure the soundness of the transparent conductive film formed in the upper layer, the surface roughness Is required to be small. That is, when the surface roughness of the Ag alloy film is large, defects are generated in the electroluminescent layer including the upper transparent conductive film and further the organic EL layer formed in a later step due to the unevenness of the Ag alloy film. As a result, the production yield of the organic EL panel is lowered. Further, the sulfur content contained in the process atmosphere sulfidizes the Ag alloy film, and the sulfidized region becomes a defect, which also causes a decrease in yield.
Thus, conventionally, it has been impossible to obtain an Ag alloy film having sufficiently low resistance and high reflectivity, and having a small surface roughness and high sulfidation resistance.
In addition, the organic EL panel is often used as a mobile display in combination with a touch panel such as a smartphone, and is likely to be affected by chlorine components such as sweat from the human body in addition to chlorine components from the environment. For this reason, the tolerance with respect to chlorine is calculated | required, and this is the same also about the reflective electrode film which uses Ag alloy which is a component of an organic electroluminescent panel.
Furthermore, low resistance, smoothness and environmental resistance (sulfuration resistance, chlorination resistance) are also required when an Ag alloy is used as the lead-out wiring for the touch panel, but as described above, the touch panel is close to the human body. Since it is used, chlorination resistance is particularly important.

本発明は、前述の課題に鑑みてなされたもので、低抵抗かつ高反射率の特性と共に表面粗さが小さく、高い耐硫化性及び耐塩化性を兼ね備えた導電性膜及びその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and has a low resistance and high reflectance characteristics, a small surface roughness, a high sulfidation resistance and a high chlorination resistance, a method for manufacturing the same, and a conductive film. An object of the present invention is to provide a silver alloy sputtering target for forming a conductive film and a method for producing the same.

本発明者らは、Ag合金の導電性膜に関して鋭意研究を進めた結果、Agに、適量のCu及びSb、さらにGaを添加することで、膜の耐硫化性及び耐塩化性を向上させることができることを見出した。   As a result of intensive research on conductive films made of Ag alloys, the inventors have improved the sulfidation resistance and chlorination resistance of the film by adding appropriate amounts of Cu and Sb and further Ga to Ag. I found out that I can.

したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
第1の発明に係る導電性膜は、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されていることを特徴とする。
この導電性膜では、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されているので、低抵抗かつ高反射率の特性を有しながら、含有するCuおよびSbによって小さい表面粗さと高い耐硫化性とを有し、さらにGaによって高い耐塩化性を有している。
Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems.
The conductive film according to the first invention contains Cu: 0.1-2.5 atomic%, Sb: 0.1-1.5 atomic%, Ga: 0.5-3 atomic%, with the balance being It is composed of a silver alloy having a component composition composed of Ag and inevitable impurities.
This conductive film contains Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, and the balance is made of Ag and inevitable impurities. Since it is composed of a silver alloy having a component composition, it has a low resistance and a high reflectivity, while it has a small surface roughness and high sulfidation resistance due to the contained Cu and Sb, and further by Ga High resistance to chloride.

ここで、本発明のスパッタリングターゲットにおける金属成分元素の含有割合を上記のごとく限定した理由は、以下のとおりである。
Cu:
Cuは、表面粗さを低減すると共に耐硫化性を高める効果を有するので添加するが、0.1原子%よりも少ないとこの効果が十分でなく、一方、Cuを、2.5原子%を超えて含有させると、反射率が低下してしまうので、好ましくない。したがって、この発明のスパッタリングターゲット中に含まれる全金属成分元素に占めるCuの含有割合を0.1〜2.5原子%に定めた。
Sb:
Sbは、表面粗さを低減する効果が極めて大きく、なおかつCuよりも反射率および比抵抗を低下させる度合いが小さい。Sbが、0.1原子%よりも少ないと表面粗さの低減効果が小さくなってしまい、一方、Sbを、1.5原子%を超えて含有させると、反射率が低下してしまうので、好ましくない。したがって、この発明のスパッタリングターゲット中に含まれる全金属成分元素に占めるSbの含有割合をSb:0.1〜1.5原子%に定めた。
Ga:
Gaは、耐塩化性を高める効果を有するので添加するが、Gaが0.5原子%よりも少ないとこの効果が十分でなく、一方、3原子%を超えて含有させると、比抵抗が増大してしまうと共に反射率も低下してしまうので、好ましくない。したがって、この発明のスパッタリングターゲット中に含まれる全金属成分元素に占めるGaの含有割合を0.5〜3原子%に定めた。
Here, the reason for limiting the content ratio of the metal component element in the sputtering target of the present invention as described above is as follows.
Cu:
Cu is added because it has the effect of reducing the surface roughness and improving the sulfidation resistance. However, if it is less than 0.1 atomic%, this effect is not sufficient, while Cu is reduced to 2.5 atomic%. If it is contained in excess, the reflectivity is lowered, which is not preferable. Therefore, the content ratio of Cu in all metal component elements contained in the sputtering target of the present invention is set to 0.1 to 2.5 atomic%.
Sb:
Sb has an extremely large effect of reducing the surface roughness, and has a lower degree of lowering the reflectance and specific resistance than Cu. If Sb is less than 0.1 atomic%, the effect of reducing the surface roughness is reduced. On the other hand, if Sb is contained in excess of 1.5 atomic%, the reflectivity decreases. It is not preferable. Therefore, the content ratio of Sb in all the metal component elements contained in the sputtering target of the present invention is set to Sb: 0.1 to 1.5 atomic%.
Ga:
Ga is added because it has the effect of increasing the chlorination resistance. However, if Ga is less than 0.5 atomic%, this effect is not sufficient, while if it exceeds 3 atomic%, the specific resistance increases. And the reflectance also decreases, which is not preferable. Therefore, the Ga content in the total metal component elements contained in the sputtering target of the present invention is set to 0.5 to 3 atomic%.

第2の発明に係る導電性膜は、第1の発明において、さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下であることを特徴とする。
すなわち、この導電性膜では、さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下であるので、Gaと共にさらに添加したMgによって高い耐塩化性を有している。
なお、このスパッタリングターゲットにおけるMgの含有割合を上記のごとく限定した理由は、以下のとおりである。
Mg:
Mgは、耐塩化性を高める効果を有するので添加するが、Mgが0.5原子%よりも少ないとこの効果が十分でなく、一方、1.5原子%を超えて含有させると、比抵抗が増大してしまうと共に反射率も低下してしまうので、好ましくない。また、GaとMgとの合計割合が3原子%を超えると、比抵抗が増大してしまうと共に反射率も低下してしまう。したがって、この発明のスパッタリングターゲット中に含まれる全金属成分元素に占めるMgの含有割合を0.5〜1.5原子%とすると共に、GaとMgとの合計が3原子%以下に定めた。
The conductive film according to the second invention further comprises Mg: 0.5 to 1.5 atomic% in the first invention, and the total of Ga and Mg is 3 atomic% or less. It is characterized by.
That is, this conductive film further contains Mg: 0.5 to 1.5 atomic%, and the total of Ga and Mg is 3 atomic% or less. It has chloride resistance.
The reason why the Mg content in the sputtering target is limited as described above is as follows.
Mg:
Mg is added because it has an effect of improving the chlorination resistance. However, if Mg is less than 0.5 atomic%, this effect is not sufficient. On the other hand, if it exceeds 1.5 atomic%, specific resistance is added. Increases, and the reflectance also decreases. Moreover, when the total ratio of Ga and Mg exceeds 3 atomic%, the specific resistance increases and the reflectance also decreases. Therefore, the content ratio of Mg in all metal component elements contained in the sputtering target of the present invention is set to 0.5 to 1.5 atomic%, and the total of Ga and Mg is set to 3 atomic% or less.

第3の発明に係る導電性膜は、第1又は第2の発明において、表面に有機EL素子の透明導電膜が積層され、さらにその上に有機EL層を含む電界発光層が積層される有機EL素子用の反射電極膜であることを特徴とする。
すなわち、この導電性膜では、表面に有機EL素子の透明導電膜が積層されるので、小さい表面粗さにより上層の透明導電膜の健全性が確保されると共に、さらにその上の有機EL層に欠陥が生じることを防ぐことができる。また、反射電極膜の硫化による欠陥の発生を抑制し、歩留まり低下を防ぐことができると共に、塩素による影響も受け難い。
In the first or second invention, the conductive film according to the third invention is an organic film in which a transparent conductive film of an organic EL element is laminated on the surface, and an electroluminescent layer including an organic EL layer is further laminated thereon. It is a reflective electrode film for an EL element.
That is, in this conductive film, since the transparent conductive film of the organic EL element is laminated on the surface, the soundness of the upper transparent conductive film is ensured by the small surface roughness, and further, the organic EL layer is further formed thereon. Defects can be prevented from occurring. In addition, generation of defects due to sulfurization of the reflective electrode film can be suppressed, yield reduction can be prevented, and the influence of chlorine is hardly affected.

第4の発明に係る導電性膜の製造方法は、第1から第3のいずれかの発明である導電性膜を製造する方法であって、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Mg:0.5〜1.5原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されたスパッタリングターゲットを用いてスパッタリングすることにより成膜することを特徴とする。
すなわち、この導電性膜の製造方法では、上記発明の導電性膜と同成分組成の銀合金スパッタリングターゲットを用いてスパッタリングするので、小さい表面粗さと高い耐硫化性及び耐塩化性とを有した導電性膜を安定して得ることができる。
A method for producing a conductive film according to a fourth invention is a method for producing a conductive film according to any one of the first to third inventions, wherein Cu: 0.1 to 2.5 atomic%, Sb : Using a sputtering target composed of a silver alloy having a composition of 0.1 to 1.5 atomic%, Mg: 0.5 to 1.5 atomic%, and the balance of Ag and inevitable impurities The film is formed by sputtering.
That is, in this method for producing a conductive film, sputtering is performed using a silver alloy sputtering target having the same composition as that of the conductive film of the present invention, so that the conductive film has a small surface roughness and high sulfidation resistance and chlorination resistance. A stable membrane can be obtained.

また、第5の発明に係る導電性膜の製造方法は、第4の発明において、前記スパッタリングターゲットに、さらにMg:0.5〜1.5原子%を含有させると共に、GaとMgとの合計を3原子%以下にすることを特徴とする。
すなわち、この導電性膜の製造方法では、上記成分組成の銀合金スパッタリングターゲットを用いてスパッタリングすることで、上記第2の発明の導電性膜を安定して得ることができる。
Moreover, the manufacturing method of the electroconductive film which concerns on 5th invention WHEREIN: While making the said sputtering target contain Mg: 0.5-1.5 atomic% further in 4th invention, it is the sum total of Ga and Mg. Is 3 at% or less.
That is, in this method for producing a conductive film, the conductive film of the second invention can be stably obtained by sputtering using a silver alloy sputtering target having the above component composition.

第6の発明に係る導電性膜形成用銀合金スパッタリングターゲットは、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されていることを特徴とする。
すなわち、この導電性膜形成用銀合金スパッタリングターゲットを用いてスパッタすることで、低い電気抵抗及び小さい表面粗さを有し、さらに高い耐硫化性及び耐塩化性を有した導電性膜を安定して得ることができる。
The silver alloy sputtering target for forming a conductive film according to the sixth invention is Cu: 0.1-2.5 atomic%, Sb: 0.1-1.5 atomic%, Ga: 0.5-3 atomic%. And the balance is made of a silver alloy having a component composition composed of Ag and inevitable impurities.
That is, by sputtering using this silver alloy sputtering target for forming a conductive film, a conductive film having a low electrical resistance and a small surface roughness and having a high sulfidation resistance and chlorination resistance can be stabilized. Can be obtained.

第7の発明に係る導電性膜形成用銀合金スパッタリングターゲットは、第6の発明において、さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下であることを特徴とする。
すなわち、この導電性膜形成用銀合金スパッタリングターゲット用いてスパッタすることで、上記第2の発明である導電性膜を安定して得ることができる。
The silver alloy sputtering target for forming a conductive film according to the seventh invention further includes Mg: 0.5 to 1.5 atomic% in the sixth invention, and the total of Ga and Mg is 3 It is characterized by being not more than atomic%.
That is, the conductive film according to the second invention can be stably obtained by sputtering using this silver alloy sputtering target for forming a conductive film.

第8の発明に係る導電性膜形成用銀合金スパッタリングターゲットの製造方法は、第6又は第7の発明の導電性膜形成用銀合金スパッタリングターゲットを作製する方法であって、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットを、圧延する工程、機械加工する工程を、この順で行うことを特徴とする。
すなわち、この導電性膜形成用銀合金スパッタリングターゲットの製造方法では、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットを、圧延する工程、機械加工する工程を、この順で行うことで、上記本発明のスパッタリングターゲットを得ることができる。
A method for producing a silver alloy sputtering target for forming a conductive film according to an eighth invention is a method for producing a silver alloy sputtering target for forming a conductive film according to the sixth or seventh invention, wherein Cu: 0.1 A molten cast ingot containing ~ 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, and the balance being composed of Ag and inevitable impurities, The rolling process and the machining process are performed in this order.
That is, in this method of manufacturing a silver alloy sputtering target for forming a conductive film, Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic% The sputtering target of the present invention can be obtained by performing a rolling process and a machining process in this order on a melt-cast ingot containing a component composition composed of Ag and inevitable impurities. .

第9の発明に係る導電性膜形成用銀合金スパッタリングターゲットの製造方法は、第8の発明において、前記溶解鋳造インゴットに、さらにMg:0.5〜1.5原子%を含有させると共に、GaとMgとの合計を3原子%以下にすることを特徴とする。
すなわち、この導電性膜形成用銀合金スパッタリングターゲットの製造方法では、溶解鋳造インゴットに、さらにMg:0.5〜1.5原子%を含有させると共に、GaとMgとの合計を3原子%以下にするので、第7の発明の導電性膜形成用銀合金スパッタリングターゲットを得ることができる。
A method for producing a silver alloy sputtering target for forming a conductive film according to a ninth aspect of the present invention is the eighth aspect of the invention, wherein the melt casting ingot further contains Mg: 0.5 to 1.5 atomic%, and Ga The total of Mg and Mg is 3 atomic% or less.
That is, in this method for producing a silver alloy sputtering target for forming a conductive film, the molten casting ingot further contains Mg: 0.5 to 1.5 atomic%, and the total of Ga and Mg is 3 atomic% or less. Therefore, the silver alloy sputtering target for forming a conductive film of the seventh invention can be obtained.

本発明によれば、以下の効果を奏する。
本発明の導電性膜及びその製造方法によれば、膜が上記含有量範囲のCu,Sb及びGaを含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されているので、低抵抗かつ高反射率の特性を有しながら、小さい表面粗さと高い耐硫化性及び耐塩化性とを兼ね備えることができる。また、本発明の導電性膜形成用銀合金スパッタリングターゲットを用いてスパッタすることで、上記特性の導電性膜を安定して得ることができる。
したがって、本発明の導電性膜を有機EL素子の反射電極膜として採用することにより、凹凸によって生じる透明導電膜および有機EL層に欠陥や硫化によって生じる欠陥の発生を抑制し、有機ELパネルの生産歩留まりを向上させることができる。また、塩素成分の影響を受け難く、良好な膜特性を維持することができる。
さらに、本発明の導電性膜をタッチパネルの引き出し配線として採用することにより、低抵抗で十分な平滑性を有すると共に良好な耐環境性を得ることができる。
The present invention has the following effects.
According to the conductive film of the present invention and the manufacturing method thereof, the film is composed of a silver alloy having a component composition including Cu, Sb, and Ga in the above content range, and the balance being composed of Ag and inevitable impurities. Therefore, while having the characteristics of low resistance and high reflectance, it is possible to have both a small surface roughness and high sulfidation resistance and chlorination resistance. Moreover, the electroconductive film of the said characteristic can be stably obtained by sputtering using the silver alloy sputtering target for electroconductive film formation of this invention.
Therefore, by adopting the conductive film of the present invention as a reflective electrode film of the organic EL element, it is possible to suppress the occurrence of defects caused by defects or sulfidation in the transparent conductive film and the organic EL layer caused by unevenness, and the production of organic EL panels. Yield can be improved. Moreover, it is difficult to be influenced by the chlorine component, and good film characteristics can be maintained.
Furthermore, by adopting the conductive film of the present invention as a lead-out wiring for the touch panel, it is possible to obtain a low resistance and sufficient smoothness and good environmental resistance.

本発明に係る導電性膜およびその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法の一実施形態において、有機EL素子の層構造を示す模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a layer structure of an organic EL element in one embodiment of a conductive film and a manufacturing method thereof, a silver alloy sputtering target for forming a conductive film and a manufacturing method thereof according to the present invention.

以下、本発明に係る導電性膜およびその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法の一実施形態を、図1を参照しながら説明する。   Hereinafter, an embodiment of a conductive film and a manufacturing method thereof, a silver alloy sputtering target for forming a conductive film and a manufacturing method thereof according to the present invention will be described with reference to FIG.

本実施形態の導電性膜は、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されている。
また、本実施形態の導電性膜は、必要に応じてさらにMg:0.5〜1.5原子%を含有させると共に、GaとMgとの合計を3原子%以下としたものでも構わない。
この導電性膜1は、例えば図1に示すように、表面に有機EL素子10の透明導電膜2が積層され、さらにその上に有機EL層3bを含む電界発光層3が積層される有機EL素子用の反射電極膜である。
The conductive film of the present embodiment contains Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, with the balance being Ag and It is comprised with the silver alloy which has the component composition which consists of an inevitable impurity.
Further, the conductive film of the present embodiment may further contain Mg: 0.5 to 1.5 atomic% as necessary, and the total of Ga and Mg may be 3 atomic% or less.
For example, as shown in FIG. 1, the conductive film 1 has an organic EL element in which a transparent conductive film 2 of an organic EL element 10 is laminated on the surface, and an electroluminescent layer 3 including an organic EL layer 3b is further laminated thereon. It is a reflective electrode film for elements.

すなわち、この導電性膜1を備えた有機EL素子10は、成膜基板4上に形成されたアノード5と、該アノード5上に形成された有機EL層3bを含む電界発光層3と、該電界発光層3上に形成されたカソード6とを備えた有機EL素子であって、アノード5が、上記導電性膜1と、該導電性膜1と電界発光層3との間に形成された透明導電膜2とを有している。   That is, an organic EL element 10 provided with the conductive film 1 includes an anode 5 formed on a film formation substrate 4, an electroluminescent layer 3 including an organic EL layer 3 b formed on the anode 5, An organic EL device including a cathode 6 formed on an electroluminescent layer 3, wherein an anode 5 is formed between the conductive film 1 and the conductive film 1 and the electroluminescent layer 3. And a transparent conductive film 2.

上記成膜基板4は、例えばTFT基板上に有機EL用素子を形成する場合、SiN膜やゲート絶縁膜となるSiO膜等の複数の絶縁膜が上部に積層されたガラス基板や耐熱性樹脂基板等の絶縁性基板が用いられる。
上記各層および膜の厚さは、例えば電界発光層3が100〜200nm、透明導電膜2が10〜20nm、導電性膜1が100nmである。
上記電界発光層3は、アノード5上にホール(正孔)輸送層3a、有機EL層3b、電子輸送層3cの順に積層された三層構造を有している。
For example, in the case where an organic EL element is formed on a TFT substrate, the film formation substrate 4 is a glass substrate or a heat resistant resin on which a plurality of insulating films such as a SiN film and a SiO 2 film serving as a gate insulating film are stacked. An insulating substrate such as a substrate is used.
For example, the electroluminescent layer 3 has a thickness of 100 to 200 nm, the transparent conductive film 2 has a thickness of 10 to 20 nm, and the conductive film 1 has a thickness of 100 nm.
The electroluminescent layer 3 has a three-layer structure in which a hole (hole) transport layer 3a, an organic EL layer 3b, and an electron transport layer 3c are laminated on the anode 5 in this order.

なお、ホール輸送層3aを構成する有機高分子材料(正孔注入・輸送材料)としては、正孔を輸送する能力を持ち、アノード5からの正孔注入効果、有機EL層3b又は発光材料に対して優れた正孔注入効果を有し、有機EL層3bで生成した励起子の電子輸送層3cへの移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。
具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等及びこれらの誘導体、ポリビニルカルバゾール、ポリシラン等の高分子、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)、ポリアニリン/カンファースルホン酸(PANI/CSA)等に代表される導電性高分子等の高分子材料が挙げられる。
As the organic polymer material (hole injection / transport material) constituting the hole transport layer 3a, it has the ability to transport holes, the hole injection effect from the anode 5, the organic EL layer 3b or the light emitting material. On the other hand, a compound that has an excellent hole injection effect, prevents exciton generated in the organic EL layer 3b from moving to the electron transport layer 3c, and has excellent thin film forming ability is preferable.
Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and their derivatives, polyvinylcarbazole, polymers such as polysilane, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), polymer materials such as polyaniline / camphorsulfonic acid (PANI / CSA) and other conductive polymers And the like.

有機EL層3bに用いる発光材料としては、例えば、4,4’−(2,2−ジフェニルビニル)ビフェニル等のオレフィン系発光材料、9,10−ジ(2−ナフチル)アントラセン、9,10−ビス(3,5−ジフェニルフェニル)アントラセン、9,10−ビス(9,9−ジメチルフルオレニル)アントラセン、9,10−(4−(2,2−ジフェニルビニル)フェニル)アントラセン、9,10’−ビス(2−ビフェニリル)−9,9’−ビスアントラセン、9,10,9’,10’−テトラフェニル−2,2’−ビアントリル、1,4−ビス(9−フェニル−10−アントラセニル)ベンゼン等のアントラセン系発光材料、2,7,2’,7’−テトラキス(2,2−ジフェニルビニル)スピロビフルオレン等のスピロ系発光材料、4,4’−ジカルバゾリルビフェニル、1,3−ジカルバゾリルベンゼン等のカルバゾール系発光材料、1,3,5−トリピレニルベンゼン等のピレン系発光材料に代表される低分子発光材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類等に代表される高分子発光材料等が挙げられる。
有機EL層3bには、蛍光色素をドーピングしてもよく、燐光色素をドーピングしてもよい。
Examples of the light emitting material used for the organic EL layer 3b include olefin-based light emitting materials such as 4,4 ′-(2,2-diphenylvinyl) biphenyl, 9,10-di (2-naphthyl) anthracene, and 9,10−. Bis (3,5-diphenylphenyl) anthracene, 9,10-bis (9,9-dimethylfluorenyl) anthracene, 9,10- (4- (2,2-diphenylvinyl) phenyl) anthracene, 9,10 '-Bis (2-biphenylyl) -9,9'-bisanthracene, 9,10,9', 10'-tetraphenyl-2,2'-bianthryl, 1,4-bis (9-phenyl-10-anthracenyl) ) Anthracene-based luminescent materials such as benzene, spiro-based luminescent materials such as 2,7,2 ′, 7′-tetrakis (2,2-diphenylvinyl) spirobifluorene, 4,4′-dica Carbazole-based light-emitting materials such as bazolylbiphenyl and 1,3-dicarbazolylbenzene, low-molecular light-emitting materials typified by pyrene-based light-emitting materials such as 1,3,5-tripyrenylbenzene, polyphenylene vinylenes, Examples thereof include polymer light-emitting materials such as polyfluorenes and polyvinylcarbazoles.
The organic EL layer 3b may be doped with a fluorescent dye or a phosphorescent dye.

電子輸送層3cに用いる電子注入・輸送材料としては、電子を輸送する能力を持ち、カソード6からの電子注入効果、有機EL層3b又は発光材料に対して優れた電子注入効果を有し、有機EL層3bで生成した励起子の正孔注入層への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等及びこれらの誘導体が挙げられる。
上記透明導電膜2は、ITOやAZO等である。
The electron injecting / transporting material used for the electron transporting layer 3c has the ability to transport electrons, has an electron injecting effect from the cathode 6, and has an excellent electron injecting effect with respect to the organic EL layer 3b or the light emitting material. A compound that prevents the excitons generated in the EL layer 3b from moving to the hole injection layer and has an excellent thin film forming ability is preferable. Specifically, for example, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone and the like And derivatives thereof.
The transparent conductive film 2 is made of ITO or AZO.

本実施形態の導電性膜1は、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されたスパッタリングターゲットを用いてスパッタリングすることにより成膜される。
また、必要に応じて、さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下である銀合金で構成されたスパッタリングターゲットを用いてスパッタリングすることにより成膜される。
例えば、以下の工程によって導電性膜1が作製される。
The conductive film 1 of this embodiment contains Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, and the balance is Ag. And it forms into a film by sputtering using the sputtering target comprised with the silver alloy which has the component composition which consists of an unavoidable impurity.
Further, if necessary, using a sputtering target made of a silver alloy that further contains Mg: 0.5 to 1.5 atomic% and the total of Ga and Mg is 3 atomic% or less. A film is formed by sputtering.
For example, the conductive film 1 is manufactured by the following steps.

まず、原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のCuとSbとGaとを所定の組成となるように秤量する。また、必要に応じてMgを添加する場合は、純度99.9質量%以上のMgも所定の組成となるように秤量する。
次に、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のCuとSbとGaとを添加する。なお、必要に応じてMgを添加する場合も、この溶湯に所定の含有量のMgを添加する。その後、真空または不活性ガス雰囲気中で溶解して、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金の溶解鋳造インゴットを作製する。
First, as a raw material, Ag having a purity of 99.9% by mass or more and Cu, Sb, and Ga having a purity of 99.9% by mass or more are weighed so as to have a predetermined composition. Moreover, when adding Mg as needed, Mg of purity 99.9 mass% or more is also weighed so that it may become a predetermined composition.
Next, Ag is melted in a high vacuum or an inert gas atmosphere, and Cu, Sb, and Ga having a predetermined content are added to the obtained molten metal. In addition, also when adding Mg as needed, Mg of predetermined content is added to this molten metal. Then, it melt | dissolves in a vacuum or inert gas atmosphere, Cu: 0.1-2.5 atomic%, Sb: 0.1-1.5 atomic%, Ga: 0.5-3 atomic% is contained. Then, a melting cast ingot of a silver alloy having a component composition with the balance consisting of Ag and inevitable impurities is produced.

ここで、Agの溶解は、雰囲気を一度真空にした後、Arで置換した雰囲気で行い、溶解後、Ar雰囲気の中でAgの溶湯にCuとSbとGaとを添加することが、Ag,Cu,Sb及びGaの組成比率を安定に得る観点から好ましい。なお、Mgを添加する際も、同様である。さらに、Cu,Sb,Ga及びMgとは予め作製したAgCu,AgSb,AgGa,AgMg等の母合金の形で添加してもよい。   Here, the dissolution of Ag is performed in an atmosphere in which the atmosphere is once evacuated and then replaced with Ar. After melting, adding Cu, Sb, and Ga to the molten Ag in the Ar atmosphere results in Ag, It is preferable from the viewpoint of obtaining a stable composition ratio of Cu, Sb and Ga. The same applies when adding Mg. Further, Cu, Sb, Ga, and Mg may be added in the form of a mother alloy such as AgCu, AgSb, AgGa, or AgMg prepared in advance.

得られたインゴットを冷間圧延した後、大気中で例えば600℃、2時間保持の熱処理を施し、次いで機械加工することにより、所定寸法のスパッタリングターゲットを作製する。
このスパッタリングターゲットを無酸素銅製のバッキングプレートに半田付けし、これを直流マグネトロンスパッタ装置に装着する。
After the obtained ingot is cold-rolled, it is subjected to a heat treatment at 600 ° C. for 2 hours in the atmosphere, and then machined to produce a sputtering target having a predetermined dimension.
This sputtering target is soldered to a backing plate made of oxygen-free copper, and this is attached to a DC magnetron sputtering apparatus.

次に、真空排気装置にて直流マグネトロンスパッタ装置内を例えば5×10−5Pa以下まで排気した後、Arガスを導入して所定のスパッタガス圧とし、続いて直流電源にてターゲットに例えば250Wの直流スパッタ電力を印加する。さらに、上記ターゲットに対向しかつ所定の間隔を設けて上記ターゲットと平行に配置した成膜基板4と上記ターゲットとの間にプラズマを発生させることで、導電性膜1を成膜基板4上に成膜する。 Next, after the inside of the DC magnetron sputtering apparatus is evacuated to, for example, 5 × 10 −5 Pa or less with a vacuum evacuation apparatus, Ar gas is introduced to obtain a predetermined sputtering gas pressure. Apply DC sputtering power. Furthermore, the conductive film 1 is formed on the film formation substrate 4 by generating plasma between the film formation substrate 4 facing the target and provided in parallel with the target at a predetermined interval. Form a film.

このように成膜された本実施形態の導電性膜1では、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されているので、低抵抗かつ高反射率の特性を有しながら、含有するCuおよびSbによって小さい表面粗さと高い耐硫化性とを有し、さらにGaによって高い耐塩化性を有している。   In the conductive film 1 of this embodiment formed as described above, Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic% And the balance is composed of a silver alloy having a component composition composed of Ag and inevitable impurities, so that it has low resistance and high reflectivity, while containing Cu and Sb has a small surface roughness and high Sulfide resistance and high chlorination resistance due to Ga.

また、さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下である場合は、Gaと共にさらに添加したMgによって高い耐塩化性を有している。   Further, when Mg: 0.5 to 1.5 atomic% is contained and the total of Ga and Mg is 3 atomic% or less, Mg added further together with Ga has high chlorination resistance. doing.

特に、表面に有機EL素子10の透明導電膜2が積層されることで、導電性膜1の小さい表面粗さにより上層の透明導電膜2の健全性が確保されると共に、さらにその上の有機EL層3bに欠陥が生じることを防ぐことができる。また、反射電極膜(導電性膜1)の硫化による欠陥の発生を抑制し、歩留まり低下を防ぐことができる。さらに、塩素成分の影響を受け難く、良好な膜特性を維持することができる。   In particular, since the transparent conductive film 2 of the organic EL element 10 is laminated on the surface, the soundness of the upper transparent conductive film 2 is ensured by the small surface roughness of the conductive film 1, and further the organic film thereon It is possible to prevent a defect from occurring in the EL layer 3b. Moreover, generation | occurrence | production of the defect by sulfuration of a reflective electrode film (conductive film 1) can be suppressed, and a yield fall can be prevented. Furthermore, it is difficult to be influenced by the chlorine component, and good film characteristics can be maintained.

上記実施形態に基づいて成膜した導電性膜の実施例について評価した結果を、以下に説明する。
まず、導電性膜用スパッタリングターゲットを作製するため、原料として、純度99.9質量%以上のAgと、純度99.9質量%以上のCu,Sb及びGaと必要に応じてMgとを、表1に示す所定の組成となるように秤量した。次に、Agを高真空または不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のCu,Sb及びGaと必要に応じてMgとを添加した。その後、真空または不活性ガス雰囲気中で溶解して、Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金の溶解鋳造インゴットを作製した。また、Mgを添加した場合は、さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下である銀合金の溶解鋳造インゴットを作製した。
The result evaluated about the Example of the electroconductive film formed into a film based on the said embodiment is demonstrated below.
First, in order to produce a sputtering target for a conductive film, as a raw material, Ag having a purity of 99.9% by mass or more, Cu, Sb and Ga having a purity of 99.9% by mass or more, and Mg as necessary are displayed. 1 was weighed so as to have a predetermined composition. Next, Ag was melted in a high vacuum or an inert gas atmosphere, and Cu, Sb and Ga having a predetermined content and Mg as necessary were added to the obtained molten metal. Then, it melt | dissolves in a vacuum or inert gas atmosphere, Cu: 0.1-2.5 atomic%, Sb: 0.1-1.5 atomic%, Ga: 0.5-3 atomic% is contained. Then, a melting cast ingot of a silver alloy having a component composition with the balance consisting of Ag and inevitable impurities was produced. In addition, when Mg was added, a melt cast ingot of a silver alloy containing Mg: 0.5 to 1.5 atomic% and the total of Ga and Mg being 3 atomic% or less was produced. .

ここで、Agの溶解は、雰囲気を一度真空にした後、Arで置換した雰囲気で行い、溶解後、Ar雰囲気の中でAgの溶湯にCu,Sb及びGa、さらに必要に応じてMgを添加した。
得られたインゴットを冷間圧延した後、大気中で600℃、2時間保持の熱処理を施し、次いで機械加工することにより、直径152.4mm、厚さ6mmの寸法を有し、表1に示す本発明の実施例スパッタリングターゲット1〜19を作製した。
このスパッタリングターゲットを無酸素銅製のバッキングプレートに半田付けし、これを直流マグネトロンスパッタ装置に装着した。
Here, Ag is melted in an atmosphere that is once evacuated and replaced with Ar. After melting, Cu, Sb and Ga are added to the molten Ag in the Ar atmosphere, and Mg is added if necessary. did.
The obtained ingot was cold-rolled, then subjected to heat treatment at 600 ° C. for 2 hours in the atmosphere, and then machined to have dimensions of 152.4 mm in diameter and 6 mm in thickness, as shown in Table 1. Examples Sputtering targets 1 to 19 of the present invention were produced.
This sputtering target was soldered to an oxygen-free copper backing plate, and this was attached to a DC magnetron sputtering apparatus.

次に、真空排気装置にて直流マグネトロンスパッタ装置内を5×10−5Pa以下まで排気した後、Arガスを導入して0.5Paのスパッタガス圧とし、続いて直流電源にてターゲットに250Wの直流スパッタ電力を印加した。さらに、上記ターゲットに対向しかつ70mmの間隔を設けて上記ターゲットと平行に配置した直径4インチ(10.16cm)の酸化膜付きSiウエハ基板と上記ターゲットとの間にプラズマを発生させることで、導電性膜を酸化膜付きSiウエハ基板上に成膜した。 Next, after the inside of the DC magnetron sputtering apparatus is evacuated to 5 × 10 −5 Pa or less with a vacuum evacuation apparatus, Ar gas is introduced to a sputtering gas pressure of 0.5 Pa, and then 250 W is applied to the target with a DC power supply. A direct current sputtering power was applied. Furthermore, by generating a plasma between the Si wafer substrate with an oxide film having a diameter of 4 inches (10.16 cm) disposed opposite to the target and parallel to the target with a distance of 70 mm, the plasma is generated. A conductive film was formed on a Si wafer substrate with an oxide film.

このように本発明の導電性膜の実施例として、上記製法により、表1に示される成分組成を有する実施例1〜19の導電性膜を成膜し、各実施例とも、厚さ100nmおよび厚さ1000nmを有する2種類の試料を作製した。なお、表1に記載の実施例番号は、スパッタリングターゲットとこれにより成膜された導電性膜との両方を示し、互いに同じ成分組成である。
また、比較例として、表1に示す成分組成で比較例スパッタリングターゲット1〜8も同様に作製した。そして、これら比較例のターゲットを用いて成膜した導電性膜の比較例として、本発明の含有量範囲を超えたCu,Sb,Ga,Mgを含む成分組成のもの(比較例1〜8)を、その他の条件は本発明の実施例と同様にして、表1に示される成分組成で成膜した。
なお、導電性膜において各実施例および各比較例の成分組成は、膜厚1000nmの試料についてその組成を電子線マイクロプローブアナライザ(EPMA)により測定し、確認した。
Thus, as an example of the conductive film of the present invention, the conductive film of Examples 1 to 19 having the component composition shown in Table 1 was formed by the above manufacturing method. Two types of samples having a thickness of 1000 nm were prepared. In addition, the Example number of Table 1 shows both a sputtering target and the electroconductive film | membrane formed into a film by this, and is the mutually same component composition.
Moreover, as a comparative example, comparative example sputtering targets 1 to 8 having the component compositions shown in Table 1 were similarly produced. And as a comparative example of the conductive film formed using the targets of these comparative examples, those having a component composition containing Cu, Sb, Ga, Mg exceeding the content range of the present invention (Comparative Examples 1 to 8) The other conditions were the same as in the example of the present invention, and the film was formed with the component composition shown in Table 1.
In addition, the component composition of each Example and each Comparative Example in the conductive film was confirmed by measuring the composition of a sample having a film thickness of 1000 nm using an electron beam microprobe analyzer (EPMA).

<導電性膜の評価>
膜厚100nmの試料について四探針法により、各実施例および各比較例の導電性膜の比抵抗を測定した。次に、原子間力顕微鏡(AFM)により、各実施例および各比較例の導電性膜の表面粗さ(Ra)を測定した。なお、Raの測定は、窒素雰囲気中250℃の温度にて10分保持する熱処理を施した後にも測定した。
<Evaluation of conductive film>
The specific resistance of the conductive film of each example and each comparative example was measured by a four-probe method for a sample having a thickness of 100 nm. Next, the surface roughness (Ra) of the conductive films of each Example and each Comparative Example was measured by an atomic force microscope (AFM). In addition, the measurement of Ra was also performed after performing heat treatment for 10 minutes at a temperature of 250 ° C. in a nitrogen atmosphere.

また、分光光度計により、各実施例および各比較例の導電性膜の波長550nmにおける反射率を測定した。次に、この試料を0.01wt%NaS水溶液に1時間浸漬した後、再び分光光度計により、各導電性膜の波長550nmにおける反射率を測定することで、耐硫化性指標とした。 Moreover, the reflectance in wavelength 550nm of the electroconductive film of each Example and each comparative example was measured with the spectrophotometer. Next, after immersing this sample in a 0.01 wt% Na 2 S aqueous solution for 1 hour, the reflectance at a wavelength of 550 nm of each conductive film was again measured with a spectrophotometer to obtain a sulfur resistance index.

さらに、耐塩化性の評価としては、以下の手順で行った。まず、ガラス基板(30mm×30mm×厚さ:1.1mm)上に上記と同じ条件で100nm厚のAg合金膜を成膜した。次に、成膜したAg合金膜の膜面に5重量%のNaCl水溶液を噴霧した。噴霧は膜面から高さ20cm、基板端からの距離10cmの位置から、膜面と平行方向に行い、膜上に噴霧されたNaCl水溶液が極力自由落下して膜に付着するようにした。1分おきに噴霧を5回繰り返した後、純水ですすぎ洗浄を3回繰り返し、乾燥空気を噴射して水分を吹き飛ばし乾燥した。上記の塩水噴霧後にAg合金膜面を目視で観察し、2段階で表面の状態を評価した。   Further, the evaluation of chloride resistance was performed according to the following procedure. First, an Ag alloy film having a thickness of 100 nm was formed on a glass substrate (30 mm × 30 mm × thickness: 1.1 mm) under the same conditions as described above. Next, a 5 wt% NaCl aqueous solution was sprayed on the film surface of the formed Ag alloy film. Spraying was performed in a direction parallel to the film surface from a position of 20 cm in height from the film surface and a distance of 10 cm from the edge of the substrate, so that the NaCl aqueous solution sprayed on the film fell as freely as possible and adhered to the film. After spraying 5 times every minute, rinsing with pure water was repeated 3 times, and dry air was sprayed to blow off moisture and dry. The surface of the Ag alloy film was visually observed after the above salt water spraying, and the surface condition was evaluated in two stages.

これらの結果を表1に示す。
なお、良好と判断する評価基準としては、比抵抗が9μΩ・cm未満、成膜直後の表面粗さRaが0.8nm未満、熱処理後の表面粗さRaが0.8nm未満、成膜直後の波長550nmでの反射率が94%を超えること、NaS水溶液浸漬後の波長550nmでの反射率が55%を超えることとした。
また、耐塩化性の評価基準としては、白濁又は斑点が確認できない又は一部のみに確認できるものを良「○」とすると共に、白濁又は斑点が全面に確認できるものを不良「×」として、2段階で表面の状態を評価した。
These results are shown in Table 1.
Note that the evaluation criteria for determining good are specific resistance of less than 9 μΩ · cm, surface roughness Ra immediately after film formation is less than 0.8 nm, surface roughness Ra after heat treatment is less than 0.8 nm, and film formation immediately after film formation. The reflectivity at a wavelength of 550 nm exceeds 94%, and the reflectivity at a wavelength of 550 nm after immersion in a Na 2 S aqueous solution exceeds 55%.
In addition, as an evaluation standard for chloride resistance, white turbidity or spots can not be confirmed or can be confirmed only partly as good `` ○ '', and white turbidity or spots can be confirmed on the entire surface as bad `` x '', The surface condition was evaluated in two stages.

Figure 2013062203
Figure 2013062203

表1からわかるように、Cuの含有量が本発明の範囲よりも少ない比較例1では、耐硫化性が低く、Cuの含有量が本発明の範囲よりも多い比較例2では、反射率が低い。また、Sbの含有量が本発明の範囲よりも少ない比較例3では、成膜直後及び熱処理後の表面粗さが大きく平坦性が低く、Sbの含有量が本発明の範囲よりも多い比較例4では、反射率が低い。さらに、Gaの含有量が本発明の範囲よりも少ない比較例5では、耐塩化性が低く、Gaの含有量が本発明の範囲よりも多い比較例6では、比抵抗が高いと共に反射率が低い。さらに、Ga及びMgの合計含有量のうちGaの含有量が本発明の範囲よりも少ない比較例7では、耐塩化性が低く、Ga及びMgの合計含有量が全体で本発明の範囲よりも多い比較例8では、比抵抗が高いと共に反射率が低い。したがって、これら比較例は、反射電極膜として不十分である。   As can be seen from Table 1, in Comparative Example 1 where the Cu content is less than the range of the present invention, the resistance to sulfidation is low, and in Comparative Example 2 where the Cu content is greater than the range of the present invention, the reflectance is low. Low. Further, in Comparative Example 3 in which the Sb content is less than the range of the present invention, the surface roughness immediately after film formation and after the heat treatment is large and the flatness is low, and the Comparative Example 3 has a Sb content larger than the range of the present invention. 4, the reflectivity is low. Furthermore, in Comparative Example 5 in which the Ga content is less than the range of the present invention, the chloride resistance is low, and in Comparative Example 6 in which the Ga content is greater than the range of the present invention, the specific resistance is high and the reflectance is high. Low. Furthermore, in Comparative Example 7 in which the Ga content is less than the range of the present invention among the total content of Ga and Mg, the chlorination resistance is low, and the total content of Ga and Mg as a whole is less than the range of the present invention. In many comparative examples 8, the specific resistance is high and the reflectance is low. Therefore, these comparative examples are insufficient as a reflective electrode film.

これらに対して本発明の実施例1〜19では、いずれも比抵抗が低く電極膜として好適であると共に、表面粗さについても成膜直後および熱処理後の両方とも小さく高い平坦性を有している。また、これらの本実施例では、いずれも成膜直後およびNaS水溶液浸漬後の両方において高い反射率を得ていると共に良好な耐塩化性を得ている。
したがって、本発明の実施例は、有機EL素子の反射電極膜として好適な比抵抗、表面粗さ、反射率、耐硫化性及び耐塩化性を有している。
On the other hand, each of Examples 1 to 19 of the present invention has a low specific resistance and is suitable as an electrode film, and the surface roughness is small and high flatness both immediately after film formation and after heat treatment. Yes. In these examples, both high reflectance and good chlorination resistance are obtained both immediately after film formation and after immersion in an aqueous Na 2 S solution.
Therefore, the examples of the present invention have specific resistance, surface roughness, reflectivity, sulfidation resistance and chlorination resistance suitable as a reflective electrode film of an organic EL element.

なお、本発明の技術範囲は上記実施形態及び上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、有機EL素子の反射電極膜として本発明の導電性膜を採用しているが、本発明の導電性膜は、比抵抗が低いと共に表面粗さが小さく、さらに良好な耐環境性(耐硫化性、耐塩化性)を有しているので、タッチパネルの配線膜としても好適である。
The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the conductive film of the present invention is employed as the reflective electrode film of the organic EL element. However, the conductive film of the present invention has a low specific resistance and a small surface roughness, which is even better. Since it has environmental resistance (sulfuration resistance, chlorination resistance), it is also suitable as a wiring film of a touch panel.

1…導電性膜、2…透明導電膜、3…電界発光層、4…成膜基板、5…アノード、6…カソード、10…有機EL素子   DESCRIPTION OF SYMBOLS 1 ... Conductive film, 2 ... Transparent conductive film, 3 ... Electroluminescent layer, 4 ... Film-forming substrate, 5 ... Anode, 6 ... Cathode, 10 ... Organic EL element

Claims (9)

Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されていることを特徴とする導電性膜。   Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, the balance was composed of Ag and inevitable impurities An electroconductive film comprising a silver alloy. 請求項1に記載の導電性膜において、
さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下であることを特徴とする導電性膜。
The conductive film according to claim 1,
Further, the conductive film contains Mg: 0.5 to 1.5 atomic%, and the total of Ga and Mg is 3 atomic% or less.
請求項1又は2に記載の導電性膜において、
表面に有機EL素子の透明導電膜が積層され、さらにその上に有機EL層を含む電界発光層が積層される有機EL素子用の反射電極膜であることを特徴とする導電性膜。
In the conductive film according to claim 1 or 2,
A conductive film, which is a reflective electrode film for an organic EL element, wherein a transparent conductive film of an organic EL element is laminated on a surface, and an electroluminescent layer including an organic EL layer is further laminated thereon.
請求項1から3のいずれか一項に記載の導電性膜を製造する方法であって、
Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されたスパッタリングターゲットを用いてスパッタリングすることにより成膜することを特徴とする導電性膜の製造方法。
A method for producing a conductive film according to any one of claims 1 to 3,
Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, the balance was composed of Ag and inevitable impurities A method for producing a conductive film, comprising forming a film by sputtering using a sputtering target composed of a silver alloy.
請求項4に記載の導電性膜の製造方法において、
前記スパッタリングターゲットに、さらにMg:0.5〜1.5原子%を含有させると共に、GaとMgとの合計を3原子%以下にすることを特徴とする導電性膜の製造方法。
In the manufacturing method of the electroconductive film of Claim 4,
The sputtering target further contains Mg: 0.5 to 1.5 atomic%, and the total amount of Ga and Mg is 3 atomic% or less.
Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した銀合金で構成されていることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。   Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, the balance was composed of Ag and inevitable impurities A silver alloy sputtering target for forming a conductive film, comprising a silver alloy. 請求項6に記載の導電性膜形成用銀合金スパッタリングターゲットにおいて、
さらにMg:0.5〜1.5原子%を含有していると共に、GaとMgとの合計が3原子%以下であることを特徴とする導電性膜形成用銀合金スパッタリングターゲット。
In the silver alloy sputtering target for forming a conductive film according to claim 6,
Furthermore, while containing Mg: 0.5-1.5 atomic%, the sum total of Ga and Mg is 3 atomic% or less, The silver alloy sputtering target for electroconductive film formation characterized by the above-mentioned.
請求項6又は7に記載の導電性膜形成用銀合金スパッタリングターゲットを作製する方法であって、
Cu:0.1〜2.5原子%、Sb:0.1〜1.5原子%、Ga:0.5〜3原子%を含有し、残部がAgおよび不可避不純物からなる成分組成を有した溶解鋳造インゴットを、圧延する工程、機械加工する工程を、この順で行うことを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。
A method for producing a silver alloy sputtering target for forming a conductive film according to claim 6 or 7,
Cu: 0.1 to 2.5 atomic%, Sb: 0.1 to 1.5 atomic%, Ga: 0.5 to 3 atomic%, the balance was composed of Ag and inevitable impurities The manufacturing method of the silver alloy sputtering target for electroconductive film formation which performs the process of rolling a melt-cast ingot, and the process of machining in this order.
請求項8に記載の導電性膜形成用銀合金スパッタリングターゲットの製造方法において、
前記溶解鋳造インゴットに、さらにMg:0.5〜1.5原子%を含有させると共に、GaとMgとの合計を3原子%以下にすることを特徴とする導電性膜形成用銀合金スパッタリングターゲットの製造方法。
In the manufacturing method of the silver alloy sputtering target for conductive film formation of Claim 8,
A silver alloy sputtering target for forming a conductive film, characterized in that Mg: 0.5 to 1.5 atomic% is further contained in the molten casting ingot, and the total of Ga and Mg is 3 atomic% or less. Manufacturing method.
JP2011201331A 2011-09-15 2011-09-15 Conductive film, method for producing the same, silver alloy sputtering target for forming conductive film, and method for producing the same Expired - Fee Related JP5742615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201331A JP5742615B2 (en) 2011-09-15 2011-09-15 Conductive film, method for producing the same, silver alloy sputtering target for forming conductive film, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201331A JP5742615B2 (en) 2011-09-15 2011-09-15 Conductive film, method for producing the same, silver alloy sputtering target for forming conductive film, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013062203A true JP2013062203A (en) 2013-04-04
JP5742615B2 JP5742615B2 (en) 2015-07-01

Family

ID=48186681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201331A Expired - Fee Related JP5742615B2 (en) 2011-09-15 2011-09-15 Conductive film, method for producing the same, silver alloy sputtering target for forming conductive film, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5742615B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134144A (en) * 1984-07-25 1986-02-18 Tanaka Kikinzoku Kogyo Kk Sliding contact material
JP2004139712A (en) * 2002-08-20 2004-05-13 Kobe Steel Ltd Reflection film and translucent reflection film for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
WO2005056849A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy with excellent reflectance-maintaining characteristics
WO2006132415A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
WO2006132410A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134144A (en) * 1984-07-25 1986-02-18 Tanaka Kikinzoku Kogyo Kk Sliding contact material
JP2004139712A (en) * 2002-08-20 2004-05-13 Kobe Steel Ltd Reflection film and translucent reflection film for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
WO2005056849A1 (en) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. Silver alloy with excellent reflectance-maintaining characteristics
WO2006132415A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
WO2006132410A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding

Also Published As

Publication number Publication date
JP5742615B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5488849B2 (en) Conductive film, method for producing the same, and sputtering target used therefor
JP6764200B2 (en) A thin film of a metal oxide, an organic electroluminescence device provided with the thin film, a solar cell, and a method for manufacturing the thin film.
KR102281399B1 (en) Metal oxide thin film, organic electroluminescence element provided with thin film, solar cell, and organic solar cell
KR101251639B1 (en) Organic electroluminescent device and display device
JPWO2013191212A1 (en) Organic electroluminescence device
JP2011108459A (en) Reflective anode electrode for organic el display
JP3774897B2 (en) Organic electroluminescence device
KR100721428B1 (en) Organic light emitting diode and the method for preparing the same
JP2013077547A (en) Conductive film and manufacturing method thereof, and silver alloy sputtering target for conductive film formation and manufacturing method thereof
CN101405366B (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JP5720816B2 (en) Conductive film
JP5742615B2 (en) Conductive film, method for producing the same, silver alloy sputtering target for forming conductive film, and method for producing the same
CN111244306A (en) Top-emitting organic light-emitting diode unit
JP5141794B2 (en) Transparent conductive film for organic EL and organic EL element using this transparent conductive film
WO2015037582A1 (en) Reflective electrode film for organic el, multilayer reflective electrode film, and sputtering target for forming reflective electrode film
JP2012059470A (en) Reflecting anodic electrode for organic el display
JP6384147B2 (en) Translucent Ag alloy film
JP2004296410A (en) Electroluminescent element, and manufacturing method of the same
KR102150380B1 (en) Reflective electrode and Al alloy sputtering target
Lee et al. Top emission organic light emitting diode with transparent cathode, Ba‐Ag double layer
JP2014053191A (en) ORGANIC EL ELEMENT, METHOD FOR MANUFACTURING REFLECTING ELECTRODE FOR ORGANIC EL ELEMENT, AND Al ALLOY SPUTTERING TARGET FOR FORMING REFLECTING ELECTRODE FOR ORGANIC EL ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees