JP2013061192A - Embedding plate and embedding method of sample for cross-sectional observation - Google Patents

Embedding plate and embedding method of sample for cross-sectional observation Download PDF

Info

Publication number
JP2013061192A
JP2013061192A JP2011198781A JP2011198781A JP2013061192A JP 2013061192 A JP2013061192 A JP 2013061192A JP 2011198781 A JP2011198781 A JP 2011198781A JP 2011198781 A JP2011198781 A JP 2011198781A JP 2013061192 A JP2013061192 A JP 2013061192A
Authority
JP
Japan
Prior art keywords
sample
resin
embedding
plate
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011198781A
Other languages
Japanese (ja)
Other versions
JP5807462B2 (en
Inventor
Machiko Morita
まち子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011198781A priority Critical patent/JP5807462B2/en
Publication of JP2013061192A publication Critical patent/JP2013061192A/en
Application granted granted Critical
Publication of JP5807462B2 publication Critical patent/JP5807462B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable cross section exposing of a sample for observation to be accurately performed and the sample to be measured with accurate film thickness, and to provide an embedding plate and an embedding method allowing processing of the sample for observation such as cutting out to be easily performed.SOLUTION: An embedding plate comprises: an embedding plate body 2 having a planar mirror plane 2A on which a photocurable resin is mounted; a spacer 3A mounted on the mirror plane 2A of the embedding plate body 2; and a light transmission plate 4 mounted on the spacer 3A and regulating the thickness of the photocurable resin. The photocurable resin 5 is mounted on the mirror plane 2A, and is irradiated with visible light to be cured after regulating the thickness of the photocurable resin 5, and a resin chip 5A is manufactured. Then, a sample for observation is mounted on the resin chip 5A, and after the sample for observation is covered by an unexposed photocurable resin, another resin chip is mounted thereon to manufacture a primary sample and this primary sample is cut in accordance with a purpose.

Description

本発明は、光学顕微鏡、走査電子顕微鏡、および透過電子顕微鏡などで断面観察を行う断面観察用試料(以下、観察用試料という。)を樹脂で包埋(包持)するための包埋板および包埋方法に関する。   The present invention relates to an embedding plate for embedding (embedding) a cross-section observation sample (hereinafter referred to as an observation sample) for cross-section observation with an optical microscope, a scanning electron microscope, a transmission electron microscope, etc., with a resin, It relates to the embedding method.

光学顕微鏡、走査電子顕微鏡、および透過電子顕微鏡などで断面観察を行う観察用試料の断面観察において、観察用試料の断面作製にウルトラミクロトーム(断面切削器)を使う方法がある。このウルトラミクロトームで観察用試料を作製するにあたり、観察用試料が切削の衝撃により歪むことを防ぐため或いは扱いを容易にするために、観察用試料を透明樹脂中に包埋する方法が知られている(例えば、特許文献1参照)。包埋板には、観察用試料を収納して樹脂で包持させるための凹部が形成されている。例えば、材料系試料の包埋板としては、シリコン包埋板(例えば、非特許文献1参照)と称される板が用いられている。   There is a method of using an ultramicrotome (cross-section cutting machine) for cross-section preparation of an observation sample in cross-section observation of an observation sample that performs cross-section observation with an optical microscope, a scanning electron microscope, a transmission electron microscope, or the like. In preparing an observation sample with this ultramicrotome, a method of embedding the observation sample in a transparent resin is known in order to prevent the observation sample from being distorted by the impact of cutting or to facilitate handling. (For example, refer to Patent Document 1). The embedding plate is formed with a recess for accommodating the observation sample and enclosing it with a resin. For example, as a material-based sample embedding plate, a plate called a silicon embedding plate (for example, see Non-Patent Document 1) is used.

特開2004−108303号公報JP 2004-108303 A

日新EM株式会社 NEW Catalogue 第54頁Nissin EM Co., Ltd. NEW Catalog page 54

しかしながら、上記包埋方法では観察用試料を包埋板の凹部内に水平に包埋できないという問題がある。すなわち、観察用試料がフィルム状の場合、シリコン包埋板の凹部内に観察用試料と樹脂を入れた後に樹脂を硬化させると、樹脂中で観察用試料が傾いたり撓んだり(カール)したりしてしまうことが多々あり、精度良く水平に包埋することは困難であった。また、包埋板の凹部内に観察用試料を配置させて樹脂を入れたときに、観察用試料が樹脂で覆われない部分や樹脂部分が薄くなる部分が生じる場合がある。このように、観察用試料に対して樹脂の付着が不均一になると、ウルトラミクロトームでの切削に適さなくなる。特に、断面観察から膜厚測定をする場合、水平に保持したものを切削する必要があるため、観察用試料を精度良く水平に包埋することは重要である。   However, the above-described embedding method has a problem that the observation sample cannot be embedded horizontally in the recess of the embedding plate. That is, when the observation sample is in the form of a film, if the observation sample and the resin are placed in the recess of the silicon embedding plate and then the resin is cured, the observation sample is tilted or bent (curled) in the resin. It was difficult to embed horizontally with high accuracy. In addition, when the observation sample is placed in the recessed portion of the embedding plate and the resin is put in, a portion where the observation sample is not covered with the resin or a portion where the resin portion becomes thin may occur. Thus, if the resin adheres unevenly to the observation sample, it becomes unsuitable for cutting with an ultramicrotome. In particular, when film thickness is measured from cross-sectional observation, it is necessary to cut a horizontally held object, so it is important to embed an observation sample horizontally with high accuracy.

本発明は、上記の課題に鑑みてなされたものであって、観察用試料の断面出しを精度良く行え、しかも正確な膜厚で計測することを可能にするとともに、観察用試料の切り取りなどの加工を容易に行える観察用試料の包埋板および包埋方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and can perform cross-sectioning of an observation sample with high accuracy and measure with an accurate film thickness, and can also be used for cutting an observation sample. An object is to provide an embedding plate and an embedding method for an observation sample that can be easily processed.

上述した課題を解決し、目的を達成するために、本発明の態様は、断面観察用試料の包埋板であって、光硬化性樹脂を載置する平面を有する包埋板本体と、この包埋板本体の平面上に載置されるスペーサと、このスペーサ上に載置され、上記光硬化性樹脂の厚さを規定する光透過板と、を備え、上記平面上で、光透過板を介して光照射された光硬化性樹脂でなる平板状の複数の樹脂チップで、観察用試料を包埋処理できることを特徴とする。
上記態様としては、スペーサとして互いに厚さ寸法の異なる複数種が備えられていることが好ましい。
上記態様としては、包埋板本体の平面は、光硬化性樹脂に光照射を行う場合に鏡面であることが好ましい。
上記態様としては、包埋板本体には磁石が平面と面一となるように埋設され、スペーサが金属で形成されていることが好ましい。
In order to solve the above-described problems and achieve the object, an aspect of the present invention is an embedding plate for a cross-sectional observation sample, and an embedding plate main body having a plane on which a photocurable resin is placed, A spacer placed on the plane of the embedding plate main body, and a light transmission plate placed on the spacer and defining the thickness of the photocurable resin. The observation sample can be embedded with a plurality of flat resin chips made of a photo-curable resin irradiated with light.
As said aspect, it is preferable that several types from which a thickness dimension mutually differs are provided as a spacer.
As said aspect, it is preferable that the plane of an embedding board main body is a mirror surface when light-irradiating a photocurable resin.
As said aspect, it is preferable that the embedding board main body embeds a magnet so that it may become flush | planar with a plane, and the spacer is formed with the metal.

また、本発明の他の態様は、断面観察用試料の包埋方法であって、鏡面の上に未露光の光硬化性樹脂を載置する工程と、光硬化性樹脂の厚さを規定した後、光を照射して光硬化性樹脂を硬化させて樹脂チップを作製する工程と、樹脂チップを前記鏡面上に載置した状態で、前記樹脂チップ上に観察用試料を載置し、未露光の光硬化性樹脂で前記観察用試料を覆った後、他の樹脂チップを載置する工程と、樹脂チップで挟まれた光硬化性樹脂に光を照射して光硬化性樹脂を硬化させて前記観察用試料が挟まれた試料保持体を作製する工程と、試料保持体を目的に応じて切削する工程と、を備えることを特徴とする。   Another aspect of the present invention is a method for embedding a sample for cross-sectional observation, in which a step of placing an unexposed photocurable resin on a mirror surface and the thickness of the photocurable resin are defined. Thereafter, the step of irradiating light to cure the photocurable resin to produce a resin chip, and placing the observation sample on the resin chip with the resin chip placed on the mirror surface, After covering the observation sample with a photocurable resin for exposure, placing the other resin chip, and irradiating the photocurable resin sandwiched between the resin chips with light to cure the photocurable resin. And a step of producing a sample holder in which the observation sample is sandwiched, and a step of cutting the sample holder in accordance with the purpose.

本発明によれば、観察用試料の断面出しを精度良く行え、しかも正確な膜厚で計測することを可能にするとともに、観察用試料の切り取りなどの加工を容易に行える観察用試料の包埋板および包埋方法を実現できる。   According to the present invention, the observation sample can be accurately cross-sectioned, and can be measured with an accurate film thickness, and the observation sample can be easily cut out and embedded in the observation sample. A plate and embedding method can be realized.

図1は、本発明の実施の形態に係る断面観察用試料の包埋板を示す斜視図である。FIG. 1 is a perspective view showing an embedding plate for a cross-sectional observation sample according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る断面観察用試料の包埋板と金属板と透明樹脂フィルムとを示す斜視図である。FIG. 2 is a perspective view showing an embedding plate, a metal plate, and a transparent resin film of the cross-sectional observation sample according to the embodiment of the present invention. 図3(a)〜(c)は、本実施の形態の包埋方法に用いる金属板であって、互いに厚さの異なる複数の金属板を示す側面図である。FIGS. 3A to 3C are side views showing a plurality of metal plates having different thicknesses, which are metal plates used in the embedding method of the present embodiment. 図4は、本実施の形態に係る断面観察用試料の包埋方法において包埋板に金属板を吸着させた状態を示す断面説明図である。FIG. 4 is an explanatory cross-sectional view showing a state in which a metal plate is adsorbed to the embedding plate in the embedding method of the cross-section observation sample according to the present embodiment. 図5は、本実施の形態に係る断面観察用試料の包埋方法において包埋板上に樹脂をポッティングした状態を示す断面説明図である。FIG. 5 is an explanatory cross-sectional view showing a state where a resin is potted on an embedding plate in the method for embedding a sample for cross-sectional observation according to the present embodiment. 図6は、本実施の形態に係る断面観察用試料の包埋方法において光透過板を樹脂上に載置して光照射する工程を示す断面説明図である。FIG. 6 is an explanatory cross-sectional view showing a process of placing a light transmitting plate on a resin and irradiating light in the method for embedding a sample for cross-sectional observation according to the present embodiment. 図7は、本実施の形態に係る断面観察用試料の包埋方法において成形された樹脂チップを示す斜視図である。FIG. 7 is a perspective view showing a resin chip molded in the method for embedding a cross-sectional observation sample according to the present embodiment. 図8は、本実施の形態に係る断面観察用試料の包埋方法において樹脂チップ上に観察用試料を載置して樹脂をポッティングした状態を示す断面説明図である。FIG. 8 is an explanatory cross-sectional view showing a state where the observation sample is placed on the resin chip and the resin is potted in the method for embedding the cross-sectional observation sample according to the present embodiment. 図9は、本実施の形態に係る断面観察用試料の包埋方法において観察用試料を樹脂チップで挟んだ状態を示す断面説明図である。FIG. 9 is an explanatory cross-sectional view showing a state in which an observation sample is sandwiched between resin chips in the method for embedding a cross-sectional observation sample according to the present embodiment. 図10は、本実施の形態に係る断面観察用試料の包埋方法において観察用試料を樹脂チップで挟んだサンプルを示す斜視図である。FIG. 10 is a perspective view showing a sample in which an observation sample is sandwiched between resin chips in the method for embedding a cross-sectional observation sample according to the present embodiment. 図11は、本実施の形態に係る断面観察用試料の包埋方法においてサンプルに加工を施した状態を示す斜視図である。FIG. 11 is a perspective view showing a state in which a sample is processed in the method for embedding a specimen for cross-sectional observation according to the present embodiment.

本発明に係る断面観察用試料の包埋板は、光硬化性樹脂を載置する平面を有する包埋板本体と、包埋板本体の前記平面上に載置されるスペーサと、スペーサ上に載置され、光硬化性樹脂の厚さを規定する光透過板と、を備え、平面上で、光透過板を介して光照射された光硬化性樹脂でなる平板状の複数の樹脂チップで観察用試料を包埋処理できることを特徴とすることに加えて以下のような変更が可能である。
すなわち、スペーサは、互いに厚さ寸法の異なる複数種が備えられている態様とすることができる。また、平面としては、光反射を行う鏡面であってもよい。さらに、包埋板本体には、磁石が平面と面一となるように埋設され、スペーサが金属で形成されている構成することができる。
An embedding plate for a cross-sectional observation sample according to the present invention includes an embedding plate body having a plane on which a photocurable resin is placed, a spacer placed on the plane of the embedding plate body, and a spacer. A plurality of plate-shaped resin chips made of a photocurable resin that is light-irradiated through a light transmitting plate on a plane. In addition to the feature that the observation sample can be embedded, the following modifications are possible.
In other words, the spacers may be provided with a plurality of types having different thickness dimensions. The plane may be a mirror surface that reflects light. Further, the embedding plate body can be configured such that the magnet is embedded so as to be flush with the flat surface, and the spacer is formed of metal.

本発明に係る断面観察用試料の包埋方法の態様は、鏡面の上に未露光の光硬化性樹脂を載置する工程と、光硬化性樹脂の厚さを規定した後、光を照射して光硬化性樹脂を硬化させて樹脂チップを作製する工程と、この樹脂チップを鏡面上に載置した状態で、この樹脂チップ上に観察用試料を載置し、未露光の光硬化性樹脂で観察用試料を覆った後、他の樹脂チップを載置する工程と、これら樹脂チップで挟まれた光硬化性樹脂に光を照射して光硬化性樹脂を硬化させて観察用試料が挟まれた試料保持体(一次サンプル)を作製する工程と、試料保持体を目的に応じて切削して最終サンプルを形成する工程と、を備えることである。   The aspect of the method for embedding a sample for cross-sectional observation according to the present invention includes a step of placing an unexposed photocurable resin on a mirror surface and a thickness of the photocurable resin, and then irradiating with light. A step of producing a resin chip by curing the photo-curable resin, and with the resin chip placed on a mirror surface, an observation sample is placed on the resin chip, and an unexposed photo-curable resin is placed on the mirror chip. After the observation sample is covered with, a step of placing another resin chip, and the photocurable resin sandwiched between these resin chips is irradiated with light to cure the photocurable resin, and the observation sample is sandwiched. And a step of producing the sample holder (primary sample) and a step of cutting the sample holder according to the purpose to form a final sample.

以下に、本発明の実施の形態に係る断面観察用試料の包埋板および包埋方法の詳細を図面に基づいて説明する。
図1および図2に示すように、本実施の形態に係る断面観察用試料の包埋板1は、光硬化性樹脂を載置する平面状の鏡面2Aを有する包埋板本体2と、この包埋板本体2の鏡面2A上に載置されるスペーサ3Aと、このスペーサ3A上に載置され、光硬化性樹脂の厚さを規定する光透過板4と、を備える。
Below, the detail of the embedding board and embedding method of the sample for cross-sectional observation which concerns on embodiment of this invention is demonstrated based on drawing.
As shown in FIG. 1 and FIG. 2, an embedding plate 1 for a cross-sectional observation sample according to the present embodiment includes an embedding plate body 2 having a planar mirror surface 2A on which a photocurable resin is placed, A spacer 3A placed on the mirror surface 2A of the embedding plate main body 2 and a light transmission plate 4 placed on the spacer 3A and defining the thickness of the photocurable resin are provided.

本実施の形態においては、包埋板本体2は、金属板で形成されている。この包埋板本体2の上面は、上記鏡面2Aに仕上げられている。なお、本実施の形態では、包埋板本体2を金属板で構成したが、鏡面2Aを有する板状体であれば、ガラス板を用いてもよい。また、光反射性を有しない材料でなる板体の表面に対して、鏡面2Aをめっき処理で作製してもよい。   In this Embodiment, the embedding board main body 2 is formed with the metal plate. The upper surface of the embedded plate body 2 is finished to the mirror surface 2A. In the present embodiment, the embedding plate body 2 is made of a metal plate, but a glass plate may be used as long as it is a plate-like body having a mirror surface 2A. Moreover, you may produce 2 A of mirror surfaces by the plating process with respect to the surface of the board which consists of material which does not have light reflectivity.

また、図1に示すように、包埋板本体2の鏡面2Aの幅方向両側部分には、長手方向に沿って細長い磁石2Bが鏡面2Aと面一になるように埋設されている。また、スペーサ3Aは、この磁石2Bに吸着される強磁性体でなる金属、例えば400系ステンレスで形成している。図3の(a)〜(c)に示すように、薄い厚さのスペーサ3Aの他に、厚さの異なるスペーサ3B,3Cなどを備えていることが好ましい。スペーサ3B,3Cの材料は、スペーサ3Aと同様である。これらスペーサ3A,3B,3Cは、作製する観察用試料の厚さや用途に応じて任意に選択して用いる。   Moreover, as shown in FIG. 1, the elongate magnet 2B is embed | buried so that the mirror surface 2A may become flush with the mirror surface 2A along the longitudinal direction in the width direction both sides part of the mirror surface 2A of the embedding board main body 2. As shown in FIG. The spacer 3A is formed of a metal made of a ferromagnetic material attracted to the magnet 2B, for example, 400 series stainless steel. As shown to (a)-(c) of FIG. 3, it is preferable to provide spacers 3B and 3C having different thicknesses in addition to the spacer 3A having a small thickness. The material of the spacers 3B and 3C is the same as that of the spacer 3A. These spacers 3A, 3B, and 3C are arbitrarily selected and used according to the thickness and application of the observation sample to be produced.

そして、包埋板本体2の鏡面2A上の磁石2Bに吸着させた一対のスペーサ3Aの上には、透明な樹脂フィルムでなる光透過板4が配置されるようになっている。この光透過板4は、ある程度コシの強い剛性を備える厚さを有している。なお、光透過板4の厚さは、構成材となる樹脂によって適宜変更される。本実施の形態では、光透過板4として、膜厚100μm程度のPET(ポリエチレンテレフタレート)フィルムを用いている。
このような複数の部材からなる包埋板1は、後述するように、鏡面2A上で、光透過板4を介して光照射された光硬化性樹脂でなる平板状の複数の樹脂チップで観察用試料を包埋処理することができる。
A light transmission plate 4 made of a transparent resin film is arranged on the pair of spacers 3A adsorbed to the magnet 2B on the mirror surface 2A of the embedding plate main body 2. The light transmission plate 4 has a thickness with a certain degree of stiffness. In addition, the thickness of the light transmission plate 4 is appropriately changed depending on the resin as the constituent material. In the present embodiment, a PET (polyethylene terephthalate) film having a thickness of about 100 μm is used as the light transmission plate 4.
The embedding plate 1 composed of such a plurality of members is observed with a plurality of plate-like resin chips made of a photocurable resin irradiated with light through the light transmission plate 4 on the mirror surface 2A, as described later. The sample can be embedded.

次に、本発明の実施の形態に係る断面観察用試料の包埋方法を図4〜図11を用いて説明する。
まず、断面観察を行う試料を観察用途により、短冊型または三角のくさび型に切り出して観察用試料6を作製しておく。
そして、図4に示すように、包埋板本体2の鏡面2A上の磁石2Bの上に、スペーサ3Aをそれぞれ吸着させて配置させる。本実施の形態では、磁石2Bによってスペーサ3Aの配置がほぼ決定されるため、断面観察用試料を作製する度にほぼ同じ位置にスペーサ3Aを安定して配置させることができる。
Next, a method for embedding a cross-sectional observation sample according to an embodiment of the present invention will be described with reference to FIGS.
First, an observation sample 6 is prepared by cutting a sample for cross-sectional observation into a strip shape or a triangular wedge shape depending on the purpose of observation.
Then, as shown in FIG. 4, spacers 3 </ b> A are adsorbed and arranged on the magnets 2 </ b> B on the mirror surface 2 </ b> A of the embedding plate body 2. In the present embodiment, since the arrangement of the spacer 3A is substantially determined by the magnet 2B, the spacer 3A can be stably arranged at substantially the same position every time the cross-sectional observation sample is manufactured.

次に、図5に示すように、スペーサ3Aで挟まれた鏡面2Aの中央に、光硬化性樹脂5を所定量(数滴)ポッティング(樹脂盛り)する。一般に、電子顕微鏡観察用の包埋樹脂としては、エポキシ樹脂、メタクリレート樹脂、スチレン樹脂などが使用されている。これらの樹脂は、薄く切ることが容易であり、電子線に強いなどの利点がある。このうち、熱重合性のエポキシ樹脂、メタクリレート樹脂では、完全硬化に60℃で10〜24時間を要する。また、UV重合のスチレン樹脂でも硬化に紫外線照射のもとで3時間を要する。そこで、本実施の形態では、可視光硬化性アクリル樹脂を用いる。この可視光硬化性アクリル樹脂では、光照射器のもと1〜3分程度で硬化できるため包埋処理を効率的に行える。   Next, as shown in FIG. 5, a predetermined amount (several drops) of a photocurable resin 5 is potted (resin pile) at the center of the mirror surface 2 </ b> A sandwiched between the spacers 3 </ b> A. In general, epoxy resin, methacrylate resin, styrene resin or the like is used as an embedding resin for electron microscope observation. These resins have advantages such as being easy to cut thinly and being strong against electron beams. Among these, thermopolymerizable epoxy resins and methacrylate resins require 10 to 24 hours at 60 ° C. for complete curing. Also, UV-polymerized styrene resins require 3 hours for curing under ultraviolet irradiation. Therefore, in this embodiment, a visible light curable acrylic resin is used. Since this visible light curable acrylic resin can be cured in about 1 to 3 minutes under a light irradiator, the embedding process can be performed efficiently.

そして、未露光の光硬化性樹脂5をポッティングした後、図6に示すように光硬化性樹脂5の上に光透過板4を載置して光硬化性樹脂5を平らにすることにより、光硬化性樹脂5の厚さを規定する(スペーサ3Aの厚さによって規定する)。このとき、光透過板4は、所定の剛性を有するため、一対のスペーサ3Aに横架するように載置したときに、水平に配置することができる。このため、鏡面2Aと光透過板4との間に形成される樹脂チップ5Aの上下両面を平行な平面に形成することが可能となる。その後、図6に示すように、光透過板4を介して光硬化性樹脂5に可視光を照射して硬化させて樹脂チップ5Aを形成した後、図7に示すように、樹脂チップ5Aを鏡面2A上より剥がして取り出す。本実施の形態では、このような樹脂チップ5Aを2枚作製する。   Then, after potting the unexposed photocurable resin 5, by placing the light transmitting plate 4 on the photocurable resin 5 and flattening the photocurable resin 5 as shown in FIG. The thickness of the photocurable resin 5 is defined (defined by the thickness of the spacer 3A). At this time, since the light transmission plate 4 has a predetermined rigidity, the light transmission plate 4 can be disposed horizontally when placed so as to be horizontally mounted on the pair of spacers 3A. For this reason, it becomes possible to form the upper and lower surfaces of the resin chip 5A formed between the mirror surface 2A and the light transmission plate 4 in parallel planes. Thereafter, as shown in FIG. 6, the resin chip 5 </ b> A is formed by irradiating the photocurable resin 5 with visible light through the light transmission plate 4 and curing the resin, and then the resin chip 5 </ b> A is formed as shown in FIG. 7. Remove from the mirror surface 2A. In the present embodiment, two such resin chips 5A are produced.

次に、図8に示すように、包埋板本体2の鏡面2A上に1枚の樹脂チップ5Aを載置し、観察用試料6を樹脂チップ5A上に載せて、光硬化性樹脂7をポッティングする。なお、この光硬化性樹脂7は、上記光硬化性樹脂5と同じ樹脂を用いることができる。そして、図9に示すように、光硬化性樹脂7をポッティングした観察用試料6を覆うように他の樹脂チップ5Aを載せる。そして、上記と同様に、可視光を照射させることで光硬化性樹脂7を硬化させる。
すると、図10に示すように、試料保持体としての円板状の一次サンプルが形成でき、この一次サンプルを例えばC1〜C4で示す切断線に沿って例えば鋏などで切削することにより最終サンプル8を作製することができる。
Next, as shown in FIG. 8, one resin chip 5A is placed on the mirror surface 2A of the embedding plate body 2, and the observation sample 6 is placed on the resin chip 5A. Potting. The photocurable resin 7 can be the same resin as the photocurable resin 5. Then, as shown in FIG. 9, another resin chip 5 </ b> A is placed so as to cover the observation sample 6 potted with the photocurable resin 7. And the photocurable resin 7 is hardened by irradiating visible light similarly to the above.
Then, as shown in FIG. 10, a disk-shaped primary sample as a sample holder can be formed, and the final sample 8 is cut by, for example, a scissors along the cutting line indicated by C1 to C4, for example. Can be produced.

上記の実施の形態によれば、平らな樹脂チップ5A同士で観察用試料6を挟み込むように包埋するため、樹脂の中心部に観察用試料6を水平に存在させることができる。このため、観察用試料6の断面出し後、正確な膜厚で計測することができる。
従来のように、例えば、シリコン包埋板で作った硬化樹脂の場合、剃刀等でトリミング(余分な樹脂の削り取り)をしなければならず、時間と手間がかかっていたが、本発明で作製した一次サンプルでは、薄い板状とすることができるため、ハサミ等で簡単に切り取ることができる。
According to the above embodiment, since the observation sample 6 is embedded between the flat resin chips 5A, the observation sample 6 can exist horizontally in the center of the resin. For this reason, after taking out the cross section of the sample 6 for observation, it can measure with an exact film thickness.
As in the past, for example, in the case of a cured resin made of a silicon-embedded plate, trimming with a razor or the like (removal of excess resin) took time and effort, but it was produced by the present invention. Since the primary sample can be formed into a thin plate shape, it can be easily cut out with scissors or the like.

一般に、超高分解能走査電子顕微鏡の試料ホルダはサイドエントリー方式であり、試料サイズが高さ5mm、厚さ2mmまでという制限がある。したがって、シリコン包埋板では大き過ぎて入らなかったが、本実施の形態の観察用試料であれば、最終サンプル8における樹脂層の厚さを、作製する樹脂チップ5Aの厚さでコントロールできるため、超高分解能走査電子顕微鏡の試料ホルダに対応した大きさに作製することができる。
さらに、本実施の形態の包埋板1は、鏡面2Aで光を反射するため、光照射器で樹脂を硬化させる時に、試料を通過した光および試料周辺に当たった光が反射し、効率よく樹脂を硬化させることができるという利点がある。
In general, the sample holder of the ultra-high resolution scanning electron microscope is a side entry method, and the sample size is limited to a height of 5 mm and a thickness of 2 mm. Therefore, although it was too large for the silicon-embedded plate, the thickness of the resin layer in the final sample 8 can be controlled by the thickness of the resin chip 5A to be manufactured in the observation sample of the present embodiment. It can be produced in a size corresponding to the sample holder of the ultrahigh resolution scanning electron microscope.
Furthermore, since the embedding plate 1 of the present embodiment reflects light at the mirror surface 2A, when the resin is cured by the light irradiator, the light that has passed through the sample and the light that has hit the periphery of the sample is reflected, which is efficient. There is an advantage that the resin can be cured.

(その他の実施の形態)
以上、実施の形態について説明したが、この実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
例えば、上記実施の形態では、光硬化性樹脂5として可視光硬化性のアクリル樹脂を用いたが、紫外線硬化性の樹脂を用いてもよい。また、上記実施の形態では、包埋板本体2の平面を鏡面2Aとしたが、光硬化性樹脂5が充分感光されて硬化反応が進むものであれば、鏡面でなくともよい。
(Other embodiments)
Although the embodiment has been described above, it should not be understood that the description and the drawings constituting a part of the disclosure of the embodiment limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
For example, in the above embodiment, a visible light curable acrylic resin is used as the photocurable resin 5, but an ultraviolet curable resin may be used. Moreover, in the said embodiment, although the plane of the embedding board main body 2 was made into the mirror surface 2A, if the photocurable resin 5 is fully photosensitized and hardening reaction advances, it may not be a mirror surface.

また、上記実施の形態では、光透過板4をPETフィルムで構成したが、光透過性を有する樹脂フィルムもしくはガラス板を用いてもよい。
さらに、上記実施の形態では、他の樹脂チップ5Aをさらに重ねた際に、光透過板4を
用いないが、例えばスペーサ3Bを選ぶことにより、樹脂チップ5Aで観察用試料6を挟んだ状態を安定させるように光透過板4を上側の樹脂チップ5Aの上面に押し当てることが可能となり、より平坦性を確保することが可能となる。
Moreover, in the said embodiment, although the light transmissive plate 4 was comprised with the PET film, you may use the resin film or glass plate which has a light transmittance.
Furthermore, in the above embodiment, when another resin chip 5A is further stacked, the light transmission plate 4 is not used. However, for example, by selecting the spacer 3B, the observation sample 6 is sandwiched between the resin chips 5A. The light transmitting plate 4 can be pressed against the upper surface of the upper resin chip 5A so as to be stabilized, and flatness can be further ensured.

1 包埋板
2 包埋板本体
2A 鏡面
3A,3B,3C スペーサ
4 光透過板
5,7 光硬化性樹脂
5A 樹脂チップ
6 観察用試料
8 最終サンプル
DESCRIPTION OF SYMBOLS 1 Embedding board 2 Embedding board main body 2A Mirror surface 3A, 3B, 3C Spacer 4 Light transmission board 5,7 Photocurable resin 5A Resin chip 6 Sample for observation 8 Final sample

Claims (5)

光硬化性樹脂を載置する平面を有する包埋板本体と、前記包埋板本体の前記平面上に載置されるスペーサと、前記スペーサ上に載置され、前記光硬化性樹脂の厚さを規定する光透過板と、を備え、
前記平面上で、前記光透過板を介して光照射された光硬化性樹脂でなる平板状の複数の樹脂チップで観察用試料を包埋処理できることを特徴とする断面観察用試料の包埋板。
An embedding board body having a plane on which the photocurable resin is placed, a spacer placed on the plane of the embedding board body, and a thickness of the photocurable resin placed on the spacer A light transmissive plate that regulates,
An embedment plate for a cross-sectional observation sample, characterized in that the observation sample can be embedded with a plurality of flat resin chips made of a photocurable resin irradiated with light through the light transmission plate on the plane. .
前記スペーサは、互いに厚さ寸法の異なる複数種が備えられていることを特徴とする請求項1に記載の断面観察用試料の包埋板。   The embedded plate for a sample for cross-sectional observation according to claim 1, wherein the spacer is provided with a plurality of types having different thickness dimensions. 前記平面は、鏡面であることを特徴とする請求項1または請求項2に記載の断面観察用試料の包埋板。   The embedding plate for a cross-sectional observation sample according to claim 1 or 2, wherein the plane is a mirror surface. 前記包埋板本体には磁石が前記平面と面一となるように埋設され、前記スペーサが金属で形成されていることを特徴とする請求項1〜3のいずれか一つに記載の断面観察用試料の包埋板。   The cross-sectional observation according to any one of claims 1 to 3, wherein a magnet is embedded in the embedded plate body so as to be flush with the flat surface, and the spacer is formed of metal. Sample embedding plate. 鏡面の上に未露光の光硬化性樹脂を載置する工程と、
前記光硬化性樹脂の厚さを規定した後、光を照射して光硬化性樹脂を硬化させて樹脂チップを作製する工程と、
前記樹脂チップを前記鏡面上に載置した状態で、前記樹脂チップ上に観察用試料を載置し、未露光の光硬化性樹脂で前記観察用試料を覆った後、他の樹脂チップを載置する工程と、
前記樹脂チップで挟まれた光硬化性樹脂に光を照射して光硬化性樹脂を硬化させて前記観察用試料が挟まれた試料保持体を作製する工程と、
前記試料保持体を目的に応じて切削する工程と、
を備えることを特徴とする断面観察用試料の包埋方法。
Placing a non-exposed photocurable resin on the mirror surface;
After prescribing the thickness of the photocurable resin, irradiating light to cure the photocurable resin and producing a resin chip;
With the resin chip placed on the mirror surface, place an observation sample on the resin chip, cover the observation sample with an unexposed photocurable resin, and then place another resin chip. A step of placing;
Irradiating the photocurable resin sandwiched between the resin chips with light to cure the photocurable resin to produce a sample holder in which the observation sample is sandwiched; and
Cutting the sample holder according to the purpose;
A method for embedding a sample for cross-sectional observation, comprising:
JP2011198781A 2011-09-12 2011-09-12 Method for embedding cross-section observation sample Expired - Fee Related JP5807462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198781A JP5807462B2 (en) 2011-09-12 2011-09-12 Method for embedding cross-section observation sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198781A JP5807462B2 (en) 2011-09-12 2011-09-12 Method for embedding cross-section observation sample

Publications (2)

Publication Number Publication Date
JP2013061192A true JP2013061192A (en) 2013-04-04
JP5807462B2 JP5807462B2 (en) 2015-11-10

Family

ID=48185986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198781A Expired - Fee Related JP5807462B2 (en) 2011-09-12 2011-09-12 Method for embedding cross-section observation sample

Country Status (1)

Country Link
JP (1) JP5807462B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810486B1 (en) * 1970-04-04 1973-04-04
JPS5714737A (en) * 1980-06-30 1982-01-26 Toyo Alum Kk Preparation of sample for observing cross section of sheet or film
JPS62172028A (en) * 1986-01-24 1987-07-29 Showa Highpolymer Co Ltd Production of cured film
JPH01141448U (en) * 1988-03-24 1989-09-28
JPH08189883A (en) * 1995-01-10 1996-07-23 Kao Corp Sample-embedded body making device and method for it
JPH10206301A (en) * 1997-01-17 1998-08-07 Tatsuo Oguro Method for making biological specimen for observation by electron microscope, and biological specimen card
JP2002537548A (en) * 1999-02-17 2002-11-05 ボルボ エアロ コーポレイション Preparation of test specimen
JP2003103531A (en) * 2001-09-27 2003-04-09 Mitsubishi Plastics Ind Ltd Method for manufacturing sheet-like molding of photosetting resin
JP2003136547A (en) * 2001-11-06 2003-05-14 Nippon Steel Chem Co Ltd Method for manufacturing resin sheet
JP2003285338A (en) * 2002-03-28 2003-10-07 Nippon Steel Chem Co Ltd Manufacturing method for resin sheet
JP2006134370A (en) * 2004-11-02 2006-05-25 Sony Corp Metallic thin film type magnetic recording medium
JP2009098088A (en) * 2007-10-19 2009-05-07 Jeol Ltd Sample preparing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810486B1 (en) * 1970-04-04 1973-04-04
JPS5714737A (en) * 1980-06-30 1982-01-26 Toyo Alum Kk Preparation of sample for observing cross section of sheet or film
JPS62172028A (en) * 1986-01-24 1987-07-29 Showa Highpolymer Co Ltd Production of cured film
JPH01141448U (en) * 1988-03-24 1989-09-28
JPH08189883A (en) * 1995-01-10 1996-07-23 Kao Corp Sample-embedded body making device and method for it
JPH10206301A (en) * 1997-01-17 1998-08-07 Tatsuo Oguro Method for making biological specimen for observation by electron microscope, and biological specimen card
JP2002537548A (en) * 1999-02-17 2002-11-05 ボルボ エアロ コーポレイション Preparation of test specimen
JP2003103531A (en) * 2001-09-27 2003-04-09 Mitsubishi Plastics Ind Ltd Method for manufacturing sheet-like molding of photosetting resin
JP2003136547A (en) * 2001-11-06 2003-05-14 Nippon Steel Chem Co Ltd Method for manufacturing resin sheet
JP2003285338A (en) * 2002-03-28 2003-10-07 Nippon Steel Chem Co Ltd Manufacturing method for resin sheet
JP2006134370A (en) * 2004-11-02 2006-05-25 Sony Corp Metallic thin film type magnetic recording medium
JP2009098088A (en) * 2007-10-19 2009-05-07 Jeol Ltd Sample preparing method

Also Published As

Publication number Publication date
JP5807462B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
US8643953B2 (en) Manufacturing optical elements
US10150257B1 (en) System and method for reducing three-dimensional additive manufacturing production time
KR101721460B1 (en) Method for fabrication of photo-control panel comprising photo-reflector parts which are positioned in parallel
JP2012039012A (en) Nanoimprint mold manufacturing method, resin pattern manufacturing method by nanoimprint method, and nanoimprint mold
JP5760714B2 (en) Nanoimprint mold
CN104541157A (en) Manufacturing method for surface-enhanced raman scattering element
JPWO2016059928A1 (en) Method for manufacturing curved diffraction grating mold, method for manufacturing curved diffraction grating, curved diffraction grating, and optical apparatus
JP5965698B2 (en) Diffraction grating and manufacturing method thereof
JP2012035578A (en) Mold for nanoimprinting
TWI481496B (en) Manufacturing optical elements
Shir et al. Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric Penrose quasicrystal phase masks
JP5807462B2 (en) Method for embedding cross-section observation sample
WO2017148394A1 (en) Liga fabrication process
TWI421629B (en) Manufacturing a replication tool, sub-master or replica
JP2019066442A (en) Primary embedding block for observing otolith, sample block for observing otolith, and method of preparing otolith sample piece
KR102324019B1 (en) Carbon fiber reinforced plastic structure and processing equipment
JP2014167393A (en) Embedding plate for section observation sample
JP2014037975A (en) Surface enhanced raman scattering unit
Oda et al. Microfabrication of overhanging shape using LCD microstereolithography
JP2011170224A (en) Method for manufacturing optical element
JP6105465B2 (en) Method for manufacturing stereoscopic image forming apparatus
JP2014215375A (en) Replica diffraction grating and manufacturing method thereof
JP2014196975A (en) Surface enhanced raman scattering unit and raman spectroscopy method
KR102436152B1 (en) Imprinting mold and manufacturing method for imprinting mold
JP2008107406A (en) Manufacturing method of hard coat processed panel and processed panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R150 Certificate of patent or registration of utility model

Ref document number: 5807462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees